
XI SIMPÓSIO BRASILEIRO DE LINGUAGENS
DE PROGRAMAÇÃO

Natal — RN
23 a 25 de Maio de 2007

ANAIS

2007

Promoção

Comissão Especial de Linguagens de Programação

SBC - Sociedade Brasileira de Computação

Organização

Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte

Edição

Roberto S. Bigonha

Martin A. Musicante

Martin Musicante
Text Box
 Go to Summary - - - - - - - - - Índice de artigos



i



XI SYMPOSIUM ON PROGRAMMING LANGUAGES

Natal — RN
May, 23 - 25, 2007

PROCEEDINGS

2007

Promotion

Special Committee on Programming Languages

SBC - Brazilian Computer Society

Organization

Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte

Edição

Roberto S. Bigonha

Martin A. Musicante



Cópias adicionais:

DIMAp
Univ. Federal do Rio Grande do Norte
Natal, RN, CEP 59.072-970
Brazil, e-mail: sblp2007@dimap.ufrn.br

XI Simpósio Brasileiro de Linguagens de Programação (1.; 2007;
Natal,RN)

Anais do XI Simpósio Brasileiro de Linguagens de Programação,
Natal, de 23 a 25 de maio de 2007. Editado por Roberto S. Bigonha
(UFMG) e Martin A. Musicante(UFRN). 2007.

xx, 248 p
ISBN 978-85-7669-109-9

Conhecido também como SBLP 2007.

I. Linguagens de Programação. I. Bigonha, Roberto S. II.
Musicante, Martin A. III. SBLP (11. 2007 : Natal) Sociedade
Brasileira de Computação.

Esta obra foi impressa a partir de originais fornecidos pelos autores.



Foreword

The Brazilian Symposium on Programming Languages (SBLP) is a series
of annual conferences promoted by the Brazilian Computer Science Society.
SBLP 2007 was organized by the Computer Science Department (DIMAp)
of the Federal University of Rio Grande do Norte (UFRN), in Natal. It was
supported in part by CNPq, UFRN and Microsoft.

SBLP 2007 is the 11th edition in the series of SBLP events. Previous sym-
posia were held in Belo Horizonte (1996), Campinas (1997), Porto Alegre
(1999), Recife (2000), Curitiba (2001), Rio de Janeiro (2002), Ouro Preto
(2003), Niteroi (2004), Recife (2005) and Itatiaia (2006).

The Program Committee selected 15 papers from a total of 46 submissions.
Submitted papers came from Brazil, Germany, Portugal, France and India.
Almost all papers were reviewed by at least five Program Committee mem-
bers, who were often assisted by other referees. This program contains the
time table for all accepted papers and two invited papers, corresponding to
the two invited talks. Besides the scientific program, SBLP 2007 included
one tutorial, dedicated to technological topics.

As in previous editions of the event, selected papers from the proceedings
are eligible to be published in a Special Issue of the Journal of Universal
Computer Science - JUCS.

We would like to thank everyone who contributed to the success of the sym-
posium and to its scientific merit. In particular, we are grateful the Program
Committee members for their demanding and responsible work, the referees
for their careful reading of all the submissions, the invited speakers for ac-
cepting our invitation to share with us their knowledge, the authors of the
submitted papers, the tutorial instructors for preparing their contributions,
the sponsors and the Organizing Committee for their efforts in making the
venue a success.

Natal may 23th, 2007

Roberto S. Bigonha Martin A. Musicante
Program Committee Chair Organizing Committee Chair

i



ii



Prefácio

O 1o Simpósio Brasileiro de Linguagens de Programação (SBLP) foi proposto
e coordenado por Roberto S. Bigonha em 1996, de 4 a 6 de setembro, em Belo
Horizonte, no Campus da Universidade Federal de Minas Gerais, com o obje-
tivo de criar um fórum espećıfico para discussão e divulgação dos avanços da
área de Linguagens de Programação. Especificamente, nesta primeira edição
do simpósio, discutiram-se questões relacionadas à especificação, análise e
implementação de linguagens de programação e sistemas. Esse Simpósio
recebeu 41 submissões de artigos completos, dos quais foram selecionados
29 para apresentação e publicação nos anais do evento. O Comitê de Pro-
grama deste evento, coordenado por Roberto S. Bigonha, foi composto de 12
membros, todos pesquisadores brasileiros, e contou com mais 24 avaliadores
para análise das submissões recebidas. O evento teve a participação do prof.
Simon Peyton Jones e prof. Philip Wadler como conferencistas convidados.

O 2o SBLP, coordenado por Cećılia Rubira e Luiz E. Buzato, foi realizado no
Campus da Universidade Estadual de Campinas, SP, no peŕıodo de 3 a 5 de
setembro de 1997, e recebeu 42 submissões de artigos completos, dos quais
21 foram aceitos para apresentação e publicação nos anais daquele ano. O
Comitê de Programa, coordenado por Cećılia Rubira, foi composto por 12
pesquisadores brasileiros. Para a avaliação dos trabalhos, o Comitê contou
com 39 avaliadores externos. Nesta edição, o SBLP trouxe como novidades,
a submissão de artigos vindos de Portugal, Cuba e Inglaterra; o oferecimento
de dois mini-cursos e a presença dos conferencistas convidados, prof. Jürg
Gutknecht, prof. Kristen Nygaard, prof. Mehdi Jazayeri e prof. Stefano
Levialdi.

O 3o SBLP coordenado por Maria Lúcia B. Lisboa e Vera Lúcia S. de Lima
aconteceu no peŕıodo de 5 a 7 de maio de 1999 em Porto Alegre, RS, resul-
tado da cooperação entre a Universidade Federal do Rio Grande do Sul e a
Faculdade de Informática da Pontif́ıcia Universidade Católica do Rio Grande
do Sul. Nesta terceira edição do SBLP, foram aceitos para apresentação e
publicação 13 artigos completos, 5 artigos resumos, 4 tutoriais. O Comitê de
Programa foi também coordenado por Maria Lúcia B. Lisboa e era composto
de 11 pesquisadores brasileiros. Cooperaram na análise dos trabalhos mais
10 revisores externos. Prof. Egon Boerger participou como conferencista
convidado, apresentando uma palestra e um tutorial, cujos resumos foram
publicados nos Anais do III SBLP. Neste simpósio destacou-se a importância

iii



dada à cooperação da área de Linguagens de Programação com áreas afins de
pesquisa, incentivou-se a identificação de novos nichos de estudo e de projeto
de pesquisa.

O 4o SBLP sob a coordenação geral de Hermano P. de Moura e André Lúıs
de Medeiro Santos teve ênfase na integração entre a teoria e a prática de
linguagens de programação. O Comitê de Programa foi composto por 18
pesquisadores brasileiros e seu coordenador foi Paulo Borba. Além do Comitê
de Programa, 16 colaboradores externos auxiliaram na seleção dos artigos.
Foram publicados nos Anais do IV SBLP artigos técnicos de pesquisa e relatos
de experiências industriais utilizando-se de linguagens e tecnologias moder-
nas. Ele foi realizado em Recife, PE, no Centro de Informática da Univer-
sidade Federal de Pernambuco, de 17 a 19 de maio de 2000. O IV SBLP
publicou 19 artigos 2 resumos técnicos de pesquisa, 4 relatos de experiências
industriais. Foram selecionados e apresentados também neste simpósio 3 tu-
toriais. Os conferencistas convidados foram o prof. David Watt, prof. Peter
Mosses e o prof. Simon Peyton-Jones. Juntamente com o IV SBLP foram
realizados o Third International Workshop on Action Semantics e o Java
Brasil 2000.

O 5o SBLP foi coordenado por Martin Musicante e teve como Coordenador
do Comitê de Programa, Edward Hermann Haeusler. O V SBLP foi realizado
em Curitiba, PA, nas dependências da Universidade Federal do Paraná, no
peŕıodo de 23 e 25 de maio de 2001. A internacionalização do SBLP, meta
definida desde seu ińıcio, com a participação de conferencistas internacionais,
neste evento consolidou-se com a inclusão, em seu Comitê de Programa, com-
posto por 25 membros, de 2 pesquisadores de outras nacionalidades. Dentre
as 44 submissões foram selecionados 19 artigos técnicos completos. Nesta
edição do evento destacaram-se como palestrantes convidados o prof. Uday
Reddy, o prof. José L. Fiadeiro e o prof. Roberto Ierusalimschy.

O 6o SBLP foi sediado pela primeira vez no Rio de Janeiro, RJ, de 5 a 7 de
junho de 2002, na Pontif́ıcia Universidade Católica do Rio de Janeiro e teve
como coordenador geral Edward Hermann Haeusler, e Carlos Camarão como
coordenador do Comitê de Programa. O comitê foi composto de 27 membros,
23 pesquisadores brasileiros e 4 de outras nacionalidades. Para o VI SBLP
foram submetidos 49 trabalhos, destes, selecionaram-se 18 artigos técnicos e
4 tutoriais. Três tutoriais foram ministrados por pesquisadores de Portugal,
Espanha e França. Destacou-se neste simpósio a cooperação entre grupos de
pesquisa, isto foi evidenciado em sua organização com a participação de pro-
fessores dos Departamentos de Ciência da Computação do IME e da UFF. O

iv



VI SBLP teve os professores Doug Lea e Simon Thompson como palestrantes
convidados. A partir deste evento a Microsoft, por iniciativa de Roberto S.
Bigonha, aparece como uma das patrocinadoras do SBLP.

O 7o SBLP sob a coordenação geral de Lućılia Figueiredo e Marco Túlio
Oliveira Valente foi sediado em Ouro Preto, MG, no peŕıodo de 28 a 30 de
maio de 2003, e teve como Coordenador do Comitê de Programa Roberto
Ierusalimschy. O comitê foi composto de 25 membros. O VII SBLP foi
organizado pela Universidade Federal de Ouro Preto e pela Pontif́ıcia Uni-
versidade Católica de Minas Gerais. Foram submetidos para esta edição do
evento 50 trabalhos técnicos, sendo 49 artigos e 1 tutorial. Destacou-se neste
simpósio o número de submissões de artigos de outros páıses: foram submeti-
dos 6 artigos de pesquisadores portugueses, 3 da Alemanha, 3 dos Estados
Unidos, 1 da França e 1 tutorial do Uruguai. O Comitê de Programa sele-
cionou 16 artigos e o tutorial para apresentação e publicação em seus Anais.
Os palestrantes convidados do VII SBLP foram os professores Nick Benton,
Johan Jeuring e Simon Thompson. Inovações deste ano: Mini-Escola de Lin-
guagens de Programação, composta de seis minicursos dirigidos a alunos de
graduação; e a publicação dos artigos em inglês em um número especial do
Journal of Universal Computer Science (JUCS), publicado pela Springer.

O 8o SBLP teve como coordenador geral Christiano de Oliveira Braga, e
como coordenador do Comitê de Programa, Rafael Dueire Lins. O simpósio
foi realizado em Niterói, RJ, nas dependências do Instituto de Computação
da Universidade Federal Fluminense, de 26 a 28 de maio de 2004. Este foi
o ano em que o evento recebeu mais submissões de trabalhos, 53, sendo 49
artigos técnicos e 4 propostas de tutorial. Foram selecionados 17 artigos com-
pletos e 1 tutorial. O Comitê de Programa foi formado por 42 pesquisadores,
dos quais, 17 de outras nacionalidades. Mais 22 avaliadores externos ao
comitê foram responsáveis pela seleção dos artigos. A maior parte dos arti-
gos tiveram 4 ou mais avaliações e nenhum deles menos que 3 análises. Foram
palestrantes convidados do VIII SBLP o prof. José Fiadeiro e o prof. David
Turner. Dando continuidade a iniciativa do SBLP 2003, todos os artigos
escritos em inglês foram publicados em uma edição especial do JUCS 2004.

Uma novidade deste evento foi criação do Comitê Diretor (Steering Commit-
tee), com mandato correspondente ao peŕıodo de um simpósio até o seguinte.
Definiu-se que o Comitê Diretor deve ser composto pelos três últimos
coordenadores de comitê de programa e pelos dois últimos organi-
zadores de SBLP. Definiu-se ainda que o coordenador da Comissão
Especial de Linguagens de Programação, que é também o presi-

v



dente do Comitê Diretor, é o coordenador de comitê de programa
do último simpósio realizado.

O 9o SBLP coordenado por Ricardo Massa Lima teve como coordenador do
Comitê de Programa, com 42 membros, Martin Musicante. O evento acon-
teceu no Recife, PE, de 23 a 25 de maio de 2005. Foram submetidos ao
IX SBLP 52 artigos provenientes do Brasil e de 14 diferentes páıses. Destes,
foram selecionados 18 artigos para serem apresentados e publicados nos anais
do evento. Cada artigo foi avaliado por pelo menos três membros do Comitê
de Programa e por avaliadores externos ao comitê. Os palestrantes convi-
dados foram o prof. Peter Mosses e prof. Mary Sheeran. A novidade do
IX SBLP foi a inclusão de 2 tutoriais dedicados a tópicos tecnológicos, nesta
ocasião apresentados por Alisson Sol.

O 10o SBLP, coordenado por Alex de Vasconcellos Garcia, teve como co-
ordenador do Comitê de Programa, com 48 membros, Mariza Andrade da
Silva Bigonha. O evento aconteceu em Itatiaia, RJ, de 15 a 17 de maio de
2006. O Comitê de Programa do 10o SBLP recebeu 50 submissões, sendo 4
tutoriais e 46 artigos técnicos, vindos do Brasil, Holanda, Austria, Portugal,
Estados Unidos, Alemanha e Grã-Bretanha. Destes, foram selecionados pelos
48 membros do Comitê de Programa 2 tutoriais e 16 artigos completos, com
4 artigos de pesquisadores estrangeiros, perfazendo uma taxa de aceitação
inferior a 35% dos artigos submetidos. Cada uma das submissões teve cinco
avaliações realizadas pelo Comitê de Programa e mais 28 revisores externos.
Os palestrantes convidados foram os professores Jens Palsberg, Guido de
Araújo, Diana Santos e Roberto S. Bigonha.

O Comitê de Programa do 11o SBLP recebeu 47 submissões, sendo 2 tu-
toriais e 46 artigos técnicos, vindos do Brasil, Portugal, Alemanha, França
e Índia. Destes, foram selecionados pelos 43 membros do Comitê de Pro-
grama, 1 tutorial e 15 artigos completos, perfazendo uma taxa de aceitação
de artigos completos de 33,33% dos artigos submetidos. Cada uma das sub-
missões, exceto três, teve pelo menos cinco avaliações realizadas pelo Comitê
de Programa e revisores externos, listados nestes anais. Os palestrantes
convidados desta edição do SBLP são os professores Paulo Borba (UFPE)
e Guiseppe Castagna (CNRS, Universidade de Paris 7). Agradecemos aos
autores, aos membros do Comitê de Programa e aos revisores externos o ex-
celente trabalho, aos conferencistas convidados e a todos os pesquisadores
que submeteram artigos para o XI SBLP.

Por fim, temos o prazer de registrar que, no fim de 2006, o Simpósio Brasileiro

vi



de Linguagens de Programação foi classificado pela CAPES como um evento
QUALIS A. Agradecemos aos autores, organizadores e aos comitês de pro-
grama esta conquista.

Natal, 23 de março de 2007

Roberto S. Bigonha Martin A. Musicante Mariza A. S. Bigonha
Comitê de Programa Comitê Organizador Comissão Especial de LP

vii



viii



COMITÊ DE PROGRAMA
PROGRAM COMMITTEE

Coordenador/Chair: Roberto S. Bigonha, UFMG

Alberto Pardo Univ. de La Republica Uruguay
Alex Garcia IME Brazil
Alfio Martini PUC-RS Brazil

Álvaro Freitas Moreira UFRGS Brazil
Ana Cristina Vieira de Melo USP Brazil
André R. Du Bois UCPel Brazil
André Santos UFPE Brazil
Carlos Camarão UFMG Brazil
Cećılia Rubira UNICAMP Brazil
Christiano Braga UFF Brazil
David Naumann Stevens Tech USA
Edward Hermann Haeusler PUC-Rio Brazil
Francisco Heron de Carvalho-Junior UFC Brazil
Isabel Cafezeiro UFF Brazil
Jens Palsberg University of California USA
Johan Jeuring Utrecht University Netherlands
João Saraiva Univ. do Minho Portugal
José Guimarães UFSCAR Brazil
Jose Labra Univ. of Oviedo Spain
José Luiz Fiadeiro U. of Leicester UK
Lućılia Figueiredo UFOP Brazil
Luis Soares Barbosa Univ. do Minho Portugal
Luiz Carlos Menezes UFPE Brazil
Marcelo Maia UFU Brazil
Marco Túlio de Oliveira Valente PUC-MG Brazil
Mariza A. S. Bigonha UFMG Brazil
Martin A. Musicante UFRN Brazil
Nick Benton Microsoft Research England
Noemi Rodriguez PUC-Rio Brazil
Paulo Borba UFPE Brazil
Peter D. Mosses University Wales Swansea UK

ix



Rafael Dueire Lins UFPE Brazil
Renato Cerqueira PUC-Rio Brazil
Ricardo M. Lima UPE Brazil
Roberto Ierusalimschy PUC-Rio Brazil
Sandro Rigo UNICAMP Brazil
Sérgio de Mello Schneider UFU Brazil
Sérgio Soares UPE Brazil
Sergiu Dascalu University of Nevada USA
Simon Thompson University of Kent England
Varmo Vene University de Tartu Estonia
Vitor Costa UFRJ Brazil
Vladimir Di Iorio UFV Brazil

COMITÊ DIRETOR
STEERING COMMITTEE

Presidente/President: Mariza A. S. Bigonha, UFMG

Alex Garcia IME X SBLP organizer
Martin A. Musicante UFRN XI SBLP organizer and IX PC chair
Roberto S. Bigonha UFMG XI SBLP PC chair

COMITÊ ORGANIZADOR
ORGANIZING COMMITTEE

Coordenador Geral/Chair: Martin A. Musicante, UFRN/DIMAp

David Déharbe UFRN/DIMAp
Marcel Oliveira UFRN/DIMAp
João Marcos UFRN/DIMAp
Selan Rodrigues dos Santos UFRN/DIMAp
Umberto Souza da Costa UFRN/DIMAp

x



REVISORES
REFEREES

Adriano Oliveira Universidade de Pernambuco Brazil
Alberto Pardo Universidad de La República Uruguay
Alex Garcia Instituto Militar de Engenharia Brazil
Alfio Martini PUC do Rio Grande do Sul Brazil
Alvaro Moreira Univ. Federal do Rio Grande do Sul Brazil
Ana Bove Chalmers University of Technology Sweden
Ana C. V. de Melo Universidade de São Paulo Brazil
Anderson Faustino Universidade Federal do Rio de Janeiro Brazil
André Du Bois Universidade Católica de Pelotas Brazil
André Furtado Universidade Federal de Pernambuco Brazil
André Luis Santos Universidade Federal de Pernambuco Brazil
Antônio Rocha Costa Universidade Católica de Pelotas Brazil
Arnaldo Mandel Universidade de São Paulo Brazil
Carlos Camarão Universidade Federal de Minas Gerais Brazil
Carlos Luna Universidad de la Republica Uruguay
Cećılia Rubira Universidade Estadual de Campinas Brazil
Christiano Braga Universidad Complutense de Madrid Spain
Cláudia Justel Instituto Militar de Engenharia Brazil
Claudio Geyer Univ. Federal do Rio Grande do Sul Brazil
Claudio Naoto Univ. Federal do Rio Grande do Sul Brazil
David Naumann Stevens Institute of Technology USA
Dorgival Guedes Universidade Federal de Minas Gerais Brazil
Eduardo Almeida Universidade Federal de Pernambuco Brazil
Edward Hermann Haeusler PUC do Rio de Janeiro Brazil
Emilio Tuosto University of Leicester Great Britain
Flávio S. Corrêa da Silva Universidade de São Paulo Brazil
Francisco Carvalho-Junior Universidade Federal do Ceará Brazil
Irek Ulidowski University of Leicester Great Britain
Isabel Cafezeiro Universidade Federal Fluminense Brazil
Jens Palsberg University of California USA
João Dantas Universidade Federal de Minas Gerais Brazil
João Saraiva Universidade do Minho Portugal
Johan Jeuring Utrecht University The Netherlands

xi



José Guimarães Universidade Federal de São Carlos Brazil
Jose Labra Gayo University of Oviedo Spain
Juan Quiroz University of Nevada, Reno USA
Jussara Almeida Universidade Federal de Minas Gerais Brazil
Leila Silva Universidade Federal de Sergipe Brazil
Lućılia Figueiredo Universidade Federal de Ouro Preto Brazil
Luis Barbosa Universidade do Minho Portugal
Luis Menezes Universidade de Pernambuco Brazil
Luis Sierra Universidad de La Republica Uruguay
Marcelo Maia Universidade Federal de Uberlândia Brazil
Marco Túlio Valente PUC de Minas Gerais Brazil
Mariza Bigonha Universidade Federal de Minas Gerais Brazil
Martin Musicante Univ. Federal do Rio Grande do Norte Brazil
Mauricio Pilla Universidade Católica de Pelotas Brazil
Márcio Cornélio Universidade Federal de Pernambuco Brazil
Michael Hoffmann University of Leicester Great Britain
Mike McMahon University of Nevada Reno USA
Newton Vieira Universidade Federal de Minas Gerais Brazil
Nick Benton Microsoft Research Great Britain
Noemi Rodriguez PUC do Rio de Janeiro Brazil
Paulo Borba Universidade Federal de Pernambuco Brazil
Paulo Pires Univ. Federal do Rio Grande do Norte Brazil
Peter Mosses Swansea University Great Britain
Rafael Lins Universidade Federal de Pernambuco Brazil
Renata Reiser Universidade Católica de Pelotas Brazil
Renato Cerqueira PUC do Rio de Janeiro Brazil
Renato Ferreira Universidade Federal de Minas Gerais Brazil
Ricardo Lima Universidade de Pernambuco Brazil
Roberto Ierusalimschy PUC do Rio de Janeiro Brazil
Sandro Rigo Universidade Estadual de Campinas Brazil
Sérgio Schneider Universidade Federal de Uberlandia Brazil
Sérgio Soares Universidade de Pernambuco Brazil
Sergiu Dascalu University of Nevada, Reno USA
Simon Thompson University of Kent Great Britain
Tiago Massoni Universidade Federal de Pernambuco Brazil
Varmo Vene University of Tartu Estonia
Vitor Costa Universidade Federal do Rio de Janeiro Brazil
Vladimir Di Iorio Universidade Federal de Viçosa Brazil

xii



SOCIEDADE BRASILEIRA DE COMPUTAÇÃO (SBC)

Diretoress

Cláudia Maria Bauzer Medeiros, UNICAMP Presidente
José Carlos Maldonado, ICMC-USP Vice-Presidente
Carla Maria Dal Sasso Freitas, UFRGS Administrativa and Finanças
Karin Breitmann, PUC-Rio Eventos e Comissões Especiais
Edson Norberto Cáceres, UFMS Educação
Marta Lima de Queiros Mattoso, UFRJ Publicação
Virǵılio Augusto F. Almeida, UFMG Planejamento e Programas Especiais
Aline dos Santos Andrade, UFBA Secretarias Regionais
Altigran Soares da Silva, UFAM Divulgação e Marketing
Roberto da Silva Bigonha, UFMG Regulamentação da Professão
Carlos Eduardo Ferreira, USP Eventos Especiais

Conselho

Flávio Rech Wagner, UFRGS
Siang Wu Song, USP
Luiz Fernando Gomes Soares, PUC-Rio
Ariadne Maria B. Carvalho, UNICAMP
Taisy Silva Weber, UFRGS Ana Carolina Salgado, UFPE
Ricardo de Oliveira Anido, UNICAMP
Jaime Simão Sichman, USP
Daniel Schwabe, PUC-Rio
Marcelo Walter

Suplentes

Robert Carlisle Burnett, PUC-PR
Ricardo Reis, UFRGS
José Valdeni de Lima, UFRGS
Raul Sidnei Wazlawick, UFSC

Coordenadora da Comissão Especial de Linguagens de Programação
Chair of the Special Committee on Programming Languages

Mariza Andrade da Silva Bigonha, UFMG

xiii



xiv



Sumário

1 Modularity, Information Hiding, and Interfaces for Aspect-
Oriented Languages
Paulo Borba (Universidade Federal de Pernambuco) . . . . . . 1

2 CDuce, an XML Processing Programming Language from
Theory to Practice
Giuseppe Castagna (CNRS, Université Paris 7 - France) . . 3

3 CML: C Modeling Language
Frederico de Oliveira Jr.(UPE), Ricardo Lima (UPE), Márcio
Cornélio (UPE), Sérgio Soares (UPE), Paulo Maciel (UFPE),
Raimundo Barreto (UFPE), Meuse Oliveira Jr. (UFPE), Ed-
uardo Tavares (UFPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Constraint Programming Architectures: Review and a New
Proposal
Jacques Robin (UFPE), Jairson Vitorino (UFPE), Armin
Wolf (Fraunhofer FIRST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Logic Programming for Verification of Object-Oriented Pro-
gramming Law Conditions
Leandro de Freitas (UPE), Marcel Caraciolo (UPE), Márcio
Cornélio (UPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xv



6 A Methodology for Removing Conflicts in LALR(k) Parsers
Leonardo Passos (UFMG), Mariza Bigonha (UFMG), Roberto
Bigonha (UFMG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Optimized Compilation of Around Advice for Aspect Ori-
ented Program
Eduardo Cordeiro (UFMG), Roberto Bigonha (UFMG), Ma-
riza Bigonha (UFMG), Fabio Tirelo (UFMG) . . . . . . . . . . . . . 61

8 A Visual Language for Animated Simulation
Vladimir Di Iorio (UFV), Débora Coura (UFV), Leonardo
Reis (UFV), Marcelo Oikawa (UFV), Carlos Roberto Junior
(UFV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9 Improving Reusability in AspectLua
Mauricio Vieira (UFRN), Thais V. Batista (UFRN) . . . . . . 89

10 Programming Through Spreadsheets and Tabular Abstrac-
tions
Carlos Forster (ITA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11 A New Architecture for Concurrent Lazy Cyclic Reference
Counting on Multi-Processor Systems
Andrei Formiga (UFPE), Rafael Lins (UFPE) . . . . . . . . . . . . 113

12 Cyclic Reference Counting with Permanent Objects
Rafael Lins (UFPE), Francisco Carvalho (UFPE) . . . . . . . . . 127

13 C APIs in Extension and Extensible Languages
Hisham Muhammad (PUC-Rio), Roberto Ierusalimschy (PUC-
Rio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

14 Higher-Order Lazy Functional Slicing
Nuno Rodrigues (U.do Minho), Luis Barbosa (U.do Minho) 151

xvi



15 Open and Closed Worlds for Overloading: a Definition and
Support for Coexistence
Carlos Camarão (UFMG), Cristiano Vasconcellos (UFPel),
Lućılia Figueiredo (UFOP), João Nicola (UFMG) . . . . . . . . 165

16 Using Visitor Patterns in Object-Oriented Action Semantics
Andre Murbach Maidl (UFPR), Martin Musicante (UFRN),
Claudio Carvilhe (PUC-PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

17 Uma Linguagem Para Especificação e Combinação Dinâmica
de Aspectos em Aplicações Orientadas a Serviço
Nabor Mendonca (Unifor), Clayton Silva (Unifor), Ian Maia
(Unifor), Tiago Cordeiro (Unifor) . . . . . . . . . . . . . . . . . . . . . . . . 193

18 Programação Avançada com Common Lisp: Meta-Programação
e Linguagens de Domı́nio Espećıfico (TUTORIAL)
Pedro Kroger (Universidade Federal da Bahia) . . . . . . . . . . . 207

xvii



xviii



Modularity, Information Hiding, and Interfaces
for Aspect-oriented Languages

Paulo Borba
Informatics Center

Federal University of Pernambuco

Aspect-oriented languages have been proposed with the aim of supporting
the modularization of crosscutting concerns, which cannot be properly modu-
larized by object-oriented constructs because the realization of such concerns
affects the behavior of several methods, possibly in several classes, cutting
across class structures. Despite being able to localize the implementation of
crosscutting concerns, aspects and other related aspect-oriented constructs
often do not support true modularization, which should enable independent
development, understanding, and maintenance of modules. In fact, by hav-
ing access to details on how classes are implemented, aspects break modular
reasoning, requiring modifications to a class to be fully aware of the aspects
that affect that class. So constructs aimed to support crosscutting modularity
might actually break class modularity.

In this talk, we use Design Structure Matrixes to analyze this issue in
real systems and software product lines. Our analysis is based on a seman-
tic notion of module dependence, going beyond usual coupling metrics, and
reflecting more closely modularity dimensions. We also apply the concept
of Design Rules, which generalizes Parnas notion of information hiding in-
terfaces, to eliminate class and aspect dependence in those case studies. We
discuss how this reconciles different dimensions of modularity and modular
reasoning, and helps to better characterize a proper notion of interface for
aspect-oriented languages. Finally, we discuss language extensions to sup-
port such a notion, and report our experience on applying them to the design
and refactoring of aspect-oriented software product lines.

1



2



CDuce, an XML Processing Programming
LanguageFrom Theory to Practice

Giuseppe Castagna

CNRS
Université Paris 7 - France

CDuce is a modern functional programming language for processing XML
documents. Distinctive and innovative features of CDuce are a powerful
pattern matching, first class functions, overloaded functions, a very rich type
system (arrows, sequences, pairs, records, intersections, unions, differences),
precise type inference for patterns, precise error localization with informative
error messages, and a natural interpretation of types as sets of values.

This results into very concise and expressive programs in which most of
the errors are detected at compile time thanks to the precision of the type
system. This allows for fast prototyping and reduced development cycles.
CDuce handles several standards (XML, DTD, XMLSchema, Namespaces,
Unicode, ...) and is tightly coupled with the OCaml Programming Language
(OCaml programs and libraries can be called from CDuce and vice-versa).
Last but not least CDuce uses a highly efficient run-time and includes an opti-
mizable query language which is programmable by a graphical interface. For
all these reasons CDuce is used in production both by open source projects
and industrial users.

The main advantages of CDuce were possible only thanks to its formal
foundation. The CDuce project started from the formal study of semantic
subtyping and yield a programming language in which all the gory details of
semantic interpretation of types are completely hidden to the programmer.

In this talk we follow the inverse paths for our presentation (a more
faithful subtitle would be ”from Practice to Theory”). We start from the
practice and then show the theory hidden under the hood. More precisely
the talk is articulated in three parts.

In the first part we give an overview CDuce, discussing its most charac-
teristic features such as the type system, the pattern matching, the query
language, the error messages. To that end we comment some CDuce pro-
grams, possibly demonstrating the use of CDuce code embedded in XML
documents and/or the definition of queries via a graphical interface. We also
outline some important implementation issues; in particular, a dispatch algo-

3



rithm that demonstrates how static type information can be used to obtain
very efficient compilation schemas.

In the second part we discuss the theory underlying CDuce. In particu-
lar the ”semantic subtyping”approach and the set-theoretic interpretation of
union, intersection and negation types.

In the last part we will discuss some outcomes of this research that go
beyond XML. Among these are applications to concurrency theory and the
pi-calculus, to polymorphic type systems and to polymorphic iterators.

4



CML: The C Modeling Language
Frederico de Oliveira Jr.1, Ricardo Lima1, Márcio Cornélio1, Sérgio Soares1,
Paulo Maciel2, Raimundo Barreto2, Meuse Oliveira Jr.2, Eduardo Tavares2

1Computing Systems Department, Pernambuco State University (DSC-UPE)
Recife – PE — Brazil

2Informatics Center, Federal University of Pernambuco (CIn-UFPE)
Recife – PE — Brazil

{fgaoj,ricardo,marcio,sergio}@dsc.upe.br

{prmm,rsb,mnoj,eagt}@cin.ufpe.br

Abstract. Non-functional requirements such as performance, program size, and energy con-
sumption significantly affect the quality of software systems. Small devices like PDAs and
mobile phones have little memory, slow processors, and energy constraints. The C program-
ming language has been the choice of many programmers when developing application for
small devices. On the other hand, the need for functional software correctness has derived
several specification languages that adopt the Design by Contract (DBC) technique. In this
work we propose a specification language for C, called CML (C Modeling Language), fo-
cused on non-functional requirements. CML follows the Design By Contract technique. An
additional contribution is a verification tool for hard real-time systems. The tool is the first
application developed for CML. The practical usage of CML is presented through a case
study, which is a real application for a vehicle monitoring system.

1. Introduction
A software specification is intended to describe the structure and functionality required for a
system[Gannon et al. 1994]. The specification is useful to understand the system and to eliminate
errors in the later phases of the development cycle.

A number of specification languages have been designed to be annotated directly in the source
code. Some of these languages adopts the Design by Contract (DBC) [Meyer 1992, Meyer 1997]
technique. Contracts are a breakthrough technique to reduce the programming effort for large projects.
Contracts are the concept of preconditions, postconditions, errors, and invariants. The idea of a
contract is just an expression that must evaluate to true. If it does not, the contract is broken, and by
definition, the program has a bug in it. Contracts form part of the specification for a program, moving
it from the documentation to the code itself. And as every programmer knows, documentation tends
to be incomplete, out of date, wrong, or non-existent. Moving the contracts into the code makes them
verifiable against the program.

The concepts of DBC were introduced in Eiffel [Meyer 1997]. The Java Modeling Language
(JML) follows the design by contract paradigm. It is a specification language for Java programs, using
Hoare style pre- and postconditions and invariants [Hoare 1969]. The specifications are added as an-
notation comments to the Java program, which hence can be compiled with any Java compiler. There
are various verification tools for JML, such as a runtime assertion checker [Cheon and Leavens 2002]
and the Extended Static Checker (ESC/Java)[Flanagan et al. 2002].

Small devices, such as PDAs and mobile phones, have constrained resources, like memory,
processor power, and energy. Therefore, applications developed targeting such devices cannot ignore
these resources limitations. The C programming language has been the choice of many programmers

5



when developing application for small devices. The capacity for manipulating low level resources
and the existence of efficient compilers justify the popularity of C for these applications.

Due to side effects caused by pointer manipulation is difficult to proof the functional correct-
ness of C programs. Thus, although most C programmers like the idea of DBC, they abandon DBC
because it is too inelegant, relies too much on macros, and is too weak without language support.
On the other hand, C is widely adopted to implement application with stringent resource constraints
(memory, time processing, communication cost, and energy consumption, for example). Therefore,
it is intuitive to define a specification language to describe non-functional requirements of C pro-
grams. Indeed, most C programmers invent their own strategy to define such requirements, for in-
stance, in form of comments, informally included in the source code. Additionally, the specification
language should be associated with verification tools. It is important to automatically check if the
non-functional requirement was fulfilled.

This work proposes a specification language for C focused on non-functional requirements,
inspired in the DBC paradigm, called C Modeling Language (CML). Moreover, the paper contributes
with a tool for hard real-time systems based on CML. The tool receives a C program, composed of
several tasks, annotated with time restrictions, scheduling method (preemptive and non-preemptive),
arbitrary inter-task relations (precedence and exclusion), task-to-processor allocation. It automatically
looks for a feasible schedule. If a schedule is found, the tool generates a scheduler to control the tasks’
execution. It is worth observing that this is pre-runtime scheduling policy, which is fundamental to
satisfy timing requirements established in the CML specification.

The main contributions of this work are: the CML specification language focused on non-
functional requirements; a tool for hard real-time systems based on CML that analyzes C programs
according to the defined specification; and a case study that validates the proposed language (CML)
and the analysis tool in a real application.

2. CML: The C Modeling Language
The C Modeling Language (CML) is a specification language developed to describe non-functional
requirements of applications implemented through the C programming language. CML is particularly
useful for applications with stringent constraints in terms of time, memory, area, power, and other
limited resources.

Figure 1 depicts an overview of the CML environment. Similar to JML, programmer includes
annotations in the C source code in form of comments. The CML compiler translates the annotated
C code into the file format of the verification tool employed to check the system against the specified
non-functional requirements.

Figure 1. An overview of the CML environment

The CML specification is placed into comment blocks, between /*! and */ patterns. The
pattern /*! indicates the beginning of the specification. The pattern */ establishes the end of a
specification block. Figure 2 presents a simple example of a CML specification.

The complete set of annotation elements proposed for CML is presented in Appendix 7. Table

6



/*!

* @attribute value

*/

Figure 2. A simple CML specification

1 lists a subset of CML defined for specifying hard-real time systems. We will focus on this subset to
illustrate the practical usage of CML.

Constructor Description Format
@task task name String
@processor processor where the task will be executed String
@scheduling task scheduling model NP (Non-preemptive) or

P (Preemptive)
@phase task phase time Integer
@release task release time Integer
@wcet task worst case execution time Integer
@deadline task deadline time Integer
@period task period time Integer
@precedes tasks preceded by this task List of tasks between the

tokens { and } separated by comma
@excludes tasks excluded by this task List of tasks between the

tokens { and } separated by comma
@sends message sent by this task This attribute is followed by:

1. Message name
2. Bus name
3. Worst case communication time
4. Receiver Task

Table 1. Subset of CML for hard real-time systems

Figure 3 presents a CML specification for task T1 (@task T1), which belongs to a hard
real-time system. According to the specification, T1 cannot be preempted (@scheduling NP) and
must execute in processor P1 (@processor P1). The attributes @release, @period, @phase,
@deadline, and @wcet are related to the task timing constraints and expressed in Time Task Units
(TTUs). A TTU is the smallest indivisible granule of a task, during which a task cannot be preempted
by any other task. The attributes @precedes and @excludes specifies the relation between tasks.
In the specification example, T1 precedes tasks T2 and T5. Consequently, T2 and T5 can only start
executing after T1 has finished (@precedes {T2,T5}). @excludes {T3} indicates that task
T1 excludes T3. Therefore, no execution of T3 can start while T1 is executing. Eventually, message
M1 is sent by T1 to the task T4 through the communication bus B1. The communication should take,
in the worst case, 17 TTUs (@sends M1 T4 17 B1). Section 3 provides a detailed discussion
about each attribute included in the CML specification for hard real-time systems.

The CML compiler developed in this work translates the CML specification into a XML file.
This file is read by an application developed in this work, which is a software synthesis tool for
embedded hard real time systems described in Section 3. The XML file equivalent to the CML
specification in Figure 3 is presented in Figure 4.

3. A CML Based Software Synthesis for Embedded Hard Real-Time Applications
The practical usage of CML depends on the implementation of verification tools integrated with a C
programming environment. An additional contribution of this work is the development of a software
synthesis tool for embedded hard real-time applications.

Embedded hard real-time systems are dedicated computer applications having to satisfy strin-
gent timing constraints, or rather, they must guarantee that critical tasks finish before their deadlines.

7



/*!
@task T1
@scheduling NP
@processor P1
@release 1
@period 9
@phase 1
@deadline 9
@wcet 1
@precedes {T2,T5}
@excludes {T3}
@sends M1 T4 17 B1

*/
void T1(){ //task code }

Figure 3. Example of a task specification

A failure to meet deadlines may have serious consequences such as resources damage or even loss
of human life. Software synthesis has become a key problem in design of embedded hard real-
time systems, since the software is responsible for more than 70% of functions in such systems
[Su and Hsiung 2002].

Scheduling is very important in embedded real-time systems. There are two general ap-
proaches for scheduling tasks: runtime and pre-runtime scheduling. The former approach computes
schedules on-line as tasks arrive, through a priority-driven strategy. However, in some cases the run-
time scheduler is unable to find a feasible schedule, even if such schedule exists [Xu and Parnas 1993].
On the other hand, a pre-runtime scheduler computes the schedule entirely off-line. This strategy im-
proves processor utilization, reduces context switching, makes execution predictable, and excludes
the need for complex operating systems.

This work focuses on embedded hard real-time systems. We decided to adopt a pre-runtime
scheduling approach. To find a feasible schedule, we perform a state space exploration, since it
presents a complete automatic strategy for verifying finite-state systems [Godefroid 1996]. The
scheduled code is generated by traversing the timed Labelled Transition System (LTS), which rep-
resents a feasible schedule. Transition’s instances visited are substituted by the respective code seg-
ments. Tasks can be distributed in several processors in order to achieve the time restrictions.

3.1. A Method for Software Synthesis

This section describes a method for software synthesis considering embedded hard real-time applica-
tions. Our method comprises four main steps:

• Specification: describes the properties of each task in the system, including time restriction
(phase time, release time, worst execution time, deadline, and period), scheduling method
(preemptive and non-preemptive), arbitrary inter-task relations (precedence and exclusion),
task-to-processor allocation, and task source code; tasks allocated in different processors com-
municate through a special task, called communication task; such a task is described by the
worst communication time, communication channel, sender and receiver;

• Modelling: the specification is translated into a Time Petri Net (TPN) model
[Merlin and Faber 1976]; each specification element is modeled through a TPN build-
ing block; these blocks are composed to form the complete model [Tavares et al. 2005,
Tavares 2006];

• Pre-runtime Scheduler: the next step searches for a feasible scheduling using the TPN model;
the proposed scheduling algorithm performs a depth-first search on a finite timed Labeled
Transition System (LTS) derived from a TPN model;

8



<realtime-table>
<task release="1" period="9" phase="1" processor="P2" schedulingModel="NP"
oid="1088076" name="T1">
<time>

<computing value="1"/>
<deadline value="9"/>

</time>
<precedes>

<task-ref name="T2"/>
<task-ref name="T5"/>

</precedes>
<excludes>

<task-ref name="T3"/>
</excludes>
</task>

...
<message bus="B1" oid="30377347" name="M1">

<time>
<communication value="17"/>

</time>
<precedes>
<task-ref name="T4"/>

</precedes>
</message>

</realtime-table>

Figure 4. Specification in XML format

• Software Synthesis: the scheduled code is generated by traversing the timed LTS that repre-
sents a feasible schedule, if it exists, and substituting transition’s instances by the respective
code segments.

This work concentrates on the specification and software synthesis phases. More details
about the modeling and pre-runtime scheduler phases may be found elsewhere [Tavares et al. 2005,
Tavares 2006].

3.2. Specification of Hard Real-Time Systems
This subsection describes the specification elements included in CML for modelling hard real-time
system.

A task is the basic element in the system. The specification is given in terms of temporal
restrictions on task; the scheduling method adopted; inter-task relations; and inter-processor commu-
nications, which is modeled by a special task, called communication task.

Temporal Restrictions In real-time systems, there are, generally, three types of tasks:

• periodic tasks perform a computation that are executed once in each fixed period of time;
• aperiodic tasks are activated randomly;
• sporadic tasks are executed randomly, but the minimum interval between two consecutive

activations is known a priori.

Pre-runtime method performs scheduling decisions at compile time. It aims at generating a
schedule table for a runtime component, namely, dispatcher, which is responsible for controlling the
tasks during system execution. In order to adopt such method, the major characteristics of the tasks
must be known in advance. This approach can only be used to schedule periodic tasks.

9



Definition 3.1 (Periodic Task) Let Ti be a periodic task defined by Ti =(phi, ri, ci, di, pi), where phi

is the initial phase; ri is the release time; ci is the worst case computation time; di is the deadline;
and pi is the period. A periodic task samples objects of interest at a fixed rate. The phase (phi) is the
delay associated to the first time request of task Ti after the system starting. phi = 0 whenever not
specified. The release time (ri) is the time interval between the beginning of a period and the earliest
time to start the execution of task Ti. The computation time (ci) is the worst case computation time
required for executing task Ti. The deadline (di) is the time interval between the beginning of a period
and the time instant at which task Ti must be completed (in each period). The period (pi) is the time
interval in which Ti must be executed.

The initial phase (phi) defines the point in time, after the system starts executing, when the
task period can be allocated. The definition of phi is important, since non schedulable system may
become schedulable when an initial phase is specified. For instance, considering two tasks, T1 and
T2, having the same timing constraints (ph1, r1, c1, d1, p1) = (ph2, r2, c2, d2, p2) = (0, 0, 5, 5, 10).
This system is not schedulable, since both takes 5 time units to execute and should finish at time unit
5. However, if an initial phase is specified, i.e. ph2 = 5, the system becomes schedulable, because
the period of T2 is allowed to start 5 time units after the beginning of system execution. It is enough
for task T1 finishes. It is worth notice that the deadline is relative to the period and not to the entire
system. Figure 5 presents a feasible schedule for the system.

Figure 5. A feasible schedule for the system

Scheduling Method The scheduling methods are all-preemptive and all-non-preemptive. In the all-
preemptive scheduling method tasks are implicitly split into all possible subtasks. This scheduling
method permits running other conflicting tasks, implying that one task could preempt another task.
In turn, with the all-non-preemptive scheduling method processor is just released after finishing the
entire computation.

Arbitrary Inter-Task Relations A task Ti precedes task Tj , if Tj can only start executing after Ti

has finished. In general, this kind of relation is suitable whenever a task (successor) needs information
that is produced by another task (predecessor). A task Ti excludes task Tj , if no execution of Tj can
start while task Ti is executing. If it is considered a single processor, then task Ti could not be
preempted by task Tj . Exclusion relations may prevent simultaneous access to shared resources. In
this work it is considered that the exclusion relation is not symmetrical, that is, when A EXCLUDES
B, not necessarily implies that B EXCLUDES A.

Inter-Processor Communication When adopting a multiprocessing environment, all inter-
processor communications have to be taken into account, since these communications affect the
system predictability. An inter-processor communication is represented by a special task, namely,
communication task, which is described as follows.
Definition 3.2 (Communication Task) Let µm ∈ M be a communication task defined by µ =
(Ti, Tj, ctm, busm), where Ti ∈ T is the sending task, Tj ∈ T is the receiving task, ctm is the worst
case communication time, and busm ∈ B is the bus, where B is the set of buses.

10



It is worth observing that the bus is an abstraction for a communication channel used for
providing communication between tasks from different processors.

3.3. Scheduled Code Generation
The proposed method for code generation includes not only tasks’ code (implemented through C
functions), but also a timer interrupt handler, and a small dispatcher. Such dispatcher automates sev-
eral control mechanisms required during the execution of tasks. Timer programming, context saving,
context restoring, and tasks’ calling are examples of such additional controls. The timer interrupt
handler always transfers the control to the dispatcher, which evaluates the need for performing either
context saving or restoring, and calling a specific task.

An array of registers (struct ScheduleItem) is created to store the schedule table. Each
input represents the execution part of a task instance. In case of preemption, a task instance may
have more than one execution part. The register struct ScheduleItem contains the following
information: (i) start time; (ii) flag, indicating if the task was preempted before; (iii) task id; and (iv)
a pointer to a function (the respective task code). Figure 6 depicts the schedule table for a preemptive
application. It includes two instances of TaskA, two instances of TaskB, two instances of TaskC,
and one instance of TaskD. TaskA1 and TaskA2 are preempted in time 4 and 20, respectively.
TaskB1 is preempted twice: first in time 6 and, then, in time 10. Therefore, the schedule table
contains 11 entries. Figure 7 presents the respective timing diagram.

struct ScheduleItem scheduleTable [SCHEDULE_SIZE] =
{{ 1, false, 1, (int *)TaskA}, TaskA1 starts
{ 4, false, 2, (int *)TaskB}, TaskB1 starts and preempts TaskA1
{ 6, false, 3, (int *)TaskC}, TaskC1 starts and preempts TaskB1
{ 8, true, 2, (int *)TaskB}, TaskB1 resumes executing
{10, false, 4, (int *)TaskD}, TaskD1 starts and preempts TaskB1
{11, true, 2, (int *)TaskB}, TaskB1 resumes executing
{13, true, 1, (int *)TaskA}, TaskA1 resumes executing
{18, false, 1, (int *)TaskA}, TaskA2 starts
{20, false, 3, (int *)TaskC}, TaskC2 starts and preempts TaskA2
{22, false, 2, (int *)TaskB}, TaskB2 starts
{28, true, 1, (int *)TaskA} TaskA2 resumes executing

};

Figure 6. Example of a Schedule Table

Figure 7. Timing Diagram for Schedule Table in Figure 6

A brief explanation of the dispatcher (Figure 8) is as follows: before calling a task, the dis-
patcher check some situations: (a) If the current task was preempted, the dispatcher saves its context
(line 4); (b) If the next task has been preempted, and now it is being resumed, the dispatcher restores
the context (line 5); and (c) If it is a new task instance, the dispatcher just stores the function pointer
(line 7) in the variable taskFunction that will be called by the interrupt handler. Additionally, the
table representing the feasible schedule is accessed as a circular list (line 9). The timer is automati-
cally programmed using the start time of the next task instance to be called (line 10). After all these
activities, the timer is activated to interrupt at the start time of the next task (line 11).

11



1 void dispatcher() {
2 struct ScheduleItem item = scheduleTable[scheduleIndex];
3 globalClock = item.clock;
4 if(currentTaskPreempted) { // context saving }
5 if(item.isPreemptionReturn) { // context restoring }
6 else {
7 taskFunction = item.functionPointer;
8 }
9 scheduleIndex = ((++scheduleIndex)%SCHEDULE_SIZE);
10 programTimer(scheduleTable[scheduleIndex].clock);
11 activateTimer();
12}

Figure 8. Simplified Version of the Dispatcher

Whenever considering hard real-time embedded system design based on multiple processor
platforms, the mechanism for processors synchronization is an important concern. A specific archi-
tecture was designed for this purpose. A master processor performs the time counting. It periodically
sends synchronization messages to slave processors. There is no runtime scheduler running in each
processor, but a runtime dispatcher. The scheduling is performed using a pre-runtime approach, as
described before. Master processor is only responsible for performing the time counting and for
notifying slave processors. It does not execute any task, but only a dispatcher. In addition, slave
processors do not have their own real-time clocks. The real-time clock only resides in the master
processor.

In the proposed approach, all communication tasks are also taken into account in the code
generation. Each communication task (µm) is translated into two special tasks: sendMm and
receiveMm. Both tasks are executed at the same moment for guaranteeing the correct data transmis-
sion. sendMm and receiveMm are considered in the pre-runtime schedule table and both cannot be
preempted. Section 4 presents an example of a system considering inter-processor communication.

4. A Case Study: Vehicle Monitoring System
This section presents a real application case study to illustrate the practical usage of CML for mod-
eling a vehicle monitoring system. The example is particularly useful to demonstrate the application
of CML for modeling systems executing in a multiple processing environment where inter-processor
communication is required.

The system is composed of a set of sensors employed to verify whether the car components are
working properly. If a component fails or works erroneously, the system notifies the driver through
the dashboard. The vehicle monitoring system relies on multiple processors, since several sensors are
considered and the microcontroller adopted (8051) contains only four 8-Bit I/O ports. In this way,
two processors are used for interfacing with the sensors.

4.1. The specification model
A set of tasks were defined to check the status of the engine (TV and TR), breaks (TB), water (TW),
gearing (TG), and temperature (TT). Finally, the data processed is sent to the task TRA, which is
responsible for notifying the driver. Table 2 details the system specification, which is composed of 14
tasks, including the communication task M1. It implements the communication between processors
P1 and P2. The implementation splits task TV into two subtasks: one (TV0) reads the sensor; and the
other (TV1) processes the information. The same is done for tasks TR, TB, TW, TG and TT.

Figures 9 and 10 presents the CML specification for the vehicle monitoring system. The
communication between processors P1 and P2 is implemented through the communication task M1.
Two functions are generated to implement M1: receiveM1, in the receiving side; and sendM1,

12



TaskID Task Name Release Comp. Deadline Period Proc./Bus From To
TV0 ReadVelocity 0 231 20000 120000 P1 - -
TV1 ProcVelocity 20000 5487 40000 120000 P1 - -
TB0 ReadBreaks 20000 221 40000 120000 P1 - -
TB1 ProcBreaks 40000 236 60000 120000 P1 - -
TR0 ReadRPM 40000 232 60000 120000 P1 - -
TR1 ProcRPM 60000 238 80000 120000 P1 - -
TRA Notifier 80000 2444 120000 120000 P1 - -
TW0 ReadWater 0 237 20000 120000 P2 - -
TW1 ProcWater 20000 241 40000 120000 P2 - -
TT0 ReadTemperature 20000 259 40000 120000 P2 - -
TT1 ProcTemperature 40000 234 60000 120000 P2 - -
TG0 ReadGearing 40000 224 60000 120000 P2 - -
TG1 ProcGearing 60000 236 80000 120000 P2 - -
M1 - - 1700 - B1 TG1 TRA -

Table 2. Task Timing Specification

in the sending side. B1 is the bus used to transmit the message, which takes 1700 Time Task Units
(TTUs) in the worst case. Task TG1 is responsible for sending the message from processor P2 to
processor P1. The message sent to the processor P1 is received by the task TRA, which notifies the
driver about the vehicle status.

/*! /*!
* @task TV0 /*! * @task TB0 /*!
* @processor P1 * @task TV1 * @processor P1 * @task TB1
* @scheduling NP * @processor P1 * @scheduling NP * @processor P1
* @phase 0 * @scheduling NP * @phase 0 * @scheduling NP
* @release 0 * @phase 0 * @release 20000 * @phase 0
* @wcet 231 * @release 20000 * @wcet 221 * @release 40000
* @deadline 20000 * @wcet 5487 * @deadline 40000 * @wcet 236
* @period 120000 * @deadline 40000 * @period 120000 * @deadline 60000
* @precedes {TV1} * @period 120000 * @precedes {TB1} * @period 120000
*/ */ */ */
void TV0() {...} void TV1() {...} void TB0() {...} void TB1(){...}
/*!
* @task TR0 /*! /*!
* @processor P1 * @task TR1 * @task TRA
* @scheduling NP * @processor P1 * @processor P1
* @phase 0 * @scheduling NP * @scheduling NP
* @release 40000 * @phase 0 * @phase 0
* @wcet 232 * @release 60000 * @release 80000
* @deadline 60000 * @wcet 238 * @wcet 2444
* @period 120000 * @deadline 80000 * @deadline 120000
* @precedes {TR1} * @period 120000 * @period 120000
*/ */ */
void TR0(){...} void TR1(){...} void TRA(){...} void receiveM1(){...}

Figure 9. CML specification for tasks in processor P1

The system was verified using the tool presented in Section 3. A feasible schedule was found
after visiting 78 states. Figure 11 presents the timing diagram with the schedule for the vehicle
monitoring system. The schedule was automatically generated by the tool.

More applications, such as Pulse Oximeter and Heated-Humidifier, have already been devel-
oped with CML support. These applications are described in [Barreto 2005].

13



/*! /*!
* @task TW0 /*! * @task TT0 /*!
* @processor P2 * @task TW1 * @processor P2 * @task TT1
* @scheduling NP * @processor P2 * @scheduling NP * @processor P2
* @phase 0 * @scheduling NP * @phase 0 * @scheduling NP
* @release 0 * @phase 0 * @release 20000 * @phase 0
* @wcet 227 * @release 20000 * @wcet 259 * @release 40000
* @deadline 20000 * @wcet 241 * @deadline 40000 * @wcet 234
* @period 120000 * @deadline 40000 * @period 120000 * @deadline 60000
* @precedes {TW1} * @period 120000 * @precedes {TT1} * @period 120000
*/ */ */ */
void TW0() {...} void TW1(){...} void TT0(){...} void TT1(){...}
/*! /*!
* @task TG0 * @task TG1
* @processor P2 * @processor P2
* @scheduling NP * @scheduling NP
* @phase 0 * @phase 0
* @release 40000 * @release 60000 —
* @wcet 224 * @wcet 236
* @deadline 60000 * @deadline 80000
* @period 120000 * @period 120000
* @precedes {TG1} * @sends M1 B1 1700 TRA
*/ */
void TG0(){...} void TG1(){...} void sendM1(){...}

Figure 10. CML specification for tasks in processor P2

Figure 11. The schedule for the vehicle monitoring system

5. Related Work
Meyer introduced the concept of Design by Contract [Meyer 1992, Meyer 1997], a lightweight for-
mal method that allows for dynamic runtime checks of specification violation. Design by Contract
establishes that a relationship between a class and its clients is viewed as a formal agreement, which
expresses each party’s right and obligations. A precondition states the properties that must hold when
a routine is called; the postcondition states the properties that the routine guarantees when it returns.
As a consequence, pre and postconditions enforce behavior with contracts, which is also expressed
by the term software contract.

JML [Burdy et al. 2005, Leavens et al. 2006] is a notation used to formally specify the be-
haviour and interfaces of classes and methods written in Java [K. Arnold and J. Gosling 1996], which
follows the ”software contract” concept introduced in the Eiffel language. By using JML, one can
specify both the interface of methods and classes as well as their behavior. Interface specification
usually includes type information and visibility modifiers, for instance. We can specify the interface
of methods (including name, visibility, number of arguments, return type, and so on), attributes (name,
type and modifiers), and types (name, modifiers, whether it is a class or interface, its supertypes and
so on). In fact, JML uses Java syntax to specify all such interface specification.

The behavior of a method or type specifies the transformations that are performed by them.
The style of specification of JML is usually called model-oriented [Wing 1990]. Indeed, specifica-
tions written in JML follow the style of refinement calculus [Morgan 1994]. The attributes to which
we can assign in a method are described by the method’s frame-axiom. States to which methods

14



are defined are formally described by means of assertions (the method’s precondition); states that
may result from the normal execution of methods are described by logical assertions, are called the
method’s normal postcondition. The relationship between the state in which a method is called and
the states that may result from throwing an exception are described by the method’s exceptional post-
condition. We can also specify class invariants in JML, describing properties that hold in all visible
states [Leavens et al. 2006]. We can also deal with refinement in JML.

A distinguishing feature of JML is the range of tools available. We can check the correctness
of JML specifications using the runtime assertion checker jmlc, the JML compiler. Unit test is par-
tially automated by the jmlunit tool that generates test classes that rely on the JML runtime assertion
checker. The jmldoc tool produces HTML browsable pages in the style of pages generated by javadoc.
Other tools with distinct purposes are also available: ESC/Java (static checker) [Flanagan et al. 2002],
LOOP tool [Bart Jacobs and Tews 1998] (compilation to PVS [S. Owre and Shankar 1992] theories),
and JACK (program checker) [Lilian Burdy and Requet ].

Although most of the JML annotations are directed to functional requirements, there are some
annotations, which are related with expressions that can be used to express non-functional require-
ments. For instance, a duration expression describes the specified maximum number of virtual ma-
chine cycle times needed to execute a method call. Also, a space expression describes the amount of
heap space allocated to an object given as argument. The CML handles this kind of assertions in a
higher-level way, dealing not simply with time associated to machine cycles, but to the execution of
tasks and scheduling. Besides that, we deal with memory use, and energy consumption.

The tool Jass [Bartetzko et al. 2001] translates Java annotated programs into pure Java pro-
grams in which compliance with the specification is dynamically tested during runtime. Assertions
are written as comments into Java code; they are simply boolean expressions. Different kinds of as-
sertions are allowed: method pre and postconditions; class invariants; loop invariants and variants;
refinement checks; and trace assertions that specify the intended dynamic behavior of objects in time,
describing allowed traces of events. In CML, we can also express the order in which tasks must be
executed, but we go further since we can also express requirements on time, power and memory, for
instance. On the other hand, in CML we cannot check tasks refinements.

The Bandera Specification Language [Corbett et al. 2000] is a source-level, model-checker in-
dependent language for expressing temporal properties of Java programs action and data. An assertion
sublanguage allows programmers to define constraints on programs by writing pre- and postcondi-
tions. A temporal property sublanguage provides support for defining predicates on control points
(method call and return) and data (object instantiation) present in Java programs. This sublanguage
allows specifying temporal properties between system actions. The language provides specification
patterns that describe properties like precedence. The patterns mentioned in [Corbett et al. 2000] can
also be described in CML. However, we do not deal with pre and postconditions as in the assertion
language of Bandera.

6. Conclusions

Non-functional requirements (NFR) has long been recognized as a fundamental issue in software
development. The popularity of small devices and embedded systems increases the importance of
NFR. Due to the limited amount of resources, the correctness and quality of software targeting these
platforms relies equally on functional and non-functional aspects. This work presented CML (C Mod-
eling Language), a specification language to describe non-functional requirements of C programs. We
decided to focus on the C language because it is widely employed to develop applications with severe
non-functional restrictions, such as performance, memory allocation, and energy consumption.

The development of CML was inspired in the Design By Contract (DBC) technique. Thus,
specifications are added as annotation comments to the C program, which hence can be compiled

15



with any C compiler. We believe that this tight integration between specification and implementation
languages contributes for motivating programmers to use the specification language in practice. It
is worth notice that, CML does not follow the DBC technique. For instance, the concepts of pre-
conditions, postconditions, and invariants have no interpretation in CML. On the other hand, a CML
specification establishes a kind of contract, in the sense that: from the NFR perspective, if the specifi-
cation was respected, the system will work properly. We believe that CML can contribute to improve
the quality of software systems. In particular, those with stringent resource limitations and perfor-
mance requirements.

In addition to the proposition of CML itself, this paper contributed with the first verification
tool based on CML The tool receives a CML specification for embedded hard real-time systems and
checks if exists a feasible schedule for the system. If the answer was yes, the schedule is automatically
generated and the code for the system is synthesized considering a pre-runtime scheduling strategy.

In order to show the practical feasibility of the proposed software synthesis method, we spec-
ified a vehicle monitoring system. This is a multiple processing application, which was useful to
demonstrate the modeling of inter-processor communication in CML. The system was then analyzed
through the tool and the scale was found after visiting 78 states.

6.1. Future Works
The current CML implementation does not cover the whole language constructors. Through an in-
cremental approach, we first implemented the elements that address hard-real time systems. The
implementation was then validated using a real application. Other verification tools considering the
remaining set of CML constructors (see Appendix 7) will be released in near future.

We are currently working to implement a verification tool considering two constructors
(@pesaccess and @optaccess) related to concurrent access policies, in order to guarantee safe
execution, and therefore, data consistency. The concurrent access policies are responsible to control
a function execution in order to avoid undesirable interferences in a concurrent environment. There
are two possible access policies: pessimistic (@pesaccess) and optimistic (@optaccess). In the
pessimistic access policy the function access is made through a critical section using a default or a
used-defined lock variable. This technique guarantees that while a thread/task is executing a func-
tion with this annotation no other thread/task can execute the same function. This is basically the
synchronization of all functions execution. Since this synchronization might be too restrictive and
decrease performance, an alternative access policy (@optaccess) considers the function semantics
in order to decide when block and when allow concurrent access to a function. This optimistic policy
considers that in some cases it is possible to define when two or more threads/tasks executions might
conflict to each other [Soares and Borba 2001]. For instance, a function might not be concurrently
executed if both executions are using the same arguments values.

We are constantly reviewing the language to include/remove constructors and constructors’
parameters. New versions of CML will be released soon.

The tool presented in this work as well as more information about CML can be found at
www.dsc.upe.br/cml.

References
Barreto, R. (2005). A Time Petri Net-Based Methodology for Embedded Hard Real-Time Systems

Software Synthesis. PhD thesis.

Bart Jacobs, Joachim van den Berg, M. H. M. v. B. U. H. and Tews, H. (1998). Reasoning about java
classes. In OOPSLA’98, pages 328-340.

Bartetzko, D., Fischer, C., Möller, M., and Wehrheim, H. (2001). Jass – Java with Assertions. ENTCS,
55(2):103-117. RV’2001 - Workshop on Runtime Verification at CAV’01.

16



Burdy, L. et al. (2005). An Overview of JML Tools and Applications. International Journal on
Software Tools for Technology Transfer, 7(3):212-232.

Cheon, Y. and Leavens, G. (2002). A runtime assertion checker for the java modeling language.
Software Engineering Research and Practice (SERP’02), pages 322-328. CSREA Press.

Corbett, J. C., Dwyer, M. B., Hatcliff, J., and Robby (2000). A Language Framework for Express-
ing Checkable Properties of Dynamic Software. In Proceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verification, pages 205-223. Springer-Verlag.

Cormac Flanagan, K. Rustan M. Leino, M. L. G. N. J. B. S. and Stata, R. (2002). Extended static
checking for java. In PLDI’2002, pages 234-245.

Flanagan, C., , Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R. (2002). Extended static checking
for java. SIGPLAN Not., 37(5):234-245.

Gannon, J. D., Purtilo, J. M., and Zelkowitz, M. V. (1994). Software Specification: A Comparison of
Formal Methods. Ablex Publishing Co., 355 Chestnut Street, Norwood, NJ 07648.

Godefroid, P. (1996). Partial-order methods for the verification of concurrent systems: an approach
to the state-explosion problem, volume 1032. Springer-Verlag Inc., New York, NY, USA.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. CACM, 12(10):576-580.

K. Arnold and J. Gosling (1996). The Java Programming Language. Addison-Wesley.

Leavens, G. et al. (2006). JML Reference Manual.

Lilian Burdy, J.-L. L. and Requet, A. Jack (java applet correctness kit). Technical report.

Merlin, P. and Faber, D. J. (1976). Recoverability of communication protocols: Implications of a
theoretical study. IEEE Transactions on Communications, 24(9):1036-1043.

Meyer, B. (1992). Applying “Design by Contract”. Computer, 25(10):40-51.

Meyer, B. (1997). Object-Oriented Software Construction. Prentide-Hall, second edition.

Morgan, C. C. (1994). Programming from Specifications. Prentice Hall, second edition.

S. Owre, J. M. R. and Shankar, N. (1992). Pvs: A prototype verification system. In 11th International
Conference on Automated Deduction (CADE), volume 607, pages 748-752, Saratoga, NY.

Soares, S. and Borba, P. (2001). Concurrency Manager. In First Latin American Conference on
Pattern Languages of Programming – SugarLoafPLoP, pages 221-231, Rio de Janeiro, Brazil.

Su, F.-S. and Hsiung, P.-A. (2002). Extended quase-static scheduling for formal syn- thesis and code
generation of embedded software. In International Symposium on Hardware/Software Codesign
(CODES’02).

Tavares, E. (2006). A time petri net based approach for software synthesis in hard real-time embedded
systems with multiple processors. Informatic Center - Federal University of Pernambuco.

Tavares, E., Maciel, P., Barreto, R., Meuse Oliveira, J., and Lima, R. (2005). A time petri net based
approach for embedded hard real-time software synthesis with multiple operational modes. In 18th
annual symposium on Integrated circuits and system design, pages 98-103. ACM Press.

Wing, J. M. (1990). A Specifier’s Introduction to Formal Methods. Computer, 23(9):8-24.

Xu, J. and Parnas, D. L. (1993). On satisfying timing constraints in hard-real-time systems. IEEE
Trans. Softw. Eng., 19(1):70-84.

17



7. The Complete Set of CML Constructors

Constructor Description Format Program/
Function†

Non-
functional
require-
ment

@task task name String F –

@processor processor to task alloca-
tion

String P and F resource al-
location

@scheduling task scheduling strategy NP (Non-preemptive) or P (Preemptive) F scheduling

@phase task phase time Integer F temporal
restrictions

@release task release time Integer F temporal
restrictions

@wcet worst case execution
time

Integer P and F temporal
restrictions

@deadline task deadline time Integer F temporal
restrictions

@period task period time Integer F temporal
restrictions

@precedes tasks preceded by this
task

List of tasks between the tokens { and }
separated by comma

F inter-task
relation

@excludes tasks excluded by this
task

List of tasks between the tokens { and }
separated by comma

F inter-task
relation

@sends message sent by this task
This attribute is followed by: 1-message
name, 2-bus name, 3-worst case communi-
cation time, 4-receiver task

F
inter-task
communi-
cation

@usedmemory ?
maximum amount of
memory to use Integer (Kb) P and F memory use

@codesize ? generated binary Integer (Kb) P and F memory use

@cachehit ?
maximum number of ac-
cesses to cache (L1 and
L2 levels)

L1:Integer, L2:Integer P and F performance

@cachemiss ?
maximum number of
cache misses (L1 and L2
levels)

L1:Integer, L2:Integer P and F performance

@pagefault ?
maximum number of
page faults Integer P and F performance

@power ?
maximum energy con-
sumption Real (Joules) P and F Power

@pesaccess ?

no concurrent access
is allowed; optionally,
specify a lock variable

String (var) F
Safety/data
consistency

@optaccess ?

some concurrent access
is allowed; specify a vari-
able or parameter list as
the function semantics

List of variables between the tokens { and }
separated by comma

F
Safety/data
consistency

† Constructor granularity; P means the constructor can be applied to a program and F to a function.
? CML constructors not considered in the current implementation

18



  

Constraint Programming Architectures: 

Review and a New Proposal 

Jacques Robin
1
, Jairson Vitorino

1
, Armin Wolf

2
 

1
Centro de Informática – Universidade Federal de Pernambuco (CIn-UFPE) 

Caixa Postal CDU 7851 – Recife – PE– Brazil 

2 
Fraunhofer Institut - Rechnerarchitektur und Softwaretechnik (FIRST), 

Kekuléstrasse 7 – Berlin – Germany 

{robin.jacques,jairson}@gmail.com, Armin.Wolf@first.fraunhofer.de 

Abstract. Most automated reasoning tasks with practical applications can be 

automatically reformulated into a constraint solving task. A constraint 

programming platform can thus act as a unique, underlying engine to be 

reused for multiple automated reasoning tasks in intelligent agents and 

systems. We identify six key requirements for such platform: expressive task 

modeling language, rapid solving method customization and combination, 

adaptive solving method, user-friendly solution explanation, efficient 

execution, and seamless integration within larger systems and practical 

applications. We then propose a novel, model-driven, component and rule-

based architecture for such a platform that better satisfies as a whole this set 

of requirements than those of currently available platforms 

1. Introduction 

Over the last two decades, the practical inference needs of intelligent agents and systems 

have led the field of automated reasoning to vastly diversify from its roots in monotonic 

deduction. It now also encompasses abduction, default reasoning, inheritance, belief 

revision, belief update, planning, constraint solving, optimization, induction and 

analogy. Many specialized methods are now available to efficiently implement specific 

subclasses of these tasks in conjunction with some specific knowledge representation 

languages. These languages vary in terms of their two commitments, epistemological 

(e.g., logical, plausibilistic, or probabilistic) and ontological (e.g., propositional, first-

order relational, first-order object-oriented, high-order relational or high-order object-

oriented) (16). This diversity in tasks, methods and languages inhibits pervasive 

embedding of automated reasoning functionalities in applications. It confuses the 

development teams of most applications who generally have a sparse background in 

automated reasoning and it seems to prevent cost-cutting reuse of a single generic 

platform for many such purposes. However, a way out of this dilemma is suggested by 

the fact that whether using propositional (22), first-order relational (22) or object-

oriented (2) representations with either logical (10), plausibilistic (11) or probabilistic 

(5) semantics, the reasoning tasks of deduction (22), abduction (1), default reasoning 

(1), inheritance (2), belief revision (11), belief update (19) and planning (19) have now 

all being reformulated as special cases of constraint solving. An adequate Constraint 

Programming Platform (CPP) could thus be successfully reused as an all subsuming 

19



  

engine to implement and seamlessly integrate those diverse tasks, methods, and 

languages (15).  

In this paper, after providing some background on constraint programming and 

relevant, cutting-edge software engineering approaches (Section 2), we first identify the 

key requirements of CPP platforms (Section 3). We then review the software 

architectures of the current CPP and evaluate them with respect to those requirements 

(Section 4). We then propose a new CPP architecture based on component, aspect and 

object models, as well as rewrite rules for constraint handling and model transformation, 

and we argue that it better fulfils the CPP requirements than current CPP architectures 

(Section 5). We conclude by quickly describing the current status and next steps in our 

implementation of this architecture (Section 6). 

2. Background 

Constraint programming is the cutting-edge IT to automate and optimize tasks such as 

resource allocation, scheduling, routing, layout and design verification in the most 

diverse industries. A constraint program models an application domain using a subset 

of first-order logic restricted to atom conjunctions. Each model consists of: 

• A set of variables X1, ..., Xn; 

• For each variable Xi, a corresponding domain Di of possible values (i.e., constant 

symbols), e.g., {red, green, blue} or floating point numbers; 

• For each domain Di a set of functions fi
1
, ... fi

o
 with domain and range in Di (e.g., 

mix, +, **); 

• A logical formula F of the form C1 ∧ ... ∧ Cp where each Ci is an atom that relates 

terms formed from variables, constants and functions (e.g., X1 ≠ X2, X1 = blue, X1 = 

mix(red,blue), X1 ≥ 2.0000 * 3.1416 * X2). 

Each Ci in F is called a constraint because it restricts the possible value combinations 

of the  variables X1, ... Xn that occur in it within their respective domains D1, ... Dn. A 

solver takes as input a constraint problem instance Pi in the form of a conjunctive 

formula Fi. If Pi is exactly constrained (e.g., X,Y,Z∈N ∧ X+Y=Z ∧ 1<X ∧ X<Z ∧ X<Y 

∧ Y<Z ∧ Z<6) the solver returns as output a formula Fo in determined solved form (i.e., 

of the form X1 = v1 ∧...∧ Xn = vn with Xis variables and vis constants) that is logically 

equivalent to Fi (e.g., X=2 ∧ Y=3 ∧ Z=5). If Pi is overconstrained, (e.g., X,Y,Z∈N ∧ 

X+Y=Z ∧ 1<X ∧ X<Z ∧ X<Y ∧ Y<Z ∧ Z<4) the solver returns false. If Pi is 

underconstrained (e.g., X,Y,Z∈N ∧ X+Y=Z ∧ 1<X ∧ X<Z ∧ X<Y ∧ Y<Z ∧ Z<7)  the 

solver returns a formula Fo logically equivalent to Fi but syntactically simpler (e.g., 

(X=2 ∧ 3≤Y ∧ Y≤ 4 ∧   5≤ Z ∧ Z≤6), or (X=2 ∧ ((Y=3 ∧ Z=5) ∨ Y=4 ∧ Z=6). Key 

simplicity factors include fewer constraints, fewer variables, shorter atoms, higher 

proportion of atoms in determined solved form or (undetermined) solved form (i.e., of 

the form X1 = t1 ∧...∧ Xn = tn where each Xi is a variable and each ti a term not 

containing occurrences of X1, ..., Xi-1, Xi+1, ..., Xn). Figure 1 gives a simple illustrative 

example of a constraint solving task and solution. It is an instance of the classic map 

coloring problem: how to allocate variables representing regions on a map to values 

from a finite domain of colors, such that any two neighboring regions are allocated 

different colors? Figure 1 shows the problem as a constraint graph, with one node per 

variable/region and one arc per neighboring constraint. Above or below each node, the 

20



  

variable domain is shown (with r, b, and g respectively abbreviating red, blue and 

green). In logic, this problem is represented as: (R1=r ∨ R1=b ∨ R1=g) ∧ (R2=r ∨ R2=b ∨ 

R2=g) ∧ (R3=r ∨ R3=b ∨ R3=g) ∧ (R4=r ∨ R4=b ∨ R4=g) ∧ (R5=r ∨ R5=b ∨ R5=g) ∧ (R6=r ∨ 

R6=b ∨ R6=g) ∧ (R7=r ∨ R7=b ∨ R7=g) ∧ ¬(R1=R2) ∧ ¬(R1=R3) ∧ ¬(R1=R4) ∧ ¬(R1=R7) 

∧ ¬(R2=R6) ∧ ¬(R3=R7) ∧ ¬(R4=R5) ∧ ¬(R4=R7) ∧ ¬(R5=R6) ∧ ¬(R5=R7). In Figure 1, 

onecolor allocation solution is indicated by the grey boxes in each domain. Logically, is 

it represented by: R1=g ∧ R2=b ∧ R3=r ∧ R4=r ∧ R5=g ∧ R6=r ∧ R7=b. A CPP integrates 

the constraint task modeling syntax with that of a general purpose host programming 

language.  It typically works by interleaving three main subtasks: simplifying a set of 

constraint into a simpler equivalent one (i.e., leaving some of them implicit) 

propagating some logical consequences of a set of constraint (i.e., making explicit 

some constraints they entail) and searching the space of possible variable combination 

values.  

To achieve low-cost portability to multiple execution platforms and automate more 

development process sub-tasks, a Model-Driven Architecture (MDA) (18) switches 

the software engineering focus away from low-level source code towards high-level 

models, metamodels (i.e., models of modeling languages) and model transformations 

that automatically map one kind of model into another. It prescribes the construction of 

a fully refined Platform Independent Model (PIM) together with two sets of model 

transformation rules to translate the PIM into source code via an intermediate Platform 

Specific Model (PSM).  

To achieve low-cost evolution, a Component-Based MDA (3) structures the PIM, PSM 

and source code as assemblies of reusable components, each one clearly separating the 

services interfaces that it provides to and requires from other components from its 

encapsulated realization of these services (itself potentially a recursive sub-assembly). 

To achieve separation and reuse of cross-cutting concerns (i.e., bits of processing that 

cannot be satisfactorily encapsulated in a single component following any possible 

assembly decomposition), Aspect-Oriented MDA (18) prescribes to model such 

concerns as PIM to PIM model transformations that weave the corresponding additional 

model bits at appropriate locations scattered throughout the main concern PIM.  

Today, a component-based MDA can be fully specified using the UML2 standard (8) for 

it incorporates (a) a platform independent component metamodel, (b) the high level 

object-oriented functional constraint language OCL2 (21) to fully detail, constraint and 

query UML2 models, and (c) the Profile mechanism to define, in UML2 itself, UML2 

extensions with platform specific constructs for diverse PSM. Model transformations for 

PIM to PIM aspect weaving and PIM to PSM to code translation can be specified using 

the rule-based, hybrid declarative-procedural Atlas Transformation Language (ATL) (4). 

It reuses OCL2 in the left-hand and right-hand sides of object-oriented model rewrite 

rules. These rules are applied by the ATL Development Tool (ATLDT), conveniently 

deployed as an Eclipse Plug-in (6).  In a Component-Based Aspect-Oriented Model-

Driven Architecture (CBAOMDA), only the core concern PIM and the model 

transformations are hand-coded. The other models and the code are automatically 

generated from the core concern PIM by applying the transformation pipeline to it. 

21



  

3. Constraint Programming Platforms Requirements 

A thoughtful engineering process chooses between various architectural designs 

based on a prior identification of the key functional and non-functional requirements to 

make the software under construction a most practical and useful tool. What are such 

requirements for a CPP? 

The first requirement is to provide an expressive input task modeling language. 

This is clearly decisive for the CPP's versatility and its ability to fulfill the promise of an 

integrated platform for multiple automated reasoning needs of an application. Less 

obvious, is that it is also crucial for its overall efficiency, for the key of efficient solving 

often lays as much on the way the task in modeled as it does on the chosen solving 

method and how this method is implemented. A platform with a very limited task 

modeling language does not allow for many logically equivalent formulations of the 

same task. For many tasks, it thus risks of not supporting any of the formulations that 

lend themselves to efficient solving. 

For the same versatility and overall efficiency reasons, the second key requirement is 

to provide many solving method customization and combination facilities. This 

allows exploiting the peculiarities of subtly different solving task sub-classes, which 

often results in dramatic efficiency gains for many task instances.  

A third requirement in the overall efficiency puzzle is efficient implementation 

techniques for the available solving methods. It is somewhat conflicting with the two 

others since raising expressiveness often has the undesirable side-effect of increasing 

theoretical worst-case complexity, while method tweaking, mixing and matching 

facilities often brings some configuration and assembly run-time overhead. 

A fourth requirement is solution adaptation. Consider two task instances T1 and T2 

that differ only by a few more and/or a few less constraints. Once it has computed a 

solution Si
1
 for T1, an adaptive solver is able to reuse Si

1
 so as to (a) find a solution Sa

2
 

for T2 that is minimally distant from Si
1
 and (b) find it more quickly than a solution Ss

2
 

computed from scratch. A non-adaptive solver can only solve T2 from scratch which 

may lead to a solution Ss
2
 that has very few common components with Si

1
. In the 

practical application context, a large distance between Ss
2
 and Si

1
 often makes Ss

2
 

unusable. For example, imagine than Si
1
 was an initial task schedule for a large 

engineering project that requires adjustment due to execution delays. A computed from 

scratch schedule Ss
2
 for the uncompleted tasks may well promise a shorter revised 

delivery date estimate than that of an adaptive schedule Sa
2
 which additionally strives 

for stability from the original Si
1
. But if Ss

2
 allocates resources in a vastly different way 

than Si
1
 for the uncompleted tasks, the associated allocation reshuffling overhead cost 

generally far outweigh the gains of a shorter delivery date. Most available CPP do not 

provide adaptive solving.  

The fifth key requirement of a practical CPP is a user-friendly, detailed solution 

explanation facility. Consider again the examples above, where a CPP propose 

alternative rescheduling plans for a late several billion dollars engineering project of a 

company flagship product. With so much at stake, adopting one of these alternatives 

requires the CPP to provide explanations that justify its discarding millions of possible 

others. It also requires to provide a concise summary of the contrasting trade-offs 

22



  

embodied in two proposed alternative plans. The key challenge for such explanations 

and summaries is to be as directly understandable as possible by the executives with 

decision making power but no technical constraint solving background. 

The sixth key requirement for a practical CPP is seamless integration within a 

variety of applications. Today, most of them are developed using Component-based 

Object-oriented Imperative Platform (COIP) such as EJB or .Net. There are two main 

reasons for this. The first is that these frameworks provide as consolidated built-ins the 

application independent services that constitute most of the running code of most 

information systems. These built-ins include high level API for database and GUI 

development, transparent secure persistence, scalable concurrent transaction handling 

and distributed deployment (including fully automated code generation to publish the 

various system functionalities as web services). The second is that the most advanced 

full life cycle software engineering methods and supporting CASE tools are based on 

the COI paradigm. This allows full integration of these CASE tools with COIP IDE and 

brings high gains in software productivity and quality. Thus, in today's practice, 

seamless integration of a CPP in applications, means encapsulating it as a Java or .Net 

component.  

4. Constraint Programming Platform Architectures 

Having defined the requirement of practical CPP, let us now review the various 

software architectures of available CPP and evaluate how they meet each of these 

requirements.   

4.1. Component-based Object-oriented Imperative Platform API 

The simplest CPP architecture is a library of classes or a component framework in a 

COIP, summarized in Figure 2. This is the case for example of the Java firstcs library 

(23) and the commercial C++ ILOG Solver (14). The first weak point of this 

architecture is to provide the least  expressive constraint task modeling language: a 

restriction of the one described in Section 2, with the constraints, functions and 

constants all from the closed, fixed set implemented by the class library. Another 

drawback of the COIP architecture is its poor customizing facility, which is possible 

only through time-consuming low-level imperative code alterations. A COIP API 

provides some low-cost method combination facilities through component assembly. 

But the generation of solving step justifications for adaptation and explanations are 

cross-cutting concerns that cannot be encapsulated as separate components. To the best 

of our knowledge, there is neither an aspect-oriented nor comprehensively adaptive 

COIP API available to date. The main strengths of the COIP API architecture are 

implementation efficiency for the fixed set of available methods, seamless constraint 

solving services integration in application as components or classes, and the availability 

of COIP IDE and GUI development API. 

The COIP API architecture: 
• Represents the solving task declaratively by a conjunction of API operation calls; 
• Structures the solving method declaratively as components and objects, but 

represents its details procedurally as operations; 
• Deploys the code as compiled components and objects. 
• Uses a compiling method that is generally structured declaratively as objects, but 

represented in details procedurally as operations. 

23



  

4.2 Prolog + Procedural Libraries 

The most widely used CPP architecture is the so-called parametric Constraint Logic 

Programming scheme CLP(D1,...,Dq) (13). The task modeling language of CLP extends 

that of Section 2 with the equivalence and disjunction connectives and arbitrary 

symbolic atoms. A CLP(D1, ..., Dn) program consists of Horn rules of the form: H :-  G1 

,..., Gr. The head H is an arbitrary first-order symbolic atom, and each goal Gi is either 

a symbolic atom (which appears as head in another rule) or a constraint atom (which 

does not appear as head in another rule) from a fixed set of built-ins that relate terms 

formed from functions and constants of a given domain Di. The goal conjunction is 

called the body of the rule. Under CLP's closed-world assumption (16), the logical 

semantics of each rule subset sharing the same head,  

{H :-  G1
1
,..., Gr

1
., ...,  H :-  G1

s
,..., Gt

s
.}, is H ⇔ (G1

1 
∧...∧ Gr

1
) ∨...∨ (G1

s 
∧...∧ Gt

s
). The 

overall CLP program semantics is the conjunction of these equivalences. This extended 

expressivity allows modeling complex domain knowledge with high-level concepts 

declaratively defined from built-in constraints using Horn rules. Since these rules can be 

recursive and can contain function symbols, CLP provides a Turing-complete 

declarative constraint modeling language. It also provides a constraint query language: 

queries are simply headless rules. In CLP parlance, the task models and queries that a 

COIP API permits to express correspond to headless rules containing only built-in 

constraint atoms. 

The first internal CPP architecture following the CLP(D1,...,Dn) scheme is shown in 

Figure 3. It consists of n+1 components: a Prolog engine and n specialized library, L1, 

..., Ln, one for each domain Di. Each library implements in a low-level imperative 

language (generally C or C++) fixed constraint simplification and propagation 

algorithms and heuristics, fine-tuned to the built-in constraints over Di terms. The 

Prolog engine provides the solver for the arbitrary symbolic atoms, as well as a generic 

Chronological Backtracking (CBT) to search valid value combinations from 

underconstrained finite domains not reducible to singletons through simplification and 

propagation.  Most CLP engines are simple extensions of backward chaining Prolog 

engines that upon encountering a constraint goal Ci of domain Di adds it to a constraint 

store of the form C1 ∧ ... ∧ Cu and calls the imperative library for Di to solve the updated 

store. If the store simplifies to false, the engine backtracks to the previous goal. 

Otherwise, it proceeds to the next goal. Data is exchanged between the solving library 

and the Prolog engine through instantiations of logical variables shared among the rule-

defined goals and the built-in constraint goals.   

Beyond task model expressiveness, the other strong point of the CLP Scheme is its 

efficient implementation, combining special purpose procedures with general purpose 

compiled Prolog code. As for weak points, the first is method customization and 

combination that requires changing low-level imperative library code that is not 

component-based and often not even object-oriented. The other weaknesses of the CLP 

scheme are inherited from Prolog: (a) no adaptation, (b) verbose, reasoning trace rarely 

presented in user-friendly GUIs supporting browsing at multiple abstraction levels, and 

(c) extremely difficult integration within applications for lack of components, interfaces, 

encapsulation, concurrent execution, and standard API for databases and GUI. More 

often than not, CLP engines only offer brittle bridges to C, C++ or more rarely Java as 

24



  

sole mean of integration. The wide, conceptual impedance mismatch between the logic 

programming and COI paradigms constitutes in itself a serious integration barrier.  

The Prolog + Library architecture: 
• Represents the solving task declaratively by CLP Horn rules; 
• Represents the solving method in part declaratively as CLP Horn rule and in part 

procedurally as imperative libraries; 
• Deploys the code as rules to be applied by a CLP engine which is accessible via 

programming language bridges with no access to the embedded procedural solvers; 
• Uses Prolog rules to declaratively compile the CLP rules into CLP virtual machine 

code and then from such intermediate code to native code. 

4.3 Prolog + CHR 

Constraint Handling Rules (CHR) (10) was initially conceived to bring rapid method 

customization and combination to the CLP scheme by making it fully rule-based. The 

idea is to substitute by a CHR base each procedural built-in solver of a CLP engine. The 

task modeling language of Prolog + CHR solver remains the same than in the Prolog + 

Library approach, since CHR are only used to declaratively define solving methods and 

not tasks. A CHR program is a set of constraint simplification rules, which are 

conditional rewrite rules of the form, S1 ,..., Sa <=> G1 ,.., Gb | B1 ,..., Bc, and a set of 

constraint propagation rules, which are guarded production rules of the form: 

P1 ,..., Pd ==> G1 ,.., Ge | B1 ,..., Bf. Each Si, Pi,  Gi and Bi is a constraint atom. The Sis 

and Pis are called heads, the Gis guards and the Bis goals. A goal conjunction is called 

a body. Constraint atoms that appear in a CHR head can only appear in other CHR 

heads and in CLP rule goals. They are called Rule Defined Constraint (RDC) atoms to 

distinguish them from Built-In Constraint (BIC) atoms that can appear only as guards 

and goals in CHR and only as head of Prolog rules that contain no constraint atoms in 

their bodies. Both kinds of constraint atoms can appear in CHR and CLP rule bodies. 

The logical semantics of simplification and propagation rules are 

G1 ∧...∧ Gb ⇒ (S1 ∧...∧ Sa ⇔ B1 ∧...∧ Bc) and 

G1 ∧...∧ Ge ⇒ (P1 ∧...∧ Pd ⇒ B1 ∧...∧ Bf) respectively. A CHR engine maintains a 

constraint store. Operationally, a rule fires when all its heads match against some RDC 

in the store, while its guards  (together with the logical variable bindings resulting from 

the match) are entailed by the BIC in the store. A fired CHR rule adds its goals to the 

store. In addition, a fired simplification rule also deletes its heads from the store. A 

Prolog + CHR engine proceeds as a Prolog + Library engine, except that constraints are 

solved by forward chaining CHR rules instead of by calling a library procedure. CHR 

forward chaining stops when the store simplifies to false or when it reaches a fixed 

point, i.e., when no firable rules can further simplify the store nor add new constraints to 

it. 

As shown in Figure 4, Prolog plays multiple roles in the Prolog + CHR CPP 

architecture. First it solves the arbitrary symbolic constraints of the CLP model. Second, 

its built-in CBT search is reused to search finite domains that cannot be entirely reduced 

through CHR simplifications and propagations. Third, it is used as host platform to 

implement the CHR built-in constraints. Fourth, its built-in unification is reused to 

check the guard entailment precondition to the firing of each CHR rule.  

Adding and altering CHR allows one to rapidly customize, extend, mix and match 

various solving methods. There are two main options for the CHR engine: it can 

25



  

interpret the CHR, or it can compile them into imperative style Prolog rules (9). These 

Prolog rules (together with the application CLP rules and the Prolog rules that define the 

CHR built-ins) are then compiled to execution platform native code, through an 

intermediate level of CLP virtual machine code. The Prolog + CHR approach share all 

the adaptation, explanation and integration weaknesses of the Prolog + Library 

approach.  

The Prolog + CHR architecture: 
• Represents the solving task declaratively by CLP Horn rules; 
• Represents the solving method declaratively by CHR conditional rewrite rules and 

Prolog Horn rules; 
• Deploys the code as a hybrid CLP, CHR, Prolog rule base processed by a CLP-CHR 

engine which is accessible from an application via programming language bridges. 
• Uses Prolog rules to declaratively compile the CLP, CHR and Prolog rules into a 

CLP virtual machine code and then from such intermediate code to native code.  

4.4 Prolog CHR
∨∨∨∨ 

CHR
∨
 (1) extends CHR with disjunctive bodies, i.e., allowing rules of the form: 

S1 ,..., Sa <=> G1 ,.., Gb | (B1
1
,..., Bc

1
) ;...; (B1

g
 ,..., Bh

g
) and 

P1 ,..., Pd ==> G1 ,.., Ge | (B1
1
 ,..., Bi

1
) ;...; (B1

j
 ,..., Bk

j
) with the expected corresponding 

logical semantics: G1∧...∧Gb ⇒ (S1∧...∧Sa ⇔ (B1
1
∧...∧Bc

1
)∨...∨(B1

g
∧...∧Bh

g
), and 

G1∧...∧Ge ⇒ (P1∧...∧Pd ⇒ (B1
1
∧...∧Bi

1
)∨...∨(B1

j
∧...∧Bk

j
). Operationally, disjunctive 

bodies introduce the need for backtracking search in the CHR engine. When a 

disjunctive rule R triggers, one of its alternative bodies (Bl
m

 ,..., Bl
n
) is chosen to be 

added to the constraint store and the engine then continues CHR forward chaining. 

However, if at a latter point, the store simplifies to false, instead of terminating, the 

CHR
∨
 engine then backtracks to (Bl

m
,...,Bl

n
) and deletes it from store together with all 

the constraints that were subsequently added (directly or indirectly) based on the its 

presence in the store. It then adds to the store the next alternative body (Bo
p
,...,Bo

q
) in R 

and resumes rule forward chaining. CHR
∨
 not only extends CHR with disjunctive 

bodies, but it also extends Prolog with multiple heads (1). Recall from Section 4.2 that 

the semantics of Prolog rules that share the same head is: 

is H ⇔ (G1
1 

∧...∧ Gr
1
) ∨...∨ (G1

s 
∧...∧ Gt

s
). This precisely matches the semantics of the 

single head, CHR
∨
 rule: H <=> (G1

1
,..., Gr

1
) ;...; (G1

s 
,..., Gt

s
). Thus, CHR

∨
 is a single 

language that is more expressive to model constraint tasks than CLP and more 

expressive to model constraint methods than CHR. Using CHR
∨
 instead of CLP to 

model constraint tasks provides the power of full first order logic to define complex 

constraints from a minimum set of very primitive ones like true, false and  = 

(syntactic equality between first order logic terms). Any first order logic formula F can 

be converted to a semantically equivalent formula N in the implicative normal form 

P1 ∧...∧ Pn ⇒ B1 ∨...∨ Bo which is precisely the semantics of a guardless CHR
∨
 

propagation rule. 

All currently available implementations of CHR
∨
 are Prolog-based. Their architecture is 

shown in Figure 5. As for the hybrid Prolog + CHR architecture, some implementations 

interpret the CHR
∨
 rules, while others compile them into imperative style Prolog rules. 

While this architecture uses CHR
∨
 instead of CLP rules to model the solving task and to 

implement the arbitrary symbolic constraints, it nevertheless still relies on Prolog rules 

to define the CHR
∨
 built-in constraints and on Prolog's naive CBT search to process 

26



  

disjunctive bodies and underconstrained finite domains. This makes them significantly 

slower than procedural libraries that rely on more efficient methods for these tasks such 

as Conflict-Directed Backjumping (CDBJ) or stochastic local search (16). This also 

makes them inherit the other already mentioned weaknesses of the Prolog-based CPP 

architectures. 

The Prolog CHR
∨
  architecture: 

• Represents the solving task declaratively by CHR
∨
 disjunctive conditional rewrite 

rules; 
• Represents the solving method declaratively by CHR

∨
 disjunctive conditional 

rewrite rules and Prolog Horn rules; 
• Deploys the code as a hybrid CHR

∨
, Prolog rule base processed by a CLP-CHR 

engine which is accessible from an application via programming language bridges. 
• Use Prolog rules to declaratively compile the CHR

∨
 and Prolog rules into a CLP 

virtual machine code and then from such intermediate code to native code.  

Prolog engines SICStus (17) and ECLiPse (7) offer all three Prolog-based CPP 

architectures. 

4.5 Compiling CHR to COIP API 

This most recent CPP architecture, shown in Figure 6, attempts to combine the 

respective strengths of the COIP API and Prolog + CHR architectures by: 
• Representing the solving task declaratively by CHR conditional rewrite rules; 
• Representing the solving method in part declaratively by CHR conditional rewrite 

rules and in part procedurally by COIP class operations; 
• Deploying the code as COIP objects. 

These deployed objects result from a two stage compilation scheme: (a) compiling the 

CHR to COIP source code, followed by (b) compiling the resulting source code, 

together with the COIP classes that implement the CHR built-in constraint handlers, into 

deployable code. The compiling method is declaratively structured as COIP classes but 

its details are procedurally represented as operations.  In this approach, a COIP such as 

Java substitutes Prolog as the underlying host language for the CHR (12), (24). This 

requires re-implementing from scratch in the COIP services that were provided by 

reusing Prolog built-ins: unification to check the CHR guard entailment condition and 

CBT for finite domain search. While requiring more work, this also creates new 

opportunities such as relying on more efficient specialized algorithms for these tasks 

e.g., CDBJ instead of CBT. It also allows incorporating solution adaptation techniques 

such as Justification-Based Truth-Maintenance (JTMS) (25), where each constraint 

in the store is kept jointly with pointers to the rule which firing inserted the constraint in 

the store and the justification for such firing, namely the RDC that matched the rule 

heads and the matching equations and BIC that entailed the rule guards.  

The Java CHR engines JCHR (12) and DJCHR (24) follow this architecture, with the 

latter incorporating a JTMS scheme to provide efficient solution adaptation. As 

interface, they only provide a Java API. The lack of an interactive GUI makes them 

unpractical for rapid testing and application-specific customization and combination of 

solving methods.  
 

27



  

ca Handling

COIP Class 
...... ...

cbHandling

COIP Class 

COIP Solver for ..., ca,..., cb ,...

COIP API Call: {... && ca && ... && cb&& ...}

Figure 2: COIP API Architecture

Figure 3: Prolog + Procedural Library Architecture

CLP Engine

Procedural Library Lb

- Solver for cb

Procedural Library Ld

- Solver for cd

Prolog Engine:

- CLP Search

- Solver for ..., sc, se, ...

CLP Rules:  ...

ha :- ..., sc ,..., cd ,... .

sc :- ..., se ,..., cf ,... .

...               CLP Query: ? ..., ha, ,..., cb ,... .

...... ...

CLP Engine Prolog Engine:

- CLP Search

- Solver for ...,sg, gh,...

- CHR Guard Entailment

CHR Engine:

- Simplification

- Propagation

CHR solver for cb: ...

..., cb ,... <=> ..., gi ,... | ..., bj ,... .

..., cb ,... ==> ..., gk ,... | ..., bl ,... .

...                   

CHR solver for cd: ...

..., cd ,... <=> ..., gm ,... | ..., bn ,... .

..., cd ,... ==> ..., go ,... | ..., bp ,... .

...                   

CLP Rules:  ...

ha :- ..., sc ,..., cd ,... .

sc :- ..., se,..., cf ,... .

...           CLP Query: ? ..., ha, ,..., cb ,... .

Prolog Rules:  ...

gi :- ..., sq ,... .

...                   

... ... ...

...

Figure 4: Prolog + CHR Architecture

CLP Engine

Prolog Engine:

- CLP Search

- Solver for gd

- CHR Guard Entailment

CHR∨ Engine:

- Simplification

- Propagation
- Solver for hp, sq, cr

CHR∨∨∨∨: ...

ha <=> ... ; (..., sc ,..., cd ,...) ; (..., se ,..., cf ,...) ;  ... .

sc <=> ... ; (..., sg ,..., ch ,...) ; (..., si ,..., cj ,...) ; ... .

..., cd ,... <=> ..., gk ,... | ..., bl ,... .

..., cd ,... ==> ..., gm ,... | ..., bn ,... .

...                 

Prolog Rules:  ...

gk :- ..., so ,... .

...                   

CHR∨∨∨∨ Query: ? ..., ha, ,..., cb ,... .

Fugure 5: Prolog CHR∨∨∨∨ Architecture

R2
R7

R3 R4 R5

R1

r b g

R7

r b g

r b g

r b g r b g r b g

r b g
Figure 1:

Constraint

Solving

Task and

Solution

Example

Constraint

Handler

PIM

ATL Transformations: PIM to PSM Translation

Solver PSM: UML2 Profile for Target COIP

Constraint

Handler

PSM

Disjunction &

Finite Domain

Search PSM

Adaptive

Entailment

PSM

Query &

Explanation

GUI PSM

Solver Procedural PIM: UML2 Activity / OCL2

Query & Explanation

PIM API

Disjunction &

Finite Domain

Search PIM

Adaptive

Entailment

PIM

Query &

Explanation

GUI PIM

CHR∨∨∨∨ to UML2 Activity Compiler: ATL Transformations

CHR∨∨∨∨ to CHR

Simplification

& Optimization

CHR to UML2

Activity Solver

Translation

UML2 to UML2

Solving Explanation

Aspect Weaving

Solving Task & Method

Declarative PIM: CHR∨∨∨∨

Query & Explanation

PSM API

Figure 7: Our new CHR∨∨∨∨ to COIP Compiling CBAOMDA Figure 6: CHR to COIP Compiling Architecture

CHR to

COIP

Compiler

CHR: ...

..., cb ,... <=> ..., gc ,... | ..., bd ,... .

..., cb ,... ==> ..., ge ,... | ..., bf ,... .

...                   

CHR Guard 

Entailment

COIP Solver for ..., ca ,..., cb ,...

gcHandling

COIP Class 

.
.
.

.
.
.

cbHandling

COIP Class 

.
.
.

.
.
.

Finite Domain

Constraint Search

Solver API for

..., ca ,..., cb ,...

COIP API Call: {... && ca && ... && cb&&...}

ca Handling

COIP Class 
...... ...

cbHandling

COIP Class 

COIP Solver for ..., ca,..., cb ,...

COIP API Call: {... && ca && ... && cb&& ...}

Figure 2: COIP API Architecture

ca Handling

COIP Class 

ca Handling

COIP Class 
...... ...

cbHandling

COIP Class 

cbHandling

COIP Class 

COIP Solver for ..., ca,..., cb ,...

COIP API Call: {... && ca && ... && cb&& ...}

Figure 2: COIP API Architecture

Figure 3: Prolog + Procedural Library Architecture

CLP Engine

Procedural Library Lb

- Solver for cb

Procedural Library Ld

- Solver for cd

Prolog Engine:

- CLP Search

- Solver for ..., sc, se, ...

CLP Rules:  ...

ha :- ..., sc ,..., cd ,... .

sc :- ..., se ,..., cf ,... .

...               CLP Query: ? ..., ha, ,..., cb ,... .

...... ...

Figure 3: Prolog + Procedural Library ArchitectureFigure 3: Prolog + Procedural Library Architecture

CLP Engine

Procedural Library Lb

- Solver for cb

Procedural Library Ld

- Solver for cd

Prolog Engine:

- CLP Search

- Solver for ..., sc, se, ...

CLP Rules:  ...

ha :- ..., sc ,..., cd ,... .

sc :- ..., se ,..., cf ,... .

...               CLP Query: ? ..., ha, ,..., cb ,... .

...... ...

CLP Engine

Procedural Library Lb

- Solver for cb

Procedural Library Ld

- Solver for cd

Prolog Engine:

- CLP Search

- Solver for ..., sc, se, ...

CLP Rules:  ...

ha :- ..., sc ,..., cd ,... .

sc :- ..., se ,..., cf ,... .

...               CLP Query: ? ..., ha, ,..., cb ,... .CLP Query: ? ..., ha, ,..., cb ,... .

...... ...

CLP Engine Prolog Engine:

- CLP Search

- Solver for ...,sg, gh,...

- CHR Guard Entailment

CHR Engine:

- Simplification

- Propagation

CHR solver for cb: ...

..., cb ,... <=> ..., gi ,... | ..., bj ,... .

..., cb ,... ==> ..., gk ,... | ..., bl ,... .

...                   

CHR solver for cd: ...

..., cd ,... <=> ..., gm ,... | ..., bn ,... .

..., cd ,... ==> ..., go ,... | ..., bp ,... .

...                   

CLP Rules:  ...

ha :- ..., sc ,..., cd ,... .

sc :- ..., se,..., cf ,... .

...           CLP Query: ? ..., ha, ,..., cb ,... .

Prolog Rules:  ...

gi :- ..., sq ,... .

...                   

... ... ...

...

Figure 4: Prolog + CHR Architecture

CLP Engine Prolog Engine:

- CLP Search

- Solver for ...,sg, gh,...

- CHR Guard Entailment

CHR Engine:

- Simplification

- Propagation

CHR solver for cb: ...

..., cb ,... <=> ..., gi ,... | ..., bj ,... .

..., cb ,... ==> ..., gk ,... | ..., bl ,... .

...                   

CHR solver for cd: ...

..., cd ,... <=> ..., gm ,... | ..., bn ,... .

..., cd ,... ==> ..., go ,... | ..., bp ,... .

...                   

CLP Rules:  ...

ha :- ..., sc ,..., cd ,... .

sc :- ..., se,..., cf ,... .

...           CLP Query: ? ..., ha, ,..., cb ,... .CLP Query: ? ..., ha, ,..., cb ,... .

Prolog Rules:  ...

gi :- ..., sq ,... .

...                   

... ... ...

...

Figure 4: Prolog + CHR Architecture

CLP Engine

Prolog Engine:

- CLP Search

- Solver for gd

- CHR Guard Entailment

CHR∨ Engine:

- Simplification

- Propagation
- Solver for hp, sq, cr

CHR∨∨∨∨: ...

ha <=> ... ; (..., sc ,..., cd ,...) ; (..., se ,..., cf ,...) ;  ... .

sc <=> ... ; (..., sg ,..., ch ,...) ; (..., si ,..., cj ,...) ; ... .

..., cd ,... <=> ..., gk ,... | ..., bl ,... .

..., cd ,... ==> ..., gm ,... | ..., bn ,... .

...                 

Prolog Rules:  ...

gk :- ..., so ,... .

...                   

CHR∨∨∨∨ Query: ? ..., ha, ,..., cb ,... .

Fugure 5: Prolog CHR∨∨∨∨ Architecture

CLP Engine

Prolog Engine:

- CLP Search

- Solver for gd

- CHR Guard Entailment

CHR∨ Engine:

- Simplification

- Propagation
- Solver for hp, sq, cr

CHR∨∨∨∨: ...

ha <=> ... ; (..., sc ,..., cd ,...) ; (..., se ,..., cf ,...) ;  ... .

sc <=> ... ; (..., sg ,..., ch ,...) ; (..., si ,..., cj ,...) ; ... .

..., cd ,... <=> ..., gk ,... | ..., bl ,... .

..., cd ,... ==> ..., gm ,... | ..., bn ,... .

...                 

Prolog Rules:  ...

gk :- ..., so ,... .

...                   

CHR∨∨∨∨ Query: ? ..., ha, ,..., cb ,... .

CLP Engine

Prolog Engine:

- CLP Search

- Solver for gd

- CHR Guard Entailment

CHR∨ Engine:

- Simplification

- Propagation
- Solver for hp, sq, cr

CHR∨∨∨∨: ...

ha <=> ... ; (..., sc ,..., cd ,...) ; (..., se ,..., cf ,...) ;  ... .

sc <=> ... ; (..., sg ,..., ch ,...) ; (..., si ,..., cj ,...) ; ... .

..., cd ,... <=> ..., gk ,... | ..., bl ,... .

..., cd ,... ==> ..., gm ,... | ..., bn ,... .

...                 

CHR∨∨∨∨: ...

ha <=> ... ; (..., sc ,..., cd ,...) ; (..., se ,..., cf ,...) ;  ... .

sc <=> ... ; (..., sg ,..., ch ,...) ; (..., si ,..., cj ,...) ; ... .

..., cd ,... <=> ..., gk ,... | ..., bl ,... .

..., cd ,... ==> ..., gm ,... | ..., bn ,... .

...                 

Prolog Rules:  ...

gk :- ..., so ,... .

...                   

Prolog Rules:  ...

gk :- ..., so ,... .

...                   

CHR∨∨∨∨ Query: ? ..., ha, ,..., cb ,... .CHR∨∨∨∨ Query: ? ..., ha, ,..., cb ,... .

Fugure 5: Prolog CHR∨∨∨∨ ArchitectureFugure 5: Prolog CHR∨∨∨∨ Architecture

R2
R7

R3 R4 R5

R1

r b g

R7

r b g

r b g

r b g r b g r b g

r b g
Figure 1:

Constraint

Solving

Task and

Solution

Example

R2
R7

R3 R4 R5

R1

r b g

R7

r b g

r b g

r b g r b g r b g

r b g
Figure 1:

Constraint

Solving

Task and

Solution

Example

Constraint

Handler

PIM

ATL Transformations: PIM to PSM Translation

Solver PSM: UML2 Profile for Target COIP

Constraint

Handler

PSM

Disjunction &

Finite Domain

Search PSM

Adaptive

Entailment

PSM

Query &

Explanation

GUI PSM

Solver Procedural PIM: UML2 Activity / OCL2

Query & Explanation

PIM API

Disjunction &

Finite Domain

Search PIM

Adaptive

Entailment

PIM

Query &

Explanation

GUI PIM

CHR∨∨∨∨ to UML2 Activity Compiler: ATL Transformations

CHR∨∨∨∨ to CHR

Simplification

& Optimization

CHR to UML2

Activity Solver

Translation

UML2 to UML2

Solving Explanation

Aspect Weaving

Solving Task & Method

Declarative PIM: CHR∨∨∨∨

Query & Explanation

PSM API

Figure 7: Our new CHR∨∨∨∨ to COIP Compiling CBAOMDA 

Constraint

Handler

PIM

ATL Transformations: PIM to PSM Translation

Solver PSM: UML2 Profile for Target COIP

Constraint

Handler

PSM

Disjunction &

Finite Domain

Search PSM

Adaptive

Entailment

PSM

Query &

Explanation

GUI PSM

Solver Procedural PIM: UML2 Activity / OCL2

Query & Explanation

PIM API

Disjunction &

Finite Domain

Search PIM

Adaptive

Entailment

PIM

Query &

Explanation

GUI PIM

CHR∨∨∨∨ to UML2 Activity Compiler: ATL Transformations

CHR∨∨∨∨ to CHR

Simplification

& Optimization

CHR to UML2

Activity Solver

Translation

UML2 to UML2

Solving Explanation

Aspect Weaving

Solving Task & Method

Declarative PIM: CHR∨∨∨∨

Query & Explanation

PSM API

Constraint

Handler

PIM

ATL Transformations: PIM to PSM Translation

Solver PSM: UML2 Profile for Target COIP

Constraint

Handler

PSM

Disjunction &

Finite Domain

Search PSM

Adaptive

Entailment

PSM

Query &

Explanation

GUI PSM

Solver Procedural PIM: UML2 Activity / OCL2

Query & Explanation

PIM API

Disjunction &

Finite Domain

Search PIM

Adaptive

Entailment

PIM

Query &

Explanation

GUI PIM

CHR∨∨∨∨ to UML2 Activity Compiler: ATL Transformations

CHR∨∨∨∨ to CHR

Simplification

& Optimization

CHR to UML2

Activity Solver

Translation

UML2 to UML2

Solving Explanation

Aspect Weaving

Solving Task & Method

Declarative PIM: CHR∨∨∨∨

Query & Explanation

PSM API

Figure 7: Our new CHR∨∨∨∨ to COIP Compiling CBAOMDA Figure 6: CHR to COIP Compiling Architecture

CHR to

COIP

Compiler

CHR: ...

..., cb ,... <=> ..., gc ,... | ..., bd ,... .

..., cb ,... ==> ..., ge ,... | ..., bf ,... .

...                   

CHR Guard 

Entailment

COIP Solver for ..., ca ,..., cb ,...

gcHandling

COIP Class 

.
.
.

.
.
.

cbHandling

COIP Class 

.
.
.

.
.
.

Finite Domain

Constraint Search

Solver API for

..., ca ,..., cb ,...

COIP API Call: {... && ca && ... && cb&&...}

Figure 6: CHR to COIP Compiling Architecture

CHR to

COIP

Compiler

CHR: ...

..., cb ,... <=> ..., gc ,... | ..., bd ,... .

..., cb ,... ==> ..., ge ,... | ..., bf ,... .

...                   

CHR Guard 

Entailment

COIP Solver for ..., ca ,..., cb ,...

gcHandling

COIP Class 

.
.
.

.
.
.

cbHandling

COIP Class 

.
.
.

.
.
.

Finite Domain

Constraint Search

Solver API for

..., ca ,..., cb ,...

COIP API Call: {... && ca && ... && cb&&...}

CHR to

COIP

Compiler

CHR: ...

..., cb ,... <=> ..., gc ,... | ..., bd ,... .

..., cb ,... ==> ..., ge ,... | ..., bf ,... .

...                   

CHR: ...

..., cb ,... <=> ..., gc ,... | ..., bd ,... .

..., cb ,... ==> ..., ge ,... | ..., bf ,... .

...                   

CHR Guard 

Entailment

COIP Solver for ..., ca ,..., cb ,...

gcHandling

COIP Class 

gcHandling

COIP Class 

.
.
.

.
.
.

cbHandling

COIP Class 

.
.
.

.
.
.

Finite Domain

Constraint Search

Solver API for

..., ca ,..., cb ,...

COIP API Call: {... && ca && ... && cb&&...}

28



  

5. A New Adaptive CHR
∨∨∨∨ to COIP Compiling CBAOMDA for CPP 

In the previous section, we have seen that all CPP proposed so far only very partially 

fulfill the six key requirements for a practical CPP. In this section, we propose a new 

CBAOMDA for CPP that aims to simultaneously fulfil them all. It is based on the 

following principles: 

1. To combine very expressive solving task modeling with rapid method customization 

and combination, use CHR
∨∨∨∨ as uniform language to declaratively represent both 

the solving task and the solving method (except for a minimal set of CHR built-in 

constraints represented by Boolean operations of COIP classes); 

2. To combine solution adaptation with solution explanation generation, incorporate 

the JTMS techniques of DJCHR and extend them to deal with disjunctive CHR; 

3. To provide rapid prototyping deploy the CHR
∨
 engine as an Eclipse plug-in (6) 

with a GUI to interactively submit queries and inspect solution explanations at 

various levels of details; 

4. To combine efficient solving implementation techniques with seamless integration 

in applications, build the first CHR
∨∨∨∨ to COIP compiler; 

5. To go one extra step towards reuse and extensibility, follow a an object-oriented, 

component-based, model-driven architecture for the overall CHR
∨
 engine; 

6. To go one extra step towards easy to customize declarative code, define the CHR
∨
 

compiler as a base of object-oriented model transformation rewrite rules; 

7. To go one extra step towards separation of concerns, represent the JTMS and 

solving explanation generation processing models as orthogonal aspects 

separated from the core solving model and incorporate them by using weaving 

model transformations. 

The high-level blueprint of the resulting architecture is shown in Figure 7, where the 

hand-coded elements are highlighted in gray while the automatically generated ones are 

in white. It has five layers: declarative PIM, procedural PIM, PSM and COIP source 

code and deployed COIP code (the last two omitted for conciseness). At the four lowest 

layers, the solver is an assembly of four components: (1) the constraint handler that 

encapsulates the constraint simplification and propagation techniques, (2) the search 

component needed to process CHR
∨
 disjunctions and finite domains not reducible to 

singletons by the handler, (3) the adaptive entailment component to determine which 

CHR
∨
 can be fired given the current state of the store, and (4) a GUI to type in queries 

with which to initialize the store and provide explanation for the solver answer and 

reasoning. The constraint handler is automatically generated by compiling the CHR
∨
 

which represent relationally the solving task and method at the declarative PIM layer. 

The three other PIM components are modeled in an object-oriented procedural way as 

UML2 classes and activities with OCL2 constraints and expressions. The CHR
∨ 

to 

UML2 compiler is a pipeline of three main ATL rule bases.  The first transforms the 

input full syntax CHR
∨
 program into a semantically equivalent core syntax CHR 

program already optimized for fast procedural execution. The second translates this 

declarative core CHR program into an operationally equivalent generic object-oriented 

procedural representation as a UML2 class and activity diagram. The third weaves to 

this model, the additional classes and activities needed to generate the reasoning 

explanations to be displayed through the GUI. The resulting constraint handler is 

29



  

incorporated in the procedural PIM assembly by connecting it to the manually modeled 

components. Applying an ATL rule base transforms this PIM assembly into a 

corresponding PSM assembly modeled using a UML2 profile for a given target COIP 

deployment platform. Applying another ATL rule base (omitted from Figure 7) then 

generates the COIP platform source code from this PSM. A target COIP platform IDE is 

then used to compile and deploy the source code for execution in overall application 

assembly. 

This innovative architecture reconciles: 

• Expressive solving task modeling in CHR
∨
; 

• Rapid method customization and combination in CHR
∨
; 

• Efficient method implementation by compiling CHR
∨
 onto a COIP classes which are 

then compiled to bytecode or native code; 

• Solution adaptation by incorporating JTMS; 

• Solution explanation by generating a solving trace exploiting the JTMS 

justifications and featuring a trace browsing GUI; 

• Seamless integration in application by providing the solving services as a COIP 

interface. 

It thus promises to be the first to fulfill all six key requirements of a CPP. Table 1 sums 

up how each CPP architecture fulfills these requirements. 

Table 1: Compared fulfillment of CPP requirements by CPP architectures. 

6. Conclusion 

In this paper, we identified six key requirements for a versatile and practical CPP. We 

used these requirements to critically review five prominent architectures among 

currently available CPP. We showed that each of them fails to adequately fulfill roughly 

half of these requirements. There is thus much room for improvement in the field of 

CPP architecture. To contribute to such improvement we proposed an innovative, 

CBAOMDA that (a) compiles CHR
∨
 rules into COIP source code, in several stages, 

using UML2 as an intermediate language, (b) incorporates JTMS techniques to support 

efficient solution adaptation and explanation, (c) includes a GUI to pass as query input a 

constraint task instance and browse the generated justification-based explanation at 

various levels of detail and (d) also includes an API to seamlessly provide the same 

query, solving and explanation facility to external software. We discussed why such 

architecture is the first one ever proposed with the potential to fulfil all key six 

requirements of a CPP. Naturally, confirming such potential will require 

 COIP 
API 

Prolog + 
Handler Library 

Prolog +  
CHR 

Prolog 
CHR∨ 

CHR to COIP 
Compiler 

CBAOMD CHR∨  

to COIP Compiler 

Task Expression * ** ** *** ** *** 

Method Customization * * ** ** ** *** 

Efficient Implement. *** ** * * * ** 

Solution Adaptation * * * * *** *** 

Solution Explanation * * ** ** * *** 

Seamless Integration ** * * * ** *** 

30



  

(a) implementing a running prototype of the architecture, (b) measuring its efficiency 

against state of the art solvers on benchmark tasks and (c) integrating it in within 

various practical applications for usability validation. We now stand midway towards 

the first of these goals. We have developed in UML2/OCL2 the fully refined PIM of an 

adaptive guard entailment component, as well as the ATL rules to compile a CHR
∨
 base 

into a constraint handler PIM in UML2/OCL2. The detail of this compiler is the object 

another publication currently in preparation. The pieces still missing from puzzle are the 

PIM for the search and GUI components, as well as the ATL rules for the PIM to PSM 

and PSM to source code translations. Together, our innovative architecture and its 

implementation will make practical contributions to several fields beyond constraint 

programming.  To automated reasoning, it will provide the first scalable yet highly 

versatile base component on top of which to assemble and integrate deduction, 

abduction, default reasoning, inheritance, belief revision, belief update, planning and 

optimization services. To innovative programming language compiler and run-time 

system engineering, it will show the benefits of the component-based, aspect-oriented 

and model-driven approaches. It will also extend the scope of application of these 

approaches by showing that their practical benefits are even greater for cutting edge 

systems that perform intelligent processing with high aggregated value than for the 

straightforward GUI to database back to GUI translations performed by the standard 

web information systems for which these approaches were initially conceived.  

7. References 

(1) Abdennadher, S. 2001. Rule-based Constraint Programming: Theory and Practice. 

Habilitationsschrift, Institut für Informatik, Ludwig-Maximilians-Universität 

München. 

(2) Ait-Kaci, H., Nasr, R. 1986. LOGIN: A Logic Programming Language with Built-in 

Inheritance. In Journal of Logic Programming, 3:185--215. 

(3) Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., 

Muthig, D., Paech, B., Wust, J. and Zettel, J. Component-based Product Line 

Engineering with UML. Addison-Wesley, 2002. 

(4) The ATL User Manual. http://www.eclipse.org/gmt/atl/doc/. 

(5) Costa, V.S., Page, D., Qazi, M., Cussens, J. 2003. CLP(BN): Constraint Logic 

Programming for Probabilistic Knowledge. In Proceedings of the 19th Conference on 

Uncertainty in Artificial Intelligence. Acapulco, Mexico. 

(6) Eclipse: An Open Development Platform. http://www.eclipse.org/ 

(7) The ECLiPSe Constraint Programming System. http://eclipse.crosscoreop.com/. 

(8) Eriksson, H.E., Penker, M., Lyons, B., Fado, D. 2004. UML 2 Toolkit. Wiley. 

(9) Holzbaur, C., Frühwirth, T. 1998. Compiling Constraint Handling Rules. In 

Proceedings of the ERCIM/COMPULOG Workshop on Constraints, Amsterdam.  

(10) Frühwirth, T. 1994. Theory and Practice of Constraint Handling Rules. In Journal 

of Logic Progamming. 19(20). 

31



  

(11) Jin, Y., Thielscher, M. 2006. Iterated Belief Revision, Revised. In Artificial 

Intelligence. (to appear). 

(12) KULeuven JCHR. http://www.cs.kuleuven.be/~petervw/JCHR/. 

(13) Marriott, K. and Stuckey, P. 1998. Programming with Constraint: An Introduction. 

MIT Press. 

(14) Puget, J.F. 1994. A C++ Implementation of CLP. In Proceedings of the Second 

Singapore International Conference on Intelligent Systems. Singapore. 

(15) Robin J., Vitorino, J. 2006. ORCAS: Towards a CHR-Based Model-Driven 

Framework of Reusable Reasoning Components. In Proceedings of the 20th 

Workshop on (Constraint) Logic Programming (WLP'06).Vienna, Austria. 

(16) Russell, S. and Norvig, 2003. P. Artificial Intelligence: A Modern Approach (2
nd

 

Ed.). Prentice-Hall. 

(17) SICStus Prolog. http://www.sics.se/isl/sicstuswww/site/index.html 

(18) Stahl, T., Völter, M. 2006. Model-Driven Software Development: Technology, 

Engineering, Management. Wiley. 

(19) Thielscher, M. 2002, Programming of Reasoning and Planning Agent with FLUX. 

In Proceedings of the International Conference on Principles of Knowledge 

Representation and Reasoning (KR), Toulouse, France. 

(20) Vitorino, J., Robin, J., Frühwirth, T. Towards a Model Transformation Based 

Compiler for Disjunctive Constraint Handling Rules. Submitted to the 9th 

International Conference on Enterprise Information System, Madeira, Portugal.  

(21) Warmer J., Kleppe A. 2003. The Object Constraint Language ( 2nd Ed.): Getting 

Your Models Ready for MDA, Addison-Wesley. 

(22) WebCHR: http://www.cs.kuleuven.be/~dtai/projects/CHR/. 

(23) Wolf, A. 2006. Object-Oriented Constraint Programming in Java Using the Library 

firstcs. In Proceedings of the 20th Workshop on (Constraint) Logic Programming 

(WLP'06).Vienna, Austria. 

(24) Wolf, A. 2001. Adaptive Constraint Handling with CHR in Java. In Lecture Notes 

in Computer Science, 2239, Springer. 

(25) Wolf, A., Gruenhagen, T., Geske, U. 2000. On Incremental Adaptation of CHR 

Derivations. In Journal of Applied Artificial Intelligence 14(4). Special Issue on 

Constraint Handling Rules. 

32



Logic Programming for Veri�cation of Object-Oriented
Programming Law Conditions

Leandro de Freitas1 , Marcel Caraciolo1 , Márcio Cornélio1

1Departamento de Sistemas Computacionais
Escola Politécnica � Universidade de Pernambuco

50720-001 Recife, PE, Brazil

{ldf,mpc,mlc}@dsc.upe.br

Abstract. Programming laws are a means of stating properties of programming
constructs and resoning about programs. Also, they can be viewed as a program
transformation tool, being useful to restructure object-oriented programs. Usu-
ally the application of a programming law is only allowed under the satisfaction
of side-conditions. In this work, we present how the conditions associated to
object-oriented programming laws are checked by using Prolog. This is a step
towards a tool that allows user de�nable refactorings based on the application
of programming laws.

1. Introduction
Object-oriented programming has been acclaimed as a means to obtain software that
is easier to modify than conventional software [Meyer 1997]. Restructuring an object-
oriented program is an activity known as refactoring [Opdyke 1992, Fowler 1999], al-
lowing us, for instance, to move attributes and methods between classes or to split a
complex class into several ones. These modi�cations just change the internal software
structure without affecting the software behaviour as perceived by users. Work on refac-
toring usually describes the steps used for program modi�cation in a rather informal
way [Fowler 1999, Opdyke 1992].

The refactoring practice usually relies on test and compilation cycles, based on
small changes applied to a program. Works in the direction of formalising refactor-
ings deal mainly with the identi�cation of conditions that must be satis�ed to guaran-
tee that a change to a program is behaviour preserving [Opdyke 1992, Roberts 1999].
Opdyke [Opdyke 1992] proposes a set of conditions required for application of refactor-
ings, whereas Roberts [Roberts 1999] introduces postconditions for refactorings, allowing
the de�nition of refactoring chains. The possibility of de�ning conditions that must be
satis�ed to apply a chain of refactorings is a bene�t of the introduction of postconditions.

In our approach, programming laws are the basis for the derivation of refactor-
ing rules, along with laws that lead to data re�nement of classes [Cornélio 2004]. These
laws precisely indicate the modi�cations that can be done to a program, with correspond-
ing proof obligations. Using laws, program development is justi�ed and documented. In
order to deal with the correctness of refactorings, in our approach the derivation of a refac-
toring rule is carried out by the use of laws that are themselves proved [Cornélio 2004]
against the semantics [Cavalcanti and Naumann 1999, Cavalcanti and Naumann 2000] of
our language. Here we consider sequential programs and we do not take into account
programs with space and time issues.

33



class Account extends object
pri balance : int;
meth getBalance =̂ (res r : int • r := self.balance)
meth setBalance =̂ (val s : int • self.balance := s)
new =̂ self.balance := 0

end •
var acct : Account •

acct := new Account();
acct.setBalance(10);

end

Figure 1. Example of program in ROOL

In order to apply an object-oriented programming law it is necessary to check side-
conditions to its application or to prove some proof obligations. In this work we present an
application of logic programming to verify conditions of programming laws, determining
whether a law can be applied to a program or not. Program transformations accomplished
by the use of programming laws preserve program behaviour [Cornélio 2004]. The use
of logic programming was inspired by the JTransformer framework [Rho et al. 2003], a
query and transformation engine for Java source code.

This paper is organised as follows. In Section 2 we present our study language
and object-oriented programming laws. In Section 3, we introduce the structure of the
program fact databases that we use for representing program syntax trees. In Section4,
we describe how we verify conditions of object-oriented programming laws. We discuss
some related work in Section 5. Finally, in Section 6, we present our conclusions and
suggestions for future work.

2. The Language and Laws of Programming
The language we use for our study is called ROOL (an acronym for Re�nement Object-
Oriented Language) and is a subset of sequential Java with classes, inheritance, visibility
control for attributes, dynamic binding, and recursion [Cavalcanti and Naumann 2000].
It allows reasoning about object-oriented programs and speci�cations, as both kinds of
constructs are mixed in the style of Morgan's re�nement calculus [Morgan 1994]. The
semantics of ROOL is based on weakest preconditions [Cavalcanti and Naumann 2000].
The imperative constructs of ROOL are based on the language of Morgan's re�nement
calculus [Morgan 1994], which is an extension of Dijkstra's language of guarded com-
mands [Dijkstra 1976].

A program cds • c in ROOL is a sequence of classes cds followed by a main com-
mand c. Classes are declared as in Fig. 1, where we de�ne a class Account. Classes are
related by single inheritance, which is indicated by the clauseextends. The class object
is the default superclass of classes. So, the extends clause could have been omitted in
declaration of Account. The class Account includes a private attribute named balance;
this is indicated by the use of the pri quali�er. Attributes can also be protected (prot)
or public (pub). ROOL allows only rede�nition of methods which are public and can be
recursive; they are de�ned using procedure abstraction in the form of Back's parameter-
ized commands [Cavalcanti et al. 1999]. A parameterised command can have the form

34



e ∈ Exp ::= self | super special `references'
| null | error
| new N object creation
| x variable
| f (e) application of built-in function
| e is N type test
| (N)e type cast
| e.x attribute selection
| (e; x : e) update of attribute

ψ ∈ Pred ::= e boolean expression
| ψ ⇒ ψ
| (∨ i • ψi)
| ∀ x : T • ψ

Table 1. Grammar for expressions and predicates

val x : T • c or res x : T • c, which correspond to the call-by-value and call-by-result pa-
rameter passing mechanisms, respectively. For instance, the methodgetBalance in Fig. 1
has a result parameter r, whereas setBalance has a value parameter s. Initialisers are de-
clared by the new clause. In the main program in Fig. 1, we introduce variable acct of
type Account to which we assign an object of such class.

For writing expressions, ROOL provides typical object-oriented constructs (Ta-
ble 1). We assume that x stands for a variable identi�er, and f for a built-in function;
self and super have a similar semantics to this and super in Java, respectively. The
type test e is N has the same meaning as in e instanceofN in Java: it checks whether
non-null e has dynamic type N; when e is null, it evaluates to false. The expression (N)e
is a type cast; the result of evaluating such an expression is the object denoted bye if it
belongs to the class N, otherwise it results in error. Attribute selection e.x results in a
run-time error when e denotes null. The update expression (e1; x : e2) denotes a copy
of the object denoted by e1 with the attribute x mapped to a copy of e2. If e1 is null, the
evaluation of (e1; x : e2) yields error. Indeed, the update expression creates a new object
rather than updating an existing one.

The expressions that can appear on the left-hand side of assignments, as the target
of a method call, and as result arguments constitute a subsetLe of Exp. They are called
left-expressions.

le ∈ Le ::= le1 | self.le1 | ((N)le).le1
le1 ∈ Le1 ::= x | le1.x

The predicates of ROOL (Table 1) include expressions of type bool, and formulas
of the �rst-order predicate calculus.

The imperative constructs of ROOL, including those related to object-orientation
concepts, are speci�ed in the Table 2. In a speci�cation statement x : [ψ1, ψ2], x is the
frame, and the predicates ψ1 and ψ2 are the precondition and postcondition, respectively.
It concisely describes a program that, when executed in a state that satis�es the precon-
dition, terminates in a state that satis�es the postcondition, modifying only the variables

35



c ∈ Com ::= le := e multiple assignment
| x : [ψ1, ψ2] speci�cation statement
| pc(e) parameterised command application
| c; c sequential composition
| if []i • ψi → ci � alternation
| rec Y • c end | Y recursion, recursive call
| var x : T • c end local variable block
| avar x : T • c end angelic variable block

pc ∈ PCom ::= pds • c parameterisation
| le.m | ((N)le).m method calls
| self.m | super.m

pds ∈ Pds ::= ∅ | pd | pd; pds parameter declarations
pd ∈ Pd ::= val x : T | res x : T

Table 2. Grammar for commands and parameterised commands

present in the frame. In a state that does not satisfyψ1, the program x : [ψ1, ψ2] aborts: all
behaviours are possible and nontermination too. The variablex is used to represent both
a single variable and a list of variables; the context should make clear the case.

For alternation, we use an indexed notation for �nite sets of guarded commands.
A method in ROOL can use its name in calls to itself in its body. This is the tradi-
tional way to de�ne a recursive method. ROOL also includes the construct rec Y • c end,
which de�nes a recursive command using the local nameY. A (recursive) call Y to such
a command is also considered to be a command. The iteration command can be de-
�ned using a recursive command. Blocks var x : T • c end and avar x : T • c end in-
troduce local variables. The former introduces variables that are demonically initialised;
their initial values are arbitrary. The latter introduces variables that are angelically cho-
sen [Back and von Wright 1998]. This kind of variable is also known as logical constant,
logic variable, or abstract variable. In practice, angelic variables only appear in speci�ca-
tion statements.

As methods are seen as parameterised commands, which can be applied to a list
of arguments, yielding a command, a method call is regarded as the application of a
parameterised command. A call le.m refers to a method associated to the object denoted
by le. In a method call e1.m(e2), e1 must be a left expression.

As we intend to apply object-oriented programming laws as a means to prove
more complex transformation like refactorings, we consider the application of an object-
oriented programming laws as two-fold: veri�cation of conditions and program trans-
formation itself. Below we present an example of a law. We write `(→)' when some
conditions must be satis�ed for the application of the law from left to right. We also
use `(←)' to indicate the conditions that are necessary for applying a law from right to
left. We use `(↔)' to indicate conditions necessary in both directions. Conditions are
described in the provided clause of laws.

To eliminate a class to which there are no references in a program, we apply
Law 1 〈class elimination〉 from left to right. This application requires that the name of
the class declared in cd1 must not be referred to in the whole program. In order to apply

36



this law from right to left, the name of the class declared incd1 must be distinct from the
name of all existing classes; the superclass that appears in the declarationcd1 is object or
is declared in cds. Finally, only method rede�nition is allowed for the class declared in
cd1. direction introduces a new class in the program.
Law 1 〈class elimination〉

cds cd1 • c = cds • c

provided
(→) The class declared in cd1 is not referred to in cds or c;
(←) (1) The name of the class declared incd1 is distinct from those of all

classes declared in cds; (2) the superclass appearing incd1 is either
object or declared in cds; (3) and the attribute and method names
declared by cd1 are not declared by its superclasses in cds, except
in the case of method rede�nitions.

2

Using Law 2 〈attribute elimination〉, from left to right, we can remove an attribute
from a class, since this attribute is not read or written inside such a class. The notationB.a
refers to access to an attribute a via expressions whose static type is exactlyB. Applying
this law from right to left, we introduce an attribute in a class, since this attribute is new,
not declared by such class, nor is declared by any superclass or subclass.
Law 2 〈attribute elimination〉
class B extends A

pri a : T; ads
ops

end

=cds,c

class B extends A
ads
ops

end
provided
(→) B.a does not appear in ops;
(←) a does not appear in ads and is not declared as an attribute by a su-

perclass or subclass of B in cds.
2

To eliminate a method from a class we use Law3 〈method elimination〉. We can
eliminate a method from a class if it is not called by any class incds, in the main com-
mand c, nor inside class C. For applying this law from right to left, the methodm cannot
be already declared in C nor in any of its superclasses or subclasses, so that we can in-
troduce a new method in a class. The notation B.m refers to calls to a method m via
expressions whose static type is exactly B. We write B ≤ A to denote that a class B is a
subclass of a class A.
Law 3 〈method elimination〉

class C extends D
ads
meth m =̂ pc end; ops

end

=cds,c

class C extends D
ads
ops

end
provided

37



package(PackageId, MainId).
package(PackageId, ClassId).
class(ClassId, ClassName).
extends(ClassId, SuperClassId).
main(MainId, ``Main'').
mainCommand(MainId, MainCmdId).

Figure 2. Class and main command program facts

(→) B.m does not appear in cds, c nor in ops, for any B such that B ≤ C.
(←) m is not declared in ops nor in any superclass or subclass ofC in cds.

2

There are also laws to deal with moving attributes and methods to superclasses,
changing types of attributes and parameters, eliminating method calls, for instance, and
other features [Borba et al. 2004, Cornélio 2004]. Some programming laws presented
in [Borba et al. 2004, Cornélio 2004] can be considered basic refactorings when com-
pared to the classi�cation of refactorings presented by Opdyke [Opdyke 1992].

3. Program Facts Database Structure
Our aim is to check side-conditions of programming laws relying on a Prolog factbase
that represents the abstract syntax tree of a ROOL program. The main reason to use Pro-
log is due to its declarative nature, allowing us to concentrate in the solution, not in the
process to describe a solution. We have implemented a compiler to translate aROOL pro-
gram to a fact base. In fact, the input to our compiler is aROOL program that is enriched
with tokens that are recognized by the rewriting system Maude [Clavel et al. 2005]. This
is a consequence of a decision of using Prolog as a means to verify conditions stated by
programming laws, whereas Maude would be used for the implementation of the trans-
formations described by the programming laws.

The compilation process is constituted by two phases. As already said, the com-
piler receives as input a ROOL program enriched with tokens that can be read by the
Maude rewriting system. In the �rst phase, the compiler reads such an input program and
generates an abstract syntactic tree. In the second phase, the compiler scans the syntactic
tree and generates Prolog clauses that represent the program syntactic tree.

For every syntactic element of the language we de�ne a fact in Prolog. For in-
stance, we describe facts for classes and the main command (Fig.2). Although we do not
have packages in ROOL, we decided to represent such a concept in program fact bases.
We consider that a program is written inside a single package that is introduced in the fact
packagewhose �rst element is the package identi�er; the second element is a class iden-
ti�er. We consider the main command as a particular case: the fact package also lists the
identi�er of the main command (main). Classes are introduced in the factclasswhose
�rst element is a class identi�er and the second is a class name. Attributes and methods
of a class have speci�c facts that take into account identi�er of the class in which they are
declared.

For attribute declaration, the factattribute introduces an identi�er for an at-
tribute, the identi�er of the class in which the attribute is declared, and the attribute name.

38



attribute(AttributeId, ClassId, 'AttributeName').
attributeType(AttributeId, 'Type', 'Visibility').
method(MethodId, ClassId, 'MethodName').
methodVal(MethodId, ValParamId).
methodRes(MethodId, ResParamId).
methodStat(MethodId, StatementId).

Figure 3. Attribute and method facts

assign(CmdId, ParentId, MethodId)
assignExp(CmdId, LeftExpId, ExpId)

Figure 4. Assignment facts

The type and visibility of an attribute are introduced by the factattributeType. As al-
ready discussed, methods in ROOL are declared as parameterised commands. We separate
facts about parameter declarations from facts about the method body itself, the method
statement (command). Method parameters are described by distinguishing them accord-
ing to the parameter passing mechanism. The declaration of a result parameter is intro-
duced by the factmethodRes, we use methodVal for a value parameter. To introduce
the parameter identi�er, we use factvarDec for variable declaration (see Appendix A).
The method body is introduced by the factmethodStat (for method commmand). The
�rst element of this fact is the identi�er of the method, and a list of identi�ers of com-
mands that appear in the method body.

As an example of facts about a command, we present facts related to assignment
(Fig. 4) The fact assign introduces an assignment identi�er, the parent command in
which the assignment appears (a guarded command, for instance), and the identi�er of
the method in which the assignment is introduced. The assignment itself is constituted by
a left-expression (the assignment target), and the expression that is assigned to the left-
expression, the right-hand side of the assignment. More examples of facts can be found
in Appendix A.

In Fig. 5, we present the program that appears in Fig. 1 in the syntax that is also
read by the Maude rewriting system. After compiling the program presented in Fig.5,
we obtain program facts as those presented in Fig.6. Here we present just a subset of the
facts for the program presented in Fig.6.

4. Verifying Side-Conditions of Programming Laws
In this section, we present how we have implemented the veri�cation of conditions for
application of programming laws. Here we deal just with the activity of verifying con-
ditions for the application of programming laws, not with the program transformation
that is a consequence of a law application. We encoded in a Prolog program the condi-
tions that appear in the object-oriented programming laws presented in [Borba et al. 2004,
Cornélio 2004]. Our implementation can be seen as constituted by layers. The bottom
layer is constituted by the facts that represent the abstract syntax tree of a program; the
second layer is composed by clauses that express conditions associated to programming

39



class CLID 'Account extends CLID 'object {
pri 'balance: Int;
meth MtID 'getBalance � = res 'r: int .# 'r := self.'balance; # end
meth MtID 'setBalance � = val 's: int .# self.'balance := 's; # end
new � = self.'balance := 0;
}
main <
var 'acct : Account .#

'acct := new 'Account();
'acct.'setBalance(10);

# end >

Figure 5. Input example program

package(1000, 1001).
class(1001, "'Account").
extends(1001, 0000). //Object 0000
attribute(1002, 1001, "'balance").
attributeType(1002, "int", "pri").

method(1003, 1001, "'getBalance").
methodRes(1003, 1004). varDec(1004, 1003, 1003, "'r").
methodStat(1003, 1005). VarDecType(1004, "int").

assign(1005, 1003, 1003). exp(1006, 1005, 1003, "'r", null).
assignExp(1005, 1006, 1007). exp(1007, 1005, 1003, "self", 1008).

exp(1008, 1007, 1003, 'balance, null).
package(1000, 1020).
main(1020, "Main"). mainCommand(1020, 1021).
varDec(1020, 1001, null, "'acct"). assign(1021, 1020, null).
varDecType(1020, "'Acoount"). assignExp(1021, 1022, 1023).

exp(1022, 1021, null, "'acct", null).
new(1023, 1021, null).
newExp(1023, 1024, 1021). exp(1024, 1023, null, "'Account", null).

Figure 6. Program facts for the example program of Fig.5

laws. The third layer is constituted by conjunction of clauses expressing the conditions of
programming laws.

Some clauses appear in the implementation of conditions of distinct laws. For
instance, the clause superClass (Fig. 7) checks whether a class whose identi�er is
classId has class Ancestor as superclass. Notice that this clause is based on the
fact extends of program factbases. We use clauseattributeNameClass (Fig. 8)
to check whether an attribute name appears in a given class. In this clause, we use clause
returnAttributeID, besides other clauses, that returns the attribute identi�er. We
consider clause returnAttributeID as basic.

Here we describe how we verify the conditions associated to the laws we presented
in Section 2. Let us �rst consider the conditions for applying Law1 〈class elimination〉,
from left to right. To eliminate a class, it cannot be referred to in the entire program. In
other words, such a class cannot be type of attributes (verifyClassAttType), vari-
ables (verifyClassVariableType), and parameters (verifyClassParamType).
Also, this class is not superclass of any class (verifyClassIsSuperclass), it is not
used in type casts and tests (verifyClassIsCast and verifyClassTypeTest),
and does not appear in new expressions (verifyClassInNewExp). The negation of

40



superClass(ClassID, Ancestor) :-
extends(ClassID, Ancestor).

superClass(ClassID, Ancestor) :-
extends(ClassID,Y),
superClass(Y,Ancestor).

Figure 7. Clause for checking superclass relation

attributeNameClass(AttributeName,ClassName):-
returnAttributeID(AttributeName, AttributeId),
returnClassID(ClassName,ClassId),
atributeIDClass(AttributeId, ClassId).

returnAttributeID(AttributeName, AttributeId):-
attribute(AttributeId, , AttributeName, , ).

Figure 8. Clauses for obtaining attribute identi�er and checking attribute name in class

these clause de�ne clauseverifyClassEliminationLR (see (1)).

verifyClassEliminationLR(ClassName,PackageId):-
verifyClass(ClassName,ProgramID),
not(verifyClassAttType(ClassName)),
not(verifyClassParamType(ClassName)),
not(verifyClassVariableType(ClassName)),
not(verifyClassIsSuperclass(ClassName)),
not(verifyClassIsCast(ClassName)),
not(verifyClassTypeTest(ClassName)),
not(verifyClassInNewExp(ClassName)).

(1)

Clause verifyClassIsSuperclass (Fig. 9) veri�es whether a class identi�ed by
its class name is superclass of any class in a program. For this, it is necessary to retrieve
the class identi�er from the class name. We use the identi�er to check if any other class in
a program is a subclass of a class with such an identi�er. On the other hand, to introduce
a class in a program we have to check that the name of the class we are introducing is not
already in the program�we negate clauseverifyClass that checks if a class is already
in a program. Moreover, we check if the superclass of the class we introduce is already
in the program or is object (clause verifySuperclasAlreadyDeclared). We
have also to guarantee that attributes of the new class are not present in the superclass by
negating clauseverifyAttSuperlasses. We have to be more careful with methods.
If the new class we are introducing declares a method with a name that is already a name
of a method of any superclass of the class being introduced, we require that this method
has the same parameters, since in ROOL overloading is not allowed. These conditions are
conjoined in the clauseverifyClassEliminationRL (see (2)).

41



verifyClassIsSuperclass(ClassName):-
returnClassID(ClassName, ClassID) ,
package(PackageId,ClassID),
subClass(ClassID, Descendant),
package(PackageId,Descendant).

Figure 9. Verifying whether a class has subclasses

verifyClassEliminationRL(ClassName,PackageId):-
not(verifyClass(ClassName,PackageId)),
verifySuperclasAlreadyDeclared(ClassName),
not(verifyAttSuperlasses(ClassName)),
((verifyMethNameInSuperclasses(ClassName),
verifyMethParamSuperclasses(ClassName));
(not(verifyMethNameInSuperclasses(ClassName))).

(2)

The condition to remove a private attribute by using Law2 〈attribute elimination〉,
from left to right, is expressed by the clauseattElimLR (see (3)) that requires the at-
tribute is not read or written inside a class, which is expressed by clausepriAttAccess.

attElimLR(AttributeName,ClassName) :-
not(priAttAccess(AttributeName, ClassName)). (3)

On the other hand, to introduce an attribute, we require that is not already present in a
class�we negate attDecClass�nor it is declared in any superclass or subclass�we
negate attDecHierarchy. This is expressed by the clauseattElimRL (see (4)).

attElimRL(AttributeName,ClassName) :-
not(attDecClass(AttributeName, ClassName)),
not(attDecHierarchy(AttributeName, ClassName)).

(4)

The condition for applying Law 3 〈method elimination〉, from left to right, is ex-
pressed in conditionmethElimLR (see (5)). We require there are no calls to the method
in the entire program. For this moment, we deal with the static type of attributes, vari-
ables, and parameters to check the type of method call targets to a method. We require
that there are no calls on attributes whose type is the class from which we eliminate the
method or any of its superclasses. This is also applied to variables and parameters. We
have also to check object chains. For instance, consider a method call likex.y.z.m(), in
which m is the method we want to eliminate. A method call as the one given above does
not necessarily implies that we cannot eliminate methodm, we have to check the declared
type of z. If it is the class from which we intend to eliminatem or any of its subclasses,
we cannot eliminate m, otherwise we can.

42



methElimLR(MethodName, ClassName) :-
not(methodCallOnAttribute(MethodName, ClassName)),
not(methodCallOnVar(MethodName, ClassName)),
not(methodCallOnParam(MethodName, SubClassName)),
not(methodCallOnObjectChains(MethodName, ClassName)).

(5)

To introduce a method in a class, we require the method to be new in the hierarchy (not
declared in the class, nor in any superclass or subclass (see (6)).

methElimRL(MethodName, ClassName) :-
newMethodInHierarchy(MethodName, ClassName). (6)

These are examples of veri�cation of conditions of some object-oriented program-
ming laws using logic programming. Besides these laws, we have implemented veri�ca-
tion of conditions of other 19 programming laws. We have 25 laws altogether.

5. Related Work
Opdyke [Opdyke 1992] formally describes conditions that must be satis�ed to apply a
refactoring. Some �low-level�refactorings [Opdyke 1992, Chapter 5] proposed by Opdyke
are, in fact, programming laws of our language. This is the case of the refactoring that
deals with the introduction of attributes, for instance. In fact, some conditions of pro-
gramming laws are similar to conditions of Opdyke's �low-level� refactorings.

Roberts [Roberts 1999] goes a step further than Opdyke and describes both pre-
conditions and postcondition of refactorings, allowing support for refactoring chains. The
de�nition of postconditions allows for the elimination of program analysis that are re-
quired within a chain of refactorings. This comes from the observation that refactorings
are typically applied in sequences intended to set up preconditions for later refactorings.
Pre- and postconditions are all described as �rst-order predicates; this allows the calcu-
lation of properties of sequences of refactorings. We have not de�ned postconditions of
programming laws; we describe the transformations of such laws as meta-programs, not
by means of properties they have.

Kniesel [Kniesel 2005] enables conditional transformations to be speci�ed from
a minimal set of built-in conditions and transformations. In our approach, conditions of
a refactoring, for instance, are de�ned with basis on object-oriented programming laws
conditions. In this way, applications of programming laws serve to derive more complex
transformation, like refactorings, that can be applied to programs. We have not de�ned
a minimal set of conditions for law application, but de�ned layers that are composed by
Prolog clauses. The bottom layer is the program factbase itself. Upon the factabse, we
de�ne conditions that may be common to different laws�like conditionverifyClass
that can be considered basic�or speci�c to a law. Notice that these conditions are clearly
stated by programming laws. Kniesel [Kniesel 2005, Kniesel and Koch 2004] de�nes
conditional transformation (CT) to be a program transformation guarded by a precon-
dition, such that the transformation is performed only if its precondition is true. We can
also view a programming law as a transformation with condition that can be checked by

43



the existence of elements in a program. The JTransformer program transformation en-
gine [Rho et al. 2003], which is used as a backend for conditional transformations, has
inspired us in the de�nition of our logic factbase. The conditions we implemented, as
already said, are based on programming law conditions.

Li [Li 2006] has de�ned refactoring for Haskell programs along with a refactorer
called HaRe. Some functional refactorings have object-oriented counterparts like renam-
ing. However, there are refactorings that are speci�c to functional programs like the
one that deals with monadic computation of expression. The Haskell refactorer (HaRe)
deals with structural, module, and data-oriented refactorings. HaRe is based on Stra-
funski [Lämmel and Visser 2003] which is a Haskell-centered software bundle for imple-
menting language processing components and can be instantiated to different program-
ming languages. Since programming languages of different paradigms have distinct pro-
gram structures, they have their own program collection of refactorings. In our case,
conditions and transformations are based on programming laws that were described and
proved against the semantics of an object-oriented language [Cornélio 2004].

Tools that implement refactorings, like Eclipse [ecl ], have a larger set of refac-
torings than ours, as we deal with a subset of sequential Java. Since our object-oriented
programming laws deal with a language with a copy semantics, we can de�ne refactor-
ings that deal mainly with program structures, not involving sharing. On the other hand,
we have identi�ed some limitations of Eclipse when dealing with casts and when moving
methods to a superclass [Cornélio 2004]. Also, differently from Eclipse, we intend to
build a tool that allows programmers to de�ne their own refactorings.

6. Conclusions
Changes in software are usually consequence of evolution or correction. However, some
changes are performed to improve program structure, leading to a program that is easier
to understand and to maintain. These changes modify the program structure without
affecting the software behaviour as perceived by users.

A disciplined way to change a program without affecting its behaviour is to apply
programming laws that guarantee correctness of program transformation by construction.
This is based on proof of soundness of programming laws; in our case of laws that deal
with imperative and object-oriented constructs [Borba et al. 2004, Cornélio 2004]. To ap-
ply an object-oriented programming law, conditions have to be satis�ed. In this work, we
presented an application of logic programming to check if the conditions of programming
laws are satis�ed, allowing us to strictly apply a law. Refactoring developers can take
programming laws as a toolkit for the development of new refactorings. By using a tool
that encodes programming laws, refactorings obtained are correct by construction.

We took advantage of using a declarative language like Prolog that facilitates the
description of conditions. This can also be used to de�ne preconditions for the applica-
tion of a sequence composition of programming laws. In fact, this goes in the direction of
the ConTraCT refactoring editor [Kniesel 2005]. It should also be necessary to describe
the transformation de�ned by programming laws in a logic program. In fact, we have
to deal with program transformations, we are considering the use of Constraint Handling
Rules [Frühwirth 1998] or Transaction Logic [Bonner and Kifer 1994] in order to imple-
ment the transformations expressed by programming laws as direct changes in program

44



factbases.
We have already used rewriting systems for the mechanical proof of refactoring

rules [Júnior et al. 2005]. However, we have not veri�ed conditions for the application of
programming laws. Our work here and the one presented in [Júnior et al. 2005] can be
viewed as complementary. The conditions for a transformation would be checked by the
implementation in logic programming, whereas the transformation would be realised by
the rewriting system in which programming laws are encoded.

7. Acknowledgements
We would like to thank the anonymous referees for the comments that helped to im-
prove the �nal version of this paper. The authors are supported by the Brazilian Research
Agency, CNPq, grant 506483/2004-5.

References
[ecl ] Eclipse. Eclipse.org. Available on-line http://www.eclipse.org/. Last accessed in

March, 2007.
[Back and von Wright 1998] Back, R. J. R. and von Wright, J. (1998).Re�nement Calculus:

A Systematic Introduction. Springer-Verlag.
[Bonner and Kifer 1994] Bonner, A. J. and Kifer, M. (1994). An Overview of Transaction

Logic. Theoretical Computer Science, 133(2):205�265.
[Borba et al. 2004] Borba, P., Sampaio, A., Cavalcanti, A., and Corńelio, M. (2004). Al-

gebraic Reasoning for Object-Oriented Programming. Science of Computer Program-
ming, (52):53�100.

[Cavalcanti and Naumann 1999] Cavalcanti, A. L. C. and Naumann, D. (1999). A weakest
precondition semantics for an object-oriented language of re�nement. In FM'99 -
Formal Methods, volume 1709 of Lecture Notes in Computer Science, pages 1439�
1459.

[Cavalcanti and Naumann 2000] Cavalcanti, A. L. C. and Naumann, D. A. (2000). A Weak-
est Precondition Semantics for Re�nement of Object-oriented Programs. IEEE Trans-
actions on Software Engineering, 26(8):713�728.

[Cavalcanti et al. 1999] Cavalcanti, A. L. C., Sampaio, A., and Woodcock, J. C. P. (1999).
An Inconsistency in Procedures, Parameters, and Substitution in the Re�nement Cal-
culus. Science of Computer Programming, 33(1):87�96.

[Clavel et al. 2005] Clavel, M. et al. (2005). Maude Manual. SRI International.
[Cornélio 2004] Cornélio, M. L. (2004). Refactorings as Formal Re�nements. PhD the-

sis, Centro de Informática, Universidade Federal de Pernambuco. Also available at
http://www.dsc.upe.br/∼mlc.

[Dijkstra 1976] Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall.
[Fowler 1999] Fowler, M. (1999). Refactoring: Improving the Design of Existing Code.

Addison-Wesley.
[Frühwirth 1998] Frühwirth, T. (1998). Theory and Practice of Constraint Handling Rules.

Journal of Logic Programming, Special Issue on Constraint Logic Programming, 37(1-
3):95�138.

45



[Júnior et al. 2005] Júnior, A. C., Silva, L., and Cornélio, M. (2005). Using CafeOBJ to
Mechanise Refactoring Proofs and Application. In Sampaio, A., Moreira, A. F., and
Ribeiro, L., editors, Brazilian Symposium on Formal Methods, pages 32�46.

[Kniesel 2005] Kniesel, G. (2005). ConTraCT - A Refactoring Editor Based on Compos-
able Conditional Program Transformations. In L̈ammel, R., Saraiva, J., and Visser, J.,
editors, Generative and Transformational Techniques in Software Engineering. Pre-
proceedings of the International Summer School, GTTSE 2005.

[Kniesel and Koch 2004] Kniesel, G. and Koch, H. (2004). Static Composition of Refactor-
ings. Science of Computer Programming, (52):9�51.

[Lämmel and Visser 2003] Lämmel, R. and Visser, J. (2003). A Strafunski Application Let-
ter. In Dahl, V. and Wadler, P., editors, Proc. of Practical Aspects of Declarative
Programming (PADL'03), volume 2562 of LNCS, pages 357�375. Springer-Verlag.

[Li 2006] Li, H. (2006). Refactoring Haskell Programs. PhD thesis, University of Kent.
[Meyer 1997] Meyer, B. (1997). Object-Oriented Software Construction. Prentide-Hall,

second edition.
[Morgan 1994] Morgan, C. C. (1994). Programming from Speci�cations. Prentice Hall,

second edition.
[Opdyke 1992] Opdyke, W. (1992). Refactoring Object-Oriented Frameworks. PhD thesis,

University of Illinois at Urbana-Champaign.
[Rho et al. 2003] Rho, T. et al. (2003). JTransformer Framework. Computer Science De-

partment III�University of Bonn. http://roots.iai.uni-bonn.de/research/jtransformer/.
[Roberts 1999] Roberts, D. B. (1999). Practical Analysis for Refactoring. PhD thesis,

University of Illinois an Urbana-Champaign.

A. Facts for Commands and Expressions
A.1. Variable Declaration

varDec(VarDecId, ParentId, MethodId, 'VariableName')
varDecType(VarDecId, 'Type')
avarDec(AVarDecId, ParentId, MethodId, 'VariableName')
avarDecType(AVarDecId, 'Type')

A.2. Parameterized Command and Method Call

pCommand(CmdId, ParentId, MethodId)
methodCall(MethodCallId, ParentId, MethodId)
methodCallMeth(MethodCallId, ExpId, MethodName)
methodCallExp(MethodCallId, ExpCallId)

A.3. Types Test and Cast

is(IsId, ParentId, MethodId)
isExp(IsId, ExpId, 'ClassName')
cast(CastId, ParentId, MethodId)
castExp(CastId, ClassName, ExpId)

46



A Methodology for Removing LALR(k) Conflicts

Leonardo Teixeira Passos, Mariza A. S. Bigonha, Roberto S. Bigonha

Departamento de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)
CEP: 31270-010 – Belo Horizonte – MG – Brazil

{leonardo, mariza, bigonha}@dcc.ufmg.br

Abstract. Despite all the advances brought by LALR parsing method by
DeRemer in the late 60’s, conflicts reported by LALR parser generators are
still removed in an old fashion and primitive manner, based on analysis of a
huge amount of textual and low-level data stored on a single log file. For the
purpose of minimizing the effort and time consumed in LALR conflict removal,
which is definitely a laborious task, a methodology is proposed, along with the
set of operations necessary to its realization. We also present a tool and the
ideas behind it to support the methodology, plus its plugin facility, which per-
mits the interpretation of virtually any syntax specification, regardless of the
specification language used.

Resumo. Apesar de todos os avanços obtidos pelo método de análise sintática
LALR de DeRemer no final da década de 60, conflitos reportados por geradores
de analisadores sintáticos LALR ainda são removidos de forma primitiva,
baseada na análise de uma grande quantidade de dados de baixo nı́vel, disponi-
bilizados em um único arquivo de log. Com o propósito de minimizar o esforço
e o tempo gasto na remoção de conflitos, que é definitivamente uma tarefa labo-
riosa, uma metodologia é proposta, juntamente com as operações necessárias
à sua realização. Além disto, apresenta-se uma ferramenta e as idéias uti-
lizadas em sua criação no suporte à metodologia, acrescido da descrição da
facilidade oferecida pelo mecanismo de plugins, que permite virtualmente a
interpretação de qualquer especificação sintática, sem a preocupação da lin-
guagem de especificação utilizada.

1. Introduction

The great advantage of working with LALR(k) grammars is the fact that they can be used
by parser generators to automatically produce fully operational and efficient parsers, en-
coded in languages like C, C++, Java, Haskell, etc. Examples of LALR parser generators
are YACC [Johnson 1979], CUP [CUP 2007], Frown [Frown 2007], among others. How-
ever, the specification of a grammar that is indeed LALR(k) is not a trivial task, specially
when k is limited to one, which is often the case. This happens due to the recurrent
existence of conflicts, i.e., non-deterministic points in the parser. It is quite common in
a typical programming language grammar being designed to find hundreds, if not more
than a thousand conflicts. To illustrate that, when implementing the LALR(1) parser for
the Notus [Tirelo and Bigonha 2006] language, whose grammar has 236 productions, 575
conflicts were reported by the parser generator.

47



There exists many approaches to remove conflicts. Those based on ad hoc solu-
tions, such as precedence and associativity settings, are not considered by the methodol-
ogy proposed herein. We favor the method based on rewriting some rules of the grammar,
without changing the defined language.

A usual way to remove conflicts is to analyse the output file created by the parser
generator. This output consists of a considerable amount of textual data, from the numer-
ical code associated to grammar symbols to the grammar and the LALR automaton itself.
Using the Notus language as an example, the Bison parser generator (the GNU version of
YACC) dumps a 54 Kb file, containing 6244 words and 2257 lines. The big amount of
data and the fact that none of it is interrelated – hyperlinks are not possible in text files,
make it very difficult to browse. The level of abstraction in these log files is also a prob-
lem, since non experts in LALR parsing may not interpret them accordingly. When facing
these difficulties, these users often migrate to LL parser generators. Despite their simpli-
fied theory, this approach is not a real advantage, since LL languages are a proper subset
of the LALR ones. Even for experts users, removing conflicts in such harsh environment
causes a decrease of productivity. To face this scenario, in this paper we present a meth-
odology for removing conflicts in non LALR(k) grammars. This methodology consists
of a set of steps whose intention is to capture the natural way the compiler designer acts
when handling conflicts: (i) understand the cause of the conflict; (ii) classify it according
to known conflict categories; (iii) rewrite some rules of the grammar to remove the con-
flict; (iv) resubmit the specification to make sure the conflict has been eliminated. Each of
these steps comprises a set of operations that must be supported. The realization of these
operations are discussed when presenting SAIDE 1, a supporting tool for the proposed
methodology.

This article is organized as follows: Section 2 gives the necessary background to
understand the formulations used in later sections; Section 3 discusses conflicts in LR and
LALR parsing; Section 4 presents the proposed methodology; Section 5 presents SAIDE,
the mentioned tool to support the methodology, and Section 6 concludes this article.

2. Background
Before we present the methodology itself, it is necessary to establish some for-
mal concepts, conventions, definitions and theorems. Most of the subject de-
fined here is merely a reproduction or sometimes a slight variation of what is de-
scribed in [Charles 1991], [DeRemer and Pennello 1982], [Aho and Ullman 1972] and
[Kristensen and Madsen 1981]. It is assumed that the reader is familiar with LR and
LALR parsing.

A context free grammar (CFG) is given by G = (N, Σ, P, S). N is a finite set of
nonterminals, Σ the finite set of terminals, P the set of rules in G and finally S ∈ N is the
start symbol. V = N∪Σ is said to be the vocabulary of G. When not mentioned the oppo-
site, a given grammar is considered to be in its augmented form, given by (N ′, Σ′, P ′, S ′),
where N ′ = {S ′} ∪ N , Σ′ = {$} ∪ Σ, P ′ = {S ′ → S$} ∪ P , considering that S ′ /∈ N
and $ /∈ Σ.

The following conventions are adopted: lower case greek letters (α, β, ...) define
strings in V ∗; lower case roman letters from the beginning of the alphabet (a, b, ...) and

1Correct pronunciation: /saId/

48



t, bold strings and operator characters (+,−, =, ., etc) represent symbols in Σ, whereas
letters from the end of the alphabet (except for t) denote elements in Σ∗; upper case letters
from the beginning of the alphabet (A, B, ...) and italic strings represent nonterminals in
N , while those near the end (X , Y , ...) denote symbols in V . The empty string is given
by λ and the EOF marker by $. The length of a string γ is denoted as |γ|. The symbol Ω
stands for the “undefined constant”.

An LR(k) automaton LRAk is defined as a tuple (Mk, V, P, IS, GOTOk, REDk),
where Mk is the finite set of states, V and P are as in G, IS is the initial state, GOTOk :
Mk×V ∗ → Mk is the transition function and REDk : Mk×Σ∗

k → P(P ) is the reduction
function, where Σ∗

k = {w | w ∈ Σ∗ ∧ 0 ≤ |w| ≤ k}.

A state, either a LR or LALR one, is a group of items. An item is an element in
N × V ∗ × V ∗ and denoted as A → α • β.

The usual way to build the LALR(k) automaton is to calculate the LRA0 automa-
ton first. For such, let the components of LRA0 be defined.

The set of states is generated by the following equation:

M0 = {F−1(CLOSURE({S ′ → •S$}))}∪
{F−1(CLOSURE(F (q))) | q ∈ SUCC(p) ∧ p ∈ M0}

where F is a bijective function that maps a state to a set of items (excluded the empty set)
and

CLOSURE(is) = is ∪ {B → •β | A → α •Bω ∈ is ∧ B → β ∈ P}
SUCC(p) = {F−1(ADV ANCE(p, X)) | X ∈ V }
ADV ANCE(p, X) = {A → αX • β | A → α •Xβ ∈ F (p)}

The initial state (IS) is obtained by F−1(CLOSURE({S ′ → •S$})). RED0(q, w) is
stated as

RED0(q, w) = {A → γ | A → γ• ∈ F (q)}
GOTOk,∀k ≥ 0, can be defined as:

GOTOk(p, λ) = p
GOTOk(p, X) = F−1(CLOSURE(ADV ANCE(p, X)))
GOTOk(p, Xα) = GOTOk(GOTOk(p, X), α),∀α 6= λ

From this point, when mentioning a state p, it will be known from the context
whether it refers to the number or to the set of items of the state.

The LALR(k) automaton, shortly LALRAk, is a tuple
(M0, V, P, IS, GOTOk, REDk), where except for REDk, all components are as in
LRA0. Before considering REDk, it is necessary to model a function to capture all
predecessor states for a given state q, under a sentential form α. Let PRED be such
function:

PRED(q, α) = {p | GOTOk(p, α) = q}
Then,

REDk(q, w) = {A → γ | w ∈ LAk(q, A → γ•)}

49



where LAk is the set of lookahead strings of length not greater than k that may follow a
processed right hand side of a rule. It is given by

LAk(q, A → γ) = {w ∈ FIRSTk(z) | S ∗⇒
rm

αAz ∧ αγ access q}

where

FIRSTk(α) = {x | (α ∗⇒
lm

xβ ∧ |x| = k) ∨ (α
∗⇒ x ∧ |x| < k)}

and αγ access q iff PRED(q, αγ) 6= ∅.

For k = 1, DeRemer and Pennello proposed an algorithm to calculate the looka-
heads in LA1 [DeRemer and Pennello 1982] and it still remains as the most efficient
one [Charles 1991]. They define the computation of LA1 in terms of FOLLOW1 :
(M0×N×M0) → P(Σ). The domain (M0×N×M0) is said to be the set of nonterminal
transitions. The first component is the source state, the second the transition symbol and
the last one the destination state. For presentation issues, transitions will be written as
pairs if destination states are irrelevant. FOLLOW1(p, A) models the lookahead tokens
that follow A when ω becomes the current handle, as long as A → ω ∈ P . These tokens
arise in three possible situations [DeRemer and Pennello 1982]:

a) ∃ C → θ • Bη ∈ p, such that p ∈ PRED(q, β), B → βAγ ∈ P and γ
∗⇒λ. In

this case, FOLLOW1(p, B) ⊆ FOLLOW1(q, A). This situation is captured by
a relation named includes: (q, A) includes (p, B) iff the previous conditions are
respected;

b) given a transition (p, A), every token that is directly read by a state q, as long as
GOTO0(p, A) = q, is in LA1(p, A). This is modeled by the direct read function:

DR(p, A) = {t ∈ Σ | GOTO0(q, t) 6= Ω ∧ GOTO0(p, A) = q}

c) given (p, A), every token that is read after a sequence of nullable nonterminal
transitions is in LA1(p, A). To model the sequence of nullable transitions the
reads relation is introduced: (p, A) reads (q, B) iff GOTO0(p, A) = q e B

∗⇒ λ.

The function READ1(p, A) comprises situations (b) and (c):

READ1(p, A) = DR(p, A) ∪
⋃
{READ1(q, B) | (p, A) reads (q, B)}

From this and (a), FOLLOW1 is written as:

FOLLOW1(p, A) = READ1(p, A) ∪
⋃
{FOLLOW1(q, B) | (p, A) includes (q, B)}

Finally,

LA1(q, A → ω) =
⋃
{FOLLOW1(p, A) | p ∈ PRED(q, ω)} (1)

50



3. Conflicts in non LALR(k) grammars
Conflicts arise in grammars when, for a state q in the LALR(k) automaton and a lookahead
string w ∈ Σ∗, such that |w| ≤ k, at least one condition is satisfied:

a) |REDk(q, w)| ≥ 2: reduce/reduce conflict;
b) |REDk(q, w)| ≥ 1∧ ∃ A → α •β ∈ q∧ w ∈ FIRSTk(β): shift/reduce conflict.

If one of these conditions is true, q is said to be an inconsistent state. A grammar is
LALR(k) if its correspondent LALR(k) automaton has no inconsistent states.

A conflict is caused either by ambiguity or lack of right context, resulting in four
possible situations. Ambiguity conflicts are the class of conflicts caused by the use of
grammar rules that result in at least two different parsing trees for a certain string. These
conflicts cannot be solved by increasing the value of k; in fact there isn’t a k (or k = ∞)
such that the grammar is LALR(k). Some of these conflicts are solved by rewriting some
grammar rules in order to make it LALR(k), according to the k used by the parser gene-
rator (situation (i)). As an example, consider the dangling-else conflict. It is well known
that its syntax can be expressed by a non ambiguous LALR(1) set of rules, although is
more probable that one will first write an ambiguous specification. Some ambiguity con-
flicts, on the other hand, simply cannot be removed from the grammar without altering
the language in question (situation (ii)). These conflicts are due to the existence of inher-
ently ambiguous syntax constructions. An example would be a set of rules to describe
{ambnck |m = n ∨ n = k}.

The next class of conflicts are those that are caused by the lack of right context
when no ambiguity is involved. These conflicts occur due to an insufficient quantity of
lookaheads. A direct solution is to increase the value of k (situation (iii)). To illustrate
this, consider the grammar fragment presented in Figure 1:

declaration → visibility exportable-declaration
| non-exportable-declaration

non-exportable-declaration → function-definition
visibility → public | private | λ
exportable-declaration → syntatic-domain
syntatic-domain → domain-id = domain-exp
function-definition → temp4
temp4 → temp5 id
temp5 → domain-id .

Figure 1. Notus grammar fragment.

An LALR(1) parser generator would flag a shift/reduce conflict between items

temp5 → •domain-id .
visibility → λ•

in a state q, for domain-id ∈ LA1(q, visibility → λ). However, the grammar is
LALR(2), because the tokens after domain-id are either the equals sign (=), from
syntatic-domain → domain-id = domain-exp, or dot (.), from temp5 → domain-id ..

51



However, even when no ambiguities are involved, there might be cases in which
an infinite amount of lookahead is required (situation (iv)). In these cases, the solution to
be tried is to rewrite some rules of the grammar without changing the language. Consider,
for instance, the regular language L = (b+a) ∪ (b+b). A possible grammar for L is

S → A | B
A → B1 a
B → B2 b
B1 → B1 b | b
B2 → B2 b | b

From the given productions, it is not possible to find a k for which the given grammar is
conflict free. The reason is that B2 → b• can be followed by an indefinite number of b’s
when a conflict involving the item B2 → b• is reported. The only possible solution for
this example is to rewrite the grammar. For this simple example, such rewrite definitely
exists, because L is a regular language. Nevertheless, it should be pointed out that this
kind of solution is not always possible.

The mentioned four situations exhaust all possibilities of causes of conflicts in
LALR(k) parser construction. These situations of conflicts are also applicable to LR(k)
parser generation. One type of reduce/reduce conflict is, however, LALR specific. It
arises when calculating LAk for reduction items in states in M0. Such calculation can
be seen as generating the LRA1 automaton and merging states with the same item set;
lookaheads of reduction items in the new state are given by the union of the lookaheads
in each reduction item in each merged state. When performing the merge, reduce/reduce
conflicts, not present in the LR(1) automaton, can emerge. Specific LALR reduce/reduce
conflicts occur if the items involved in the conflict do not share the same left context, i.e.,
a sentential form obtained by concatenating each entry symbol of the states in the path
from IS to q, the inconsistent state. As a consequence, these conflicts do not represent
ambiguity, but do not imply in the existence of a k.

4. The proposed methodology

The proposed methodology consists of four phases performed in an iteration while con-
flicts continue to be reported by the parser generator. These phases are: (i) understanding;
(ii) classification; (iii) conflict removal and (iv) testing.

4.1. Understanding

To overcome the difficulty in analysing the data recorded in the log file dumped by the
parser generator, this phase presents the same data available in the log file, but divided
in proper parts, interrelated as hyperlinks. For example, when observing a state in the
LALR(k) automaton, the user is able to directly visit the destination states given by the
transitions in the currently state under visualization. The opposite operation should be
possible as well, i.e., from a current state, grab all predecessor states. A modularized
linked visualization of this data provides a better and faster browsing.

One drawback in visualizing this content is due to the low abstraction level it
provides. While desired by expert users, this situation is not acceptable nor suitable for

52



analysis by non proficient users in LALR(k) parser construction. Therefore, one impor-
tant characteristic of this phase is to provide high level data in order to understand the
cause of the conflict. Derivation trees do meet this requisite, putting the user in a more
comfortable position, as they approximate him/her to the real object of study - the syntax
of the language, while reducing the amount of LALR parsing knowledge one must have
in order to remove conflicts.

4.2. Classification

This phase aims to find one of the four situations described in Section 3 that gave rise to
a conflict. Before removing it, a strategy must be planned. To understand the cause of the
conflict is the first step for this, but the knowledge of the conflict’s category adds much
more confidence, as we strongly believe that a strategy used in removing a past conflict
can be applied many times to other conflicts in the same category.

4.3. Conflict removal

Conflicts due to situation (iii) can be automatically removed. In the case of situation
(i) the user is assisted with examples of solutions for known cases that match the current
conflict. The removal, however, is performed manually. The methodology does not define
operations for conflicts in situations (ii) and (iv).

4.4. Testing

The last step in conflict removal is testing. This should only be made in the case of a
manual removal performed in the previous phase. To test, the user resubmits the grammar
to the parser generator. As a result, it lists all conflicts found, plus the total amount of
conflicts. The user checks this list, browsing it to make sure the conflict has indeed been
eliminated.

5. SAIDE

SAIDE (Syntax Analyser Integrated Development Environment) is a tool, currently un-
der construction, that aims to support the proposed methodology when it is applied to
non LALR(1) grammars. Its main window is shown in Figure 2. The upper left corner
frame contains the text editor with the opened syntax specification. This editor supports
syntax highlighting and other common operations, such as searching, line and column
positioning, undo, redo, cut, copy, paste, etc. The left bottom frame is the compilation
window, the place where messages from the compilation of the the syntax specification
are printed. A possible message is the report of a conflict. In this case, there is a link to
allow its debug. A debug trace for the dangling else conflict is shown in the window at
the right bottom. Finally, the last window in this figure is the LALR(1) automaton. Note
that whenever possible, data is always linked, as indicated by underlined strings.

5.1. Realizing the methodology

This section outlines the algorithms used to support each phase of the proposed metho-
dology.

53



Figure 2. SAIDE’s main window.

5.1.1. Understanding

To present the user with the LALR(1) automaton, first LRA0 is obtained by the ap-
plication of the CLOSURE operation, as previously explained. The next step is to
create the graphs corresponding to the reads and the includes relations. When there
are two functions F and F ′ defined over a set of elements in X , and F is defined as
F (x) = F ′(x) ∪

⋃
{F (y) | xRy}, ∀x, y ∈ X , it follows that the nodes in a strongly

connected component (SCC) found in the graph representing R have equal values for
F [DeRemer and Pennello 1982]. Since FOLLOW1 and READ1 do match F ’s pat-
tern, performing a search and identifying SCC’s in the reads and includes graph permit
the calculation of their value. The algorithm to efficiently perform this is presented in
[DeRemer and Pennello 1982]. From the values in READ1 and FOLLOW1, the looka-
heads of each reduction item are calculated using Equation 1, presented in Section 2.

To elucidate the cause of a conflict, SAIDE explains it in terms of derivation trees,
as proposed by the methodology. Derivation trees are constructed for each reduction item.
Their format is illustrated in Figure 3. The means to calculate parts (c), (b) and (a) are as
follows [DeRemer and Pennello 1982]:

Part (c): given the item As−1 → αs• in an inconsistent state q, the traversal begins from
the transitions in (q′, As−1), where q′ is in PRED(q, αs), and then following some edges
in the includes graph until a nonterminal transition (p, B) is found whose READ1 set

54



S ′ $
δ1 B1 v1

δ2 B2 v2 (a)
...
δn Bn vn

α B β1

β2
... (b)
βm−1

t βm

α1 A1 γ1

α2 A2 γ2 (c)
...
αs−1 As−1 γs−1

αs

Figure 3. The format of a derivation tree.

contains the conflict symbol t. Every item Bn → α•Bβ1 ∈ p, such that t ∈ FIRST1(β1),
is considered a contributing one. For each of these, a debug should be printed separately.

To obtain the described path, a breadth-first search should be employed while
traversing the includes graph. The production that induced an includes edge from (p, A)
to (q, B) is rediscovered by following the automaton transitions from state q under the
right parts of B productions.

Part (b): the next step is to get a derivation from β1 until t appears as first token. To do
this, the set

E = {Bn → αB • β1}
∪ {A → δX • η | A → δ •Xη ∈ E ∧ X

∗⇒λ}
∪ {C → •α | A → δ • Cη ∈ E ∧ C → α ∈ P}

(2)

is calculated. Each addition to E must be linked back to the items that generated it. Items
of the form C → •tβm, being t a conflict symbol, will be in E and are traced back to
Bn → αB • β1 by following these links.

Part (a): calculate the derivation from S ′ that gave rise to Bn → α • Bβ1. First, it is
necessary to find the shortest path from the start state to the contributing state, i.e., the
state in which Bn → α • Bβ1 appeared. ξ is the sequence of transition symbols in this
path. Then,

E ′ = {(S ′ → •S$, 1)}
∪ {(C → •α, j) | (A → δ • Cη, j) ∈ E ′ ∧ C → α ∈ P )}
∪ {(A → δX • η, j + 1) | (A → δ •Xη, j) ∈ E ′ ∧X = ξj ∧ j ≤ |ξ|}

(3)

is calculated in a breadth first search, linking additions to E ′ back to pairs that generated

55



them. When (Bn → α •Bβ1, |ξ|) appears, the computation stops. The derivation is given
by the links created when elements were added.

To debug a reduce/reduce conflict, the sequence (c) → (b) → (a) is applied to
each reduction item, and printed to the user. Sometimes, the left context formed by
δ1δ2...δnαα1...αs happens to be different from one reduction debug tree to the other. This
indicates that the conflict in question is LALR specific, and is accordingly indicated by
the tool.

When a conflict presents a shift, its corresponding tree is obtained by using an
algorithm that implements Equation 3. The only difference is that ξ now corresponds to
the symbols in δ1δ2...δnαα1...αs.

5.1.2. Classification

The classification aims to find the category to which the conflicts belongs. Each category
represents one of the four situations explained in Section 3.

At this point, SAIDE first attempts to find a value of k, limited by a parameter
value, say kmax, capable of giving enough right context to allow the removal of the conflict
situation (iii). The value of kmax is read from a configuration file at SAIDE’s start up and
its default value is 3. Before presenting how the correct value of k is achieved, it follows
a discussion of how a given lookahead w, such that |w| ≤ k, is found.

Charles [Charles 1991] proposes Equation 4 to calculate the FOLLOWk:

FOLLOW0(p, A) = {λ}
FOLLOWk(p, A) = READk(p, A)

∪
⋃
{FOLLOWk(p

′, B) | (p, A) includes (p′, B)}
∪

⋃
{CONCAT ({w}, FOLLOWk−|w|(q, B)) |

w ∈ SHORTk(p, A),
B → α • Aβ ∈ p,
q ∈ PRED(p, α),
B 6= S}

(4)

where

SHORTk(p, A) = {w | w ∈ FIRSTk(β), 0 < |w| < k, B → α • Aβ ∈ p}
READk(p, A) = {w | w ∈ FIRSTk(β), |w| = k,B → α • Aβ ∈ p}

and CONCAT (M, N) is defined as {mn |m ∈ M ∧ n ∈ N}.

Charles presents an algorithm to calculate READk and SHORTk based on the
simulation of the steps performed by the LRA0 automaton. His algorithm is directly
based on Equation 5 [Charles 1991]:

56



READ0∗(stack, X) = {λ}
READk∗(stack, X) =

⋃
{CONCAT ({a}, READ(k−1)∗(stack + [q], a) |
a ∈ DR(TOP (stack), X)
q = GOTO0(TOP (stack), X)}

∪
⋃
{READk∗(stack + [q], Y ) |
(TOP (stack), X) reads (q, Y )}

∪
⋃
{READk∗(stack(1...SIZE(stack)− |γ|), C) |
C → γ •X ∈ TOP (stack),
|γ|+ 1 < SIZE(stack)}

(5)

SHORTk and READk are then rewritten as:

SHORTk(p, A) = {w | w ∈ READk∗([p], A), 0 < |w| < k, B → α • Aβ ∈ p}
READk(p, A) = {w | w ∈ READk∗([p], A), |w| = k,B → α • Aβ ∈ p}

Charles states that in the presence of cycles in the grammar, i.e., nonterminals
that rightmost produce themselves and SCC’s in the reads graph, his algorithm may not
terminate. To guarantee termination, a verification of the non occurrence of these two
conditions must always be performed. Later, the author discards Equation 4 as the bases
of an algorithm to calculate FOLLOWk. His main argument is that it does not match the
format F (x) = F ′(x) ∪

⋃
{F (y) | xRy}.

However, Equation 5 can still be used to calculate the strings that are read from a
given transition even when the conditions pointed by Charles are not true. This is achieved
if one keeps track of every reached stack and the string read so far while simulating the
LRA0 steps. Kristensen and Madsen [Kristensen and Madsen 1981] argue that a tree can
be used to store such data. A node in this tree is a pair of the form (M0 × Σ∗) and maps
to a unique configuration, i.e., a stack of states and the corresponding string read at the
moment. The correspondence between a node n and a configuration is guaranteed in the
following way: the states in the path from the root node of the tree to n forms a stack.
The string obtained by such stack is the string stored in n. During the simulated parsing,
the tree will be expanded with a node each time a transition is carried out. If an attempt
to add a node that is already in the tree is performed, then circularity is detected, and thus
cycles are controlled.

A straightforward algorithm using these ideas and Equations 4 and 5 can be con-
structed. Such algorithm would clearly terminate, as it would depend solely on the values
of READk∗(p, A) and FOLLOWk(q, B), where (p, A) includes (q, B). This fact is
attested by:

i) if (p, A) and (q, B) belong to an SCC in the includes graph, then their lookaheads
are equal. This is assured because Equation 4 matches the format F (x) = F ′(x)∪⋃
{F (y) | xRy}, where X is the set of nonterminal transitions and F ′(p, A) is

57



given by

F ′(p, A) = READk(p, A)
∪

⋃
{CONCAT ({w}, FOLLOWk−|w|(q, B)) |

w ∈ SHORTk(p, A),
B → α • Aβ ∈ p,
q ∈ PRED(p, α),
B 6= S}

This matching permits an easy control of cycles.
ii) READk∗ is calculated using Equation 5. Storing each stack and the string read so

far at each step in the calculation of READk∗ permits the control of cycles, thus,
preventing the algorithm to loop forever.

Furthermore, no restrictions are considered in the LRA0 or any relation graph.

We are currently implementing an algorithm based on the discussed equations and
cycle control scheme to generate the values in LAk to determine the value of k necessary
to solve a conflict. Its iteration starts with k = 2. If REDk continues to report the conflict,
a new iteration is performed, which increments the value of k. This continues until the
conflict is “removed” or k becomes greater than kmax. The algorithm caches all calculated
sets, since they might be used later for other conflicts.

If the classification fails to find a k ≤ kmax capable of removing the conflict and it
is a non reduce/reduce conflict specific to LALR, the next attempt is ambiguity detection
(situation (i)). It is known from the literature that this problem is undecidable. Therefore,
a study to capture recurrent cases was performed and some patterns were noticed. A
pattern consists of two sentential forms derivable from a nonterminal P . Expanding each
sentential form will eventually lead to the ambiguity in study. These patterns were inferred
from ambiguities found in the grammars of the programming languages Notus, Algol60
and Oberon2.

For each pattern, it must be asserted that S ′ ∗⇒ ξ′Pξ′′, δi
∗⇒λ and Pi

∗⇒ P . The
symbols δi and Pi are used in the definition of the filters listed bellow:

Filter 1)
Pattern: P

∗⇒ δ1P1δ2αδ3P2δ4 and P
∗⇒ δ6βδ7δ8. This filter captures ambiguous construc-

tions such as E → E + E | t.

Filter 2) Pattern: P
∗⇒ δ1αδ2P1δ3 and P

∗⇒ δ5αP2δ6βδ7P3δ8. This filter identifies
dangling-else’s instances.

Filter 3) P
∗⇒ δ1αδ2P1δ3 and P

∗⇒ δ5P2δ6βδ7. This filter captures ambiguous construc-
tions such as the rules exp → let dcl in exp where exp and exp → exp where exp.

Filter 4) P
∗⇒ δ1αδ2P1δ3βδ4 and P

∗⇒ δ6αδ7P2δ8βδ9. This filter captures alias between
nonterminals.

We are managing to apply these filters on the derivation trees obtained by the first
step of the methodology.

If a conflict is due to situation (ii) and (iv), SAIDE is unable to classify and assist
the user.

58



Figure 4. SAIDE’s architecture illustrated as a component diagram in UML.

5.1.3. Conflict removal

Automatic conflict removal can only be accomplished if the parser is LALR(k) and k ≤
kmax. There are two approaches for this problem.

The first one is to rewrite the grammar, starting from the productions involved
in the conflict so that no reduction moves are performed until k tokens are read.
[Mickunas et al. 1976] proposes a technique to transform LR(k) grammars into LR(1)
correspondent ones, but it can deeply change the structure and the number of the rules in
the grammar and is not generalized to LALR(k) grammars.

The other approach consists in the generation of an LALR(k) parser whose k
varies. A conflict is removed if the parser generator, in this case SAIDE, can attest that
nondeterminism is removed after examining k tokens ahead. The value of k in this case
is local and is intended to solve only the given conflict.

5.1.4. Testing

To check if the conflict was been wiped out, SAIDE list all conflicts along with the total
sum of conflicts found. The user browses this list and compares the current results with
the ones previously presented.

5.2. Plugin facility

SAIDE’s architecture, shown in Figure 4, permits its extensibility via plug-
ins. A plugin instance must implement an interface with two methods responsi-
ble for returning PluginParserFactory and HighlightLexerFactory objects.
PluginParserFactory is used by SAIDE to instantiate a parser capable of processing
the specification file. The parsing result is an Specification instance used by the tool
to generate data structures such as the LALR(1) automaton, includes and reads graphs,
etc. and it appears throughout SAIDE’s code. SAIDE’s architecture permits the use of
virtually any syntax specification language as long as there is a plugin implemented. In a
similar way, the tool can be extended with filters in addition to the ones made available.

59



6. Conclusion
In this article, we presented the problem of conflict removal in non LALR(k) grammars. It
was argued that this remains an arduous and time consuming task, considering that users
continue to remove conflicts analysing extensive log files.

A methodology was proposed and the algorithms necessary to realize it were pre-
sented, showing the tool SAIDE.

The methodology is an important contribution to LALR parsing development and
so is the outlined algorithm discussed in Section 5.1.2 for the calculation of lookahead
strings of length not greater than k. Two important properties of such algorithm are: it is
guaranteed to terminate, and no pre-conditions must be checked before running it.

At the present time, we are implementing the ambiguity detector, which will at-
tempt to detect some previous cataloged ambiguity instances.

As future work, we intend to formulate an algorithm to automatically remove a
subset of conflicts, either by redefinition of some rules of the grammar or generating an
LALR parser whose k varies.

References
Aho, A. V. and Ullman, J. D. (1972). The Theory of Parsing, Translation, and Compiling.

Prentice Hall Professional Technical Reference.

Charles, P. (1991). A Pratical Method for Constructing Efficient LALR(k) Parsers with
Automatic Error Recovery. PhD thesis.

CUP (2007). Cup: Lalr parser generator in java. http://www2.cs.tum.edu/
projects/cup/. Last access: 01/13/2007.

DeRemer, F. and Pennello, T. (1982). Efficient computation of lalr(1) look-ahead sets.
ACM Trans. Program. Lang. Syst., 4(4):615–649.

Frown (2007). Frown - an lalr(k) parser generator for haskell. http:
//www.informatik.uni-bonn.de/˜ralf/frown/index.html. Last ac-
cess: 01/13/2007.

Johnson, S. (1979). Yacc: Yet another compiler compiler. In UNIX Programmer’s Man-
ual, volume 2, pages 353–387. Holt, Rinehart, and Winston.

Kristensen, B. B. and Madsen, O. L. (1981). Methods for computing lalr(k) lookahead.
ACM Trans. Program. Lang. Syst., 3(1):60–82.

Mickunas, M. D., Lancaster, R. L., and Schneider, V. B. (1976). Transforming lr(k) gram-
mars to lr(1), slr(1), and (1,1) bounded right-context grammars. J. ACM, 23(3):511–
533.

Tirelo, F. and Bigonha, R. (2006). Notus. Technical report, Federal University of Minas
Gerais - Department of Computer Science, Programming Languages Laboratory.

60



Optimized Compilation of Around Advice for Aspect Oriented
Programs

Eduardo S. Cordeiro1, Roberto S. Bigonha1, Mariza A. S. Bigonha1, Fabio Tirelo2

1Departamento de Ciência da Computação – Universidade Federal de Minas Gerais
Av. Presidente Antônio Carlos, 6627 – Campus Pampulha

31270-901 – Belo Horizonte – MG – Brazil

2Instituto de Informática – Pontifı́cia Universidade Católica de Minas Gerais
Av. Dom José Gaspar, 500 – Coração Eucarı́stico

30535-610 – Belo Horizonte – MG – Brazil

{cordeiro,bigonha,mariza}@dcc.ufmg.br, ftirelo@pucminas.br

Abstract. The technology that supports Aspect-Oriented Programming (AOP)
tools is inherently intrusive, since it changes the behavior of base application
code. Advice weaving performed by AspectJ compilers must introduce cross-
cutting behavior defined in advice into Java programs without causing great
performance overhead. This paper shows the techniques applied by the ajc and
abc AspectJ compilers for around advice weaving, and identifies problems in
code they produce. The problems analyzed are advice and shadow implemen-
tation repetition and context variable repetition. Performance gain provided by
solving these problems is discussed, showing that bytecode size, running time
and memory consumption can be reduced by these optimizations. It is assumed
that the reader is familiar with AOP and AspectJ constructs.

1. Introduction

Advice weaving is the process of combining crosscutting behavior, implemented in ad-
vice, into the classes and interfaces of a program. AspectJ defines three types of advice,
which are activated upon reaching certain points in the execution of programs: before
and after advice are executed in addition to join points; around advice may completely
replace join points, though a special proceed command activates these points at some
moment after the advice execution has begun.

The compilation of the proceed command in around advice at bytecode level re-
quires join points to be extracted to their own methods. Furthermore, this command
might appear inside nested types in the advice body, which requires passing context from
the advice’s scope to extracted join points. While discussing around advice weaving, join
points are also called shadow points, or simply shadows. During weaving, a join point
comprising a single Java command is often composed of several bytecode instructions.

There are two major AspectJ compilers: the official AspectJ Compiler (ajc)
[AspectJ Team 2006], and the extensible, research-oriented AspectBench Compiler (abc)
[Aspect Bench Compiler Team 2006]. ajc builds on the JDT Java compiler1, and provides
incremental compilation of AspectJ programs. It accepts Java and AspectJ code, as well

1 http://www.eclipse.org/jdt

61



as binary classes, and produces modified classes as output. abc also accepts Java and As-
pectJ code, and its output is semantically equivalent to that of ajc, but instead of providing
fast compilation by means of an incremental build process, abc produces optimized byte-
code. This compiler is also a workbench for experimentation with new AspectJ constructs
and optimizations, providing researchers with extensible front- and back-ends.

These compilers apply the same basic techniques for weaving before and af-
ter advice. Around advice, however, is woven differently. Performance analyses on a
benchmark of AspectJ programs showed that around advice is one of the performance
degradation agents in code produced by the ajc compiler [Dufour et al. 2004]. Based on
this insight, the developers of abc created another approach for around advice weaving
[Kuzins 2004, Avgustinov et al. 2005].

Both approaches for around advice weaving, however, still present problems re-
lated to repeated code generation. These problems are due to advice inlining and shadow
extraction for advice applications, and can be fixed by small modifications in the advice
weaving process. The remainder of this paper describes these problems, their proposed
solutions and results obtained from their application to a small set of AspectJ programs.

1.1. AspectJ Compilers

The ajc compiler is built upon the extensible JDT Java compiler, which allows
the introduction of hooks in the compilation process that modify its behavior
[Hilsdale and Hugunin 2004]. These hooks are then used to adapt the front- and back-
ends to compile both Java and AspectJ source-code. Java code for classes and interfaces
is directly transformed into bytecode. Definitions of aspects, however, are handled in a
different way: first, bytecode is produced to implement aspects as classes, so that code
defined in advice and methods can be executed by standard JVMs. Finally, after bytecode
has been generated for both Java and AspectJ source, the weaver introduces crosscutting
behavior defined in aspects into the bytecode for the program’s classes and interfaces,
using crosscutting information gathered from the parsing phase.

Duringo compilation, in-memory representations of bytecode are used for code
generation and weaving, and actual bytecode files are only generated at the end. The
ajc compiler uses BCEL [Dahm et al. 2003] as a bytecode manipulation tool. BCEL in-
terprets bytecode contained in class files, and builds in-memory representations of the
classes and interfaces they define. It provides facilities for adding and removing methods
and fields to existing classes, modifying method bodies by adding or removing instruc-
tions, and creating classes from scratch. Its representation of bytecode is very close to
its definition [Lindholm and Yellin 1999], providing direct access to such low-level struc-
tures as a class’ constant pool.

Extensibility in the abc compiler, as described in [Avgustinov et al. 2004], is
achieved by combining two frameworks: Polyglot [Myers 2006] for an extensible front-
end, and Soot [Vallée-Rai et al. 1999] for an optimizing, extensible back-end. Polyglot is
a Java LALR(1) parser, and its grammar can be modified to add or remove productions.
Soot implements several optimizations for Java bytecode, including peephole and flow-
analysis optimizations such as copy and constant propagation. Extensions are linked to
Soot at runtime, via a command line flag, thus requiring no modifications to its source
code. This extension model, however, isn’t flawless, and it can be difficult to implement

62



optimizations that modify the weaving algorithms for existing AspectJ constructs. Diffi-
culties found during the development of this work are presented further in this paper.

Out of the four intermediate representations provided by Soot, abc uses only the
Jimple representation. Jimple is a typed 3-address code that makes it easier to perform
analyses like use-definition chains than the stack code of bytecode. Weaving is performed
in abc with Jimple representations of classes and interfaces.

1.2. The Compilation Process
The compilation process for AspectJ programs differs from ordinary Java compilation in
that crosscutting behavior defined in aspects must be combined to classes and interfaces.
This process is called weaving, and is usually done at binary-code level. The ajc compiler
performs weaving at bytecode using BCEL, and abc uses one of the Soot framework’s
intermediate representation for this, called Jimple.

In both compilers, Java and AspectJ source code is transformed into ASTs and
then intermediary representations of the binary code. On ajc, bytecode is generated
and manipulated directly via in-memory representations of its structure using the BCEL
framework; on abc, Jimple code is used. The front-end is also responsible for generating
crosscutting information for the weaver. This structure identifies locations on classes and
aspects where advice must be woven into. The advice weaver then applies advice to join
points, producing the final woven code for AspectJ programs.

An advice is transformed into regular a Java method, and the weaving phase ap-
plies calls to this method at its join points. For instance, the weaving of a before advice
includes a call to the advice implementation before its join points, leaving the join points
themselves unmodified. Weaving of around advice is more complex, however, as the orig-
inal join points must be replaced by calls to advice implementations. This stage gives rise
to problems with repeated code generation, and is discussed in detail in Section 2.

2. Around Advice Weaving
The most powerful type of advice defined in AspectJ is the around advice. It can be used to
simulate the behavior of both before and after advice, as well as to modify or completely
avoid join points. Context used in the shadow may be captured in the advice, but must also
be passed on to shadow execution. The power of modifying the behavior of join points
– also called shadows – inside around advice comes from the proceed command, which
activates the shadow captured by the executing advice: context variables captured by the
advice may be modified before the proceed call. Avoiding shadow execution altogether is
achieved by omitting this command.

Listing 1 shows a small AspectJ program. Line 7 contains a shadow of the around
advice defined in lines 21 - 23. This advice has no effect on the semantics of its join
points, since it simply proceeds to shadow execution.

The remainder of this section presents the weaving techniques applied in the com-
pilation of this program by the ajc and abc compilers.

2.1. The ajc Approach
Around advice weaving in the ajc compiler is briefly described in
[Hilsdale and Hugunin 2004]. Since around advice shadows must be executed as a

63



1 public class C i r c l e {
2 private i n t rad ius ;
3 private i n t x , y ;
4 public C i r c l e ( i n t x , i n t y , i n t rad ius ) {
5 setX ( x ) ;
6 setY ( y ) ;
7 setRadius ( rad ius ) ;
8 }
9 public i n t getRadius ( ) { return rad ius ; }

10 public void setRadius ( i n t rad ius ) { th is . rad ius = rad ius ; }
11 public i n t getX ( ) { return x ; }
12 public i n t getY ( ) { return y ; }
13 public void setX ( i n t x ) { th is . x = x ; }
14 public void setY ( i n t y ) { th is . y = y ; }
15
16 public s t a t i c void main ( S t r i n g [ ] args ) {
17 C i r c l e c = new C i r c l e ( 0 , 0 , 1 0 ) ;
18 }
19 }
20 public aspect RadiusCheckAspect {
21 void around ( ) : c a l l ( void C i r c l e . setRadius ( i n t ) ) {
22 proceed ( ) ;
23 }
24 }

Listing 1. The running example for this paper.

result of proceed calls, these instructions are extracted from their original locations to
separate methods, called shadow methods. The proceed call inside around advice bodies
is then replaced by calls to these methods.

Figure 1 is a visual representation of this process. The darkened boxes in this
figure represent the shadow in line 7 of Listing 1. Notice that only the parts affected
by weaving are shown in this figure. The result of weaving the around advice defined in
RadiusCheckAspect into class Circle is a modified version of this class. Each around
advice shadow in a given class is extracted into its own method. For each shadow method,
an inlined implementation of the advice is generated, whose proceed call is replaced with
a call to the shadow method.

Method shadow1 in the woven Circle class shown in Figure 1 contains a
shadow, which is a call to method setRadius. The instance of Circle and the ar-
gument to this method, which are context variables required for executing this shadow,
are passed from the join point to the advice implementation and then on to the shadow.
Context passing can be seen in Figure 1 as the target object and the arguments from the
shadow’s setRadius call are passed as arguments to the advice and shadow methods.

The proceed call may appear inside nested types in the advice body. In this sce-
nario, this call may attempt to access local variables in the advice environment after its
scope has ended. A different approach is used to handle this special case, which involves

64



public class C i r c l e {
/∗ . . . ∗ /
public C i r c l e ( i n t x , i n t y , i n t rad ius ) {

setX ( x ) ;
setY ( y ) ;

setRadius(radius);

}
/∗ . . . ∗ /

}

&&MMMMMMMMMM

public aspect RadiusCheckAspect {
void around ( ) :

c a l l ( void C i r c l e . setRadius ( i n t ) ) {
proceed ( ) ;

}
}

yyrrrrrrrrrrrrrrr

'& %$ ! "#Weaver

��
public class C i r c l e {

/∗ . . . ∗ /
public C i r c l e ( i n t x , i n t y , i n t rad ius ) {

setX ( x ) ;
setY ( y ) ;
aroundAdvice1 ( this , rad ius ) ;

}
/∗ . . . ∗ /
public s t a t i c void aroundAdvice1 ( C i r c l e arg0 , i n t arg1 ) {

shadow1 ( arg0 , arg1 ) ;
}
public s t a t i c void shadow1 ( C i r c l e arg0 , i n t arg1 ) {

arg0.setRadius(arg1);

}
}

Figure 1. Around advice weaving in ajc.

creating an object to store both the advice environment variables and the shadow code to
be executed at the proceed call.

Objects used to implement this type of around advice application are called clo-
sure objects. These objects are implementations of an interface called AroundClosure,
which defines a method run to contain the shadow code. Environment variables are
placed on the shadow environment as arguments to its closure’s run method. Thus for
each advice application at runtime an object must be created to cope with the proceed
call.

2.2. The abc Approach
Kuzins details, in [Kuzins 2004], the structure used to implement around advice weav-
ing in the abc compiler, and presents benchmarks suggesting that the code produced for
around advice in abc is faster than the one produced by ajc. The performance gain is
related to avoiding closure object creation, which is required in ajc for around advice that
contains proceed calls inside nested types in the advice body.

In the abc approach, each shadow is labeled with an integer identifier, called shad-
owID, and the class that contains it is also labeled with an identifier called classID. All
shadows for an around advice in a given class C are extracted to a single shadow method
introduced into C. The shadow method for class C contains all its shadows, and execu-
tion is routed to each one via the shadowID. This identifier is a parameter to the shadow
method and is set by every inlined advice implementation at the proceed call. Each advice
implementation sets the shadowID according to its shadow.

The classID-shadowID pair appears on code generated by previous versions of

65



the abc compiler. On version 1.1.0, however, this approach has been taken a step further,
avoiding shadow selection at runtime. This is achieved by inlining advice methods and
shadows for each one of the advice’s applications.

When closures are necessary to implement an around advice a, abc makes class C
that contains shadows of a implement an interface called AroundClosure. This interface
defines a method to which shadows are extracted. The advantage of this approach, when
compared to the one adopted by ajc, is that the class containing a shadow is itself a
closure object, and thus there is no need to create a new object at advice applications. This
weaving strategy introduces fields in class C that are linked at runtime, during preparation
for the advice call, to environment variables required for advice and shadow execution.

Code woven for around advice by abc is similar to that produced by the algorithm
applied by ajc, except that advice methods are created in the bytecode class that represents
the aspects in which they were declared, rather than the class where their shadows appear.

3. Repeated Advice Implementations

Repeated advice implementations are generated during around advice weaving when a
class C contains several identical shadows of an around advice a. If a class contains n
identical shadows of any given around advice, the around weaving strategy described in
Section 2 create n identical pairs of advice and shadow implementations. This generation
of repeated advice implementations appears on code compiled by both ajc and abc. It
is due to the naive generation of inlined around advice implementations, with no regards
as to whether or not other identical implementations have already been generated for
identical shadows in the same class.

Consider modifying the code base presented in Listing 1 to add to the main

method defined in class Circle a call to setRadius. Listing 2 shows the resulting
main method. This creates another shadow of the around advice defined in Listing 1,
thus producing repeated advice implementations.

16 public s t a t i c void main ( S t r i n g [ ] args ) {
17 C i r c l e c = new C i r c l e ( 0 , 0 , 1 0 ) ;
18 c . setRadius (−1);
19 }

Listing 2. The main method, modified to contain an advice shadow.

Class Circle has now two shadows of the existing around advice: one in its con-
structor, and another in the main method. The woven code for class Circle, originally
shown in Figure 1, now contains another advice implementation, and can be seen in List-
ing 3. Notice, however, that the single difference between the advice implementations
aroundAdvice1 and aroundAdvice2 is the shadow method called. Since these shad-
ows are equivalent, it can be said that the advice implementations are also equivalent, and
thus redundant.

66



Two methods are said to be equivalent if their signatures (parameters and return
types) and instruction lists are the same. Eliminating any of these advice implementations
and replacing the call to it with a call to the other one doesn’t modify the semantics of
this program. This reduces the size of generated code for AspectJ programs that use
around advice. The optimized code for the example in Listing 3 would be free of methods
aroundAdvice2 and shadow2, and the call to aroundAdvice2 in line 10 would be
replaced with a call to aroundAdvice1. Notice that the resulting code is smaller, but
still semantically equivalent to the original.

This optimization can be performed in two different approaches: a post-weaving
unification phase, or advice implementation caching during the weaving process. At post-
weaving, one must identify repeated advice implementations and eliminate all but one of
them, and fix the calls to removed implementations. During weaving, one is required to
detect that a given shadow has already been woven into in a class, and reuse the advice
implementation created for that shadow instead of generating another inlined implemen-
tation.

1 public class C i r c l e {
2 /∗ . . . ∗ /
3 public C i r c l e ( i n t x , i n t y , i n t rad ius ) {
4 setX ( x ) ;
5 setY ( y ) ;
6 aroundAdvice1 ( this , rad ius ) ;
7 }
8 public s t a t i c void main ( S t r i n g [ ] args ) {
9 C i r c l e c = new C i r c l e ( 0 , 0 , 1 0 ) ;

10 aroundAdvice2 ( this , −1) ;
11 }
12 public s t a t i c void aroundAdvice1 ( C i r c l e arg0 , i n t arg1 ) {
13 shadow1 ( arg0 , arg1 ) ;
14 }
15 public s t a t i c void shadow1 ( C i r c l e arg0 , i n t arg1 ) {
16 arg0.setRadius(arg1);
17 }
18 public s t a t i c void aroundAdvice2 ( C i r c l e arg0 , i n t arg1 ) {
19 shadow2 ( arg0 , arg1 ) ;
20 }
21 public s t a t i c void shadow2 ( C i r c l e arg0 , i n t arg1 ) {
22 arg0.setRadius(arg1);
23 }
24 }

Listing 3. Class Circle after the weaving of two shadows.

The second approach, caching generated advice implementations during weav-
ing, is more fitting for integration to the existing AspectJ compilers, since it avoids
unnecessary work. Repeated advice implementations are never generated, and so they
need not be removed. This approach has been suggested to ajc developers as a bug re-

67



port [Cordeiro 2006a].

The Soot optimization framework defines a phase model in which bytecode is
modified gradually. In the abc compiler, only the peephole and flow analysis phases are
activated. However, in these phases, one isn’t able to modify the structure of the opti-
mized program, and thus optimizations are restricting to handling method bodies. Since
eliminating repeated advice implementations requires eliminating methods from classes
as well as modifying method bodies, it is not possible to implement this optimziation as
an abc back-end extension. During development of this study the developers of abc have
implemented this solution by modifying the compiler’s around weaving algorithm, as sug-
gested to the ajc developers, integrating reuse of advice implementations in the weaving
process.

3.1. Results
Removing advice and shadow implementation replicas from the code generated for an
AspectJ program produces smaller code by eliminating from it several structures required
to represent these methods in bytecode format. This decrease in code size is proportional
to the number of around advice applications in each of the program’s classes, as well as
the size of advice and shadow bodies.

Table 1 shows the sizes of a set of AspectJ programs that use around advice. Sin-
gleton is the test program that accompanies Hannemann’s Singleton pattern implementa-
tion [Hannemann and Kiczales 2002]. Its main method contains three identical shadows
of an around advice.

SpaceWar is a sample AspectJ programs that features several language constructs
and idioms. It is available along with the Eclipse AspectJ Development Tools2 (AJDT).
The around advice used in this program captures user and computer commands given to
ships, ensuring that their respective ship is alive at the time the command is issued.

Laddad presents, in [Laddad 2003], a thread-safety aspect that can be applied to
programs written using the Swing library. This aspect has been applied to the Rin’G
program [Cordeiro et al. 2004], which is mostly based on user interaction and thus makes
great use of Swing classes.

The reduction in bytecode size achieved by eliminating repeated advice and
shadow implementations is shown in this table, as the optimized programs are smaller
than the original ones. Decrease in bytecode size is proportional to the number of around
advice applications in the program. The decrease percentage for a given program also
depends on its total size: for instance, the decrease percentage for the SpaceWar program
is smaller than for Singleton, since the latter is actually much smaller.

The greatest reduction presented in Table 1 is for the Rin’G program. Since this
program is user-interface-oriented, there are roughly 500 around advice shadows spread
over 83 classes, thus making the program size / reduction size ratio more noticeable.

4. Repeated Context Variables
Advice in AspectJ can capture context from join points, via the args, target or this
clauses. Context information gathered by these clauses comprises arguments and targets

2 http://www.eclipse.org/ajdt

68



Application Original Code – A (bytes) Optimized – B (bytes) Decrease (%)
Singleton
abc 8115 7539 7.1
ajc 17403 16667 4.2
SpaceWar
abc 150869 145391 3.9
ajc 222446 215995 2.9
Rin’G
abc 947179 805162 15
ajc 1212273 1001661 17.4

Table 1. Code generated for AspectJ programs by original and optimized compil-
ers.

of method calls and member variable operations, as well as the executing object at the join
points. Once captured, these variables are made available to the advice body. In around
advice, captured context variables must be passed on to shadows in the proceed call.

However, even if the programmer doesn’t capture context variables explicitly in
pointcut expressions, the shadow’s environment must be kept after it has been extracted to
a shadow method during weaving. This is done by passing context as arguments from the
original join point environment to the advice method, and then on to the shadow method,
as can be seen in the woven code of Figure 1.

If the programmer uses the context capture clauses, there is always an intersec-
tion between this explicitly captured context and the set of variables required for shadow
extraction. Therefore, whenever an around advice uses context capture clauses in its def-
inition, redundant parameters are introduced in its implementations’ signatures.

Context variable repetition leads to three problems in generated bytecode for
around advice:

• redundant parameters add to the size of method definitions in bytecode, thus re-
sulting in larger code;

• memory consumption is larger than necessary, since activations of advice methods
in the execution stack allocate local variables for redundant parameters;

• execution time is wasted loading redundant arguments to advice method calls.

Consider replacing the around advice from Listing 1 with the one in Listing 4,
which captures the argument of calls to setRadius. The woven Circle class after this
modification is shown in Listing 5. Notice that the advice implementation contains an
unused parameter, and the same local variable is used at the join point as an argument for
both repeated parameters.

Capturing environment variables required for shadow execution is part of the
shadow extraction process presented in Section 2. A corresponding parameter is added to
the advice implementation’s signature for each one of these variables in this step. While
the advice is being inlined, variables explicitly captured by the programmer are also added
as parameters to the advice implementation. Failure to detect the intersection between the
sets of variables captured in these two separate steps leads to redundant parameters in
advice implementations.

69



1 public aspect RadiusCheckAspect {
2 void around ( i n t r ) : c a l l ( void C i r c l e . setRadius ( i n t ) ) && args ( r ) {
3 proceed ( r < 0 ? 0 : r ) ;
4 }
5 }

Listing 4. Around advice capturing and modifying context from its join points.

1 public class C i r c l e {
2 /∗ . . . ∗ /
3 public C i r c l e ( i n t x , i n t y , i n t rad ius ) {
4 setX ( x ) ;
5 setY ( y ) ;
6 aroundAdvice1 ( this , rad ius , rad ius ) ;
7 }
8 public s t a t i c void aroundAdvice1 ( C i r c l e arg0 , i n t arg1 , i n t arg2 ) {
9 i f ( arg1 < 0)

10 shadow1 ( arg0 , 0 ) ;
11 else
12 shadow1 ( arg0 , arg1 ) ;
13 }
14 public s t a t i c void shadow1 ( C i r c l e arg0 , i n t arg1 ) {
15 arg0.setRadius(arg1);
16 }

Listing 5. Class Circle after the weaving with context passing.

This problem can be fixed by keeping a record of captured local variables during
shadow extraction, so that they won’t be captured a second time while inlining the ad-
vice method. This solution has been suggested to both ajc and abc developers, and its
implementation is currently being discussed [Cordeiro 2006b, Cordeiro 2006c].

Table 2 shows reduction in code size as a result of eliminating repeated context
variables. Production Line, which serves as an example for this optimization, is a dynamic
programming solution to the problem proposed in [Cormen et al. 2002, Chap. 15]; there
are two production lines with equal sequences of machines that perform the same job, but
at different latencies. The problem is to find the minimum time required to go through
the production line, considering that artifacts produces by a machine in one line may be
transfered to the other line at a time cost. In this case, however, AspectJ was used to
implement transparent memoization in the recursive solution to the problem.

Eliminating parameters from advice implementations, at bytecode level, removes
structures used to describe the type of these parameters and instructions to load them.
When compared with total program size, this reduction is small, as can be seen in Table 2.

70



The entry in Table 2 for the code generated by abc for the Production Line program
shows that the decrease percentage is ten times larger than for the ajc version. This is
due to a collateral effect of eliminating repeated context variables, in which abc is able
to eliminate repeated advice and shadow implementations. After weaving, the inliner
attempts to identify replicas among the generated methods. Since this is done on Jimple
code, there are local variables that bind context variables to advice parameters, which
makes each inlined implementation different. Once context variables are eliminated, these
local variables are also removed from the Jimple code, and the inliner manages to identify
that the advice implementations are equivalent3.

Application Original Code Optimized Decrease (%)
(bytes) (bytes)

Production Line
ajc 14693 14568 0.90
abc 7481 6802 9.00
SpaceWar
ajc 222446 222310 0.06
abc 150881 150746 0.09

Table 2. Code sizes for original and optimized AspectJ programs.

Table 3 shows average measures for the running time of calls to a few methods
in the SpaceWar program. These methods are captured by an around advice, and thus
measuring their execution time shows the effect in advice activation time of eliminating
parameters from advice implementation signatures. The average times shown here were
collected from a sample of 33 executions of each method for diminishing the impact of
OS scheduling and other external runtime interferences.

Method Original (ms) Optimized (ms) Decrease (%)
ajc
fire 2.691 2.595 3.57
rotate 0.0117 0.0113 3.42
thrust 0.0125 0.0114 8.80
abc
fire 2.358 2.291 2.84
rotate 0.0107 0.0104 2.80
thrust 0.0138 0.0120 13.04

Table 3. Average execution times for methods affected by an around advice in
the SpaceWar program.

Though the impact in execution time of a single advice call is almost negligible,
as shown in Table 3, the impact in the running time of programs with a great number of
advice calls at runtime can add up to be quite large. This is especially the case when
around advice applies to recursive methods, as in the Production Line algorithm; the

3 Equivalence between methods is determined in abc by string representations of Jimple code, rather
than their semantics.

71



running time of this program for random production lines of different sizes is shown in
Table 4.

Another important consequence of eliminating repeated context variables from
around advice is a decrease in memory consumption. Parameters are stored as local vari-
ables in frames by the JVM for each method activation. Thus removing some parameters
from an advice implementation makes its activation frames smaller, which allows pro-
grams with around advice applied to recursive methods to run for larger inputs. This is
shown in the last four lines of Table 4: the bytecode compiled by the original ajc runs
for production lines of up to 967 machines, while the optimized version runs for inputs
of up to 1017 machines – about 5% larger. The same happens with the code compiled by
abc, with the optimized version running for inputs of about 8% more machines than the
original.

Input size Original (ms) Optimized (ms) Decrease (%)
(machines)

100
ajc 4.856 2.508 48.35
abc 4.562 2.388 47.65

500
ajc 6.397 3.991 37.61
abc 5.724 3.411 40.41

900
ajc 9.248 6.372 31.10
abc 6.045 3.622 40.08

967
ajc 9.363 6.399 31.66
abc 7.529 4.844 35.66

1017
ajc – 6.472 –
abc 7.752 5.101 34.20

1230
ajc – – –
abc 7.083 4.860 31.39

1341
ajc – – –
abc – 5.089 –

Table 4. Average execution times of the Production Line program for random
inputs.

5. Conclusions
This paper presented a study of around advice weaving techniques applied by two As-
pectJ compilers: the AspectJ Compiler, ajc, and the AspectBench Compiler, abc. Code
repetition problems have been identified in these techniques.

Repeated advice and shadow implementations appear in bytecode generated by
ajc and abc when a single class contains several identical shadows of an around advice.

72



By eliminating advice and shadow implementation replicas, this optimization decreases
the bytecode size for AspectJ programs. During development of this work the developers
of abc have also implemented this optimization in their weaver.

While capturing context variables for around advice implementations, some local
variables are captured more than once, producing repeated context variables in advice im-
plementations. This problem appears when context variables are explicitly captured by the
programmer in pointcut expressions, by means of the args, target and this clauses.
Solutions to this problem have been experimentally integrated into the abc and ajc com-
pilers, and operate in the weaving process. Once repeated variables have been eliminated,
the resulting code is smaller, uses less memory and runs faster. Memory consumption
and time reductions are more relevant in programs that have around advice applied to
recursive methods, where several advice activation frames coexist in the execution stack.

Code generated by the abc compiler shows clearly that the AspectJ language con-
structs are not inherently expensive, but rather implemented in an expensive way in the
ajc compiler. These constructs can, in fact, be implemented efficiently, as in the abc com-
piler, though this is not the priority for ajc developers. Efforts in ajc development have
been concentrated on compilation and weaving speed, as well as the introduction of load
time weaving for the AspectJ language.

The main contribution of this paper is the identification of two problems caused
by around advice weaving in AspectJ compilers. Solutions to these problems have
been proposed to the developers of these compilers and are currently under discussion
[Cordeiro 2006a, Cordeiro 2006b, Cordeiro 2006c]. A formal evaluation of the proposed
optimizations remains as a future work at the time of writing.

Though the AspectJ language is currently used in software development in pro-
duction environments, this study shows that small optimizations may still improve the
performance of programs written in this language, which indicates that the compilation
techniques for aspect oriented programs are still in a stage of continuous evolution.

References

Aspect Bench Compiler Team (2006). Official abc project page.
http://www.aspectbench.org. Last visited in December 2006.

AspectJ Team (2006). Official page for the AspectJ project and ajc compiler.
http://www.eclipse.org/aspectj. Last visited in December 2006.

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O., de
Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. (2004). Building the abc AspectJ
compiler with Polyglot and Soot. Technical Report abc-2004-2, The abc Group.

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O., de
Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. (2005). Optimising AspectJ.
PLDI’05.

Cordeiro, E., Stefani, I., Soares, T., and Tirelo, F. (2004). Rin’g: Um ambiente não-
intrusivo para animação de algoritmos em grafos. In XII WEI, em Anais do SBC 2004
- XXIV Congresso da Sociedade Brasileira de Computação, volume 1.

73



Cordeiro, E. S. (2006a). Around advice weaving generates repeated methods. Bug re-
port available at https://bugs.eclipse.org/bugs/show bug.cgi?id=
154253.

Cordeiro, E. S. (2006b). Around weaving produces repeated context variables. Bug re-
port available at https://bugs.eclipse.org/bugs/show bug.cgi?id=
166064.

Cordeiro, E. S. (2006c). Around weaving produces repeated context variables. Bug
report available at http://abc.comlab.ox.ac.uk/cgi-bin/bugzilla/
show bug.cgi?id=77.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2002). Algoritmos: Teoria e Prática.
Editora Campus.

Dahm, M., van Zyl, J., and Haase, E. (2003). Official BCEL Project Page.
http://jakarta.apache.org/bcel. Last visited in December 2006.

Dufour, B., Goard, C., Hendren, L., et al. (2004). Measuring the Dynamic Behaviour of
AspectJ Programs. OOPSLA’04.

Hannemann, J. and Kiczales, G. (2002). Design pattern implementation in java and as-
pectj. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 161–173, New
York, NY, USA. ACM Press.

Hilsdale, E. and Hugunin, J. (2004). Advice Weaving in AspectJ. AOSD’04.

Kuzins, S. (2004). Efficient Implementation of Around-advice for the AspectBench Com-
piler. Master’s thesis, Oxford University.

Laddad, R. (2003). AspectJ in Action. Manning Publications Co.

Lindholm, T. and Yellin, F. (1999). The Java Virtual Machine Specification. Addison-
Wesley Professional, second edition. Available at http://java.sun.com/
docs/books/vmspec/index.html.

Myers, A. (2006). Official polyglot project page. http://www.cs.cornell.edu/
Projects/polyglot. Last visited in December 2006.

Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., and Co, P. (1999). Soot
- a Java Optimization Framework. In Proceedings of CASCON 1999, pages 125–135.

74



A Visual Language for Animated Simulation ∗

Vladimir O. Di Iorio 1, Débora P. Coura2,
Leonardo V. S. Reis1, Marcelo Oikawa1, Carlos R. M. Junior1

1Departamento de Inforḿatica – Universidade Federal de Viçosa (UFV)
Av. P.H. Rolfs, s/n

36.570-000 – Viçosa – MG – Brazil

2Unileste-MG – Centro Universitário do Leste de Minas Gerais
Av. Presidente Tancredo de Almeida Neves, 3500
35.170-056 – Coronel Fabriciano – MG – Brazil

vladimir@dpi.ufv.br,dcoura@terra.com.br,
{leo,moikawa,crmarques }@dpi.ufv.br

Abstract. This paper presents a visual language for producing animated simu-
lations. The language is implemented on a tool calledTabajara Animator, using
principles ofProgramming By Demonstration (PBD), which is a technique for
teaching the computer new behaviour by demonstrating actions on concrete ex-
amples. The language is based on a formal model for concurrent update of
agents, which represent the animated characters. The visual rules follow the
“before-after” style, adopted by the most important similar tools. New features
discussed by this work may produce a significant reduction on the number of
required rules for producing animated simulations. This paper shows how these
new features are implemented on a visual user-friendly interface, and how they
are translated into structures of the formal model adopted.

1. Introduction

Programming by Demonstration (PBD) is a technique for teaching the computer new
behaviour by demonstrating actions on concrete examples [Lieberman 2001]. This
technique has been used with success in several areas, for example, the construc-
tion of Web pages [Sugiura 2001], programming on Geographical Information Sys-
tems (GIS) [Traynor and Williams 2001], minimizing typing in small handheld devices
[Masui 1998]. Tools for producing animated simulations represent an area with the first
commercial systems that applied PBD successfully. Examples areStagecast Creator
[Smith et al. 2000] andAgentsheets[Repenning and Sumner 1995].

In [Coura et al. 2006], the authors propose three enhancements for PBD-based an-
imated simulations systems. The most important enhancement isfirst-person perspective
for visual rules. Stagecast Creator and Agentsheets use third-person perspective, leading
to programs with several very similar visual rules, whose only difference is the orientation
of the characters. The other new features arenegative conditionsand the use ofinheri-
tance. Using a significant example, it is shown that the enhancements may produce an
important reduction on the number of visual rules required for a simulation. But important
issues concerning the implementation of the enhancements are not solved.

∗This work is partially supported by FAPEMIG, Brazil

75



Figure 1. Visual before-after rules in Stagecast Creator.

This paper is an extension of the work published in [Coura et al. 2006], pre-
senting the visual language of a system calledTabajara Animator. This system pro-
poses visual solutions for the implementation ofnegative conditionsand inheritance,
and solves problems with the automatic generation of graphical representation of char-
acters, associated withfirst-person perspective. The visual language is based on a for-
mal model called ASM-OBJ, inspired by the Gurevich’sAbstract State Machines (ASM)
[Börger and Sẗark 2003]. This paper also shows how visual programs containing the new
features may be translated into programs of this model.

In Section 2, the most important tools for producing animation with PBD are
presented. It is shown how the enhancements proposed in [Coura et al. 2006] may reduce
the number of visual rules required, in situations commonly used. Section 3 introduces
ASM-OBJ, a formal model for the definition of concurrent update of agents. In order
to help explaining the semantics of the new visual language features, their translation
into structures of the ASM-OBJ model is discussed, in the following sections. Section 4
presents an overview of the Tabajara Animator system. Sections 5, 6 and 7 analyzes
the implementation of negative conditions, inheritance and first-person perspective for
rules, respectively. In Section 8, the final conclusions are presented and future works are
discussed.

2. Tools for Animated Simulation using PBD

The most successful tools for animated simulation using PBD areStagecast Creator
[Smith 2000, Smith et al. 2000] andAgentsheets[Repenning and Sumner 1995]. They
have similar features, but the visual rules in Stagecast Creator are calledvisual before-
after rules, while in Agentsheets, they are calledgraphical rewriting rules.

TheKidsimproject [Smith et al. 1994], later calledCocoa, was finally designated
Stagecast Creator. It has been used mostly in children education. As the original name
implies, it was intended to allow kids to construct their own simulations, reducing the
programming task to something that anyone could handle.

Figure 1 shows four Stagecast Creator rules, taken from a version of the classic
Pacmangame [DeMaria and Wilson 2003]. The main character, the Pacman, is controlled
by the user, using the keyboard. It moves in a labyrinth, together with ghosts. The rules
on Figure 1 define the movement for the Pacman, when there is an empty space in front of
it, in four different directions. The visual representation of the rules are separated in two

76



Figure 2. Graphical rewriting rule in Agentsheets.

parts, by a horizontal arrow. The left part, designatedbeforeclause, represents a possible
situation occurred during a simulation. For example, the first rule represents a situation
when the character is looking at a position on a cell over it, and this cell is empty. The
right part of the rule, designatedafter clause, represents an action that must be executed
when the condition of thebeforeclause is satisfied. In order to define theafter clause of
the first rule, the userdemonstrateshis intention by moving the character up.

The Agentsheets environment aims to achieve a wide range of users, from children
to professionals. The system includes a compiler which translates the visual rules to Java
code, producing more efficient simulations than the ones built using Stagecast Creator.

Figure 2 shows a visual rule of Agentsheets with the same semantics as the first
rule of Figure 1. In Agentsheets, to indicate that a character must move when an empty
space is found, the user must define a position update on a graphical rewiriting rule. The
condition to be satisfied defines that the character must have the given graphical repre-
sentation, and the cell over it must be empty. The action executed when this condition is
satisfied is a movement to a cell over the current position. Similarly to Stagecast Creator,
additional rules must be built to define movements to other directions.

The Tabajara Animator project was created in order to implement the new features
proposed in [Coura et al. 2006], for visual rules using PDB:first-person perspective, neg-
ative conditionsand inheritance. The authors demonstrate that, with these innovations,
the numbers of rules required for animated simulations can be significantly reduced.

In the examples of figures 1 and 2, as the character may be pointing to four differ-
ent directions and the rules are written in third-person perspective, it is necessary to write
four different rules to produce the desired behaviour. First-person perspective for rules is
one of the new ideas implemented in Tabajara Animator. With first-person perspective,
this behaviour can be defined by a single rule. Section 7 shows details of this important
enhancement, and how it is implemented in Tabajara Animator.

In Stagecast Creator, the rules of Figure 3 may define the movement over empty
spaces for a character representing a ghost, on the Pacman game. These rules are almost
identical to the ones of Figure 1, the only difference is the character involved. This situa-
tion is a good opportunity to exploreinheritance. The desired behaviour may be defined
on a class namedMoveable. ClassesPacmanandGhostmay be subclasses ofMoveable,
inheriting all the rules of the superclass. Section 6 discusses the problems involved in the
implementation of inheritance.

Figure 4 shows the rules defining the movement over cells containing a “vitamin”,
for a character representing a Pacman. These rules are almost identical to the ones of

77



Figure 3. Rules for the movement of ghost characters in Stagecast Creator.

Figure 4. Movement of Pacman over vitamins, in Stagecast Creator.

Figure 1. The two sets of rules could be replaced by a rule withnegative condition. The
new rule could have the following semantics: the ghost must move to a cell in front of it, if
this cell doesnot contain a wall of the labyrinth. Section 5 discusses the implementation
of negative conditions.

3. The ASM-OBJ Formal Model

Abstract State Machines(ASM), formerly known asEvolving Algebras, are a for-
mal model where the state of a system is represented by functions, and transitions
are based onfunction update. A complete definition of this model can be found in
[Börger and Sẗark 2003]. ASM-OBJ is an extension of the ASM model which includes
elements from object-oriented languages. Object-oriented extensions for ASM have been
proposed in works like [Janneck and Kutter 1998] and [Zamulin 1998]. ASM-OBJ has
been created especially for serving as basis for the Tabajara Animator visual language,
and shares little similarities with these previous works. This section presents an informal
definition of the main elements of the model. The semantics is given by associations with
pure ASM. The complete definition of ASM-OBJ can be found in [Coura 2006].

The syntax of ASM-OBJ is defined using a XML schema [van der Vlist 2002],
so ASM-OBJ programs are well-formed XML documents. A reason for choosing XML
instead of conventional syntax is that the visual language is intended to be shared by
different applications. The code is automatically generated by visual tools, so it is not
necessary to actually write programs using XML syntax, what would be an important
drawback. In this section, parts of the ASM-OBJ model definition are presented using a
visual representation for XML schemas, and the semantics is explained using pure ASM.

78



Figure 5. ASM-OBJ environment definition.

The visual representation used is the one proposed by theOxygensystem [Wheller 2002],
with icons like to represent a complex type, to represent composition and to
represent a choice.

Figure 5 shows the definition of anenvironmentin ASM-OBJ, composed by a
set ofclass definitionsand aninitial state. The definition of a class includes its name, the
name of its parent on the hierarchy, a set ofattributesand arule. The initial state is defined
by arule. The semantics is explained in terms of the ASM model, as follows. Each ASM-
OBJ class with nameC is equivalent to an ASMuniversewith the same name, i.e., an
unary relation identified by the set of elementse such thatC(e) = true. The definition
of class attributes in ASM-OBJ, not shown in Figure 5, includes the name of the attribute
and its type, which can be scalar types such asInteger, RealandString. Each type may
be interpreted as another ASM universe. An attribute namedA, inside a class namedC,
is interpreted as an ASM unary functionA : C → T , whereT is the interpretation of the
attribute type. Anagentof a class namedC acts like anobjectof OO languages, and is
interpreted as an element of an ASM universeC.

ASM-OBJ defines several types of rules, very similar to ASM rules. Figure 6
shows part of the definition of some of these rules. The semantics of theexecutionof
an ASM-OBJ rule is equivalent tofiring an ASM rule. The execution of an ASM-OBJ
updaterule produces an update pair (location, value), just like in ASM, calculated using
theLeftSideandRightSidecomponents of the rule. Alocationdefines an unique “address”
which is associated to a value. In ASM, it is defined by a function and arguments. In
ASM-OBJ, it is defined by an agent and an attribute of the agent´s class. The result of
executing ablock is the union of the execution of each of its subrules. The result of

79



Figure 6. Some ASM-OBJ rules .

executing aconditional rule is the execution of thethen clause, when theconditional
expressionis satisfied; otherwise, it is the execution of the optionalelseclause. In a
chooserule with variablev of classC, an agenta of the classC is nondeterministically
chosen and the result is the execution of the defined subrule, with the value ofv set toa.
In acreaterule with variablev of classC, a new agenta of the classC is created and the
result is the execution of its subrule, with the value ofv set toa.

Inside the rule associated to a class, the reserved namethis is an unbound variable.
The complete ruleof a class namedC is the union of the rule associated to this class
with the rules associated to all its superclasses, following the hierarchy defined by the
environment. The execution of an agenta of a classC is the execution of the complete
rule associated to the classC, with the value of the variablethis set toa. The execution
of an environment starts with the execution of its initial state rule. This rule is usually a
block containingcreaterules, which will build an initial set oflive agents. Then, each step
of the execution consists of selecting a subset of agents from the live agents set, executing
the selected agents and finally building a new state. A new state is built applying the
produced update pairs to the current state. As in pure ASM, applying an update pair(l, k)
to a state produces a new state where the value associated to locationl is replaced byk.

ASM-OBJ defines a rich set of standard functions which can be used in expres-
sions. Another set of functions, calledexternal functions, may be extended by users.
External functions are used, primarily, for the communication with the external environ-
ment. Two calls to an external function, in different steps of an execution, may return
different values, even when given the same arguments.

80



...

<ClassDefinition>

<Name>Moveable</Name>

<Parent>VisibleClass</Parent>

...

</ClassDefinition>

<ClassDefinition>

<Name>Pacman</Name>

<Parent>Moveable</Parent>

...

</ClassDefinition>

...

Figure 7. Hierarchy editor of Tabajara Animator and representation in ASM-OBJ.

4. Overview of Tabajara Animator

The Tabajara Animator is a system for the creation of animated simulations using
programming by demonstration techniques. It is similar to Stagecast Creator and
Agentsheets, but with the additional features proposed in [Coura et al. 2006].

To build visual programs, the system offers anHierarchy Editor, which allows
the definition of hierarchy relations, and aBehaviour Editor, which allows the definition
of visual rules for each class. To present simulations, the system offers several different
animated simulation windows. Simulations windows are discussed in Section 7.2.

The left side of Figure 7 shows a snapshot of the Hierarchy Editor window of
Tabajara Animator. The user may create new classes anywhere in the hierarchy, defining
a standard visual representation. In this example,Brick, Moveableand its two subclasses
GhostandPacmanare user-defined classes. The root of the hierarchy is the predefined
classVisibleClass, representing any object with visual representation in an animated sim-
ulation. The right side of Figure 7 shows part of theClassDefinitionSetelement of an
ASM-OBJ environment, representing these hierarchical relations.

Figure 8(a) shows the Behaviour Editor window, which can be activated from the
Hierarchy Editor. After selecting a class and activating the Behaviour Editor, the user can
create, delete or modify rules for this class. The visual rules have a strong correspondence
with the structure of an ASM-OBJ program. Visual conditional rules are formed by a
“before” clause, which represents the visual condition to be evaluated, an “after” clause,
which represents the rule to be executed if the condition is satisfied, and an optional “else”
clause, which represents the rule to be executed if the condition is not satisfied. An “after”
clause is usually a visual update rule. An “else” clause may be a visual update or another
visual conditional rule.

Figure 8(b) shows a visual conditional rule for the Pacman class. “Before” and
“after” clauses are separated by horizontal (green) arrows. “Else” clauses appear behind
vertical (red) arrows. Conditions, inside “before” clauses, are visual predicates connected
by an implicit logic operatorand. For example, the first condition shown in Figure 8(b) is
satisfied if there is no character above the Pacman,and theup arrowkeyboard is pressed.
Visual update rules may define modifications on the visual attributes of characters: their
position, rotation and visual representation. In Figure 8(b), the user demonstrated the
intended behaviour by defining visual update rules with a rotation applied to the graphical

81



(a) Behaviour Editor Window. (b) A visual conditional rule.

Figure 8. Behaviour Editor Window and a complex visual conditional rule.

representation of the character. So, during a simulation, if the condition is satisfied, the
character will be rotated as defined by the update rule.

Tabajara Animator offers a user-friendly interface to define visual conditional and
update rules. The rectangular area with dashed sides, used in visual conditions, can be
placed anywhere inside the window. If it is left empty, then the condition will be satis-
fied, during simulation time, only when there is no character inside the defined area. If
characters are dragged into the rectangular area, then the condition is satisfied, during
simulation time, when objects of the chosen classes are found inside the defined limits.
Characters selected in “before” clauses appear automatically in “after” clauses, with the
same position and rotation, unless thenegation operatoris applied to the visual condition
(see Section 5). Moving and rotating these characters in “after” clauses, an user defines a
visual update that will be executed on simulation time, when the visual condition is sat-
isfied. Deleting characters or inserting new characters in “after” clauses, an user defines
destruction and creation of characters, in simulation time.

An ASM-OBJ interpreter is integrated to the Tabajara Animator interface. Before
carrying on simulations, the system translates the visual rules into ASM-OBJ code. The
translation of visual elements discussed in this section is very obvious. Visual conditional
rules are translated to ASM-OBJ conditional rules, with visual “before” clauses associated
to conditional expressions, “after” clauses associated tothenclauses and visual “else”
clauses associated to ASM-OBJelseclauses. Complex visual conditions, with more than
one predicate, are implemented using a call to an ASM-OBJ standard boolean function
and. Visual update rules are translated to ASM-OBJ update rules, with class attributes
representing position, rotation and other visual attributes.

5. Negative Conditions

The structure of a visual conditional rule is itself a way to define negative conditions. Any
rule inside an “else” clause will be executed only if the condition isnot satisfied.

82



Figure 9. A rule with negative condition.

But the system offers also a visualnegation operatorwhich can be associated to
any predicate. It indicates that a condition is true only if the predicate isnot satisfied. The
negation operation, together with the implicitandoperator described in Section 4, allows
the definition of complex conditions. In systems like Stagecast Creator and Agentsheets,
users are restricted to a more limited set of possible conditions.

Figure 9 shows an example of a rule with negative condition, for the Pacman
class. A symbol appears before every positive condition. If the user wants a negative
condition, this symbol must be replaced by a symbol. The interface allows the user to
change from positive to negative conditions, and vice-versa, with a click of the mouse.
Using also the concept of first-person perspective, the semantics of the rule shown is:
if the character is looking at a cell which doesnot contain a brick, then the character is
moved to this cell. The visual negation operator is straightforward translated to ASM-OBJ
by using a call to a standard boolean functionnot.

6. Inheritance

In [Repenning and Perrone 2000], the authors present some reasons not to use inheritance
in systems for the creation of animated simulations with visual languages. They argue that
abstractions like inheritance are nontrivial for end users to understand, and are hard to rep-
resent visually. They present a different approach for generalization, calledprogramming
by analogous examples.

Examples presented in [Coura et al. 2006] show that inheritance may indeed re-
duce the number of required rules in some simulations. The authors agree that it may be
an abstract concept not very easy to understand by end users, but they argue that a system
may offer inheritance as an additional feature, reserved for more advanced users.

This work shows how Tabajara Animator solves the problem of representing inher-
itance relations and inherited rules on subclasses. As in many other systems, hierarchical
relations are visually represented by a tree diagram, as shown in Figure 7. The class asso-
ciated with a tree node is the superclass of the classes associated with the siblings of this
node. For example,Pacmanis a subclass ofMoveable. Figure 10 shows two instances
of the Behaviour Editor window. The window associated to the Moveable class shows
a rule with negative condition. The window associated with the Pacman class shows the
inherited rule, changing the graphical representation of the character. With this solution,
it is easy to understand the behaviour of a class, even when it has inherited rules. But the
system allows the edition of rules only on the classes where they are originally defined.
On subclasses, inherited rules are “read-only”.

7. First-Person Perspective

Rules in Stagecast Creator and Agentsheets use third-person perspective. As the examples
of Section 2 show, this strategy may lead to visual programs with several similar rules,

83



Figure 10. Representing inherited rules in subclasses.

(a) Verify Brick on a cell. (b) Move the character.

Figure 11. Calculations needed to implement first-person perspective.

where the only difference is the orientation of the characters. In order to implement
first-person perspective for rules, it is not necessary to add new features to the interface.
However, a lot of additional work must be done by the system, as discussed below.

The rule represented in Figure 9, when using first-person perspective, may be
equivalent to several third-person perspective rules. The results produced in simulation
time depend on the character current rotation. For example, suppose that the character
is rotated 45 degrees counterclockwise. The real position of the rectangular area with
dashed sides, where a Brick character may be positioned, must be calculated as shown
in Figure 11(a). The update defined by the rule of Figure 9 represents only a horizontal
movement. But in simulation time, this movement may have horizontal and vertical com-
ponents, which must also be automatically calculated, as shown in Figure 11(b). All these
calculations are carried out by ASM-OBJ code properly generated.

7.1. Code generated for managing first-person perspective features

Tabajara Animator definesVisibleClassas the superclass of any visible character. The
attributes of VisibleClass define the current graphical representation, the current rotation

84



<ChooseRule>

<VariableDefinition>

<VariableName>x</VariableName>

<TypeName>Brick</TypeName>

</VariableDefinition>

<ConditionalRule>

<ConditionalExpression>

<StandardFunctionCall>

<FuncName>not</FuncName>

<ArgumentList>

<ExternalFunctionCall>

<Name>RectangularArea</Name>

<ParameterMap>...<ParameterMap>

</ExternalFunctionCall>

</ArgumentList>

</StandardFunctionCall>

</ConditionalExpression>

<ThenClause> ... </ThenClause>

</ConditionalRule>

</ChooseRule>

<StandardFunctionCall>

<FuncName>add</FuncName>

<ArgumentList>

<Location>

<VariableRef>this</VariableRef>

<AttribName>posX</AttribName>

</Location>

<StandardFunctionCall>

<FuncName>Xproj</FuncName>

<ArgumentList>

<IntegerConst>30</IntegerConst>

<IntegerConst>0</IntegerConst>

<Location>

<VariableRef>this</VariableRef>

<AttribName>rotation</AttribName>

</Location>

</ArgumentList>

</StandardFunctionCall>

</ArgumentList>

</StandardFunctionCall>

(a) (b)

Figure 12. Pieces of an ASM-OBJ program.

and the horizontal and vertical components of the current position.

A visual conditional rule including a rectangular area with dashed sides is trans-
lated into an ASM-OBJchooserule. The translation of the visual condition defined in
Figure 9 is the ASM-OBJchooserule shown in Figure 12(a). This rule defines a variable
namedx, whose type is the class namedBrick. Its execution forces the system to find an
agent of the Brick class, satisfying conditions defined in the subrule. The subrule of the
chooserule, in this case, is aconditionalrule. The condition to be evaluated is the result
of the application of the standard boolean functionnot to a call to anexternal function
namedRectangularArea.

The RectangularAreafunction has a boolean return type. Arguments passed to
this function, not shown in Figure 12(a), represent the base object, the position of the
rectangular area and a variable passed by reference, which may be instantiated by the
function. The base object, in this case, is the Pacman character. The position of the
rectangular area is defined by its top left and right down corners, relative to the position
of the base object. These values are translated into real coordinates using the current
position and the current rotation of the base character, as shown in Figure 11(a). Finally,
the last argument is the variablex, bound by thechooserule. External functions receive an
implicit argument that allows them to access the whole environment, during a simulation.
Using this implicit argument and the arguments explained above, theRectangularArea
function scans the environment and verify whether there is a Brick character inside the
calculated area. If such a character is found, the value of variablex is set to it, and the
function returnstrue. Otherwise, the function returnsfalse.

As shown in Figure 11(b), a position update requires the calculation of horizontal
and vertical displacements. To solve this, every position update is translated into two
ASM-OBJ update rules, using predefined functions namedprojX andprojY. Figure 12(b)
shows one of the update rules resulting from the translation of the position update defined

85



in Figure 9. To the value of theposX attribute of the character, which represents the
horizontal component of the current position, the rule adds the result of a call to the
projX function. TheprojX function receives three parameters: a horizontal displacement,
a vertical displacement and a value associated with the rotation of the character. The
result is thereal displacement on the horizontal axis. The code shown in Figure 12(b)
supposes that the graphical representation of the Pacman character is a square with side
length of 30 pixels. So the call to theprojX function calculates thehorizontal result of
a horizontal movement of 30 pixels to the right, considering the current rotation of the
character. The second required update rule is not shown, but it is similar to the code
shown n Figure 12(b), replacingposXby posYandprojX by projY. In this case, the call
to theprojY function calculates thevertical result of a horizontal movement of 30 pixels
to the right, considering the current rotation of the character.

7.2. Problems in animated simulation windows

Rules in Tabajara Animator are defined using first-person perspective. But the system
provides variations of first-person and third-person perspective animated simulation win-
dows. On windows that present animated simulations with first-person perspective, a
character is chosen to be positioned in the center of the window, and its graphical rep-
resentation never changes. When this character suffers rotation, the window presents an
inverse rotation of all other characters. In third-person perspective animated simulation
windows, rotated graphical representations are automatically generated for each charac-
ter, according to its rotation attribute.

A problem occurs in third-person simulation windows. Frequently, the graphical
representations automatically generated for characters are not satisfactory. For example,
suppose that the graphical representation of the Pacman, used on the rule of Figure 9, is
rotated 180 degrees clockwise (or counterclockwise). The resulting picture would be an
upside down character. In order to solve this problem, Tabajara Animator offers a visual
tool called Image Configuratorwhich allows users to define different graphical repre-
sentations for characters, depending on their rotation attribute. An example is shown in
Figure 13, with four different graphical representations defined for the Pacman character.
Each different image is associated with a range of values for the rotation attribute of a
Pacman character. During simulation time, the system verifies the rotation of each agent
of the Pacman class and shows the corresponding image.

The system translates the operations defined in an Image Configurator to ASM-
OBJ code. When using third-person perspective animated simulation windows, an addi-
tional ASM-OBJ conditional rule is generated. This rule updates the attribute defining the
graphical representation of the character, according to its rotation attribute.

8. Conclusions and Future Works

In [Coura et al. 2006], inheritance, negative conditions and first-person perspective for
rules are enhancements proposed for PBD-based animated simulation tools. An example
of a simple application with common situations found in animated simulations is defined.
The application is implemented in Stagecast Creator and Agentsheets, which are tools
with third-person perspective rules, without inheritance and with little support for negative
conditions. The number of rules required for these implementations is compared to a tool

86



Figure 13. Defining graphical representation, depending on rotation.

with full support for the proposed enhancements. The results show that an important
reduction on the number of rules may be achieved, using the enhancements.

The results presented in [Coura et al. 2006] are very significant, but they depend
on an a successful implementation of all the proposed features. The main contribution of
the work presented in this paper is the confirmation that inheritance, negative conditions
and first-person perspective for rules may be successfully implemented. The paper shows
details of the implementation, on a system calledTabajara Animator, using the help of a
formal model to explain the semantics of the visual elements.

The implementation of the proposed features, in Tabajara Animator, may be sum-
marized as follows. The interface of the system introduces new visual elements, not
present in similar tools, in order to define negative conditions and inheritance. A visual
negation operator may be applied individually to any predicate on a visual condition. It
allows users to build more complex conditions than the ones provided by similar tools.
Inheritance relations are represented on a tree diagram, and the problem of represent-
ing rules in subclasses is elegantly solved. First-person perspective for rules requires no
additional visual elements on the interface of the system. The calculation of the real po-
sition of characters during simulation is carried out by predefined ASM-OBJ functions.
An user-friendly visual tool allows the definition of different graphical representations
for characters, solving the problems with automatically generated representations, in ani-
mated simulation windows.

The visual language of Tabajara Animator may be extended in several ways.
An important extension may be the use ofrule abstractions. The visual language of
Agentsheets, calledVisual Agent Talk (VAT), offers such abstractions. A VATmethodis
a set of rules, which can be referenced by the name, inside other visual rules. An in-
teresting work would be the implementation of a similar feature in Tabajara Animator.
Because of inheritance, it would be necessary to define the behaviour in cases where a
class has a method with the same name as a method defined in its superclass. Another
possible extension to the Tabajara Animator visual language is the use of polymorphism.
This feature has never been discussed together with languages for visual animation.

87



References

Börger, E. and Stärk, R. (2003). Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag.

Coura, D., Di Iorio, V., Lima, A., Oliveira, A., and Andrade, M. V. (2006). Animações
Através de Programação por Demonstração. InAnais do Simṕosio de Fatores Humanos
em Sistemas Computacionais (IHC 2006), pages 81–90, Natal, Brazil.

Coura, D. P. (2006). Produzindo Animação Atrav́es da Programação por Demonstração.
Master’s thesis, Universidade Federal de Viçosa, Viçosa, Brasil.

DeMaria, R. and Wilson, J. L. (2003).High Score!: The Illustrated History of Electronic
Games. McGraw-Hill Osborne Media.

Janneck, J. and Kutter, P. (1998). Object-based Abstract State Machines. TIK-Report 47,
Swiss Federal Institute of Technology (ETH) Zurich.

Lieberman, H., editor (2001).Your Wish is My Command: Programming by Example.
Morgan Kaufmann.

Masui, T. (1998). Integrating Pen Operations for Composition by Example. InACM
Symposium on User Interface Software and Technology, pages 211–212.

Repenning, A. and Perrone, C. (2000). Programming by example: programming by anal-
ogous examples.Commun. ACM, 43(3):90–97.

Repenning, A. and Sumner, T. (1995). Agentsheets: A Medium for Creating Domain-
Oriented Visual Languages.IEEE Computer, 28(3):17–25.

Smith, D. C. (2000). Building personal tools by programming.Communications of the
ACM, 43(8):92–95.

Smith, D. C., Cypher, A., and Spohrer, J. (1994). KidSim: Programming Agents Without
a Programming Language.Communications of the ACM, 37(7):54–67.

Smith, D. C., Cypher, A., and Tesler, L. (2000). Programming by example: novice pro-
gramming comes of age.Commun. ACM, 43(3):75–81.

Sugiura, A. (2001). Web Browsing by Demonstration. In Lieberman, H., editor,Your
Wish is My Command: Programming by Example, pages 61–86. Morgan Kaufmann.

Traynor, C. and Williams, M. G. (2001). End users and GIS: a demonstration is worth
a thousand words. InYour wish is my command: programming by example, pages
115–134. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

van der Vlist, E. (2002).XML Schema - The W3C’s Object-Oriented Descriptions for
XML. O’Reilly.

Wheller, S. (2002).<oXygen/> User Manual. SyncRO Soft Ltd. (retrieved 25 Jan, 2007,
from http://www.oxygenxml.com/).

Zamulin, A. (1998). Object-oriented Abstract State Machines. InProceedings of the 28th
Annual Conference of the German Society of Computer Science. Technical Report,
Magdeburg University.

88



Improving Reusability in AspectLua

Mauricio B. C. Vieira 1 , Thais V. Batista1

1Computer Science Department
Federal University of Rio Grande do Norte – UFRN

Natal – RN – Brazil

vieira@ppgsc.ufrn.br, thais@dimap.ufrn.br

Abstract. AspectLua is an extension of the Lua language to support dynamic
aspect-oriented programming. It is based on AspectJ concepts and contains
a meta-object protocol, LuaMOP, that handles a dynamic weaving process by
exploiting the Lua reflective features. AspectLua specifications are limited in
terms of aspect reuse, modularity and heterogeneous interaction. In order to
address these limitations, this work proposes RE-AspectLua, a new version of
AspectLua that uses the concepts of aspect interfaces with abstract joinpoints
and connection language. Using these concepts, RE-AspectLua intends to break
away from the syntactically manifest coding of aspects in which joinpoints are
hard-coded into aspects, thereby promoting general reusability.

Resumo. AspectLuaé uma extens̃ao da linguagem Lua que dá suporte a
programaç̃ao orientada a aspectos dinâmica. AspectLuáe baseada nos con-
ceitos de AspectJ e faz uso de um protocolo de meta-objetos, LuaMOP, que
efetua um processo de combinação din̂amica ao explorar as caracterı́sticas
reflexivas de Lua. As especificações em AspectLua são limitadas quanto ao
reuso, modularidade e interação heteroĝenea do aspecto. Para resolver estas
limitações, este trabalho propõe RE-AspectLua, uma nova versão de AspectLua
que usa os conceitos de interfaces de aspecto com pontos de junção abstratos
e linguagem de conexão. Ao usar estes conceitos, RE-AspectLua evita seguir
a sintaxe de codificação de aspectos onde os pontos de junção s̃ao codificados
nos aspectos e, portanto, promove reusabilidade.

1. Introduction

Aspect-Oriented Programming (AOP) [Kiczales et al. 1997] has emerged to modularize
elements that cut accross the basic decomposition modules of a system. In order to mod-
ularize such crosscutting concerns AOP introduces a new abstraction namedaspect. As-
pectJ [Kiczales et al. 2001] was a pionneer aspect-orientedlanguage that introduced a set
of concepts:joinpoints, advice, pointcutsandintertype declarations. The main problem
of traditional AOP approaches following AspectJ is that they promote a new modularity
mechanism but the internal aspect code contains a direct reference to the element that the
aspect crosscuts. The first drawback of this approach is thatit limits the aspect reuse in
different context. As the aspect internal code is tightly associated with the element that it
crosscuts, it cannot be reused in other context, with other elements. The second drawback,
also related to the first one, is that the way that the aspect composes with other elements

89



is also fixed within the aspect code. Ideally, an aspect should compose with different ele-
ments, in a different way. This heterogeneous composition ability is essential to promote
aspect reusability. Reusability can be defined as the ability to reuse the aspect behaviour
(advice) in different compositions. Heterogeneity is the ability using the aspect behaviour
in a different way for each composition where the aspect is applied.

AspectLua [Cacho et al. 2005a] is an AOP language based on theLua program-
ming language [Ierusalimschy 2006]. Lua is an interpreted and dynamically typed lan-
guage. These features introduce a different style for aspect-oriented programming where
dynamism is a key issue, weaving is done at runtime and both the basic elements and
aspects can be inserted into and removed from the application at runtime. In addition,
the Lua philosophy is to be simple and small and AspectLua keeps this philosophy. As-
pectLua is built upon a meta-object protocol, LuaMOP [Fernandes and Batista 2004] that
provides an abstraction over the reflective features of Lua and allows application methods
and variables to be affected by the aspect definition. AspectLua follows AspectJ concepts
and, as a consequence, presents the aforementioned reuse limitations.

In order to promote the reuse of aspects and the ability to support heterogeneous
composition, in this work we present a new version of AspectLua, named RE-AspectLua.
In RE-AspectLua aspects are defined ataspect specification timeand their instantiation is
defined later atapplication composition time. An aspect is defined by a set ofaspect inter-
faces. Each aspect interface specifies an abstract join point and an advice. Abstract join
points instantiation is defined at application compositiontime via aconnection language.
The connection language is the Lua language itself since it is a scripting language. The
fact of using a scripting language as the connection language introduces a great flexibility
to the aspect composition process as the glue code can contain conditional statements to
decide which composition must be defined. In addition, as Luais a dynamically typed
and interpreted language, it allows the dynamic connectionand even the adaptation of the
aspect connection at runtime.

Some recent work also address some limitations of the AspectJ-based AOP
[Aracic et al. 2005], [Gal et al. 2003], [McDirmid and Hsieh 2003], [Suvée et al. 2005],
[Suvée et al. 2003]. However, none of them is based on an interpreted language and pro-
vides the set of AOP features supported by AspectLua (see [Cacho et al. 2005a] ). The re-
lated work in terms of AOP languages built on top of scriptinglanguages [Dechow 2004],
[Bryant and Feldt 2002], [Hirschfeld 2003], are based on AspectJ concepts and none of
them promotes reusability of aspects that is the main goal ofRE-AspectLua.

Although some researchers do not associate the use of AOP with scripting lan-
guages because, in general, such languages are not intendedto write large and complex
software systems, we argue that the benefits of AOP target notonly large and complex
software systems but it also has an important role in embedded systems where the prob-
lem of composition is even harder. This type of system needs to maintain the application
code small. Thus, separation of concerns is essential and AOP is a good technique to
manage crosscutting concerns in embedded systems [Sztipanovits and Karsai 2002].

This work is organized as follows. Section 2 presents Lua, AspectLua and Lu-
aMOP. Section 3 presents our proposal to support reuse and heterogeneous interaction in
AOP and how they are included in RE-AspectLua. Section 4 presents a case study that

90



illustrates the concepts of RE-AspectLua. Section 5 discusses related work. Section 6
contains the final remarks.

2. AspectLua and LuaMOP

AspectLua and LuaMOP are presented in this section. Both arebased on Lua program-
ming language [Ierusalimschy et al. 1996].

Section 2.1 presents the main concepts of AspectLua and section 2.2 presents
LuaMOP, the meta object infrastructure used by AspectLua.

2.1. AspectLua

AspectLua [Cacho et al. 2005a] is an aspect-oriented programming language based on
the Lua [Ierusalimschy et al. 1996] language. AspectLua implementation uses LuaMOP
[Fernandes 2004], a meta-object protocol that allows the dynamic weaving of aspects and
components. Lua is dynamically typed, which means that variables are not bound to
types but each value has an associated type. Lua syntax and control structures are similar
to those of Pascal. Some non-conventional features of Lua: (i) functions are first-class
values; (ii) Lua tables are the main data structuring facility in Lua. Tables implement
associative arrays, are dynamically created objects, and can be indexed by any value in
the language, except nil. Tables may grow dynamically. Lua offers reflective facilities and
metatables are the main reflective abstraction in Lua. Metatables allow modification of the
behavior of a table. More details about Lua can be found in [Ierusalimschy et al. 1996].

AspectLua combines a set of features to make AOP easier and powerful: (i) in-
sertion and removal of aspects at runtime, (ii) the definition of precedence order among
aspects, (iii) the possibility of using wildcards, (iv) thepossibility of associating aspect
with undeclared elements (anticipated join points), and (v) a dynamic weaving process
via a meta-object protocol.

AspectLua follows AspectJ philosophy and, as a consequence, presents the same
problems related to lack of reusing support. In particular,AspectLua supports set of join
points: call for method invocations;callone for the specification of aspects that must
be executed only once;introductionto add functions in objects (intertype declarations);
and thegetandsetjoin points to capture operations on variables. AspectLua aspect also
defines an advice to be executed when the set of join points specified is reached.

1 a = Aspect:new()
2 a:aspect( {name = ’aspect-name’},
3 {pointcutname = ’pointcut-name’,
4 designator = ’designator-type’,
5 list = {’some-class.method1()’,’another-class.*’},
6 {type =’advice-type’, action = advice} )
7

8 function advice()
9 -- do something

10 end

Figure 1. – Generic code for aspect creation

Figure 1 illustrates the syntax of aspects definition in AspectLua:

• the first aspect parameter is its name.

91



• the second parameter is a Lua table that defines the elements of the join points:
its name, its designator type (call,callone, introduction, getor set), and functions
or variables that must be intercepted. Thedesignatorfield indicates the join point
type. Thelist field contains the functions or variables that will be intercepted. The
’*’ wildcard can be used. For instance,another-class.*indicates that the aspect
must be applied to all methods of a classanother-class.

• the third parameter is a Lua table that defines the elements ofthe advice: the
type (after, beforeor around), and the action that is executed when a join point is
reached. In the example, the action is the function declaredwith the nameadvice
(line 6).

As the aspect defines an explicit association with the affected components, the
aspect reuse is not possible. Also, the heterogeneous composition is limited in AspectLua.
To illustrate the lack of aspect reusing in AspectLua, let usconsider a simple banking
application. Suppose that a client wishes to register the access to the bank component
(Figure 2). It has two operations:depositandcash.

1 Bank = {balance = 0}
2 function Bank:deposit(amount)
3 self.balance = self.balance + amount
4 end
5 function Bank:cash(amount)
6 self.balance = self.balance - amount
7 end

Figure 2. – Bank component

Figure 3 shows two aspects, written with AspectLua, that affect the bank compo-
nent. These two aspects are needed to log methods of theBankcomponent.laspectbefore
aspect (lines 1-6) determines that thecashmethod is preceded by thelogbalanceadvice.
The second aspect (lines 8-13) is used to advisedepositandcashjust after they are called.

1 a = Aspect:new()
2 a:aspect( {name = ’laspect_before’},
3 {pointcutname = ’logged_methods’,
4 designator = ’call’,
5 list = {’Bank.cash’},
6 {type =’before’, action = logbalance} )
7

8 b = Aspect:new()
9 b:aspect( {name = ’laspect_after’},

10 {pointcutname = ’logged_methods’,
11 designator = ’call’,
12 list = {’Bank.cash’,’Bank.deposit’},
13 {type =’after’, action = logbalance} )
14

15

16 function logbalance(self)
17 print (’Balance is now: ’, self.balance)
18 end

Figure 3. – Bank component logging

There is a clear lack of reuse illustrated by the example in figure 3. The aspect
code is directly bound to its pointcuts, thus the aspect mustbe directly changed if one
wishes to affect other joinpoints, and the heterogeneous interaction, i.e. aspect acting in a
different way (before and after), can be achieved only by code duplication.

92



AspectLua provides the concept ofanticipated joinpoints. Anticipated joinpoints
are join points related to elements that do not exist at theaspect specification time. This
joinpoint is useful to avoid the need of loading an application code before loading the
aspect code that contains a joinpoint to the application. This facility is useful to allow lazy
loading at theaspect execution time. More details can be found in [Cacho et al. 2005a].

2.2. LuaMOP
The Aspect weaving process used in AspectLua is provided by LuaMOP
[Cacho et al. 2005b]. LuaMOP is a meta-object protocol that supports the creation of
a meta-representation to each element that composes the Luaruntime environment: vari-
ables, functions, tables, userdata and so on. Each element is represented by a meta-class
that provides a set of methods to query and to modify the behavior of each element of
the base class. They are organized in a hierarchical way where MetaObjectis the base
meta-class (Figure 4). Derived from this meta-class areMetaVariables, MetaFunctions,
MetaCoroutine, MetaTable, andMetaUserDatameta-class. Furthermore, LuaMOP also
provides aMonitor class to monitor the occurrence of events in the Lua runtime environ-
ment.

Figure 4. – LuaMOP class diagram.

The meta-representation provided by LuaMOP is created via the invocation of the
getInstance(instance)method. This method returns the meta-object correspondingto the
object with name or reference described by the instance parameter. This meta-object is
an instance of a meta-class described above. For each meta-class there are methods that
describe it and that support changing the behavior of a meta-object. Thus,getType()and
getName()methods can be invoked by all meta-classes, since these methods are part of
the MetaObject meta-class. These methods return, respectively, the meta-object type and
name. Thedestroy()method is used to disconnect the meta-object from the base object
and to destroy the meta-object. ThegetInstance()method can also be invoked, using as
an input parameter a non-determined name. For instance:getInstance(”string.*”)returns
a Lua table with meta-objects that represent the functions of the string package.

For the sake of brevity, only someMetaFunctionmethods are commented here, an
extensive explanation of LuaMOP can be found in [Cacho et al.2005b]. TheMetaFunc-
tion meta-class offers theaddPreMethod, addPosMethod, andaddWrapMethodmethods.

93



These methods define the place where the behavior is added: Pre(before), Pos(after), and
wrap the execution of a function. An example of the use of these functions is illustrated
in figure 5.

1 function reglog(self,value)
2 print("Deposited Value: ",value)
3 end
4 metafun = LuaMOP:getInstance("Account.deposit")
5 metafun:addPosMethod(reglog)
6 Account:deposit(10)

Figure 5. – LuaMOP example with addPosMethod [Cacho et al. 20 05b]

The meta-object is obtained at line 4. At line 5, theaddPosMethodmethod is
invoked to add thereglog function defined from lines 1 to 3. When the deposit method is
executed (line 6), the LuaMOP mechanisms automatically invoke thereglogmethod.

LuaMOP functionality goes beyond the provision of a meta-representation. It can
also capture events from the runtime execution environment. A Monitor is created to
handle events related to elements that have not yet been declared in the application. This
facility is used to support the anticipated join points strategy (see in [Cacho et al. 2005b]).

The integration of these properties in an aspect environment is straightforward.
For instance, the definition of the advice mechanism for acall join point is illustrated in
figure 6.

1 function AspectDefinition:defineCall(id)
2 local aspect = AspectDefinition.aspectList[id]
3 local metaobject = LuaMOP:getInstance(aspect.pointcut.list)
4 if (aspect.advice.type == ’before’) then
5 metaobject:addPreMethod (aspect.advice.action)
6 elseif (aspect.advice.type ==’around’) then
7 metaobject:addWrapMethod (aspect.advice.action)
8 else
9 metaobject:addPosMethod (aspect.advice.action)

10 end
11 aspect.mob = metaobject
12 end

Figure 6. – Aspect definition using LuaMOP features in Aspect Lua

For each aspect declared in AspectLua, it only suffices to define the advice method
as apre, wrap, or posmethod to the metaobject representing the join point (figure6, lines
4-10), depending on the type of aspect that can bebefore, aroundor after (figure 1, line
6).

3. Reusability and Heterogeneity Improvement in AOP
In this section we discuss the features of aspect-oriented programming languages needed
to benefit aspect reuse, context independence and heterogeneous interaction and then we
introduce RE-AspectLua, a solution for these problems written in the Lua language. Sec-
tion 3.1 addresses the lack of reusability and heterogeneity in AOP languages, presents a
solution, the concept ofaspect interfaces, and discusses how a connection language may
help in supporting reusability and heterogeneity in AOP languages. Section 3.2 presents
how RE-AspectLua supports the features discussed in section 3.1 in order to promote
aspect reuse and heterogeneous behavior.

94



3.1. Abstractions for Aspect Reuse

There are two essential features that aspect-oriented programming languages must include
to benefit from aspect reuse, context independence and heterogeneous interaction:

Abstract Join Points. Abstract join points [Lieberherr et al. 1999] are declarations of
join points that are not bound to the base element at specification time. The def-
inition of the real instance is done later, at application composition time. In this
way, abstract join points specify generic and context independent aspects. Differ-
ent applications can reuse the aspect and instantiate the abstract join points with
different elements. Thus, this strategy promotes aspect reuse and allows the het-
erogeneous interaction of the aspect with different components. There is a lot of
work [Aracic et al. 2005], [Suvée et al. 2003], [Herrmann and Mezini 2001] that
uses this concept.

Connection Language. Connectors are commonly used in component-based languages
to connect components in order to compose the final system [Szyperski 2002]. In a
similar way, connection languages can be used to support theconnection between
aspects and components. Some works use connectors to yield component-aspect
composition [McDirmid and Hsieh 2003, Suvée et al. 2003, Suvée et al. 2005].
The use of such a mechanism, associated to abstract join points, is an interest-
ing solution to reduce dependence relationships between aspects and components
and to improve the flexibility of the interaction between them.

In order to address context independence, we borrow the concept ofaspect inter-
facedefined in [Chavez et al. 2005] to model aspects at architectural level. A connection
language is used to define the instantiation of the join points and the definition of the ad-
vice activation time. Thus, the connection language, also named configuration language,
makes it possible the independence of the aspect in relationto the affected components.
In this way, in the specification, the aspect does not determine the code that it affects.

3.1.1. Aspect Interfaces

At the programming language level, we propose the concept ofaspect interface. Aspect
interfaces are contract definitions of aspectual functionalities established at specification
time. The aspect interface definesrefinements. Refinements contain (i) the definition of
the abstract join point (the elements that will be affected by the aspect); (ii) the definition
of action to be taken (the advice) when the join points are reached. This set of join points
and the advice type (before, after, or around) are defined by the connection language at
application composition time.

The aspect interface abstract syntax in BNF is illustrated in figure 7:

<AspectInterfaceDeclaration> ::= <AspectInterfaceName> "=" <AspectInterfaceInstantiation>
<AspectInterfaceName> ::= <identifier>
<AspectInterfaceInstantiation> ::= "AspectInterface:new()"
<RefinementDeclaration> ::= <AspectInterfaceName> ":" <RefinementInstantiation>
<RefinementInstantiation> ::= "refinement( { name = ’" <identifier> "’},"

" { refine = ’" <identifier> "’,"
" action = " <identifier> "})"

Figure 7. – BNF Syntax of aspect interfaces

95



The BNF syntax defines the declaration of aspect interfaces,and its refinements.
An aspect interface has a identifier and is instantiated by the use ofAspectInterface:new().
It may have one or more refinements. The refinements are declared for each aspect inter-
face, and must define its name (name), the abstract pointcut name (refine) and the method
to act as advice for the abstract join point (action)

3.1.2. Connection Language

In order to express the relationships between an aspect and base elements, the use of
connectors, as we discussed in section 3, can give a proper support to promote the aspect
independence in relation to the usage context.

Scripting languages have been used to support the interconnection of elements in
component-based systems [Batista 2000]. It acts as a configuration language that defines
the relationship between the components. Scripts can also be used to adapt the component
interconnection when interfaces are not compatible and, inthis case, are calledglue code.

In a similar way, scripting languages also act as connectionlanguage between as-
pects and components. In this case, the scripting language must instantiate the abstract
join points. It cannot break the component interface contract and it must define the prece-
dence between aspects that act on the same join point. In addition, the inherent flexibility
of most scripting languages allows the definition of complexrelationships between as-
pects, such as (i) the conditional removal of an aspect behavior in the presence of other
aspect, (ii) higher semantics by enabling complex aspect protocols.

3.2. RE-AspectLua

RE-AspectLua includes the abstractions aforementioned. An aspect in RE-AspectLua is
a component that contains a set of aspect interfaces (AspectInterface).An aspect interface
can have one or more definitions of refinements. Refinements are declarations of abstract
join points and advice (figure 8).

Figure 8. Generic Aspect model

In RE-AspectLua, common aspects are also calledaspectual componentsby act-
ing like a component with aspectual behaviour.

96



3.2.1. Aspect Definition

Figure 9 shows an example with two aspect interfaces declared: ai1 andai2. The ai1
interface (line 4-7) defines a refinement that declares a behavior (advice1method) to be
executed when a set of abstract join pointsabstractpointAis reached. The moment when
the method will be executed (before, after or around), and the exact join points that the
refinedeclaration represents are defined at application composition time, using a connec-
tion language. Theai2 interface (lines 9-12) is similar to theai1 interface. However, it
defines another behavior to be executed when the set of abstract join pointsabstractpointB
is reached.

1 aspectA = Aspect:new( {name = "Aspect A"} )
2 aspectB = Aspect:new( {name = "Aspect B"} )
3

4 ai1 = AspectInterface:new()
5 ai1:refinement( {name = ’interface1’},
6 {refine = ’abstractpointA’,
7 action = advice1} )
8

9 ai2 = AspectInterface:new()
10 ai2:refinement( {name = ’interface2’},
11 {refine = ’abstractpointB’,
12 action = advice2} )
13

14 aspectA:interface(ai1)
15 aspectA:interface(ai2)
16

17 aspectB:interface(ai1)

Figure 9. – Aspect definition in RE-AspectLua

In RE-AspectLua, the aspectual components can share definitions of aspect inter-
faces. In the example of figure 9, theaspectAaspect has two interfaces, whileaspectBhas
just the first interface declared. The two aspects have the same aspect interface but inter-
act in a different way with the application. This illustrates the heterogeneity interaction
ability of RE-AspectLua.

RE-AspectLua offers “syntax sugar” to reduce the code needed to define an aspect
interface and to associate it to an aspect. Figure 10 presents the syntax sugar used to define
aspect interfaces and an aspect.

1 ai1 = AspectInterface:new_refinement( {name = ’interface1’},
2 {refine = ’abstractPointA’,
3 action = advice1} )
4

5 ai2 = AspectInterface:new_refinement( {name = ’interface2’},
6 {refine = ’abstractPointB’,
7 action = advice2} )
8

9 aspectA = aspect ({ai1, ai2})

Figure 10. – Syntax sugar for the definition of aspects in RE-A spectLua

Figure 10 (lines 1-3) illustrates the creation of the sameinterface1of figure 9. The
aspectAaspect is created containing the two interfacesai1 andai2 (line 9). In this case,
the aspect name is not explicitly defined.

97



3.2.2. Aspect Instantiation

The interaction and precedence relationships of the aspects are defined also via scripts of
the connection language. In RE-AspectLua, the language used to connect the elements
is the Lua language itself with a library that allows the instantiation of join points and
the definition of the relationships between aspects. This library offers theget interface
method, to dynamically get an aspect interface by its name, and thebind refinement
method to bind a refinement by instantiating concrete join points for it.

Figures 11 and 12 illustrate the definition of the aspectual connection to the aspects
defined in figure 9.

1 int1 = aspectA:get_interface{’interface1’}
2 int1.abstractpointA =
3 {designator = ’call’,
4 pointcut-list = {’some-class:method1()’},
5 type = ’before’}
6

7 int2 = aspectA:get_interface{’interface2’}
8 int2.abstractpointB =
9 {designator = ’callone’,

10 pointcut-list = {’another-class.*’},
11 type = ’after’}

Figure 11. – Instantiating the interfaces of
aspectA

Figure 12. AspectA
model

Figure 11 shows how the connection language is used to declare the instanti-
ation of aspectA’s aspect interfaces. First, theai1 aspect interface is retrieved by a
get interface()call on aspectA(line 1). Then theabstractpointArefinement has its in-
stantiation defined: theadvice1method (figure 9, line 7) will be executed just before
some-class:method1()call. In this language it is possible to quantify the join points using
the wildcard ’*’ as can be seen in the declaration of the join points of theabstractpointB
refinement (figure 11, line 8).

1 int3 = aspectB:
2 get_interface{’interface1’}
3 int3.abstractpointA =
4 {designator = ’execution’,
5 pointcut-list = ’third_class.*’,
6 type = ’before’}

Figure 13. – Instantiating the interface of
aspectB

Figure 14. AspectB model

Another crosscutting relationship is illustrated in figures 13 and 14. Theinterface1
aspect interface inaspectBhas a set of join points that intercepts the executions of all
methods of thethird-classcomponent and executes theadvice1advice (defined in the
aspect interfaceai1 at figure 9, line 7).

98



4. Case Study
A simple banking application is shown to illustrate advicesin RE-AspectLua. AspectLua
does not offer a suitable solution for this case unless by some code duplication. This
section shows how RE-AspectLua handles it.

Figure 15 contains a RE-AspectLua generic aspect code for logging bank trans-
actions. Thelogaspectaspect is declared at line 3. Theloggedmethodsrefinement is
associated to thelogging aspect interface at lines 5-7; and the interface is linked tothe
logaspect. The advice code is at lines 10-12.

1 require ’REAspectLua’
2

3 logaspect = Aspect:new( {name = "logaspect"} )
4 aint = AspectInterface:new ()
5 aint:refinement ( {name = ’logging’},
6 {refine = ’logged_methods’,
7 action = logbalance} )
8 logaspect:interface(aint)
9

10 function logbalance(self)
11 print (’Balance is now: ’, self.balance)
12 end

Figure 15. – RE-AspectLua aspect declaration

In order to instantiate theloggedmethodsrefinement, a connection script is
needed. Figure 17 shows multiple refinement instantiation.First, the aspect and the
aspect interfaces are retrieved by their names (lines 1-2).Then, the refinement is instan-
tiated (or bound) 3 times. Thelogbalanceadvice is executed after thedepositmethod of
theBankcomponent (lines 4-6); and before and after the invocation of thecashmethod.

Figure 16. – Instantiating the interface of logaspect

1 laspect = Aspect:get("logaspect")
2 log_int = laspect:get_interface(’logging’)
3

4 log_int:bind_refinement("logged_methods", { designator = ’call’,
5 pointcut_list = {’Bank.deposit’},
6 type = ’after’})
7 log_int:bind_refinement("logged_methods", { designator = ’call’,
8 pointcut_list = {’Bank.cash’},
9 type = ’after’})

10 log_int:bind_refinement("logged_methods", { designator = ’call’,
11 pointcut_list = {’Bank.cash’},
12 type = ’before’})

Figure 17. – Instantiation script

The pure AspectLua implementation of this functionality would need more than
one aspect due to lack of reuse and heterogeneity abilities of AspectLua (discussion in
section 2.1, figure 3).

99



5. Related Work

AspectLagoona [Gal et al. 2003] defines aspects as component-like modules containing
advices. The pointcut language is the method definition in component interface. The as-
pect is defined for component interface, not component implementation, crosscutting all
implemetations of interface. This way, there’s low independence of aspect from the com-
ponent, leading to limited reuse of aspect. RE-AspectLua allows context independence,
providing more reusable aspects than AspectLagoona.

Jiazzi [McDirmid and Hsieh 2003] supports component developments for Java.
Components are linked by a connection language. The connection language doesn’t al-
low advice-like behaviour, although permits that some crosscutting concerns are better
modularized by the use of open classes and open signatures. New code statements and a
post-compilation phase are needed in Jiazzi. RE-AspectLuaalso defines aspect interac-
tion by using a connection language, but does not require anyfurther step to bind aspect
behaviour into component code.

JAsCo [Suvée et al. 2003] provides aspects in JavaBeans component model. As-
pect beans are defined containing advice associated to abstract pointcuts. Special Connec-
tor entities instantiate the abstract pointcuts, allowinghigh levels of reuse. RE-AspectLua
is inspired on JAsCo, by providing abstract pointcuts to be instantiated in later phase.
As RE-AspectLua uses Lua as connection language, dynamic advice implementation is
simpler than in JAsCo, where all JavaBeans must be traced in the execution environment.

FuseJ [Suvée et al. 2005] proposes a new component model where all components
can be aspects and all the crosscutting is done by connectionlanguage. This approach re-
stricts application domains of language, since all components must follow the component
FuseJ component model.

CaesarJ [Aracic et al. 2005] integrates components and aspects with mixin com-
position of family classes. This way, CaesarJ doesn’t use connection language to link
aspect-components. A wrapper mechanism is used to adhere crosscutting structure and
behavior to components of different family classes. RE-AspectLua does not use wrap-
per mechanism, but refinements in aspect interface, to link crosscutting behavior to base
components.

LAC – Lua Aspectual Components [Herrmann and Mezini 2001] – is a Lua
extension whose main goal is to support the idea of AspectualComponents (AC)
[Lieberherr et al. 1999]. It defines an explicit connector module to bind the participants.
In contrast, RE-AspectLua is more flexible as it uses the Lua scripting capabilities in the
definition of the connection between aspects and base elements. This flexibility allows
the definition of complex aspect composition.

6. Final Remarks

The abstractions to the modularization of the crosscuttingconcerns at traditional aspect-
oriented languages are limited in terms of reusability and heterogeneous interaction ca-
pability. In this paper we use the concepts of aspect interface and connection language,
commonly used in component-based systems, in order to promote aspects reuse. We pro-
pose the use of a scripting language, the Lua language, to thedefinition of the interaction
between aspects and base elements. Although the concept ofabstract join pointsis com-

100



monly found in some works, we use this concept in conjunctionwith a dynamically typed
and interpreted connection language, that adds a great dealof flexibility to the composi-
tion of the reusable aspect and the base code. AspectJ supports the concept of abstract
pointcuts. However, the flexibility provided by usign abstract pointcuts with a connection
language is not offered by AspectJ.

The concepts of abstract join points, aspect interface and connection language are
instantiated in the definition of a new version of AspectLua,RE-AspectLua, that promotes
reusability, context independence and a better organization of the heterogeneous interac-
tion between aspects and base elements. Future work includethe use of RE-AspectLua in
a more complex application to explore the aspect reuse in many heterogeneous ways.

We also presented a case study that show that RE-AspectLua enriches the modu-
larization approach of AOP to allow a more effective reuse and heterogeneous interaction.

7. Acknowledgements

This work has been partially supported by Brazilian National Agency of Petroleum under
grant No.2001.7999-5 for Mauricio B. C. Vieira.

References

Aracic, I., Gasiunas, V., Mezini, M., and Ostermann, K. (2005). An Overview of CaesarJ.
Technical Report TUD-ST-2005-01, Darmstadt University ofTechnology, Darmstadt,
Germany.

Batista, T. V. (2000). LuaSpace: um Ambiente para Reconfiguração Dinâmica de
Aplicaç̃oe Baseadas em Componentes. PhD thesis, Pontifı́cia Universidade Católica
do Rio de Janeiro, Rio de Janeiro.

Bryant, A. and Feldt, R. (2002). Aspectr - simple aspect-oriented programming in ruby.
http://aspectr.sf.net/. Last visualization in March 2007.

Cacho, N., Batista, T., and Fernandes, F. (2005a). Aspectlua - A dynamic AOP approach.
Journal of Universal Computer Science (J.UCS), 11(7):1177–1197.

Cacho, N., Fernandes, F., and Batista, T. (2005b). HandlingDynamic Aspects in Lua.
In SBLP2005: Proceedings of XIX Brazilian Symposium on Programming Languages,
pages 76–89, Recife, Brasil.

Chavez, C. V. F. G., Garcia, A., Kuleska, U., Sant’Anna, C., and Lucena, C. (2005). Tam-
ing Heterogeneous Aspects with Crosscutting Interfaces. In SBES2005: Proceedings
of XIX Brazilian Symposium on Software Engineering, pages 216–231, Uberlândia,
Brasil.

Dechow, D. R. (2004). Advanced separation of concerns for dynamic, lightweight lan-
guages. In5th Generative Programming and Component Engineering.

Fernandes, F. (2004). Combinando Aspectos e Componentes: uma abordagem interpre-
tada. Master’s thesis, Universidade Federal do Rio Grande do Norte, Natal.

Fernandes, F. and Batista, T. (2004). A Dynamic Approach to Combine Components
and Aspects. InSBES2004: Proceedings of XVIII Brazilian Symposium on Software
Engineering, pages 102–112, Brası́lia, Brazil.

101



Gal, A., Franz, M., and Beuche, D. (2003). Learning from components: Fitting AOP for
system software. InProceedings of the AOSD 2003 Workshop on Aspects, Compo-
nents, and Patterns for Infrastructure Software, Boston, MA, USA.

Herrmann, S. and Mezini, M. (2001). Combining Composition Styles in the Evolvable
Language LAC. InWorkshop on Advanced Separation of Concerns in Software Engi-
neering at 23rd ICSE.

Hirschfeld, R. (2003). AspectS - aspect-oriented programming with squeak. InNODe
’02: Revised Papers from the International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications for a Networked World, pages
216–232, London, UK. Springer-Verlag.

Ierusalimschy, R. (2006).Programming in Lua. Lua.org, Rio de Janeiro, BR, second
edition.

Ierusalimschy, R., de Figueiredo, L. H., and Filho, W. C. (1996). Lua an extensible
extension language.Software: Practice and Experience, 26(6):635–652.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,J., and Griswold, W. G.
(2001). An overview of AspectJ. InECOOP ’01: Proceedings of the 15th European
Conference on Object-Oriented Programming, pages 327–353, London, UK. Springer-
Verlag.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. In Akşit,M. and Matsuoka, S., editors,
Proceedings European Conference on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York.

Lieberherr, K., Lorenz, D., and Mezini, M. (1999). Programming with Aspectual Compo-
nents. Technical Report NU-CCS-99-01, College of ComputerScience, Northeastern
University, Boston, MA.

McDirmid, S. and Hsieh, W. C. (2003). Aspect-oriented programming with Jiazzi. In
AOSD ’03: Proceedings of the 2nd international conference on Aspect-oriented soft-
ware development, pages 70–79, New York, NY, USA. ACM Press.

Suvée, D., Vanderperren, W., and Jonckers, V. (2003). Towards a symbiosis between
aspect-oriented and component-based software development. In Proceedings of the
SCI 2003 international conference, pages 442–447, Orlando, USA.

Suvée, D., Vanderperren, W., Wagelaar, D., and Joncker, V.(2005). There are no Aspects.
In Electronic Notes in Theoretical Computer Science, Proceedings of the Software
Composition Workshop (SC 2004), volume 114, pages 153–174. Elsevier Science.

Sztipanovits, J. and Karsai, G. (2002). Generative programming for embedded systems.
In PPDP ’02: Proceedings of the 4th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 180–180, New York, NY,
USA. ACM Press.

Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

102



  

Programming through Spreadsheets and Tabular 
Abstractions 

Carlos Henrique Q. Forster 

Instituto Tecnológico de Aeronáutica 
Divisão de Ciência de Computação 

Pça. Mal. Eduardo Gomes, 50 Vila das Acácias  
12228-900 – São José dos Campos – SP – Brazil 

forster@ita.br

Abstract. The spreadsheet metaphor has, over the years, proved itself valuable 
for the definition and use of computations by non-programmers. However, the 
computation model adopted in commercial spreadsheets is still limited to non-
recursive computations and lacks abstraction mechanisms that would provide 
modularization and better reuse (beyond copy and paste). We investigate these 
problems by identifying a minimal set of requirements for recursive 
computations, designing a spreadsheet-based language with an abstraction 
definition mechanism, prototyping an interpreter and evaluating it with 
examples. 

Keywords. Spreadsheet languages, end-user programming, call-by-need, lazy 
structures, recursion, abstraction. 

1. Introduction 
Spreadsheets are a popular document model for structuring information and interacting 
with data. With spreadsheets a user can also define small computations with data that 
allow for instance statistical summarization, simulation and information highlighting 
provided that this user is able to express these computations in a formula language. 
Spreadsheet systems have also been used as a data entry interface for other software. 

 While the textual paradigm of programming daunts the general user, we can see 
non-programmers using spreadsheets and defining simple computations expressed 
through spreadsheet formulae. This can be a good starting point for learning to program. 
A spreadsheet user will perceive desired computations that he is unable to describe in a 
spreadsheet and feel the urge to move to a textual programming language. It is expected 
that enhancements on the expressive power of spreadsheets to allow advanced 
computations would fill the gap between spreadsheet and textual programming. 

 One criticism about current commercial spreadsheets is their lack of abstraction 
mechanisms. Users are limited to a set of predefined functions. Modularization is 
simulated by copy-and-paste of template spreadsheets. This makes spreadsheets hard to 
maintain. Code replication forces the users to keep track of all copies in order to update 
them properly when new information arrives or a bug is found. Proper reuse mechanism 
would allow tested and trustful components to be safely adopted and easily replaced. 
Additionally, some features can be implemented through spreadsheets but in a very 
cumbersome way. Long expressions referring to many cells are truly hard to decipher 
and maintain. Having means to define abstract operations and creating instances of 

103



  

these operations as needed would make complex spreadsheets more readable just like 
subroutine calls make programs more readable. 

 Another criticism is the lack of scalability. Although the supposition of infinite-
sized problems can strike us as superfluous, recursive computations are important when 
we deal with abstractions. Most of the times when the problem is bigger than the 
spreadsheet were prepared to handle, we need just to insert a number of columns or 
rows and get a new spreadsheet ready to do the calculation. In the case of abstract 
spreadsheet definition, nothing should be assumed about the size of the problem, we 
just need one abstraction to be able to solve the problem and we cannot manually create 
another spreadsheet instance for each “subroutine call” because the number of instances 
can grow rapidly. 

 This paper investigates the problem of defining recursive and abstract 
computations in the tabular format, preserving important properties such as the spatial 
structuring of information and referential transparency. Usually an imperative scripting 
language is included in a spreadsheet system to add support to advanced computations. 
We intend to follow the reverse path, allowing complex computations to be defined in 
spreadsheet format and turning the spreadsheet into an environment for scripting 
application behavior or connecting software components. 

 We point some application areas for spreadsheet programming. Spreadsheet 
programming can be used for the reconfiguration of software applications through 
defining small computations or data flow among software components. Particularly, 
Information Visualization is an area that would benefit from the reconfiguration 
capability and the representation of data and data transformation in the tabular format. 
Also, in Education, teaching of Math-related subjects could benefit from end-user 
definition of computations [Misner and Cooney, 1991]. 

 The paper is organized as follows. Section 2 of the paper revisits many concepts 
on which spreadsheets are based and points to a few references from the literature. The 
respective design decisions for the proposed system are presented in section 3. The 
development of our contribution starts with the identification of a set of primitive 
constructs that allow a spreadsheet language to represent recursive computations 
(section 4). A model of abstraction definition in the tabular format for the spreadsheet 
language is presented (section 5). The prototype implementation of an interpreter for the 
defined language and a spreadsheet editor are described (section 6). The prototype 
system is evaluated by implementing some examples (section 7). In section 8, we 
provide a general conclusion of the present work and point future directions. 

2. Design Issues Peculiar to Spreadsheet Languages 
The design of a language for spreadsheets is quite different from the design of a general 
programming language being the main differences, the presence of a visual editor and 
the requirement for fast updates for interactive computing. Another important difference 
is the organization of information in a tabular structure. We describe in this section 
some design issues that are considered in our design. 

 Coordinate-based references are the foundation of the spatial organization of 
spreadsheets, but imply some design difficulties. On one hand, coordinates can be easily 
entered through point-and-click in the editor interface. Additionally, coordinate-based 
formulae can be copied, moved and extended (copied to a larger area) maintaining 

104



  

appropriate relative references to, for instance, “the same line”, “the line above” or “two 
columns to the right”. On the other hand, formulae based on coordinate mnemonics are 
very difficult to read. Consequently, programs are difficult to write or maintain. 
Verifying correctness of choice between absolute, relative or mixed-coordinate 
references is pretty difficult. In Visicalc-based spreadsheets [Bricklin and Frankston, 
1999], absolute coordinates represented such as $A$1, when copied or extended are 
kept as $A$1. Relative coordinates like A1, when extended to the right becomes B1, 
when copied to the cell immediately below becomes A2. Mixed coordinates are 
represented like A$1 or $A1. 

 The semantics of cell copy, movement and extension operations is a source of 
confusion. The behavior of those operations can vary concerning how cell references 
are maintained. Some systems may update cells that used to point to a previous location 
of another cell. However, copying would be handled differently. In some editors, 
movement keeps track of which cells refer to the cell being moved. It is confusing 
because it can modify something very far away from the area where the user is 
changing. Lisper and Malmström [2002] point at the problem of concatenation of tables 
on the same page. If we concatenate two tables side-by-side, the insertion of a new row 
to the first table would spoil the alignment of the second table. In order to cope with 
row or column insertion concatenation of separate tables must be diagonal, what is 
logically correct but functionally and visually inappropriate. This is a good clue that 
data and programs must be organized beyond two-coordinate axes. A data structure 
holding multiple tables should be necessary. 

 Another way to reference cells considers cell names instead of coordinates. The 
use of names is recommended because references become more readable and provide a 
form of access similar to tuple structures. Systems based only on names, like dataflow 
systems, unfortunately rarely make use of the tabular spatial structure and can easily 
become cluttered both in name space and canvas space. Notable exceptions include 
Forms/3 [Burnett et al., 2001] and Haxcel [Lisper and Malmström, 2002]. 

 While, for the textual programming languages, there is the read-eval-print loop 
of an interpreter or the compile-eval-print loop of compiler systems, spreadsheets would 
have a definition-eval-display loop. Traditional spreadsheet systems would evaluate an 
expression and all of its dependencies on any change. A call-by-need spreadsheet 
system would evaluate only formulae that are directly or indirectly needed for the 
current visualization. The formula language of a spreadsheet doesn’t have the 
attribution operation. The absence of side-effects due to attribution provides the 
property of referential transparency. This is the property that two identical expressions 
yield identical values. The preservation of this property along with call-by-need will 
allow lazy-evaluation, mechanism of evaluation that goes beyond call-by-need by 
reusing computations so that identical expressions should not be evaluated twice. (See 
for example [Harrison and Field, 1988]). 

 Recursive formulae through the means of cycles are not generally allowed. A 
spreadsheet system may permit the definition of cyclic dependent cell formulae. This 
will constitute an equation system or a constraint system, which may be solved by a 
constraint solver or through relaxation, where each cell is computed multiple times until 
some convergence criterion is satisfied or recognized as unreachable. 

105



  

 Some spreadsheet systems allow data structures to be included inside cells or to 
include spreadsheets as members of data structures such as a folders (list with 
hierarchy) or trees. Complex objects such as graphics or images are allowed as cell 
values in some spreadsheets such as image spreadsheets [Levoy, 1994] or visualization 
spreadsheets [Chi et al., 1998] [Nuñez, 2002]. 

3. Design Decisions 
 We describe now our design decisions. In order to keep semantics as clear and 
simple as possible, we recommend using coordinate-awareness providing functions 
namely row() and col(). Such functions allow the formula of cell to know the 
coordinates of that cell. We propose that relative cell references be built upon these 
functions. Copying a formula from one cell to another is the correct cell copy operation. 
Extension of a cell to an area is implemented simply as copying the formula of the cell 
to each cell in the area. Alternatively, names are also allowed as absolute references. 

 Our model of spreadsheet editing and computation assumes that cells only 
accept formulae as input. We assume also that spreadsheet formulae cannot modify 
cells, only the editor is able to modify the formula of a cell. We define an editor as the 
only type of entity able to modify cells so that interactive computation should be 
obtained through the mediation of an editor. Complex objects may be represented or 
abstracted as spreadsheet data and it is the role of an editor to provide the correct 
visualization for this data. 

 We consider that evaluation of complex computations may not be deliverable in 
time, so our proposed editor has two modes: a formula-viewing mode and a value-
viewing mode. Formulae are evaluated only when their values must be displayed (or are 
referenced by some other cell or evaluation chain whose value will be displayed). In 
formula-viewing mode, values are not displayed and then evaluation does not happen. 
This behavior of performing only the presently needed computations corresponds to the 
desired call-by-need behavior. Sharing the evaluation of expressions is implemented 
through caching of computed values of cells while intermediate values passed as 
function arguments are not cached and their resources are freed by a garbage collector. 
This behavior approaches lazy evaluation that could be properly obtained if graph 
rewriting was implemented, which was used for example by de Hoon [1995]. 

 Spreadsheets are first-class objects and can be contained in spreadsheet cells. 
The cell reference operation is extended to provide access to cells of inner 
spreadsheets and outer spreadsheets. The coordinate-awareness functions can provide 
not only the coordinates of the cell being evaluated, but the location where its 
spreadsheet is stored and so on until a top-level spreadsheet is reached. 

 At the moment, cyclical references are not allowed and, when detected, are 
reported with an error symbol being delivered as the value of the cell. We provide other 
forms to describe recursive computations that we find more appropriate and are 
described in the next sections. 

4. A Sufficient Model of Computation through Spreadsheets 
We describe a computational model for spreadsheets. This model was created based on 
an experience of implementing a Turing Machine in a spreadsheet language. Therefore, 
the constructed model is expressive enough to represent any computable function. 

106



  

However, this sufficiency does not help to make program development easy. 
Readability of code, clear intuitive semantics and other human factors should be 
considered in the design of a spreadsheet language. 

 Coordinate cell references are important to exploit the spatial structure of 
information. Lets make all cell references through the use of a function ref(i,j) where i 
and j are respectively row and column numbers. So an absolute reference such as $B$1 
is written as ref(1,2). An editor can adopt a syntax sugar of seeing or accepting ref(1,2) 
as $B$1. Now we consider coordinate-awareness constants i and j for which row and 
column numbers are automatically assigned. A cell self-reference would be ref(i,j), 
while a reference to the immediately above cell would be ref(i-1,j) and the cell 
immediately to the right is ref(i,j+1). If current cell is C5, ref(i,j+1) can be displayed by 
the editor as D5. If we enter D5, the editor converts it to ref(i,j+1). If we enter C$4, it is 
converted to ref(4,j). When considering copying a cell with this kind of representation, 
there is nothing to change in the formula. The same happens when extending and 
moving. The semantics is then very clear and closer to traditional textual programming 
languages. 

 Our view of this kind of representation is to understand all cells as functions. 
While a spreadsheet S is a function mapping a (row,column) pair into a cell, a cell C is a 
function mapping (row,column) into a value. So, a cell with formula ref(i,j+1) holds 
indeed a function λij.ref(i,j+1) in lambda-calculus notation. The value of this cell is 
obtained applying this function to the cell coordinates such as λij.ref(i,j+1) row column. 
Approaching cell definition as a function of its location allows the preservation of 
referential transparency. Complaints that relative references would damage referential 
transparency are, therefore, not effective for this design. 

 Indirection is also accomplishable and important for the implementation of 
conditionals. Conditionals need not to be a primitive if we have indirection such as 
ref(ref(1,1),ref(1,2)). Implementation of a conditional can be seen in table 1. 

Table 1. Implementation of conditional. 

ANS=IF(COND; THEN; ELSE)  for example ANS=IF(A>B; A; B) 

 J=1 J=2 

I=1 COND: A>B ELSE: B 

I=2 ANS: ref(ref(1,1)+1, 2) THEN: A 

In the considered case, the comparison operator > returns 0 for FALSE or 1 for TRUE. 
This value can be added to a row or column index and used to select the proper cell. 
Implementation of conditional with indirection is similar to parameter selection in 
lambda-calculus. In lambda calculus, TRUE and FALSE are combinators that select the 
first or the second parameter. 

 We opt to use two types of recursive definitions. The first one is the “ellipsis” 
tabular recursion; the second one is function-call recursion which is defined in section 
5 under the name of tabular abstraction for which some examples are discussed in 
section 7. Tabular recursion allows construction of infinite tables and provides a means 
to specify induction. A three dots symbol (…) in a cell implies that this cell and all cells 
to the right of it have the same formula which is the formula of the cell immediately to 
the left of the current cell. The vertical counterpart is a three columns symbol (:::). A 

107



  

diagonal ellipsis would be represented by ***. See, for example, the implementation of 
factorial and Fibonacci functions in table 2. 

To illustrate that this model is sufficient to describe any computable function we 
implemented a Turing Machine, first in Excel, then in our prototype. In tables 3 and 4 
there is an implementation of a TM that accepts the language }0|21{ ≥nnn . The symbol 
5 is the blank symbol for the TM tape. Each row of spreadsheet (a) contains an 
instantaneous description of the TM, the first element is the machine state, the second is 
the head position (column number) and the remaining elements are tape symbols. 

 A Turing Machine requires an infinite-length tape and may enter an endless 
loop, requiring that the spreadsheet that simulates it be infinite in both axes. Infinite-
length spreadsheets can be defined by the use of the ellipsis operator. Due to the call-
by-need evaluation scheme, this does not lead to infinite computations because only the 
values that are needed for calculation or presentation are evaluated. Our spreadsheets 
can be seen as lazy structures. 

 Although, in the Turing Machine example, all computations are represented by 
the infinite-length spreadsheet, this doesn’t mean that the computations are carried out. 
We will only see a computed value if displayed by an editor, so we have to “scroll 
down” the spreadsheet until we see the TM stopped. If the TM enters an endless loop 
we would theoretically need to scroll down forever. From this observation, we conclude 
that a function to force the evaluation of cells is needed. We propose a “scan” function 
that will traverse the spreadsheet forcing evaluations until a criterion is met. In the case 
of the TM, this function will traverse the spreadsheet until the TM stops. If TM never 
stops, “scan” should also theoretically never stop. 

5. A Model for Abstraction Definition 
We propose an abstraction model very similar to the one in Forms/3 [Burnett et al., 
2001]. The abstraction scheme resembles the delegation mechanism used as inheritance 
in prototype-based languages such as JavaScript. Every spreadsheet is a candidate for 
abstraction. It happens by overriding the formulae of some cells of a template 
spreadsheet and collecting the results of computed cells of the new formed spreadsheet. 

 We call tabular abstraction the use of a spreadsheet or table as a function. Our 
liberal proposal permits that any cells of a template spreadsheet be overridden. The 
override of a spreadsheet consists of a spreadsheet with the substitution cells and a 
reference to the template spreadsheet whose cells are being overridden. The new 
spreadsheet formed this way will have cells whose formula will evaluate based on the 
other overridden cells. We use the following syntax: extend(template_spreadsheet, 
override_spreadsheet) which evaluates to a spreadsheet that can be kept inside a cell. A 
spreadsheet can extend itself using the ref() function without arguments. In terms of 
lambda-calculus, we create an abstraction defining which cells become parameters and 
already apply the abstraction to values and formulae that override the cells. 

108



  

Table 2. Implementation of factorial and Fibonacci functions. 

ANS=FACTORIAL(N) 

 J=1 J=2 J=3 J=4 

I=1 1 mul(ref(row(),sub(col(),1)), 
col()) 

…  

I=2 N: ANS: ref(1,ref(N))   
 

 J=1 

I=1 1 

I=2 1 

I=3 add( 
ref(sub(row(),1),1),ref(sub(row(),2),1)) 

I=4 :::  
Table 3. This is an implementation of a Turing Machine in Excel. We suppose 
lines and columns are infinite. Three basic formulae are given in (e), additional 
formulae is produced by the extension mechanism. 

b) Symbol to Write on Tape 
symbol =1 =2 =3 =4 =5 

state=1 3   4  
state=2 1 4  4  
state=3 1  3 4  

c) State Transition Table 
symbol =1 =2 =3 =4 =5 

state=1 2 #FALSE #FALSE 4 #FALSE 
state=2 2 3 #FALSE 2 #FALSE 
state=3 3 #FALSE 1 3 #FALSE 
state=4 #FALSE #FALSE #FALSE 4 5 

d) Tape Head Movement 
symbol =1 =2 =3 =4 =5 

state=1 1   1  
state=2 1 -1  1  
state=3 -1  1 -1  

a)Instantaneous Descriptions 
A (state) B (head) C (tape)... 

1 3 1 1 2 2 5 5 

2 4 3 1 2 2 5 5 

2 5 3 1 2 2 5 5 

3 4 3 1 4 2 5 5 

3 3 3 1 4 2 5 5 

1 4 3 1 4 2 5 5 

2 5 3 3 4 2 5 5 

2 6 3 3 4 2 5 5 

3 5 3 3 4 4 5 5 

3 4 3 3 4 4 5 5 

1 5 3 3 4 4 5 5 

4 6 3 3 4 4 5 5 

4 7 3 3 4 4 5 5 

5 8 3 3 4 4 5 5 

#TRUE 8 3 3 4 4 5 0 

5 is the blank symbol 

This machine accepts }0|21{ ≥nnn  

e) Excel Formulae 
A3=ÍNDICE(State!$A$1:$E$5;Tape!$A2;ÍNDICE($A2:$Z2;1;$B2)) 

B3=ÍNDICE(Move!$A$1:$E$5;Tape!$A2;ÍNDICE($A2:$Z2;1;$B2))+$B2 

C3=SE(COL()=$B2;ÍNDICE(Write!$A$1:$E$5;Tape!$A2; 
                ÍNDICE($A2:$Z2;1;$B2));C2) 

Table 4. Implementation of a Turing Machine in our prototype. 

 J=1 J=2 J=3 4 5 6 7 8 

I=1 state:grid(…) write:grid(…) move:grid(…)      

I=2 1 3 1 1 2 2 5 …

I=3 ref(state, 
ref(sub(row(),1),1), 
ref(sub(row(),1), 
ref(sub(row(),1),2))) 

add( 
ref(sub(row(),1),2), 
ref(move, 
ref(sub(row(),1),1), 
ref(sub(row(),1), 
ref(sub(row(),1),2)))) 

if( eq(col(), ref(sub(row(),1),2)), 
ref(write, ref(sub(row(),1),1), 
ref(sub(row(),1), 
ref(sub(row(),1),2))), 
ref(sub(row(),1),col())) 

…     

I=4 ::: ::: ::: ***     

 

109



  

 The difference of our proposal to [Burnett et al., 2001] is that tabular 
organization is enforced and depended upon. Coordinate-awareness functions can 
provide access to the cells of the outer (or the “calling”) spreadsheet as absolute 
references or references relative to the location of the extend() function. As a result, 
spreadsheet cells can be also overridden with ellipsis, allowing a sort of infinite 
argument list. Return of multiple values is done by accessing computed values of the 
spreadsheet instances. Infinite list of values can then also be returned. 

6. Implementation 
We implemented the prototype of the interpreter and the editor in Java. Java was chosen 
as development platform for several reasons: we already have a garbage collector; it is 
easier to write a graphical editor; it is easy to write a FFI to extend the system using 
class files and the reflection mechanism; it is multiplatform; it is free. 

 Spreadsheets were implemented as Java Hashtables. The objects used for keys 
are coordinate pairs and, for elements, a class containing a formula string, the 
expression tree of the parsed formula and a cache for the cell value. Each spreadsheet 
also has a hash table of named cells (mapping symbolic name to coordinates) and a 
linked list of ellipsis cells. When the value of a cell is requested, the spreadsheet checks 
if the cell value was cached. If it is not the case, then it checks if the cell is influenced 
by some ellipsis cell, returning the corresponding ellipsis reference or returning the cell 
expression tree otherwise. When any formula is changed, all cached values are 
discarded. 

 Spreadsheet persistence is made by a linear description of spreadsheets in the 
formula language. This allows also the inclusion of a spreadsheet as a cell element 
inside another spreadsheet. The syntactical construction is 
grid(row,column,formula,…). This construction is not evaluated as a function; its 
parameters are considered “quoted”. 

 The editor has two modes: a formula-view mode and a value-view mode that can 
be switched through a button widget. Formulae for the cells can be entered in either 
mode. A cell is selected by a single click. A ctrl+click combination produces the 
expression of relative reference to the cell, while a ctrl+shift+click produces the 
absolute reference. Double-clicks on cells that contain a spreadsheet will open an editor 
window with that inner spreadsheet. The textual representation of a spreadsheet can be 
obtained by an option on the menu and can be pasted as the content of any spreadsheet 
cell. 

 The lexical analyzer was written with the aid of Java regular expressions. The 
parser is a top-down depth-first backtracking parser based on recursive function calls. A 
symbol table (based in a hash table) is kept to make quick comparisons of symbolic 
strings. The evaluation of some integer expressions was implemented: addition, 
multiplication, arithmetic negation, subtraction, division, comparison (equal, greater 
than etc.). In the case of a spreadsheet inside of another, an expression ref (0, 2, 7, 0) 
refers to the cell at row 7 column 0 of the spreadsheet located in the cell at row 0 
column 2. This function can receive as arguments integer coordinates, names of cells 
and spreadsheets, so that the expression ref (ref (0, 2 ), 7, 0) has the same meaning of 
the one above. Functions col() and row() return the coordinates of the cell being 
evaluated and admit a numeric parameter n to refer to the n-th outer level coordinates. 

110



  

The function up() returns the spreadsheet that contains the spreadsheet with the cell 
being evaluated. 

7. Examples and Evaluation  
We implemented several experiments including Pascal triangle with tabular recursion 
(Fig. 1), functional-recursive Fibonacci and factorial functions (Fig. 2) and the already 
mentioned TM. The computation of Fibonacci is well-known as costly to compute when 
we not reuse previously computed values. We implemented efficient computation of 
Fibonacci series through value cache. The cache is limited to cell values and is accessed 
during the evaluation of the ref() function. These basic examples show the 
expressiveness of the language. The option to create windows to show inner 
spreadsheets for intermediary computations is illustrated in figure 2 and was very 
important while constructing the spreadsheets. 

 
Figure 1. Pascal triangle spreadsheet. 

 
Figure 2. Recursive factorial and Fibonacci spreadsheets. Arrows show how 

spreadsheet windows open to allow visualization of intermediate results. 

111



  

8. Conclusion 
We presented a programming model based on spreadsheets instead of traditional text 
file programs. Although spreadsheets are already computationally expressive for many 
tasks, we intended to improve them to allow the definition of recursive computations 
and better modularity and reusability of components. We justify our design through 
informal theoretical discussion and examples of its expressiveness. 

 We expect the developed environment should meet several application needs, 
improving the expressive power of users when dealing with computations and allowing 
non-programmers to enter code in the intuitive form of spreadsheets as long as they are 
able to understand and use the simple formula language. 

 The intent of this work, in the present stage, is the exploration of concepts. We 
are not yet concerned with providing an optimal implementation and the language and 
the editor are still not appealing for end-users. The designed language is targeted to a 
prototype system valuing completeness, simplicity and ease of implementation. A lot 
more of syntax sugar, basic functions and constructs should be added in order to deliver 
the systems to users. In the future, we plan to improve the interpreter by implementing 
graph rewriting, better data structure construction functions and a design for the “scan” 
operation. We intend to apply the prototype in education and information visualization 
scenarios. 

References 
Bricklin, D. and Frankston, B. (1999) VisiCalc: Information from its creators. 

http://www.bricklin.com/visicalc.htm 

Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein, J., and Yang, S. (2001) 
Forms/3: A First-Order Visual Language to Explore the Boundaries of the 
Spreadsheet Paradigm, Journal of Functional Programming 11(2), March, 155-206. 

Chi, E. H., Riedl, J., Barry, P. and Konstan, J. (1998) Principles for information 
visualization spreadsheets. In IEEE Computer Graphics and Applications (Special 
Issue on Visualization) July/August. IEEE CS, p. 30-38. 

Field, A. J. and Harrison, P. G. (1988) Functional Programming, Addison-Wesley. 

de Hoon, W., Rutten, L., van Eekelen, M. (1995) Implementing a Functional 
Spreadsheet in CLEAN, Journal of Functional Programming 5(3), July, pp 383-414. 

Levoy, M. (1994) Spreadsheet for images. In Computer Graphics (SIGGRAPH '94 
Proceedings), volume 28, pp 139-146. SIGGRAPH, ACM Press. 

Lisper, B. and Malmström, J. (2002) Haxcel: A Spreadsheet Interface to Haskell, Proc. 
14th International Workshop on the Implementation of Functional Languages, p 206-
222, Madrid, September. 

Misner, C. W. and Cooney, P. J. (1991). Spreadsheet Physics. Addison-Wesley, 1991. 

Nuñez, F., (2000) An Extended Spreadsheet Paradigm for Data Visualisation Systems, 
and Its Implementation, M. Sc. thesis Department of Computer Science, Faculty of 
Science, The University Of Cape Town. URL citeseer.ist.psu.edu/543469.html 

112



  

A New Architecture for Concurrent Lazy Cyclic Reference 
Counting on Multi-Processor Systems 

Andrei de A. Formiga, Rafael D. Lins 

Departamento de Eletrônica e Sistemas 
Universidade Federal de Pernambuco (UFPE) – Recife, PE – Brazil 

andrei.formiga@gmail.com, rdl@ufpe.br 

Abstract. Multi-processor systems have become the standard in current 
computer architectures. Software developers have the possibility to take 
advantage of the additional computing power available to concurrent 
programs. This paper presents a way to automatically use additional 
processors, by performing memory management concurrently. A new 
architecture with little explicit synchronization for concurrent lazy cyclic 
reference counting is described. This architecture was implemented and 
preliminary performance tests point at significant efficiency improvements 
over the sequential counterpart. 

1. Introduction 
Automatic memory management (often called garbage collection) has become 
widespread in current programming systems as witnessed by the wide adoption of 
garbage-collected execution environments such as Sun Java and Microsoft .NET 
platform. Automatic memory management programming systems improve programmer 
productivity and the reliability of resulting programs by relieving programmers from the 
burdensome and error prone task of having to manage memory manually [Jones and 
Lins, 1996].  

 Most current systems, implemented on sequential architectures, use a sequential 
garbage collector, where memory management tasks alternate with tasks related to the 
user process; these two tasks are never executed concurrently. However, current trends 
in processor design and marketing indicate that single-chip multiprocessors are 
becoming of widespread use in recent computer systems. Such change in computer 
architecture opens the possibility of taking advantage of the extra computing power 
available. Executing memory management tasks concurrently with the user processes, 
programs can automatically take advantage of the available processors on a computer, 
with no changes required to the user programs.  

 Reference counting, first developed by G.E. Collins [Collins, 1960], is one of 
the main methods for automatic memory management. This paper proposes a new 
architecture for a concurrent reference counting memory management system, based on 
a similar proposal by Lins [Lins, 2005]. The motivation for a new architecture was the 
need to minimize explicit synchronization between the collector and the rest of the 
program, particularly to avoid the use of locks; Lins’ original proposal was the basis of 
the garbage collector of several commercial machines, but their code was never freely 
available. The architecture proposed herein was implemented in a real programming 

113



  

system, and preliminary performance tests show promising gains in overall performance 
of programs.     

 This paper is organized as follows: Section 2 briefly presents the reference 
counting algorithm in its simplest form and some milestones in its development, leading 
to previous architectures for parallel and concurrent reference counting, some of which 
were used as the basis for the one presented here; Section 3 details the new architecture 
for concurrent reference counting on multiprocessors that minimizes explicit 
synchronization, and emphasizes its differences in relation to its predecessors; the 
architecture in Section 3 is limited to one collector and one user process, thus Section 4 
suggests ways in which the proposed architecture may be extended to work with 
multiple user processes, and multiple collector processes; finally, Section 5 presents the 
current implementation of the proposed architecture and the results of some initial 
performance measurements.  

2. Reference Counting 
The reference counting method consists of associating with each object in the heap a 
counter that stores the number of references to it. An object is active when it is currently 
in use and somehow accessible by the user program, which is indicated by it being 
transitively connected by references to one of the roots of the computation. The user 
process alters the connectivity of the objects both increasing and decreasing their 
reference count. Whenever the counter of an object reaches zero, it means that it is no 
longer active thus it is garbage and may be reclaimed to be later reused.  It is usual to 
consider the heap as organized in a directed graph, where objects are the nodes and 
references are the edges. After Dijkstra [Dijkstra et al., 1976] it is common to call 
mutator the part of the program that is concerned with the user process and collector the 
garbage collection system.  

 A distinctive advantage of reference counting over other methods of garbage 
collection is that its operations are interleaved with mutator activity, resulting in a 
technique that is naturally incremental. Other techniques, like mark-scan [McCarthy, 
1960] and copying collection [Fenichel and Yochelson, 1969], require that the mutator 
stops for some time while the collector performs its work; this leads to pauses in 
interactive systems, which may be a nuisance. However, standard reference counting 
has a serious drawback: it can not reclaim cyclic data structures, as noticed by 
J.H.McBeth in 1963 [McBeth, 1963]. Thereafter, many solutions to this problem were 
proposed, but either they were not general-use, or were actually a proposal to use two 
memory management systems, one of them solely to reclaim cycles. The first general 
solution to the problem of reference counting cyclic structures was published in 1990 by 
Martinez, Wachenchauzer and Lins [Martinez et al., 1990]; the idea is to identify points 
in the graph where cycles can be formed, and perform from there a local mark-scan to 
detect potential space-leaks, garbage cycles. In subsequent papers, Lins extended this 
solution in many ways, for instance by making the local cycle analysis lazy [Lins, 
1992a] and by identifying critical points in the graph that could speed up the analysis 
[Lins, 2002]. 

 To keep track of the state of local analysis in a local mark-scan, objects have to 
maintain not only a reference count, but also a color. The current color of a cell 
indicates its state regarding the local mark-scan.   

114



  

 Lins also developed a series of parallel reference counting algorithms targeted at 
multi-threaded or multi-processor systems [Lins, 1991; Lins, 1992b; Lins, 2005], but 
none of them were implemented in real multi-processor architectures. However, they 
were the basis for the two IBM Java machines implemented at IBM-T.J.Watson [Bacon 
et al., 2001] and IBM-Haifa [Levanoni and Petrank, 2006]. The architecture presented 
in this paper is based on the latest version of Lins’ algorithm for parallel multi-
processed lazy cyclic reference counting [Lins, 2005], detailed in the next section. This 
new architecture was implemented, with promising performance results, as detailed in 
Section 5 of this paper.  

3. The Proposed Architecture 
The new architecture proposed in this paper, in its basic version, is designed to use two 
processors executing concurrently: the mutator and the collector. Figure 1 shows a 
schematic view of this architecture. The two processes share access to three queues: a 
list of free objects, an increment queue and a decrement queue. The mutator alters graph 
connectivity getting memory from the free-list whenever a new object is created. When 
new references are made, the mutator inserts increment requests onto the increment 
queue; likewise, when references are destroyed, the mutator inserts decrement requests 
onto the decrement queue. The collector manages memory, removing and processing 
requests for increment and decrement from the appropriate queues and detecting when 
objects become garbage; when this happens, memory reclaimed from garbage objects is 
added to the free list. A detailed presentation of how the algorithm works is presented in 
the next subsections. For a matter of simplicity of the management of the free-list, it is 
considered that objects are fixed-size cells.  

3.1. Mutator Operations 

From the point of view of garbage collection, the mutator can only create new objects 
(getting cells from the free-list), create new references to objects, or destroy existing 
references to objects. Besides standalone operations for creation and destruction of 
references, it’s often useful to have a single update operation that combines the deletion 
of a reference to an object and the creation of a reference to another object – e.g., when 
a pointer that references an object is changed to point to another one – a reference to the 
former object is destroyed, while the latter has a new reference to it. So, in this model 
the mutator performs three operations: 

• New – to allocate new cells, getting them from the free list 

• Del(S) – used when a reference to cell S is destroyed; generates a decrement 
request 

• Update(R, S) – used to update a reference from object R to object S 

 

115



  

 
Figure 1. Basic architecture for concurrent 

reference counting with one mutator and one collector 

 

The mutator never changes directly the reference count of a cell, nor its color. All 
memory management is done by the collector. This has implications for the necessary 
synchronization of mutator and collector, as will be seen later.  

 The algorithm for operation New is presented below. The mutator simply checks 
the existence of cells in the free list and gets one if available; otherwise it remains busy 
waiting for new cells. This is reasonable, because in this case the mutator can not 
continue its computation, and must wait for the collector to make cells available. 
 
New() =  
   if not empty(free-list) then 
      newcell := get_from_free_list() 
   else  
      newcell := New() 
   return newcell 

The operation Del is even simpler than in standard reference counting: the mutator 
only inserts a new decrement request into the decrement queue. The collector takes care 
of the remaining graph adjustment.  

 
Del(S) =  
   add_decrement(S) 

116



  

Finally, Update must replace a reference by another, thus it must call Del to notify 
the destruction of a reference, and insert a reference onto the increment queue.  

 
Update(R, S) =  
   Del(*R) 
   add_increment(S) 
   *R := S 

It is easy to see in the operations above that the mutator only removes cells from the 
free list (actually organized as a queue) and inserts elements onto the increment and 
decrement queues. This results in simpler management of the three queues, shared by 
two concurrent processes.  

3.2. Collector Operations  

The memory management responsibilities, for a reference counting system, are to keep 
track of reference counts and detect when objects become garbage. It is also necessary 
to manage the cycle analysis, performed by the local mark-scan procedures. In the 
proposed architecture, the collector must process increment and decrement requests 
placed on the corresponding queues; adjust reference counts accordingly; detect any 
cells that have become garbage and insert them onto the free list; and besides that to 
keep track of possible cyclic structures that may have become garbage. This outline of 
how the collector works is reflected in its main operation, Process_queues, detailed 
below.  

 The analysis of cyclic structures requires that cells must have one of three 
possible colors: green, red and black. Green cells are active cells that are not scheduled 
for a local mark-scan. Red cells are currently under a local mark-scan. Finally, black 
cells are marked and scheduled for a local mark-scan at some point in the future. Only 
shared cells may be part of a cycle, and such a cycle becomes garbage when a shared 
cell has its reference count decremented. This means that when a cell has its reference 
counted decremented to a value greater than zero, it must be marked for future analysis. 
Cells that were marked for a local mark-scan are kept in a data structure called the 
status analyzer. It is a collection of cells that were marked black and must be analyzed 
later on. The original algorithm by Martinez, Wachenchauzer and Lins [Martinez et al., 
1990] was eager: whenever a shared cell had its counter decremented, it was 
immediately analyzed with a local mark-scan. Experience has proved that doing the 
analysis lazily, as proposed by Lins [Lins, 1992a], yields far better performance.  

 When a cell in the status analyzer is selected, a local mark-scan takes place: the 
cell and its sub-graph is painted red and their reference counters are decremented, 
eliminating references that are internal to this sub-graph. If there remain cells with 
reference counter greater than zero at the end of this red-marking phase, it means that 
there are external references to the sub-graph, thus it is necessary to paint cells green 
and restore their counters. If no red cell in the sub-graph has a counter greater than zero, 
the whole sub-graph is a garbage cycle and must be collected so that the cells can be 
returned to the free list. The status analyzer is also used to keep objects that are critical 
points in the object graph, points that when analyzed will allow the algorithm to decide 
in less steps whether a sub-graph is cyclic garbage or not. This is a very brief 

117



  

description of the cyclic reference counting algorithms developed by Lins. For further 
details one may refer to [Lins, 2002].  

 The main operation in execution by the collector is Process_queues, whose 
basic function is to process requests for increment and decrement of reference counts, 
getting them from the appropriate queues. Adjustment of reference counter in objects 
will then trigger most other actions of the collector, like freeing the memory occupied 
by garbage objects and marking objects for cycle analysis. The only operation that will 
not be triggered by adjusts in reference counters is scanning the status analyzer to detect 
cycles, so this is included in Process_queues: it first processes the increment 
queue, taking increment requests from it and performing them (cells are assumed to 
have a reference counter field rc and a color field color); then it processes the 
decrement queue, calling operation Rec_del to destroy a reference; finally, after 
processing both queues, the status analyzer is processed by a call to 
scan_status_analyzer. Operation Rec_del must be used to delete a reference 
because if the cell has its counter hit zero, all its outgoing references must be deleted 
recursively.  

 
Process_queues() =  
   while not empty(inc-queue) 
      S := get_increment() 
      S.rc := S.rc + 1 
      S.color := green 
   if not empty(dec-queue) then 
      S := get_decrement() 
      Rec_del(S) 
   else 
      scan_status_analyzer() 
   Process_queues() 

 

The recursive reference deletion operation, Rec_del, is thus defined: 

 
Rec_del(S) =  
   if S.rc == 1 then 
      S.color := green 
      for T in S.children do 
         Rec_del(T) 
      add_to_free_list(S) 
   else 
 S.rc := S.rc - 1 
      if S.color != black then 
         S.color := black 
         add_to_status_analyzer(S) 

It first checks to see if the removed reference is the last one to the object; in this case, it 
must be deleted and its outgoing references removed; the field children in a cell is 
supposed to be a collection of all its outgoing references. If the cell has reference count 
greater than one, it is either a potential candidate to have an external reference 

118



  

transitively connecting it to root or being a knot-tying point to a cycle, thus it must be 
painted black and added to the status analyzer.  

 The remaining operations of the collector are all related to the analysis and 
detection of cyclic garbage. scan_status_analyzer will be called whenever there 
are no increment or decrement requests to be processed (in the worst case, it will be 
called because of memory exhaustion – the mutator will be blocked if it can not allocate 
a new object). Its definition is presented below. When a cell S is in the status analyzer, 
it may be either black or red. If it is black, a local mark-scan is scheduled to be 
performed in the sub-graph below S. Operation mark_red is called to start the local 
analysis. If the cell is red, it means it was identified in mark_red as a critical point 
that may be connected to external references; its counter is checked, and if it is greater 
than zero the sub-graph below it is active, so it is necessary to undo the effects of 
operation mark_red by calling scan_green. The function calls itself recursively, 
looking for further items to process; if there are none left, the remaining cells still 
colored red are garbage in cyclic structures, so collect is called to recycle them.  

 
scan_status_analyser () =  
   S := select_from(status_analyser) 
   if S == nil then return 
   if S.color == black then 
      mark_red(S) 
   if S.color == red && S.rc > 0 then  
      scan_green(S) 
   scan_status_analyser () 
   if S.color == red then  
      collect(S) 

mark_red performs the red-marking phase of the local mark-scan. It tests if the cell is 
red, coloring it red if not; then the reference counter of all its children (objects 
referenced by it) is decremented, canceling references that may be internal to a cycle. 
mark_red is called recursively through the whole sub-graph of S. If a cell is already 
painted red – which means it already had its reference counter decremented – and still 
has a counter with value greater than zero, it is a critical point in the graph that may be 
connected to external references. Adding it to the status analyzer will speed up the 
process of deciding if a sub-graph is a garbage cycle or not [Lins, 2002]. This accounts 
for red-colored cells found in the status analyzer, as seen previously while describing 
scan_status_analyzer.  

 
mark_red(S) =  
   if S.color != red then  
      S.color := red 
      for T in S.children do 
         T.rc := T.rc - 1 
      for T in S.children do 
         if T.color != red then 
            mark_red(T) 
         if T.rc > 0 && T not in status-analyzer then 
            add_to_status_analyser(T) 

119



  

If a sub-graph is found to have external references, it is necessary to restore counters 
decremented by mark_red; This is the task of scan_green. It paints a cell green and 
increments the counter of its children. 

 
scan_green(S) =  
   S.color := green 
   for T in S.children do 
      T.rc := T.rc + 1 
      if T.color != green then 
         scan_green(T) 

The only remaining operation to be described is collect, whose responsibility is to 
free the memory associated with each garbage object detected in a sub-graph. Its 
definition is shown below. Cells returned to the free list are painted green and assigned 
a reference counter with value 1, to simplify cell initialization when they need to be 
later reallocated.  

 
collect(S) =  
   for T in S.children do 
      Delete(T) 
      if T.color == red then 
         collect(T) 
   S.rc := 1 
   S.color := green 
   add_to_free_list(S) 

3.3. Synchronization 

Now that the operations of both processes were described, it is now considered how 
they can work concurrently in a safe and efficient manner. These operations were 
adapted from the sequential version of the cyclic reference counting algorithm [Lins, 
2002], and the whole architecture presented here was based on that of Lins [Lins, 2005]. 
Lins’ architecture used only two shared queues between collector and mutator, the free 
list and a decrement queue (called a delete queue in the original paper). The result is 
that both collector and mutator read and update reference counts in cells, so this 
configures a potential interference between them [Andrews, 1999]. Lins dealt with this 
by assigning priorities to the processors, so that one would always be allowed to access 
reference counter fields before the other in a situation of contention. This would be a 
good solution, if current hardware provided a way to ensure the priorities. However, this 
is not the case in current shared-memory multi-processor architectures, so implementing 
Lins’ architecture in current hardware would create the necessity of explicit 
synchronization between collector and mutator when reading or updating reference 
counts in cells, and as these are frequent operations, the overhead involved with 
synchronization would compromise performance. The architecture presented here 
solves this by using a technique of disjoint variables [Andrews, 1999], where only the 
collector reads and updates the values of reference counts in cells, and only the mutator 
changes the value of references in the memory graph. This works by having two queues, 
one for requests for increment and another for requests of decrements, shared between 
the two processes. The resulting architecture has little need for explicit synchronization. 

120



  

None is needed for reads and updates of reference counts or reads or updates of 
pointers.  

 A remaining concern regarding synchronization is about the three shared 
queues. Although it is not described here, there are known ways to implement 
concurrent queues with little need for explicit synchronization, especially for the case of 
a single reader and single writer [Valois, 1994]. The chosen implementation of 
concurrent queues will dictate how operations like add_increment, 
add_decrement, get_from_free_list and their counterparts will be ultimately 
implemented.  

4. Multiple Mutators and Collectors 
In Section 3 the basic architecture for concurrent reference counting was presented, 
considering a designation of one process as the mutator and one as the collector. In 
many programs, it may be desirable to have more than one mutator or thread executing 
concurrently, thus the architecture is now generalized. Figure 2 shows a schematic 
version of this multi-mutator architecture.  

 The main difference in relation to the single mutator version is that now all 
mutators must share access to one end of the three queues. To accomplish this, mutator 
processes no longer access the queues directly, but through shared registers, called 
top-free-list, bot-dec-queue and bot-inc-queue. Access to these 
registers must be synchronized to avoid interference; this can be done by using 
compare-and-swap type operations, present in hardware in most current processors. 
Implementation of lock-free queues with many readers (for the free list) or many writers 
(for the request queues) is still possible [Valois, 1994]. Otherwise, the algorithms work 
just like the single mutator case. In particular, the collector does not need any changes 
to accommodate this architecture.  

 Another direction of extension to the architecture presented in Section 3 is to 
allow for many collector processes to work cooperatively in a parallel garbage 
collection architecture. This could be combined with the suggestions for multiple 
mutators to obtain a multi-mutator, multi-collector architecture. The issues involved in 
such architecture, however, are more complicated and include greater problems of 
interference and load-balancing between collectors, and between them and the mutators. 
This possibility is not considered further in this paper. Previous work by Lins [Lins, 
2005] presents such architecture in greater detail.  

5. Implementation and Results 
The architecture of Section 3 was implemented as the garbage collection sub-system for 
a programming language. A compiler for a lazy, purely functional programming 
language (similar to a subset of Haskell) was written to generate benchmarks for the 
implemented garbage collection system. The compiler uses well-known techniques for 
implementation of functional programming languages [Peyton-Jones, 1987] and 
generates code for an execution environment similar to the G-machine; this runtime 
environment includes an implementation of the garbage collector described in Section 
3.  

121



  

 
Figure 2. Architecture for concurrent  

reference counting with more than one mutator process. 

 This implementation was used in experiments to assess the performance of the 
new architecture with relation to the sequential version of the same algorithm. Table 1 
shows the results for execution of six test programs compiled to work with a sequential 
reference counting algorithm. All tests were executed in a single 1.6GHz Athlon MP 
computer with 2 processors and 512Mb of RAM, with a free list of 5000 cells and a 
status analyzer structure that could hold a hundred items.  

Table 1. Results for the execution of six test programs 
with sequential reference couting. 

Benchmark alloc scan_sa mark_red scan_green collect time(s) 

acker 253175 4013 40574 40127 447 0,0351

conctwice 42834 521 5468 5406 62 0,005

fiblista 14837640 27892 857421 836317 21104 3,0812

recfat 335959 4985 49872 49338 534 0,0872

somamap 94309 1356 10521 10409 112 0,0473

somatorio 35298 499 4987 4933 54 0,0274

 The tests where selected for being highly recursive programs, and in some cases 
for using many list objects. Recursion was implemented by knot tying the Y-
combinator, yielding cycles in the graph-reduction machine [Turner 79] which is part of 
the execution environment. Programs with many recursive calls generate many cycles, 
exercising the cycle analysis capabilities of the algorithm. The last column on Table 1 

122



  

reports overall execution (CPU) times, in seconds. The other columns list the number of 
calls to operations related to memory management: the alloc column contains the 
number of allocated cells during the execution of the program; scan_sa is the number of 
calls to scan_status_analyzer; mark_red, scan_green and collect each record 
the number of times the respective operations were called.  

 The results on Table 1 make sense only when compared with those of Table 2, 
which shows results for the same tests, but executed in a system with the concurrent 
reference counter algorithm of Section 3. The meaning of the columns is the same.  

Table 2. Results for the execution of six test programs 
with concurrent reference couting. 

Benchmark alloc scan_sa mark_red scan_green collect time(s) 

acker 253175 9304 57966 57434 532 0,025

conctwice 42834 897 7210 7127 83 0,0038

fiblista 14837640 35112 956874 935527 21347 2,732

recfat 335959 11421 112663 112075 588 0,0702

somamap 94309 1647 11896 11773 123 0,0298

somatorio 35298 532 6052 5980 72 0,0208

 The two tables show that the number of calls for memory management functions 
is greater in the concurrent architecture. This happens because the collector calls 
scan_status_anlyzer every time the increment and decrement queues are both 
empty, while the sequential version only examines the status analyzer whenever there 
are no free cells [Lins, 2002]. However, overall execution times where, on average, 
about 20% smaller for the concurrent reference counting system, in relation to the 
sequential version. Albeit these performance results are preliminary – for example, the 
total execution time of the benchmark programs above is still too small – they indicate 
that the concurrent architecture of Section 3 represents a performance gain to programs 
that use it, without any need to alter the source code of user programs; besides, such a 
garbage collector uses better the available hardware in multi-processor systems, even 
when the executing programs are not concurrent themselves.  

6. Conclusions and lines for further works 
This paper presented a new architecture for concurrent lazy cyclic reference counting on 
multi-processor systems, targeted for implementation on current commercial hardware 
and with less need for explicit synchronization than its predecessors. This architecture 
was implemented in a 1.6GHz Athlon MP computer with 2 processors and 512Mb of 
RAM. A lazy functional compiler was developed, together with the garbage collection 
subsystem, and its performance was tested against the sequential version of the same 
algorithm. Six benchmarks were used to test the performance of the architecture 
proposed.  A rise in throughput of about 20% was observed between the sequential and 
the concurrent version for the programs tested. 

The implementation of the language and the garbage collector serves as a testbed for 
further and more complex benchmarks as well as allowing for the possibility of testing 
different garbage collection strategies. Considering that the architecture proposed in this 

123



  

paper was based on a previous proposal by Lins [Lins, 2005], a comparison between 
both versions would be interesting to verify the real gains achieved after minimizing the 
amount of required synchronization. However, Lins’ architecture was never 
implemented; this is planned for future works. Another direction for further 
investigation is the use of more computer intensive benchmark programs – preferably 
real-world programs – that could provide more realistic figures on how the proposed 
algorithms would behave in production situations. In a recent paper Lins and Carvalho 
Jr. [Lins and Carvalho, 2007] introduce the notion of “permanent” or “tenured” objects 
to cyclic reference counting, making the local mark-scan more efficient. The extension 
of the architecture presented herein to encompass such objects is on progress.  

 The source code for the benchmarks, compiler and garbage collector may be 
found at: http://postele.homelinux.net/~andrei/faul.tar.gz  

References 
Andrews, G. R. (1999), Foundations of Multithreaded, Parallel, and Distributed 

Programming, Addison-Wesley Professional. 

Bacon, D. F., Attanasio, C. R., Lee, H. B., Rajan, R. T. and Smith, S. (2001) “Java 
without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector”, In: 
Proceedings of the SIGPLAN Conference on Programming Language Design and 
Implementation, June, 2001 (SIGPLAN Not. 36,5). 

Collins, G. E. (1960) “A method for overlapping and erasure of lists”, In: 
Communications of the ACM, vol. 3, 12, pp. 655-657.  

Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S. and Steffens, E. F. M. (1976) 
“On-the-fly garbage collection: An exercise in cooperation”, In: Lecture Notes in 
Computer Science, No. 46. Springer-Verlag.  

Fenichel, R. and Yochelson, J. (1969) “A Lisp garbage collector for virtual memory 
computer systems” In: Communications of the ACM, vol. 12, 11, pp. 611-612. 

Jones, R. and Lins, R. D. (1996), Garbage Collection: Algorithms for Automatic 
Dynamic Memory Management, John Wiley & Sons ltd. 

Levanoni, Y. and Petrank, E. (2006) “An on-the-fly reference counting garbage 
collector for Java”, In: ACM Transactions on Programming Languages and Systems, 
vol. 28, 1, pp. 1-69.  

Lins, R. D. (1991) “A shared memory architecture for parallel cyclic reference 
counting”, In: Microprocessing and Microprogramming, 34, pp. 31-35. 

Lins, R. D. (1992) “Cyclic reference counting with lazy mark-scan”, In: Information 
Processing Letters, vol. 44, 4, pp. 215-220.  

Lins, R. D. (1992) “A multi-processor shared memory architecture for parallel cyclic 
reference counting”, In: Microprocessing and Microprogramming, 35, pp. 563-568. 

Lins, R. D. (2002) “An efficient algorithm for cyclic reference counting”, In: 
Information Processing Letters, vol. 83, 3, pp. 145-150.  

124

http://postele.homelinux.net/%7Eandrei/faul.tar.gz


  

Lins, R. D. (2005) “A new multi-processor architecture for parallel cyclic reference 
counting”, In: SBAC-PAD ’05: Proceedings of the 17th International on Computer 
Architecture on High Performance Computing, pp. 35-43, IEEE Press. 

Lins, R. D. and Carvalho Jr, F. H. de (2007) “Cyclic reference counting with permanent 
objects”, in this volume. 

Martinez, A. D., Wachenchauzer, R. and Lins, R. D. (1990) “Cyclic reference counting 
with local mark-scan”, In: Information Processing Letters, 34, pp. 31-35.  

McBeth, J. H. (1963) “On the reference counter method”, In: Communications of the 
ACM, vol. 6, 9, pp. 575.  

McCarthy, J. (1960) “Recursive functions of symbolic expressions and their 
computation by machine”, In: Communications of the ACM, vol. 3, 3, pp. 184-195. 

Peyton-Jones, S. L. (1987) The Implementation of Functional Programming Languages, 
Prentice-Hall International. 

Valois, J. D. (1994) “Implementing lock-free queues”, In: Proceedings of the Seventh 
International Conference on Parallel and Distributed Computing Systems, pp. 64-69. 

Turner, D.A. (1979) “A new implementation technique for applicative languages”, 
Software Practice and Experience, 9, pp. 31-49. 

 

 

125



126



  

Cyclic Reference Counting with Permanent Objects  

Rafael Dueire Lins1, Francisco Heron de Carvalho Junior2 

1Departamento de Eletrônica e Sistemas, CTG, Universidade Federal de Pernambuco 
50.740-530 – Recife – PE – Brazil 

2Departamento de Computação, Universidade Federal do Ceará  
50.740-530 – Fortaleza - CE – Brazil 
rdl@ufpe.br, heron@lia.ufc.br 

Abstract. Reference Counting is the memory management technique of most 
widespread use today. Very often applications handle objects that are either 
permanent or get tenured. This paper uses this information to make cyclic 
reference counting more efficient.  

Keywords: Memory management, garbage collection, reference counting, 
cyclic graphs, permanent objects, tenured objects. 

1. Introduction 
Reference counting [Collins 1960] [Jones and Lins, 1996] is a simple memory 

management technique in which each data structure keeps the number of external 
references (or pointers) to it. It was developed by Collins [Collins 1960] to avoid user 
process suspension provoked by the mark-scan algorithm in LISP. Reference counting 
performs memory management in small steps interleaved with computation. In 1963, 
J.H.McBeth [McBeth 1963] noticed that reference counting was unable to reclaim 
cyclic structures, because the counter of cells on a cycle never drops to zero, causing a 
space-leak, as may be observed in Figure 1. 

 

 

Figure 1. Isolating a cycle from root causes a space-leak 

 

In real applications cyclic structures appear very often. For instance, recursion is 
frequently represented by a cyclic graph and web pages have hyperlinks to other web 
pages that frequently point back to themselves [Lins 2006]. These are two examples that 
may give an account of the importance of being able to handle cycles in reference 
counting. Several researchers looked for solutions for this problem.  The first general 
solution for cyclic reference counting was presented in reference [Martinez, 
Wachenchauzer and Lins 1990], where a local mark-scan is performed whenever a 

root 

RC=2 RC=1 

RC=1 
root

RC=1 RC=1 

RC=1 

127



  

pointer to a shared data structure is deleted. Lins largely improved the performance of 
the algorithm in two different ways. The first optimization [Lins 1992] widely 
acknowledged as the first efficient solution to cyclic reference counting, postpones the 
mark-scan, as much as possible. This algorithm is implemented is both IBM Java 
machines developed at IBM T.J.Watson and IBM-Israel in Cooperation with the 
Technion, both of them reporting excellent performance [Bacon and Rajan 2001][Bacon 
et al 2001]. The second optimization [Lins 1993] relies on a creation-time stamp to help 
in cycle detection.  

 A decade later than the general solution to cyclic reference counting was 
presented, Lins introduced the Jump_stack, a data structure which largely increases the 
efficiency of the previous algorithms [Lins 2002]. This data structure stores a reference 
to the “critical points” in the graph while performing the local marking (after the 
deletion of a pointer to a shared cell). These nodes are revisited directly, saving a whole 
scanning phase in.   

 One of the strategies used in optimizing compilers and applications is to 
recognize whenever data is permanent or is “so old” that may be tenured. Handling such 
objects in a distinctive fashion avoids making copies of them and all the computational 
effort involved in its management. This paper introduces permanent objects to cyclic 
reference counting, increasing the efficiency of the previous algorithms.  

2. Efficient Cyclic Reference Counting 
 

The algorithm with permanent objects is designed on top of the efficient cyclic 
reference counting algorithm [Lins 2002]. Thus, it is explained in this section. The 
general idea of the algorithm is to perform a local mark-scan whenever a pointer to a 
shared structure is deleted. The algorithm works in two steps. In the first step, the sub-
graph below the deleted pointer is scanned, rearranging counts due to internal 
references, marking nodes as possible garbage and also storing potential links to root in 
a data structure called the “Jump-stack”. In step two, the cells pointed at by the links 
stored in the Jump-stack are visited directly. If the cell has reference count greater than 
one, the whole sub-graph below that point is in use and its cells should have their counts 
updated. In the final part of the second step, the algorithm collects garbage cells. 

Now, implementation details of the algorithm are presented. As usual, free cells 
are linked together in a structure called free-list. A cell B is connected to a cell A 
(A→B), if and only if there is a pointer <A, B>. A cell B is transitively connected to a 
cell A (A ∗→B), if and only if there is a chain of pointers from A to B. The initial point 
of the graph to which all cells is use are transitively connected is called root. In addition 
to the information of number of references to a cell, an extra field is used to store the 
color of cells. Two colors are used: green and red. Green is the stable color of cells. All 
cells are in the free-list and are green to start with.  

There are three operations on the graph: 

New(R) gets a cell U from the free-list and links it to the graph: 
 
New (R) = select U from free-list 
                  make_pointer <R, U> 

128



  

Copy(R, <S,T>) gets a cell R and a pointer <S, T> to create a pointer <R, T>, incrementing the 
counter of the target cell: 
 
                Copy(R, <S,T>) = make_pointer <R, T> 
                                              Increment RC(T)  

Pointer removal is performed by Delete: 

 
 Delete (R,S) = Remove <R,S> 
                         If (RC(S) == 1) then 
                             for T in Sons(S) do 
                                   Delete(S, T); 
                             Link_to_free_list(S); 
                         else Decrement_RC(S); 
                                Mark_red(S); 
                                Scan(S); 

A cell T belongs to the bag Sons(S) iff there is a pointer <S,T>. One can observe that the 
only difference to standard reference counting in the algorithm above rests in the last 
two lines of Delete, which will be explained below.  Mark_red is a routine that “analyzes” 
the effect of the deleted pointer in the sub-graph below it. The sub-graph visited has the 
counts of cells decremented. Whenever a cell visited remains with count greater than 
one two possibilities may hold: 

1. The cell is an entry point of root into the sub-graph below it. 

2. The value is a transient one and may become zero at a later stage of Mark_red, 
indicating that it is not an entry point from root. 

To perform this analysis whenever a cell is met by Mark_red with count greater than one 
after decrementing, it is placed in the Jump_stack. The code for Mark_red follows: 
 

Mark_red(S) =  If (Color(S) == green) then 
                             Color(S) = red; 
                             for T in Sons(S) do 
                                   Decrement_RC(T); 
                                   if (RC(T)>0 && 
                                       T not in Jump_stack) 
                                    then Jump_stack = T; 
                                   if (Color(T) == green) 
                                    then  Mark_red(T); 

Scan(S) verifies whether the Jump_stack is empty.  If so, the algorithm sends cells 
hanging from S to the free-list. If the jump-stack is not empty there are nodes in the 
graph to be analysed. If their reference count is greater than one, there are external 
pointers linking the cell under observation to root and counts should be restored from 
that point on, by calling the ancillary function Scan_green(T). 
 

Scan(S) =  If RC(S)>0 then Scan_green  
                  else 
                    While (Jump_stack ≠ empty) do 
                      T = top_of_Jump_stack; 

                                      Pop_Jump_stack; 
                                      If (Color(T) == red && RC(T)>0) 
                                      then 
                                             Scan_green(T); 
                                   Collect(S); 

Procedure Scan_green restores counts and paints green cells in a sub-graph in use, as 
follows, 

 

129



  

  Scan_green(S) = Color(S) = green 
                               for T in Sons(S) do 
                                     increment_RC(T); 
                                     if color(T) is not green 
                                     then 
                                           Scan_green(T); 

 

Collect(S) is the procedure in charge of returning garbage cells to the free-list, painting 
them green and setting their reference count to one, as follows: 

 
Collect(S) =  If (Color(S) == red) then 
                        for T in Sons(S) do 
                            Remove(<S, T>); 
                            RC(S) = 1; 
                            Color(S) = green; 
                            free_list = S; 
                            if (Color(T) == red) then 

                                                Collect(T); 

3. Cyclic Reference Counting with Permanent Objects 
As already mentioned in the introduction of this paper, permanent objects appear very 
often in real implementations of systems and languages. Treating such objects 
differently from temporary ones is a way to increase the efficiency of the cyclic 
reference counting algorithm presented above. Below, the algorithm presented in the last 
section is modified to handle permanent objects efficiently. Operations are explained in 
terms of the same atomic actions presented above. 

New(R) gets a cell U from the free-list and links it to the graph. The color of the new 
object depends on its nature. Temporary objects are set as “green” while permanent 
objects are set as “white”. Permanent objects have their reference count set to 
“overflow”. 

 
New (R) = select U from free-list 
                  make_pointer <R, U> 
                  if  R is permanent then (color(R):= white); RC(R):=∞; 
                                                else (color(R):= green) 

Although it may at first sight that permanent objects increase the complexity of the 
allocation routine New, in reality this is not the case. Permanent objects appear during 
graph creation, instead of during graph manipulation, without any need to perform the 
testing during run-time. Another low-cost alternative is to allow two different 
combinators for cell creation one for permanent objects and another for temporary ones: 

 
New Perm (R) = select U from free-list 
                       make_pointer <R, U> 
                       color(R):= white; RC(R):=∞;  
                                                
New_Temp (R) = select U from free-list 
                         make_pointer <R, U> 
                         color(R):= green 

Copy(R, <S,T>) gets a cell R and a pointer <S, T> to create a pointer <R, T>. If the target T cell is 
temporary its count gets incremented: 
 
                Copy(R, <S,T>) = make_pointer <R, T> 

                              if  color(T) is not  white 
                                              then Increment RC(T)  
Again, the increase in the complexity of this operation is apparent. The color test needs 
not to be performed in the case of having counts with overflow. Thus it is possible to 
make use of the definition of Copy as before, provided that one has in account that the 

130



  

value of counts in permanent object is not consistent, i.e. does not stand for the number 
of pointers to it. 
               Copy(R, <S,T>) = make_pointer <R, T> 
                                            Increment RC(T)  
 

Pointer removal is performed by Delete, which may remain unaltered it one assumes that 
the decrement of overflow remains the same. 

 
 Delete (R,S) = Remove <R,S> 
                         If (RC(S) == 1) then 
                                   for T in Sons(S) do 
                                         Delete(S, T); 
                                   Link_to_free_list(S); 
                          else Decrement_RC(S); 
                                  Mark_red(S); 
                                  Scan(S); 

The real changes in the algorithm with permanent objects appear during the mark-scan. 
Permanent objects never have their counts altered. Whenever a permanent object is part 
of a cycle under the local mark-scan it stops further analysis. Although Mark_red remains 
with the same definition as before, one must observe that the analysis does not 
propagate through white (permanent) cells. 

 
Mark_red(S) =  If (Color(S) == green) then 
                             Color(S) = red; 
                             for T in Sons(S) do 
                                   Decrement_RC(T); 
                                   if (RC(T)>0 && 
                                       T not in Jump_stack) 
                                    then Jump_stack = T; 
                                   if (Color(T) == green) 
                                    then  Mark_red(T); 

As before, Scan(S) verifies whether the Jump_stack is empty.  If so, the algorithm sends 
cells hanging from S to the free-list. If the jump-stack is not empty there are nodes in 
the graph to be analyzed. If their reference count is greater than one, there are external 
pointers linking the cell under observation to root and counts should be restored from 
that point on, by calling the ancillary function Scan_green(T). 
 

Scan(S) =  If RC(S)>0 then Scan_green  
                  else 
                    While (Jump_stack ≠ empty) do 
                      T = top_of_Jump_stack; 

                                      Pop_Jump_stack; 
                                      If (Color(T) == red && RC(T)>0) 
                                      then 
                                             Scan_green(T); 
                                   Collect(S); 

Procedure Scan_green visits only red cells, restores their counts and paints green cells in a 
sub-graph in use. Thus it is slightly modified to: 

 
  Scan_green(S) = If Color(S) = red then 
                               Color(S): = green 
                               for T in Sons(S) do 
                                     increment_RC(T); 
                                     if color(T) is  red 
                                     then 
                                           Scan_green(T); 

 

131



  

Collect(S) is the procedure in charge of returning garbage cells to the free-list, setting their 
reference count to one, as follows: 

 
Collect(S) =  If (Color(S) == red) then 
                           for T in Sons(S) do 
                             if (Color(T) == red) then 

                                                    Collect(T); 
                            RC(S):= 1; 

                                            free_list := S; 

4. Tenuring objects 

The generational hypothesis states that “young objects die young and old objects tend to 
remain in use until the end of computation”. Taking this into account, very often 
systems and languages tend to give a permanent status to objects that “live” over a 
certain time or operational barrier. This change of status is called “tenure”. 

Several different tenuring policies may be adopted. One of them is change into white 
the color of a given object whenever it were green and have a reference count greater 
than a certain threshold value “t”. This strategy changes the code for Copy into: 
                   
                   Copy(R, <S,T>) = make_pointer <R, T> 
                                                If RC(T) ≥ t and  color(T)== green 
                                                       then color(T);= white 
                                                       Increment RC(T)  
 
Notice that tenuring polices may yield to space-leaks, as tenured objects may become 
garbage. The code for Delete remains unchanged. One should observe that it may claim 
white cells provided one is removing the last reference to it. Tenured cells only avoid 
the propagation of the local mark-scan through them. That means that the space leak 
only involves cyclic structures of tenured cells. 
 

4.1. Avoiding Space-leaks 

A possibility of having tenured objects and avoiding permanent cell loss that cause 
space leaks is to introduce a new color, “grey” to tenured objects and place them in the 
Jump-stack for later analysis. This will cause the redefinition of Copy as: 
      
             Copy(R, <S,T>) = make_pointer <R, T> 
                                                If RC(T) ≥ t and  color(T)== green 
                                                       then color(T);= grey 
                                                               Jump_stack:= T 
                                                Increment RC(T)  

One should notice that grey objects hold their actual reference count value. Tenured 
objects are analyzed only at last, i.e. whenever the free-list is empty. At this moment, 
the Jump_stack is empty. Thus, the code for New is now written as: 

 
New (R) = if free-list not empty then 
                        select U from free-list 
                        make_pointer <R, U> 
                         if  R is permanent then (color(R):= white); RC(R):=∞; 
                                                else (color(R):= green) 
                  else  
                      If Jump_stack not empty then 
                          For T in Jump_stack  do 

                                                     NMark_red(T)  
                          Scan(T) 

                                          New(R) 
                                     else 
                                             write_out “No cells available; execution aborted”; 

132



  

 

NMark_red is a new procedure that takes into account the possibility of cells being grey. 
 
NMark_red(S) =  If (Color(S) == green or grey) then 
                             Color(S) = red; 
                             for T in Sons(S) do 
                                   Decrement_RC(T); 
                                   if (RC(T)>0 && 
                                       T not in Jump_stack) 
                                    then Jump_stack = T; 
                                   if (Color(T) == green or grey) 
                                    then  Mark_red(T); 

 
The code for Delete remains unchanged. One should observe that it may claim grey cells 
directly, provided one is removing the last reference to it. Grey cells only avoid the 
propagation of the local mark-scan.  

The tenuring policy must be carefully adopted as it either may cause space-leaks or a 
high operational overhead. 

5. Proof of the Correctness 
 Providing formal proofs of the correctness of algorithms is not a simple task. 
This section elucidates the on the correction of the algorithms presented in this paper. 
The starting point is assuming the correctness of the algorithm for efficient cyclic 
reference counting [Lins 2002].  

 

5.1. Cyclic RC with Permanent Objects 

 Permanent objects may be seen as objects that are permanently linked to root. 
Thus, the only role they play is to stop the propagation of the local mark-scan. In doing 
so the algorithm saves the need of placing the object onto the Jump_stack during Mark_red 
and later, during Scan removing it from the Jump_stack and, as its reference count will 
never drop to allow the object to be collected, having to call Scan_green on it. The 
changes introduced into the code of the routines implement the operations described 
above making explicit the possibility of handling white objects. 

 

5.2. Tenured Objects  

 The policy presented above to decide when an object may be considered 
permanent was focused on the number of references to it. There is a hidden assumption 
that the higher the number of references the longer lived will be the object. Under such 
hypothesis, all the algorithm does is to tenure a temporary object making it a permanent 
one. As one has already argued for the correctness of the algorithm with permanent 
objects, this change in status does not alter the overall behavior of the algorithm, 
provided one may be able to accept the possibility of a space-leak. This is the case when 
the deletion of the last pointer isolates an island from root with no elements to any later 
analysis. 

5.3. Tenured Objects without Space-leaks 

 The whole idea of the algorithm for tenured objects without space-leaks is to 
keep references (in the Jump_stack) for deciding later about the validity of a tenured 

133



  

object. The analysis of possible candidates for recycling is performed in extreme 
circumstances only, i.e. whenever the free-list is empty.  

6. Conclusions 
 Permanent objects appear very often in real applications, thus addressing them 
in an efficient way is a matter of concern to whoever implement systems, languages, 
etc. This paper shows how to introduce permanent objects to cyclic reference counting 
in a simple way, with almost no overhead to atomic operations, but avoiding the 
unnecessary propagation of the local mark-scan. Besides that, this paper shows two 
different ways of working with tenured objects. The first alternative may cause space-
leaks of cyclic data structures encompassing tenured objects. The second alternative 
makes possible to reclaim all garbage at a high operational cost. Both alternatives point 
in the direction of having a conservative tenuring policy to avoid overheads. 

 The presented algorithm will certainly have a large impact in the decreasing 
amount of communication exchanged between processors either in shared-memory 
architectures [Lins 1991][Lins 1992a] or in distributed environments [Lins and Jones 
1993][Lins 2006], thus bringing more efficiency in tightly and loosely coupled systems. 
   

7. Acknowledgements 
 

           This work was sponsored by CNPq – Brazilian Government. 
 

8. References 
 

D.F.Bacon and V.T.Rajan (2001) “Concurrent Cycle Collection in Reference Counted 
Systems”, In: Proceedings of European Conference on Object-Oriented 
Programming, Springer Verlag, LNCS vol. 2072. 

D.F.Bacon, C.R.Attanasio, H.B.Lee, R.T.Rajan and S.Smith (2001) “Java without the 
Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector”, In: Proceedings 
of the SIGPLAN Conference on Programming Language Design and Implementation 
(SIGPLAN Not. 36,5). 

G.E. Collins (1960) “A method for overlapping and erasure of lists”, In: Comm. of the 
ACM, vol. 3, n. 12, pages 655—657. 

R.E. Jones and R.D. Lins (1996) “Garbage Collection Algorithms for Dynamic Memory 
Management”, John Wiley & Sons. 

R.D. Lins (1991) “A shared memory architecture for parallel cyclic reference counting”, 
In: Microprocessing and microprogramming, vol. 34, pages 31—35. 

R.D. Lins (1992a) “A multi-processor shared memory architecture for parallel cyclic 
reference counting”, In:  Microprocessing and microprogramming, vol. 35, pages 
563—568. 

134



  

R.D.Lins (1992b) “Cyclic Reference counting with lazy mark-scan”, In: Information 
Processing Letters, 44, pages 215—220. 

R.D.Lins (1993), “Generational cyclic reference counting”, In: Information Processing 
Letters 46, pages 19—20. 

R.D.Lins (2002) “An Efficient Algorithm for Cyclic Reference Counting”, In: 
Information Processing Letters, vol. 83, n. 3, pages 145-150, North Holland, August. 

R.D.Lins (2006) “New algorithms and applications of cyclic reference counting”. In: 
Proceedings of ICGT 2006 – International Conference on Graph Transformation and 
Applications, Invited Keynote Paper, LNCS, Springer Verlag. 

R.D. Lins and R.E.Jones (1993), “Cyclic weighted reference counting”, In: K. Boyanov 
(ed.), Proc. of Intern. Workshop on Parallel and Distributed Processing, NH. 

J.H. McBeth (1963), “On the reference counter method”, In: Comm. of the ACM, 
6(9):575. 

A.D. Martinez, R. Wachenchauzer and R.D. Lins, (1990) “Cyclic reference counting 
with local mark-scan”, Information Processing Letters 34, pages 31—35, North 
Holland. 

135



136



C APIs in extension and extensible languages

Hisham Muhammad
Roberto Ierusalimschy

1Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)

Rio de Janeiro, RJ – Brazil

Abstract. Scripting languages are used in conjuction with C code in two ways:
as extension languages, where the interpreter is embedded as a library into an
application; or as extensible languages, where the interpreter loads C code as
add-on modules. These two scenarios share many similarities, as in both of
them two-way communication of code and data needs to take place. However,
the differences between them impose design tradeoffs that affect the C API that
bridges the two languages, often making a scripting language more suitable
for extending than embedding, or vice-versa. This paper discusses how these
tradeoffs are handled in the APIs of popular scripting languages, and the impact
on their use as embedded or extensible languages.

1. Introduction
There are many situations in which it is necessary or interesting to have interaction be-
tween programs written in different languages. A typical case is the use of external li-
braries, such as graphic toolkits, APIs for database access, or even operating system calls.
Another scenario involves applications developed using more than one programming lan-
guage, in order to optimize parts where performance is critical or to allow extensibility
through scripts written by end-users.

Regardless of purpose, communication between programs written in different
languages brings up a number of design issues, not only in the development of the
applications, but of the languages themselves. There are many ways to obtain this
kind of interoperability, but ideally, a language should provide a foreign language in-
terface that allows programmers to send and receive both calls and data to another lan-
guage [Finne et al. 1998].

A model for interaction between languages that has shown to be especially
relevant nowadays is that between statically typed compiled languages, such as C
and C++, and dynamically typed interpreted languages, such as Perl and Python.
In [Ousterhout 1998], Ousterhout categorizes these two groups as systems programming
languages and scripting languages.

These two categories of languages have fundamentally different goals. Systems
programming languages emerged as an alternative to assembly in the development of
applications, having as main features static typing, which eases the understanding of data
structures in large systems, and being implemented as compilers, due to concerns with
performance. In contrast, scripting languages are dynamically typed and are implemented
as interpreters or virtual machines. Dynamic typing and the extensive use of higher-
level constructs as basic types, such as lists and hashes, bring greater flexibility in the

137



interaction between components; in static languages, the type system imposes restrictions
to those interactions, often requiring the programmer to write adaptation interfaces, which
makes the reuse of components harder.

Scripting languages have the distinction that, by design, they are developed having
interaction with code written in other languages in mind. Because of the popularity of the
C language and the support it enjoys in most popular operating systems, a considerable
number of implementations of foreign language interfaces are, in practice, C APIs.

Scripting languages are used in conjuction with C code in two ways: extending a
C application, where the interpreter is embedded as a library; or by having C code extend
the language, through add-on modules written as C libraries. These two scenarios share
many similarities, as in both of them two-way communication of code and data needs to
take place. However, the differences between them impose tradeoffs that affect the design
of the resulting C API.

This paper discusses how the design of a language’s C API affects its suitability
for different application scenarios. In Section 2, we discuss the different roles of scripting
languages. In Section 3, the main issues involving interaction of C code with scripting
language runtime environments are presented, followed by a discussion in Section 4 on
how popular scripting languages address those issues and the effect of their designs in
their applicability as extension and extensible languages. Finally, Section 5 concludes the
paper.

2. Extension and extensible languages
Scripting languages are designed to be used in two-language scenarios. Originally, they
had an auxiliary role, in which user scripts allow for customization of applications. With
the increased popularity of scripting languages, a different usage model has also risen
to prominence, in which the scripting language performs a more central role. Typical
examples are graphical applications where the interface is described by scripts controlling
components implemented in C and games where the logic is described in scripts and the
runtime engine is implemented in lower-level languages.

In these scenarios, there is a clear distinction between a lower-level layer where
performance is a critical factor and another, higher-level layer that coordinates operations
on elements of the lower layer. Scripting languages cease to be just an extension mecha-
nism: the application itself is written using the scripting language and libraries written in
lower-level languages are loaded as extension modules.

It makes sense, then, when discussing language interaction, to make a distinction
between extensible languages and extension languages. Extensible languages are those
that can be extended through external modules implemented in other languages. Exten-
sion languages are those which runtime environment can be embedded in an application,
allowing to use them to extend the application. Typically, scripting languages can be used,
with variable degrees of convenience, as either extensible or extension languages.

Another interesting observation is that, while in one model the scripting language
serves as an extension language for the lower-level language in which the application is
written, in the other model the opposite happens: we can look at add-on modules written
using the language’s C API as a way to extend the scripting language using C; in this

138



perspective, C becomes the extension language.

This way, the set of features provided by an API between C and a scripting lan-
guage tends to be symmetric in case it is desired to provide language extensibility as well
as promote its use as an extension language. In both situations, code and data manipu-
lation features need to be provided in both directions. A few common issues arise when
implementing interaction between C and scripting languages; they are discussed in the
following section.

3. Interaction between C and scripting languages

Interfaces provided by scripting languages are usually understood as “extension APIs”:
they extend the virtual machine with features not originally offered by it, or alternatively,
they extend an external application with the features offered by the runtime environment
of the language, embedding it to the application. The first scenario is the one used in the
programming model where the high-level coordination is made by an interpreted language
and modules written in languages such as C and C++ are used to access external libraries
or to implement performance-critical parts. The second scenario, in general, will also
encompass the first one, when exposing to the embedded virtual machine extensions that
will allow it to talk to the host application.

Both scenarios involve the same general problems: data transfer between the two
languages, including how to allow the scripting language to manipulate structures de-
clared in C and vice versa; handling the difference between the memory management
models, more specifically the interaction between garbage collection in the virtual ma-
chine and explicit deallocation in C; calling functions declared by the scripting language
from C; and the registration of C functions so that they can be invoked by scripts.

3.1. Data transfer

The main complexity in the interaction between programming languages is not the differ-
ence in syntax or semantics from their control flow structures, but in their data represen-
tations. In the communication between code written in two different languages, data flow
in various forms: as parameters, object attributes, elements in data structures, etc.

Since the format how these data are represented often differs, the alternatives to
perform data transfer between languages involve either converting the data or manipu-
lating it opaquely through some kind of handle. The duplication that takes place when
converting data limits the applicability of this method, restricting its use typically to nu-
meric types and, in minor scale, strings. When exposing handles, the source language
may explicitly offer facilities in the target language to manipulate these data, that is, the
data remains opaque, but the language can access its contents through an API.

Because of its focus on the manipulation of pointers and structures, C provides a
small set of basic types. Besides, C is very liberal with regard to the internal representation
of its structured types, with each different platform having to define its own application
binary interface (ABI). There may also be the need to handle conversion of endianness
and format of floating point numbers. So, even in cases where it is possible to link C code
directly, bindings libraries are still usually needed to make the manipulation of complex
types more convenient.

139



For types such as strings, the size of values also brings performance concerns. In
many cases the internal representation used for strings is the same as used in C, so an
option is to simply pass to the C code a pointer to the address where the string is stored,
which avoids copying of data, under risk of allowing the C code to modify the contents of
the string. Exposing to C code pointers to memory areas within the runtime environment
of the other language may also bring concurrency problems, in case the environment uses
multiple threads.

When exposing data of structured types to C, the conversion to a native C type,
in many cases, is not an option. Structured types in C are defined statically, therefore not
serving to represent conveniently data of dynamic structures, such as objects that may
gain or lose attributes or even change class during runtime. Even in languages with static
typing, like Java, copying objects is not usually an interesting option due to the volume
of data. Copying of structured objects tends to be restricted to specific operations such as
manipulation of arrays of primitive types.

The alternative to allowing C code to operate over structured data, thus, is to
provide an API that exposes the operations defined over those types as C functions. This
also avoids the need to control the consistency between two copies of a given structure.
Consistency problems, however, may occur if the API allows the C code to store pointers
to objects from the language – this makes it necessary for the programmer to manage
explicitly the synchronicity between pointers and the life cycles of objects that may be
subject to garbage collection.

3.2. Garbage collection

From the moment when C code gains access to handles to data from the storage space of
another language, the programmer must take into consideration the differences between
the memory management models involved. For example, the C program may deallocate
an object referenced by data in the scripting language, or the scripting language may
remove an element from a structure causing it to be collected.

It is necessary, then, to indicate in C that the data remain accessible from it and
must not be collected. In a complementary way, when transferring the control of C objects
to the domain of the other language – for example, when storing them in a data structure
of the other language – it is necessary to indicate to the language how to deallocate the
memory of the structure when the garbage collector detects that it is no longer in use. The
way how the API will provide this functionality depends not only on the design of the
C API, but also on the garbage collection mode employed by the implementation of the
language.

3.3. Function calls and registration

When bridging C and a scripting language, it is necessary to provide a form of invoking,
from C, functions to be executed by the scripting language, and vice-versa. This combines
the issues of data transfer, for passing arguments and receiving results between these
two “spaces”, and the implications that this brings about the objects’ lifetime, affecting
garbage collection. The tasks involved are always the same – perform conversion of input
data, pass parameters to the other language, specify which function to call, obtain return
values, convert them back to the other language – but approaches employed in scripting

140



language APIs vary widely. In the next section we will discuss how some APIs implement
these tasks and the impact of their design on their usability as extension and extensible
languages.

Because of the static typing of C, it is not possible to use a transparent syntax for
calling functions registered at runtime. It is therefore necessary to define an API of func-
tions for performing calls to the scripting language. Conversely, to allow the invocation
of C functions from code written in a scripting language, its API must provide a way to
register these functions in the execution environment. In statically typed languages, such
as Java, to make it possible to call external functions using the same syntax as native calls,
the set of external functions must be declared a priori in some way. On the other hand,
in dynamically typed languages, functions can be used directly; defining them at some
point in time before their call is sufficient. This way, one can declare external functions
at runtime through C code using the scripting language API.

4. Scripting language API designs
A pioneering example of an embedded, extension language is Tcl [Ousterhout 1994].
Four main goals were set in its original design [Ousterhout 1990]: focus as a command
language (designed to write short programs); extensibility; simplicity in its implementa-
tion; simple interface with C applications. We observe in those goals principles that are
now understood as fundamental features of extensible and extension languages: extensi-
bility was listed as a goal explicitly; the last two goals point out its focus as an extension
language.

Aiming to simplify the interaction with C code, Tcl uses strings as its single data
type. This minimalism, which has shown to be an advantage for Tcl as an extension
language, makes it seem limited compared to languages like Python, which provide a
more complete feature set as an extensible language. Scripting languages have grown
beyond Tcl’s focus as a command language, and thus, Tcl gradually lost space in the
scripting world. Its historical importance, however, is undeniable: it was the concept
introduced by Tcl of implementing scripting languages as C libraries that pushed strongly
the development of extensible applications.

In this section, we discuss the design of the C APIs of four popu-
lar scripting languages, Python [van Rossum 2006b], Perl [Wall et al. 2000], Ruby
[Thomas and Hunt 2004] and Lua [Ierusalimschy 2006], in terms of the interaction is-
sues outlined in the previous section, while also contrasting them with the C API of Java
[Gosling et al. 2000]. Unlike the others, Java uses static typing – which allows us to ob-
serve how typing affects the design of an API – but like them it is based on a virtual
machine model, features automatic memory management and allows dynamic loading of
code, and most importantly, it can both be embedded as an extension language and be
extended with native C code.

4.1. Data transfer

The basic set of functions for manipulating data in scripting language APIs is usually
the same: they provide functions for converting values from the language to basic C
types and vice-versa. A central design issue lies in how to represent a value between
languages. All values in the Python virtual machine are represented as objects, mapped to

141



the C API as the PyObject structure [van Rossum 2006a]. More specific types such as
PyStringObject, PyBooleanObject and PyListObject are PyObjects by
structural equivalence, that is, they can be converted through a C cast. Similarly, in Ruby,
the API defines a C data type called VALUE, which represents a Ruby object. VALUE
may represent both a reference to an object (that is, a pointer to the Ruby heap) as well as
an immediate value. In particular, the constants Qtrue, Qfalse and Qnil are defined
as immediate values, allowing them to be compared in C using the == operator. Perl also
provides handles to its data in C, but these C values are better understood as containers to
Perl values: types of Perl variables are mapped to C structs SV for scalars, AV for arrays,
HV for hashes. A scalar variable in Perl has an SV associated to itself; however, one can
create in C an SV that is not associated to any Perl variable name.

Lua, in contrast, employs a different approach for manipulating data in C: no
pointers or handles to Lua objects are ever exposed to C code, and instead, operations
are defined in terms of indices of a virtual stack. So, data transfer from C to Lua takes
place through functions that receive C types, convert them to Lua values and stack them.
While this results in the simplest and most orthogonal data manipulation API among the
ones mentioned, code in which values are associated to stack indices tends to be less
natural-looking than code using C variables – the manipulation of, say, a Ruby VALUE is
syntactically similar to that of other C types: an assignment to a VALUE is done in C with
an assignment.

All of these languages also offer API functions for manipulating their fundamental
structured types (tables in Lua, arrays and hashes in Ruby and Perl, lists and dictionaries
in Python). Python, in particular, defines an extensive function API for operations on its
built-in classes; most of these functions could be performed using the generic API for
method invocation, but they are offered directly in C as a convenience. In Java, static
typing reduces greatly the need for explicit data conversion in C code. The Java Native
Interface (JNI) [Sun 2003] defines C types equivalent to each of Java’s primitive types
(jint for int, jfloat for float, and so on). While to return an integer to Python
from C one would have to use a command such as return PyInteger_New(42),
when interfacing Java they could simply write return 42. Reference types, such as
classes and objects, are exposed to C as opaque references, instances of jobject. On the
other hand, treatment of multi-threading complicates the access of types such as strings
and arrays.

An important task when bridging C code to a scripting language is the creation
of data in the scripting language environment containing C structures. Perl, Ruby and
Lua provide simple mechanisms for this task. Ruby offers the Data_Wrap_Struct
macro which receives a C structure and returns a Ruby VALUE. Lua defines a basic type
in the language especially for this end, called userdata, which contains a memory block
managed by the Lua VM that is accessible to C code but is an opaque object when ac-
cessed from Lua. In Perl, one can create SVs containing arbitrary memory blocks for use
in C. In Python, the process is not as straightforward. Creating a Python class from C
involves declaring parts of it statically and other parts dynamically, being usually neces-
sary to define three different C structures, which are closely tied to the implementation of
the Python VM. The complexity of code that interacts with C data types using the Python
API tends to be less problematic in an isolated piece of code such an extension module

142



(which is typically centered around the declaration of these types and their methods) than
when inserted in a larger body of code, as it happens with an embedded interpreter. Using
the JNI, it is not possible to create new Java types from C; one can only load precompiled
classes.

Another common need when interacting with C is to store pointers in the data
space of the scripting language. Python, Lua and Perl offer features to do this directly.
In Python, a PyCObject is a predefined type that holds a void pointer accessible from
C. Lua offers a built-in type for this end, light userdata, which differs from userdata
in that the memory block it points to is not managed by the virtual machine. In Perl,
the same can be achieved storing a pointer in the data area of an SV. In Ruby and Java,
there is no direct way to store pointers. The alternative is to convert pointers and store
them as numbers. In fact, this happens internally in the implementation of Ruby, and the
portability limitations of this approach are made evident by the fact that the compilation
of Ruby fails if sizeof(void*) != sizeof(long).

4.2. Garbage collection
Garbage collection aims to isolate, as much as possible, the programmer from memory
management. This way, ideally an API should also be as independent as possible from the
garbage collection algorithm used in the implementation of the virtual machine. Perl and
Python perform garbage collection based on reference counting, and this shows through
in the reference increment and decrement operations frequently needed during the use of
their APIs.

Ruby uses a mark-and-sweep garbage collector. Its API manages to abstract this
fact well for manipulation of native Ruby objects, but the implementation of the collector
is evident in the creation of Ruby types in C, where we need to declare a mark function
when there are C structures that store reference to Ruby objects. The Lua API goes further
when isolating itself from the implementation of the garbage collector: the only point of
the API where the use of an incremental garbage collection is apparent is in the routine
for direct interaction with the collector, lua_gc, where its parameters can be configured.

Of the five languages discussed in this work, the only one whose API abstracts en-
tirely the implementation of the garbage collector is Java. The only interfacing operation
provided by the language, System.gc(), does not receive any arguments and does
not specify how or when the collection should be done1. Indeed, the various available
implementations of the JVM use different algorithms for garbage collection. We observe,
then, that while most languages abstract the specifics of the garbage collector, details of
the garbage collection algorithm tend to show up in the APIs. Since in pragmatic terms
the API compatibility of an implementation is as important as language compatibility,
this means that, due to the API, language implementations end up tied to specific garbage
collection algorithms because of their API even if they are transparent to the language
itself.

Another issue that arises in the communication between C and scripting languages
is the management of references. For manipulating data through the API, Lua and Ruby
demand the least concerns from the programmer about managing references. Lua avoids

1The documentation is purposely vague, stating only that this method “suggests that the Java Virtual
Machine expend effort toward recycling unused objects”.

143



the problem altogether, by keeping its objects in the virtual stack and not returning refer-
ences to C code; accessing data from Lua, thus, always involves function calls for getting
the data into the stack.

In Ruby, only objects stored in C globals and not referenced from Ruby need to
be notified, using the rb_global_variable function; objects in the local scope of a
C function do not need to be notified. The way how Ruby ensures the validity of local
VALUEs is remarkably peculiar: when performing the mark phase, the garbage collector
scans the C stack looking for values that look like VALUE addresses, that is, numeric
sequences that correspond to valid VALUE addresses. These addresses can be identified
because objects are always allocated within heaps maintained by the Ruby interpreter.
Each VALUE found in the stack is then marked. This ensures that any VALUE locally
accessible by C code becomes invalidated, but may generate “false positives” stopping
data that could be collected from being so.

In spite of programmer convenience, such approach is extremely non-portable.
The implementation of the garbage collector in Ruby 1.8.2 has #ifdefs for IA-64,
DJGPP, FreeBSD, Win32, Cygwin, GCC, Atari ST, AIX, MS-DOS, Human68k, Windows
CE, SPARC and Motorola 68000. Besides, the collector forces the discharge of registers
to the stack using setjmp, to prevent variables of the VALUE type that may have been
optimized into registers by the compiler from being missed.

Both Perl and Java handle the issue of references stored in local variables in a sim-
ilar way, by distinguishing references as either global or local (local references are called
“mortal variables” in Perl). Local references allow for mostly implicit management. API
functions in Java return local references by default, which can be converted to global ones
with the API call NewGlobalRef. In Perl, the opposite happens, and global references
can be converted to local ones with the sv_2mortal function. Java’s approach is more
interesting, as normally more locally-scoped than globally-scoped variables are used.

4.3. Function calls

In Python, Lua and Perl, functions can be accessed as language objects and invoked.
Python allows any PyObject to be called as a function, as long as they implement the
__call__ method, which can be written in either Python or C (as a function regis-
tered in the object’s PyTypeObject struct). Like in data manipulation, Python offers
an extensive API, with several convenience functions allowing parameters to be passed as
Python tuples, as Python objects given as varargs, as C values to be converted by the invo-
cation function, etc. In Lua, there is a built-in primitive type, function, which represents
both Lua functions and C functions registered in the Lua VM. Perl also allows functions
to be manipulated as first-class objects using its C API, returning SV structs representing
them.

In Ruby as well as Java, methods are not first-class objects, and therefore their
APIs define specific C types used to reference them – jmethodID in Java and ID in
Ruby2. Java also offers a large number of method invocation functions and, due to static
typing, input parameters can be passed as varargs in a direct way, without having to spec-

2An ID is merely a reference to the symbol table entry corresponding to the method’s name, and not a
unique identifier for the method itself.

144



ify how their conversion should be made. Ruby also offers some variants of invocation
functions.

Lua separates the function call routine from argument passing, which is done in a
previous step by setting up the contents of the stack. This is a very simple solution, but the
resulting code is less clear than the equivalent calls in languages such as Ruby and Python,
in which arguments to the function call are written in C as arguments to the C API call.
Perl also features function calls using a stack model, but its use is exceedingly complex,
demanding a macro protocol to be followed which exposes the internal workings of the
interpreter [Marquess 2006]. Another complicating factor is the handling of return values,
for these vary according to the Perl context in which the function is called.

In Lua and Python, the occurrence of errors can be checked through the function’s
return value. In a similar way, Perl allows detecting errors in the most recent call check-
ing a special variable, $@; in Java, this is done calling an API function. In Ruby, error
handling is more convoluted: the API offers a function for invoking C functions in pro-
tected mode, but lacks an equivalent for calling Ruby functions. It is necessary to write a
wrapper function in those cases.

4.4. Registration of C functions
Python and Ruby offer to the programmer various options for C function signatures that
are recognized by the API, which is practical, given that this way one can choose different
C representations for the input parameters (collected in an array, obtained one by one,
etc.) according to their use in the function. Lua offers only one possible signature for
C functions to be registered in its virtual machine, as arguments are passed through the
stack and not as arguments to the C function.

In Java, function signatures are created through the javah tool [Liang 1999] –
due to its static type system, types of input parameters passed by Java are converted
automatically by the JNI, which is very convenient as it avoids explicit operations for
conversion and type checking in the function. Because of their dynamic type systems, the
other languages offer specific API functions for performing these checks.

The interface between Perl and C was designed having in mind that the connec-
tion between C functions and the Perl interpreter is made through generated code from
a description given in a higher-level language, XS [Roehrich 2006]. Instead of isolating
the access to Perl’s internals through a public API, the proposed approach is to encapsu-
late the process of generating wrapper code using interfaces written in .xs files. These
files contain C code along with annotation that simplifies the handling of input and out-
put parameters. In fact, Perl does not expose a documented API for registering functions
[Okamoto and Roehrich 2006]. Because of that, it is not practical for an application to
embed a Perl interpreter and expose it to a set of C functions using C code only. The
alternative is to write a Perl extension using XS and import the resulting package in the
embedded Perl interpreter.

Registration of functions in Ruby and Lua is simple. In Lua, in particular, it is
an assignment (made through API calls), not different from any other object. In Python,
there are features for batch registering, using arrays of the PyMethodDef struct (Lua
offers a similar feature with luaL_register function), but there is no simple way to
register a single function – again, this shows a focus on extending rather than embedding:

145



extension modules tend to register many functions at once, while embedded interpreters
often register global functions. Both in Java and Perl, function registration is done im-
plicitly by the generation tools, and there are no public API functions for registering new
C functions at runtime in either of them.

5. Conclusion
Choosing a scripting language depends on a series of factors, many of them relative to the
language itself, others relative to its implementation. When we deal with multi-language
development scenarios, an aspect that should not be neglected is the design of interfaces
between languages. Be it extending the scripting language through C code, or making a C
application extensible through a scripting language, the API offered by the language has
a fundamental role, often influencing the design of the application.

Although the same general problems, such as data transfer, function registration
and calling, are common to different usage scenarios of a scripting language API, appli-
cations embedding a virtual machine tend to demand more from the API than libraries
implementing extension modules. This point is illustrated by the difficulties imposed by
the Python API both in the access to global variables and registration of global functions;
and, more evidently, by the complexity of Perl’s API for function calls.

The fact that the Python API makes the use of global variables and functions dif-
ficult, favoring the use of modules, can be justified as a way to promote a more structured
programming discipline. This is interesting when using the API for developing extension
modules, given that using global variables and functions is extremely harmful in those
cases, as it would pollute the namespace of Python applications. For the case where the
language is embedded to provide scripting support for a C application, the absence of a
convenient way to define global functions in the scripts’ namespace is questionable.

The approach adopted by Perl, using a pre-processor which generates automati-
cally code for converting data when passing parameters and return values, has shown to
be inadequate for scenarios involving embedded interpreters. Although the use of a pre-
processor simplifies the simpler cases of declaration of C functions, the lack of a well-
defined API for handling data transfer between the Perl interpreter and C code becomes
apparent in more elaborate cases.

Interesting observations resulted from the comparison of the Java API with that
from the other four scripting languages, given that, although it shares several traits with
those languages, Java is not considered a scripting language. While static typing does
reduce considerably the need for explicit data conversion in C code for primitive types of
the language, in practice type checking for objects and the linking of fields and methods
happens in a dynamic way, as these have to be performed at runtime by the JNI. Thus,
regarding interaction of the virtual machine with C, advantages brought by static typing
are reduced. Besides, dynamic resolution of fields and methods through C has subtle
differences in behavior when compared to what occurs in native Java code, which can be
a source of programmer errors.

Throughout the development of this work, we implemented as a case study a C
library called LibScript3, which provides an extensibility architecture for applications in

3http://libscript.sourceforge.net

146



a language-independent manner: scripting language VMs are loaded dynamically as Lib-
Script plugins. In the implementation of these plugins, we had a chance to exercise the
APIs of the different scripting languages performing similar tasks.

The disparity between languages with regard to the availability of documentation
deserves mention. Java, Python and Lua feature extensive documentation, both for the
languages themselves and to their C APIs. For those languages, we were able to largely
base our study and the implementation of the case study on the provided documentation.
The documentation of Ruby relative to its C API is sparser; in [Thomas and Hunt 2004]
only part of its public API is covered. One has to make use of undocumented functions
for tasks as fundamental as freeing global references registered through C.

The balance between simplicity and convenience is another recurring theme
when comparing APIs. Python’s extensive API, containing 656 public functions, con-
trasts with the 113 functions exposed by the Lua API (79 from the core API, 34 in
its auxiliary API). In many situations, Python API functions abbreviate two, three ore
even more calls, as in the case of powerful functions such as Py_BuildValue and
PyObject_CallFunction, resulting in short and readable C code. The approach
defended by Lua is that of a minimalistic API, offering mechanisms with which more
elaborate functionality can be built. In fact, in [Ierusalimschy 2006] a C function equiv-
alent to PyObject_CallFunction is presented, using the Lua API.

Ruby exports 530 functions in its header and Perl 1209, but as only a small fraction
of those is documented, it is hard to evaluate the size of their “public API” and how many
of these are just functions for internal use exposed in their headers4. This also shows that
the documentation is not only relevant as support material for development, but it also
indicates how well-defined an API is.

The Java API is well-documented, like that from Python and Lua, but the number
of exported functions is not a good parameter for comparison with the other APIs as,
because of its statically defined types, many functions have a variant for each primitive
type. Java exports its API as a structure containing function pointers; 228 functions in
total are exported in this structure.

An aspect that is equally important when extending or embedding is the concern
on not polluting the C namespace. Python, Java and Lua define all its functions and C
types with prefixes that aim to avoid conflicts with other names, which in the case of
embedding are defined by the application, and in the case of extending are defined by the
library being exposed to the language. Perl and Ruby define names in a disorganized fash-
ion, which occasionally causes problems. Perl has options to disable a series of macros
and force a common prefix in its functions, but this feature is incomplete and using it
hampers the functionality of its headers.

Another point that could be observed in this work is that the consistency of an
API depends greatly on the consistency of the language it exposes. Constructions where
a language lacks orthogonality, such as code blocks in Ruby or the differences when
manipulating scalar and array values in Perl, end up increasing the complexity of the API
and demand from the programmer specific handling in C code.

4Some functions are marked as being for internal use only, but most of them have no indication whatso-
ever.

147



The focus in extending or embedding adopted by a language’s C API has as much
impact in its suitability for one or other scenario as the design of the language itself.
The interaction between the design of the language, its implementation and its API all
affect each other in often subtle ways – APIs like those from Lua and Java, which allow
multiple interpreters to run concurrently, show a design concern on embedding, while
those from Perl, Python and Ruby focus on providing facilities to make it easier to write
extension modules. Given that an API designed towards embedding also encompasses
the needs of APIs for extension modules, and that module generation tools such as SWIG
[Beazley 1996] (as well as language-specific tools such as [Ewing 2006, Niemeyer 2006,
Manzur and Celes 2006]) are becoming increasingly powerful and popular, we observe
that a C API aiming to support both extension and embedding should focus on the latter,
as that tends to demand more from both the API and the language implementation.

References

Beazley, D. M. (1996). SWIG: an easy to use tool for integrating scripting languages
with C and C++. In Association, U., editor, 4th Annual Tcl/Tk Workshop ’96, pages
129–139, Berkeley, CA, USA. USENIX.

Ewing, G. (2006). Pyrex - a language for writing Python extension modules. http:
//www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

Finne, S., Leijen, D., Meijer, E., and Jones, S. P. (1998). H/Direct: a binary foreign
language interface for Haskell. In ICFP ’98: Proceedings of the third ACM SIGPLAN
international conference on Functional programming, pages 153–162, New York, NY,
USA. ACM Press.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2000). The Java Language Specification.
Addison-Wesley, Boston, MA, USA, 2nd edition.

Ierusalimschy, R. (2006). Programming in Lua. Lua.org, 2nd edition.

Liang, S. (1999). Java Native Interface: Programmer’s Guide and Reference. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Manzur, A. and Celes, W. (2006). toLua++ reference manual. http://www.
codenix.com/~tolua/tolua++.html.

Marquess, P. (2006). perlcall(1). Perl 5 Porters, 5.8.8 edition. http://perldoc.
perl.org/perlcall.html.

Niemeyer, G. (2006). Lunatic Python. http://labix.org/lunatic-python.

Okamoto, J. and Roehrich, D. (2006). perlapi(1). Perl 5 Porters, 5.8.8 edition. http:
//perldoc.perl.org/perlapi.html.

Ousterhout, J. K. (1990). Tcl: An embeddable command language. In Proceedings of the
USENIX Winter 1990 Technical Conference, pages 133–146, Berkeley, CA. USENIX
Association.

Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Addison Wesley.

Ousterhout, J. K. (1998). Scripting: Higher-level programming for the 21st century. IEEE
Computer, 31(3):23–30.

148



Roehrich, D. (2006). perlxs(1). Perl 5 Porters, 5.8.8 edition. http://perldoc.
perl.org/perlxs.html.

Sun (2003). Java Native Interface 5.0 Specification. Sun Microsystems, 5.0 edition.
http://java.sun.com/j2se/1.5.0/docs/guide/jni/.

Thomas, D. and Hunt, A. (2004). Programming Ruby: The Pragmatic Programmer’s
Guide. Addison Wesley Longman, Inc., Boston, MA, USA, 2nd edition.

van Rossum, G. (2006a). Extending and Embedding the Python Interpreter, 2.4.3 edition.
http://docs.python.org/ext/ext.html.

van Rossum, G. (2006b). Python Reference Manual. Python Software Foundation, 2.4.3
edition. http://docs.python.org/ref/.

Wall, L., Christiansen, T., and Orwant, J. (2000). Programming Perl. O’Reilly, 3rd
edition.

149



150



Higher-Order Lazy Functional Slicing?

Nuno F. Rodrigues and Lúıs S. Barbosa
{nfr, lsb}@di.uminho.pt

DI-CCTC, Universidade do Minho
4710-057 Braga, Portugal

Abstract. Program slicing is a well known family of techniques intended to identify and
isolate code fragments which depend on, or are depended upon, specific program entities.
This is particularly useful in the areas of reverse engineering, program understanding, testing
and software maintenance. Most slicing methods, and corresponding tools, target either the
imperative or the object oriented paradigms, where program slices are computed with respect
to a variable or a program statement.
Taking a complementary point of view, this paper focuses on the slicing of higher-order
functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built
as proof-of-concept for these ideas, is also introduced.

1 Introduction

Introduced by Weiser [13, 11, 12] in the late Seventies, program slicing is a family of techniques
for isolating parts of a program which depend on or are depended upon a specific computational
entity referred to as the slicing criterion. In Weiser’s view, program slicing is an abstraction
exercise that every programmer has gone through, aware of it or not, every time he undertakes
source code analysis.

Weiser’s original definition has been since then re-worked and expanded several times, leading
to the emergence of different methods for defining and computing program slices. Despite this
diversity, most of the methods and corresponding tools target either the imperative or the object
oriented paradigms, where program slices are computed with respect to a variable or a program
statement.

Weiser approach corresponds to what would now be classified as a backward, static slicing
method. A dual concept is that of forward slicing introduced by Horwitz et al [3]. In forward
slicing one is interested on what depends on or is affected by the entity selected as the slicing
criterion. Note that combining the two methods also gives interesting results. In particular the
union of a backward to a forward slice for the same criterion n provides a sort of a selective window
over the code highlighting the region relevant for entity n.

Another duality pops up between static and dynamic slicing. In the first case only static pro-
gram information is used, while the second one also considers input values [4, 5] leading frequently,
due to the extra information used, to smaller and easier to analyse slices, although with a restricted
validity.

Taking a different perspective, this paper focuses on the problem of slicing functional programs
[1]. Since slicing is a technique intended to be used by programmers while developing, analyzing
or transforming source code in a production context, it should target real languages and in a
most complete way. Otherwise, such techniques would be useless by failing to stand up to the
expectations of their natural clients i.e., programmers and software analysts. Thus, our approach
to functional slicing targets an emerging programming paradigm: functional programs with higher-
order constructs sharing a lazy strategy evaluation. Additionally it will be shown in section 7, that
the strict version of the proposed technique can be easily derived from the lazy one, and that
the removal of higher-order constructs represents a trivial simplification of the method introduced
here.
? The research reported in this paper is supported by FCT, under contract POSI/CHS/44304/2002, in

the context of the PURe project.

151



By the beginning of this work we thought that the development of higher-order lazy functional
slicer represented a more or less straightforward engineering problem that could be easily solved
by making use of some combination of parsing and syntax tree traversal operations. However, all
attempts to build such a tool resorting to a direct implementation of these operations invariantly
ended by the discovery of some particular case where the resulting slices did not correspond to the
expected correct ones. Even more, by performing minor changes in the implementations in order
to correctly cover some special cases, one often ended up introducing new problems or preventing
the treatment of other special cases.

Soon, however, we realized the problem complexity had been underestimated from the outset.
This lead to the development of a semantic-based approach, providing a suitable level of abstrac-
tion, in which the lazy slicing problem could be specified and solved. Furthermore, the formed
framework makes it possible to state and verify relevant properties of the slicing process.

The research background of this paper amounts to the development of HaSlicer 1, a functional
slicer targeting the functional language Haskell [1]. Before developing HaSlicer it was decided to
pay special attention to high order entities, somehow related to an architectural view over func-
tional systems. Thus, HaSlicer deals with code entities such as modules, data-types and functions,
ignoring completely more fine grained entities like functional combinator expressions. Although
the success of this decision is attested by the system high level views given by the Functional
Dependency Graph visualizer [10], there was still a lack of proper foundations and techniques for
what may be called low level slicing of functional programs. This paper is a step in that direction.

The context for this research is a broader project on program understanding and re-engineering
of legacy code supported by formal methods. Actually, if forward software engineering can be
regarded as an almost lost opportunity for formal methods (with notable exceptions in areas such
as safety-critical and dependable computing), reverse engineering looks more and more a promi-
sing area for their application, due to the engineering complexity and exponential costs involved.
In a situation in which the only quality certificate of the running software artifact still is life-cycle
endurance, customers and software producers are little prepared to modify or improve running
code. However, faced with so risky a dependence on legacy software, managers are more and more
prepared to spend resources to increase confidence on — i.e., the level of understanding of — their
code.

The paper is organised as follows. Section introduces the functional language FL, a “sugared”
λ-calculus used to express our programs. Section 3 discusses the relationship between slicing and
evaluation and justifies the use of a semantic approach to reason about slicing of functional pro-
grams. Sections 4 and 5 present two algorithms for performing lazy functional slicing. In section
6 a strict version of the slicing algorithm presented in section 5 is discussed. Section 7 resorts to
the semantics presented in sections 5 and 6 to prove that lazy slices are smaller than or equal to
their strict counterparts. Finally section 8 concludes and discusses topics for future work.

Contributions. We formally introduce a dynamic slicing algorithm for higher-order lazy functional
languages which, to the best of our knowledge, is a first attempt to address slicing for this kind
of programs. It is also shown how the same formal setting can be used to state and prove slicing
properties. The whole approach is prototyped in a library developed for Haskell a pure higher-
order lazy functional language, as a proof-of-concept2.

2 Related Work

While we regard this work as a first incursion on higher-order lazy functional slicing, there are a
number of related works that should be mentioned.

In [8] Reps and Turnidge provide a static functional slicing algorithm but, in contrast to
our approach, theirs target first-order strict functional programs. Besides considering a different
language class (first-order) and a different evaluation strategy (strict), the authors define slicing
1 The tool is available online at http://labdotnet.di.uminho.pt/HaSlicer/HaSlicer.aspx
2 The library is available online at http://alfa.di.uminho.pt/∼nfr/Tools/Tools.html

152



criteria by means of projection functions, a strategy that we regard as more rigid when compared
to our own approach which resorts to a subexpression labeling mechanism.

In [7] the authors present a strategy to dynamically slice lazy functional languages. Never-
theless, they leave higher-order constructs as a topic for future work, and base their approach
on redex trails. This leads to a slicing criterion definition (which consists of a tuple containing a
function call with full evaluated arguments, its value in a particular computation, the occurrence
of the function call and a pattern indicating the interesting part of the computed value) which
is much more complex to use in practice than our own. The latter, by pointing out a specific
(sub)expression in the code, represents a more natural way for the analyst to encode the relevant
aspects of the code that he/she wants isolated.

Perhaps the work most related to ours is [2], where the author presents an algorithm for
dynamic slicing of strict higher-order functional languages followed by a brief adaptation of the
algorithm to lazy evaluation. A major difference with the approach proposed in their paper is that,
recursive calls must be explicitly declared in the language and there is no treatment of mutual
recursive functions which, as pointed out by the author, results in a considerable simplification
of the slicing process. Again, we believe that our definition of the slicing criterion is more precise
than the one used in [2], which consists of the value computed by the program in question (even
though more flexible slicing criteria are briefly discussed).

Finally, it should be emphasized that a slicing criterion, like the one we propose, that permits
to choose any (sub)expression of the program under analysis, deeply influences and augments the
complexity of the slicing process, specially under a lazy evaluation framework like the one we
address. In fact, this aspect is the responsible for the evolution of the slicing algorithm from a one
phase process, like the one presented in section 5, to a two phase process where one must first
keep track of internal (sub)expression lazy dependencies before calculating the final slicing with
respect to the relevant (sub)expressions.

3 The Functional Language

Given that one is not interested on focusing on a single functional language, but rather to come
up with a technique that is potentially applicable to all higher-order lazy functional languages,
one has decided to introduce a common level functional language which can easily serve several
functional programming language implementations.

The process of choosing such a syntax had to fulfill two main requisites. The language could
not be excessively broad since this would introduce an unnecessary notational burden in the
representation. On the other hand it could not be excessively small because this would make
translations from/to real functional languages too complex to achieve.

Values z ::= (λx.e)
| (C x1 · · ·xa) a ≥ 0

Expressions e ::= z
| e x
| x
| let xn = en in e n > 0
| case e of {(Cj x1j · · ·xaj -> ej}n

j=1 n > 0, a ≥ 0
Programs prog ::= x1 = e1, . . . , xn = en

Fig. 1. The FL syntax

Thus, one had to find a tradeoff between this conditions to make the entire process feasible.
Such a tradeoff is captured in language FL where the syntax is presented in figure 1. FL notation
is basically a λ-Calculus enriched with let and case statements. It introduces the domain U of

153



values, the domain E of expressions, the domain P of programs and the domain of V of variables.
Note that values are also expressions by the first rule in the definition of expressions.

A very important detail about the language in figure 1 is that functional application cannot
occur between two arbitrary functional expressions, but only between an expression and a variable
previously defined. In practice this implies that at evaluation time the applied expression must
have been previously added to the heap so that it can be used on a functional application. This
requisite may seem strange for now, but it is necessary to deal correctly with the semantics upon
which we define the slicing process.

It requires, however, some care when converting concrete functional programs to FL. In prac-
tice, the translation is achieved by the introduction of a new free variable with a let expression
and the subsequent substitution of the expression by the newly introduced variable.

Of course, to treat real functional languages, some other straightforward syntactic translations
are in demand. These includes the substitution of if then else by case expressions with the
respective True and False values or the substitution of where constructions by let.

Such syntactic transformations have been implemented, as a prove of concept, in a front end
functional language (Haskell). Even more, they were implemented isomorphically because by
the end of the slicing process, one wants to be able to reconstruct the slice exactly like the original
program except by the removal of some sliced expressions.

Finally, we have to uniquely identify the functional expressions and sub-expressions of a pro-
gram, such that the slicing process refer to these identifiers in order to specify what parts of
the program belong to a specific slice. Such identifiers, collected in a set L, are introduced by
expression labeling as shown in figure 2.

Values z ::= (λx : l1.e) : l
| (C x1 : l1 · · ·xa : la) : l a ≥ 0

Expressions e ::= z
| e (x : l′) : l
| x : l
| let xn = en : ln in e : l n > 0
| case e of {(Cj x1j : l1j · · ·xaj : laj) : l′ -> ej}n

j=1 : l n > 0, a ≥ 0
Programs prog ::= x1 = e1, . . . , xn = en

Fig. 2. Labeled FL syntax

For the moment, one may look at labels from L as simple unique identifiers of functional
expressions. Latter, these labels will be used to capture information about the source language
representation of the expression they denote, so that, by the end of the slicing process, one can be
able to construct a sliced source code version of the program under analysis.

4 Slicing and Evaluation

Slicing of functional programs is an operation that largely depends on the underlying evaluation
strategy for expressions. This can be exemplified in programs where strict evaluation introduces
non termination whereas a lazy strategy produces a result. As an example, consider the following
functional program.

fact :: Int -> Int
fact 0 = 1
fact k = k * fact (k-1)

ssuc :: Int -> Int -> Int

154



ssuc r y = y + 1

g :: Int -> [Int] -> [Int]
g x z = map (ssuc (fact x)) z

If we calculate the slice of the above program w.r.t. expression g (-3) [1,2], taking into
account that the program is being evaluated under a strict strategy, the evaluation will never
terminate and the slice fails to compute.

On the other hand, under a lazy evaluation strategy, the evaluation is possible because succ is
not strict over its arguments, and therefore (fact x) which introduces non terminating behaviour
is not computed. Thus, slicing is now feasible and one would expect to obtain the following slice:

ssuc :: Int -> Int -> Int
ssuc r y = y + 1

g :: [Int] -> [Int]
g z = map (ssuc (fact x)) z

Note that strictly speaking the computed slice is not executable. Actually this would require
definition of function fact in order to be interpreted or compiled. This was a deliberate choice
because, in a functional framework, if one calculates executable slices (without using any further
program transformation), it often happens that such slices take enormous proportions when com-
pared to the original code. Nevertheless, and because the expressions that are sliced away do not
interfere with the selected slicing criterion, a program transformation to be used for this case is
to substitute the expression in question by some special value of the same type. In Haskell, for
instance, and because types have a cpo structure, one could use the bottom value (usually denoted
by ⊥) of the type in question to signal the superfluous expression. These and other possible code
transformations that target the execution of slices are, however, beyond the scope of this paper.

The approach to low level slicing of functional programs proposed in this paper is mainly
oriented (but see section 6) to lazy languages. Our motivation was that slicing has never been
treated under such an evaluation strategy (combined with higher-order constructs). Moreover,
intuition suggests, as in the example above, that lazy slices tend to be smaller than their strict
counterparts.

Therefore, our starting point was a lazy semantics for FL introduced by Launchbury in [6],
which is presented in figure 3. In this semantics, expression Γ ` e ⇓ ∆ ` z states that expression
e under heap Γ evaluates to value z producing heap ∆ as result.

In figure 3 and throughout the paper the following syntactic abbreviations are used: ẑ standing
for α−conversion, [xi 7→ ei] for [x1 7→ e1, . . . , xi 7→ ei], Γ [xi 7→ ei] to express the update of mapping
[xi 7→ ei] in heap Γ and e[xi/yi] for the substitution e[x1/y1, . . . , xi/yi].

5 Lazy Forward Slicing

We start by analyzing a simplified version of the more general problem of higher-order lazy func-
tional slicing, which we have called lazy print. The calculation of this particular kind of slice is
completely based on the lazy evaluation coverage of a program, without taking any extra explicit
slicing criterion. This means that a lazy print calculation amounts to extracting the program frag-
ment that has some influence on the lazy evaluation of an expression within that program. For an
example, consider the following trivial functional program.

fst :: (a, b) -> a
fst (x, y) = x

sum :: [Int] -> Int
sum [] = 0

155



Γ ` λy.e ⇓ Γ ` λy.e Lamb

Γ ` C x1 · · ·xa ⇓ Γ ` C x1 · · ·xa Con

Γ ` e ⇓ ∆ ` λy.e′ ∆ ` e′[x/y] ⇓ Θ ` z

Γ ` e x ⇓ Θ ` z
App

Γ ` e ⇓ ∆ ` z

Γ [x 7→ e ] ` x ⇓ ∆[x 7→ z ] ` ẑ
Var

Γ [xn 7→ en] ` e ⇓ ∆ ` z

Γ ` let {xn = en} in e ⇓ ∆ ` z
Let

Γ ` e ⇓ ∆ ` Ck x1 · · ·xak ∆ ` ek[xi/yik] ⇓ Θ ` z

Γ ` case e of {Cj y1 · · · yaj -> ej}n
j=1 ⇓ Θ ` z

Case

Fig. 3. Lazy Semantics

sum (h:t) = h + (sum t)

g :: ([Int], Int) -> Int
g z = sum (fst z)

The lazy print of this program w.r.t. the evaluation of g ([], 3) is

fst :: (a, b) -> a
fst (x, ) = x

sum :: [Int] -> Int
sum [] = 0

g :: ([Int], Int) -> Int
g z = sum (fst z)

Automating this calculation entails the need to derive an augmented semantics from the lazy
semantics presented in figure 3. This extends Launchbury semantics with an extra output value
of type set of labels (S), for the evaluation function ⇓. The purpose of this set S is to collect all
the labels from the expressions that constitute the lazy print of a given evaluation. Motivated by
implementation reasons, instead of using an alpha conversion in the original rule Var, we introduce
a fresh variable in rule Let to avoid variable clashing.

The lazy print semantics uses two auxiliary functions, namely ϕ : E×V → P L and L : E → P L.
Function ϕ collects the labels from all the occurrences of a variable in an expression and function
L returns all the labels in an expression.

The intuition behind this augmented semantics is that it works by collecting all the labels
from the expressions as they are being evaluated by the semantic rules. The only exception is rule
Let, which does not collect all the expression labels immediately. This is explained by the fact
that there is not sufficient information available when rule Let is applied to decide which variable

156



Γ ` (λy : l1.e) : l ⇓{l1,l} Γ ` (λy : l1.e) Lamb

Γ ` (C x1 : l′1 · · ·xa : l′a) : l′ ⇓{l′
k

,l′} ∆ ` (C x1 : l′1 · · ·xa : l′a) : l′ Con

where k ∈ {1, . . . , a}

Γ ` e ⇓S1 ∆ ` (λy : l1.e
′) : l2 ∆ ` e′[x/y] ⇓S2 Θ ` z

Γ ` e (x : l′) : l ⇓S1∪S2∪{l′,l} Θ ` z
App

Γ ` e ⇓S1 ∆ ` z

Γ [x 7→ < e, L > ] ` x : l ⇓S1∪L∪{l} ∆[x 7→ < z, ε > ] ` z
Var

Γ [yn 7→ < en[yn/xn], {ln} ∪ ϕ(e, xn) ∪ ϕ(en, xn) ∪ L(en) > ] ` e[yn/xn] ⇓S1 ∆ ` z
yn fresh

Γ ` let {xn = en : ln} in e : l ⇓S1∪{l} ∆ ` z
Let

Γ ` e ⇓S1 ∆ ` (Ck x1 : l?1 · · ·xak : l?ak
) : l]k ∆ ` ek[xi/yik] ⇓S2 Θ ` z

Γ ` case e of {(Cj y1 : l′1 · · · yaj : l′aj ) : l\j -> ej}n
j=1 : l ⇓S Θ ` z

Case

where S = S1 ∪ S2 ∪ {l?nj
| 1 ≤ n ≤ a} ∪ {l′nj

| 1 ≤ n ≤ a} ∪ {l]k, l\j , l}

Fig. 4. Lazy Print Semantics

bindings will be needed in the remainder of the evaluation towards the computation of the final
result. A possible solution for this problem is to have a kind of memory associating pending labels
and expressions such that, if an expression gets to be used then not only their labels are included
in the evaluation labels set, but also the pending labels that were previously registered in the
memory.

A straightforward implementation of such a memory mechanism is the heap itself. Thus, by
extending the heap from a mapping between variables and expressions to a mapping from variables
to pairs of expressions and sets of labels, the semantics becomes able to capture the “pending
labels” introduced by the Let rule.

A problem is spotted however in slices computed on top of the lazy print semantics given in
figure 4. As an example, consider the following fragment that calls some complex and very cohesive
functions funcG and funcH which do indeed contribute to the computation of the values in x and
y:

f z w = let x = funcG z w
y = funcH x z

in (x, y)

When computing the lazy print of such a program, no matter what values are chosen for z w,
the returned slice is always

f z w =

(x, y)

as if the variables introduced by the let expression would have no effect on the result of the overall
function, which completely contradicts what one already knew about the behaviour of functions
funcG and funcH.

The reason for such a deviating behaviour induced by the lazy print semantics is explained by
the Con rule. Because C x1 : l1 · · ·xa : la expressions are considered primitive in the language, the

157



Con rule simply collects the outer labels of such expressions and returns the expression exactly as
it was received.

Indeed this explains the odd behaviour of the above example, where function f returns a pair
which falls into the C x1 : l1 · · ·xa : la representation in FL. Therefore, the only semantic rule
being applied during the lazy print calculation was the Con rule which does not evaluate the
constructor (Pair) arguments and their associated expressions. Thus, one may now understand
why the only labels that the semantics yields during the evaluation are the ones visible at the time
of application of the Con rule.

A possible approach to solve this problem of extra laziness induced by the semantics would be
to evaluate every data constructor parameter in a strict way. This, however, would throw away
most of the lazy motto of the semantics since the evaluation would become strict on every data
type.

A much more effective solution is to divide the slicing calculation into two phases. The first
phase uses the semantics from figure 4. The second one takes the value and the heap returned by
the first phase and passes them to a processor which restates to a semantics similar to the one
used in the first phase except for rule Con which is substituted by the one from figure 5.

Γ [xk 7→ < ek, Lk > ] ` xk ⇓S1 ∆ ` zk

Γ [xk 7→ < ek, Lk > ] ` (C x1 : l′1 · · ·xa : l′a) : l′ ⇓S ∆ ` (C x1 : l′1 · · ·xa : l′a) : l′
Con

where k ∈ {1, . . . , a}
S = Lk ∪ {l′k, l′} ∪ S1

Fig. 5. Con Rule for Strict Evaluation of the Result Value

This way, constructor strict evaluation is introduced only over the resulting value, leaving all
intermediate values being evaluated as lazy as possible.

6 Lazy Forward Slicing with Slicing Criterion

However, despite the relevance of the lazy print in, e.g., program understanding, a further step
towards effective slicing techniques for functional programs requires the explicit consideration of
slicing criteria. In this section, we present an approach where slicing criteria is specified by sets of
program labels.

The slicing process proceeds as in the previous case, except that now one is interested in
collecting the program labels affected not only by a given expression, as before, but also by the
expressions associated to the labels introduced by the user as a slicing criterion.

A first and straightforward approach to implement a slicer with such a slicing criterion involves
taking into account the set of collected labels on both the output and the input of the evaluation
function ⇓. Therefore, the semantic rule for λ-expressions changes to the one presented by the rule
of figure 6.

Si, Γ ` (λy : l1.e) : l ⇓ Γ ` (λy : l1.e) : l, Sf Lamb
where Sf = Si ∪

⋃
{ϕ(e, y) | l1 ∈ Si} ∪ {l | l1 ∈ Si}

Fig. 6. Improved Semantics

This extra rule enables the semantics to evaluate expressions taking into account a set of labels
Si supplied as a slicing criterion and its impact on the resulting slice Sf . Putting it in another

158



Γ ` (λy : l1.e) : l ⇓F Γ ` (λy : l1.e) : l Lamb
where F = [l1 7→ ϕ(e, y) ∪ {l}]

Γ ` (C x1 : l1 · · ·xa : la) : l ⇓F Γ ` (C x1 : l1 · · ·xa : la) : l Con
where k ∈ {1, . . . , a}

F = [lk 7→ l]

Γ ` e ⇓F ∆ ` (λy : l1.e
′) : l2 ∆ ` e′[x/y] ⇓G Θ ` z

Γ ` e (x : l′) : l ⇓H Θ ` z
App

where H = F ⊕G⊕ [l′ 7→ {l, l1}]

Γ ` e ⇓F ∆ ` z

Γ [x 7→ < e, L > ] ` x : l ⇓G ∆[x 7→ < z, ε > ] ` z
Var

where G = F ⊕ [l 7→ L]

Γ [yn 7→ < en[yn/xn], {ln, l} ∪ ϕ(e, xn) ∪ ϕ(en, xn) > ] ` e[yn/xn] ⇓F ∆ ` z
yn fresh

Γ ` let {xn = en : ln} in e : l ⇓G ∆ ` z
Let

where G = F ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Γ ` e ⇓F ∆ ` (Ck x1 : l?1 · · ·xak : l?ak
) : l]k ∆ ` ek[xi/yik] ⇓G Θ ` z

Γ ` case e of {(Cj y1 : l′1 · · · yaj : l′aj ) : l\j -> ej}n
j=1 : l ⇓H Θ ` z

Case

where G = F ⊕G⊕ [l?m 7→ ϕ(ek, ym) ∪ {l′m, l\k}|1 ≤ m ≤ ak]⊕
[l\k 7→ {l}]⊕ [l′m 7→ ϕ(ek, ym) ∪ {l\k}|1 ≤ m ≤ ak]

Fig. 7. Higher-Order Slicing Semantics

way, each rule has to compute the resulting set of labels Sf considering the effect that the input
labels in Si may have in the slice being computed.

Soon, however, it became difficult to specify the semantic rules taking into account the impact
of the receiving set of labels. The problem of specifying the rules is related to the fact that in
many cases there is not enough information to enable the decision of including a certain label or
not.

For instance, in the App rule one may not immediately decide whether to include or not label
l1 in the resulting label set. The reason for this is that one has no means of knowing in advance
whether a particular expression in the heap will ever become part of the slice. If such an expression
is to be included into the slice, sometime along the remainder of the slicing process, then label l1
will also belong to the slice as well as all the labels that l1 affects by the evaluation of the first
premiss of rule App.

Γ [xk 7→ < ek, Lk > ] ` xk ⇓Fk ∆ ` zk

Γ [xk 7→ < ek, Lk > ] ` (C x1 : l′1 · · ·xa : l′a) : l′ ⇓G ∆ ` (C x1 : l′1 · · ·xa : l′a) : l′
Con

where k ∈ {1, . . . , a}
G = Fk ⊕ [l′k 7→ l′]

Fig. 8. Con Rule for Strict Evaluation of the Result Value

In order to overcome this problem, one should look for some independence in the slicing process
over the partial slices that are being calculated by each semantic rule. Thus, instead of calculating
partial slices on the application of every rule, one computes partial dependencies between labels.
This entails the need for a further modification in the rules which are now intended to compute
maps of type L → P L, called lmap’s, rather than sets, such that all labels in the codomain depend
on the labels in the domain. The resulting semantics is presented in figure 7.

159



In the sequel the following three operations over lmap’s are required: an application operation,
resorting to standard finite function application, defined by

F (x) =

{
F x if x ∈ dom F ,
{} otherwise.

a lmap multiplication ⊕, defined as

(F ⊕G)(x) = F (x) ∪G(x)

and, finally, a range union operation urng, defined as

urng F =
⋃

x∈dom F

F (x)

Again, this semantics suffers from the problem identified in the lazy print specification i.e.,
the semantics is “too lazy”. Once more, to overcome such undesired effect, one introduces a new
rule (Fig. 8) to replace the original Con rule, and the slicing process is similarly divided into two
phases.

By changing the output of the evaluation function from a set to a lmap of labels, we no longer
have a slice of the program by the end of the evaluation. What is returned, instead, is a lmap
specifying the different dependencies between the different expressions that form the program
under analysis. The desired slice is computed as the transitive closure of such dependencies lmap.

Furthermore, splitting the slicing process into a dependencies calculation and the computation
of a slice for the set of pertinent labels makes easier the calculation of slices that only differ on
the set of pertinent labels. For such cases, one can rely on a common dependencies lmap and the
whole process amounts to the calculation of the transitive closure for redefined set of labels.

7 Strict Evaluation

Slicing under strict evaluation is certainly easier. A possible semantics, as the one considered in
figure 9, can be obtained by a systematic simplification of the one used in the lazy case. Of course,
this is not the only possibility. To make comparisons possible between the lazy and strict case,
however, we chose to keep specification frameworks as similar as possible, although we are aware
that many details in the strict side could have been simplified. For example, strict semantics can
always return slices in the form of sets of labels instead of calculating maps capturing dependencies
between code entities.

Moreover, in the strict case there is no need to capture pending labels in the heap, since let
expressions are evaluated as soon as they are found. This leads to a simplification of the heap
from a mapping between variables and pairs of expressions and set of labels to a mapping between
variables and values.

As for the rules, the App and Let rules need to be changed, along with some minor adaptation
of the rules that deal with the (newly modified) heap.

Another decision taken in the strict slicing semantics specification was to keep value sharing
i.e., sharing of values that are stored in the heap. Nevertheless, one can easily derive a slicing
semantics without any sharing mechanism, for which case one could probably remove the heap
from the semantics.

Finally note that now there is no need to introduce a new Con rule to force the evaluation of
unevaluated expressions inside result value. Thus, unlike the two previous versions of lazy slicing,
strict slicing is accomplished in a single evaluation phase.

8 Some Considerations About the Slicing Processes

All slicing algorithms presented in this paper were introduced as (evaluators of) a specific seman-
tics. Such an approach provides an expressive setting on top of which one may reason formally

160



Γ ` (λy : l1.e) : l �F Γ ` (λy : l1.e) : l Lamb
where F = [l1 7→ ϕ(e, y) ∪ {l}]

Γ ` (C x1 : l1 · · ·xa : la) : l �F Γ ` (C x1 : l1 · · ·xa : la) : l Con
where k ∈ {1, . . . , a}

F = [lk 7→ l]

Γ ` e �F ∆ ` (λy : l1.e
′) : l2 ∆ ` e′[z1/y] �G Θ ` z

Γ [x 7→ z1] ` e (x : l′) : l �H Θ ` z
App

where H = F ⊕G⊕ [l′ 7→ {l, l1}]

Γ ` z �F ∆ ` z

Γ [x 7→ z] ` x : l �G ∆[x 7→ z ] ` z
Var (whnf)

where G = F

Γ ` en �F ∆ ` zn Γ [yn 7→ zn] ` e[zn/xn] �G ∆ ` z
yn fresh

Γ ` let {xn = en : ln} in e : l �H ∆ ` z
Let

where H = F ⊕G⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Γ ` e �F ∆ ` (Ck x1 : l?1 · · ·xak : l?ak
) : l]k ∆ ` ek[xi/yik] �G Θ ` z

Γ ` case e of {(Cj y1 : l′1 · · · yaj : l′aj ) : l\j -> ej}n
j=1 : l �H Θ ` z

Case

where G = F ⊕G⊕ [l?m 7→ ϕ(ek, ym) ∪ {l′m, l\k}|1 ≤ m ≤ ak]⊕
[l\k 7→ {l}]⊕ [l′m 7→ ϕ(ek, ym) ∪ {l\k}|1 ≤ m ≤ ak]

Fig. 9. Strict Slicing Semantics

about slices and slicers. This is illustrated in this section to confirm the intuitive fact that, in
general, lazy slices are smaller than strict slices.

In the case of the lazy print semantics, such a proof amounts to showing that the set of labels
returned by the lazy print is a subset of the set of labels yielded by an hypothetical strict print
semantics.

But, since both the higher-order lazy slicing semantics and the strict one do not return sets of
labels but maps of dependencies, one has to restate the proof accordingly. This can be achieved
in two ways: either including the final transitive closure calculation in the slicing process, or
introducing a partial order over the dependency lmap’s that respects subset inclusion.

We chose the latter alternative, and introduce the following partial order over lmap’s, which is
the standard inclusion order on partial functions.

F � G ⇔ dom(F ) ⊆ dom(G) ∧ (∀x ∈ dom(F ).F (x) ⊆ G(x))

Now, the property that “lazy slices are smaller than strict slices” is formulated as follows.

If Γ ` e ⇓F ∆ ` z and Γ ` e �G Θ ` z then F � G

The proof proceeds by induction over the rule-based semantics. First notice that the property
is trivially true for all identical rules in both semantics. Such as the cases of rules Lamb, Con and
Case for which the resulting lmap’s are equal. The remaining cases follows.

Case App: Evaluation of expressions under these rules take the following form, according to
the evaluation strategy used.

161



Γ ` e ⇓F ∆ ` (λy : l1.e
′) : l2 ∆ ` e′[x/y] ⇓G Ψ ` z

Γ ` e (x : l′) : l ⇓H Θ ` z
App

where H = F ⊕G⊕ [l′ 7→ {l, l1}]

Γ ` e �I Θ ` (λy : l1.e
′) : l2 Θ ` e′[z1/y] �J Φ ` z

Γ [x 7→ z1] ` e (x : l′) : l �K Φ ` z
App

where K = I ⊕ J ⊕ [l′ 7→ {l, l1}]

By induction hypothesis one has that F � I. By definition of Let rule, which is the only
rule that changes the heap, one has that L(∆) ∪ urng F = L(Θ) ∪ urng I, where function L is
overloaded to collect all the labels of the expressions in a heap. It follows that

L(∆) ∪ urng F = L(Θ) ∪ urng I

⇒ {Induction Hypothesis}
L(∆)�L(Θ) ⊆ urng I

⇒ {Defintion of ⊕, noting that every possible label that G may collect from heap ∆ is already in I}
G � I ⊕ J

⇒ {Induction Hypothesis}
F � I ∧G � I ⊕ J

⇒ {Definition of ⊕}
F ⊕G � I ⊕ J

⇒ {Definition of ⊕}
F ⊕G⊕ [l′ 7→ {l, l1}] � I ⊕ J ⊕ [l′ 7→ {l, l1}]

⇒ {Defintion of G and H}
G � H

Case Let : Evaluation of expressions under these rules takes the following format, according to
the evaluation strategy used.

Γ [yn 7→ < en[yn/xn], {ln, l} ∪ ϕ(e, xn) ∪ ϕ(en, xn) > ] ` e[yn/xn] ⇓F ∆ ` z
yn fresh

Γ ` let {xn = en : ln} in e : l ⇓G ∆ ` z
Let

where G = F ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

Γ ` en �H Θ ` zn Γ [yn 7→ zn] ` e[zn/xn] �I Φ ` z
yn fresh

Γ ` let {xn = en : ln} in e : l �J Φ ` z
Let

where J = H ⊕ I ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]

By induction hypothesis and because L(en) ⊆ urng H one has that F � H ⊕ I. It follows that

G = F ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]
⇒ {F � H ⊕ I}

G � H ⊕ I ⊕ [ln 7→ {l}]⊕ [y 7→ ϕ(e, xn) ∪ ϕ(en, xn) | y ∈ L(en)]
⇒ {Definition of K}

G � K

Case Var : Evaluation of expressions under these rules take the following form, according to
the evaluation strategy used.

162



Γ ` e ⇓F ∆ ` z

Γ [x 7→ < e, L > ] ` x : l ⇓G ∆[x 7→ < z, ε > ] ` z
Var

where G = F ⊕ [l 7→ L]

Γ ` z �H ∆ ` z

Γ [x 7→ z] ` x : l �I ∆[x 7→ z ] ` z
Var

where I = H

By induction hypothesis one has that F � H. Since the only way to add entries to the heap
is via the Let rule, and because, in strict semantics, such rule increments the dependencies lmap
with every label from the newly introduced expressions, it follows that increments to the strict
evaluation lmap will contain every mapping that is pending on the modified higher-order slicing
heap. Thus, even though it may happen that at the time of evaluation of the Var rule, one may
have I � G, in the overall evaluation tree the dependency lmap for the lazy evaluation is always
smaller or equal to the strict evaluation lmap.

9 Conclusions and Future Work

This paper introduced a semantic-based approach to low level slicing of functional programs, high-
lighting a strong relationship between the slicing problem and the underlying evaluation strategy.

Due to space restrictions, we have not been able to expose here a real code example that
would highlight the strengths of the presented method. Actually, a realistic application exam-
ple needs to have at least one large (more than 20 lines) function with several calls to other
functions which would also had to be presented in order to achieve an understandable prac-
tical example. Nevertheless, we have tested the method against the Haskell implementation
of the semantics presented in section 6, and the interested reader may consult the results at
http://www.di.uminho.pt/∼nfr/Results/HoSlicingResults.html. The need for examples with
large function definitions to demonstrate our method capabilities is because in such cases one can
point out as a slicing criterion a tag indicating the particular (sub)expression inside the large
function definition, and by doing so one can more precisely identify the relevant part of the code
that he/she is interested in. Other approaches that rely on slicing criterion defined by a return
value cannot achieve slices as precise as ours.

Although the techniques introduced here are oriented to forward slicing, we strongly believe
that a correct inversion of the dependencies lmap’s, followed by the same transitive closure calcu-
lation, will capture the backward cases.

This research adds to our previous work on high level functional slicing i.e., slicing defined
over “high level” program entities such as functions, modules, or data-types, as documented in
[10]. Reference [9] reports on a completely alternative approach to the slicing problem based on
the so called Bird-Meertens calculus. The common context of this research effort is a project on
program understanding and re-engineering3, currently running at Minho University, Portugal.

References

1. R. Bird. Functional Programming Using Haskell. Series in Computer Science. Prentice-Hall Interna-
tional, 1998.

2. S. K. Biswas. Dynamic slicing in higher-order programming languages. PhD thesis, 1997. Supervisor-
Carl A. Gunter.

3. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In PLDI ’88:
Proceedings of the ACM SIGPLAN 1988 Conf. on Programming Usage, Design and Implementation,
pages 35–46. ACM Press, 1988.

4. B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–163, 1988.
5. B. Korel and J. Laski. Dynamic slicing of computer programs. J. Syst. Softw., 13(3):187–195, 1990.

3 http://wiki.di.uminho.pt/twiki/bin/view/PURe

163



6. J. Launchbury. A natural semantics for lazy evaluation. In Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 144–
154, Charleston, South Carolina, 1993.

7. C. Ochoa, J. Silva, and G. Vidal. Dynamic slicing based on redex trails. In PEPM ’04: Proceedings
of the 2004 ACM SIGPLAN symposium on Partial evaluation and semantics-based program manipu-
lation, pages 123–134, New York, NY, USA, 2004. ACM Press.

8. T. W. Reps and T. Turnidge. Program specialization via program slicing. In Selected Papers from
the International Seminar on Partial Evaluation, pages 409–429, London, UK, 1996. Springer-Verlag.

9. N. Rodrigues and L. Barbosa. Program slicing by calculation. Journal of Universal Computer Science,
12(7):828–848, 2006.

10. N. Rodrigues and L. S. Barbosa. Component identification through program slicing. In L. S. Barbosa
and Z. Liu, editors, Proc. of FACS’05 (2nd Int. Workshop on Formal Approaches to Component
Software), volume 160, pages 291–304, UNU-IIST, Macau, 2006. Elect. Notes in Theor. Comp. Sci.,
Elsevier.

11. M. Weiser. Program Slices: Formal, Psychological and Practical Investigations of an Automatic Pro-
gram Abstraction Methods. PhD thesis, University of Michigan, An Arbor, 1979.

12. M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–452, 1982.
13. M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

164



Open and Closed Worlds for Overloading:
a definition and support for coexistence

Carlos Camarão1, Cristiano Vasconcellos2, Lucı́lia Figueiredo3, João Nicola1

1 Universidade Federal de Minas Gerais (UFMG), DCC-ICEX,
Caixa Postal 702, Belo Horizonte 30123-970, MG, Brasil

{camarao,joaoraf}@dcc.ufmg.br

2Universidade Federal de Pelotas,
Campus Universitário s/n, Caixa Postal 354, Pelotas 96100-900, RS, Brasil

cristiano.damiani@ufpel.edu.br

3Universidade Federal de Ouro Preto, DECOM-ICEB,
Caixa Postal 140, Ouro Preto 35400-000, MG, Brasil

lucilia@dcc.ufmg.br

Abstract. The type system of Haskell and some related systems are based on an
open world approach for overloading. In an open world, the principal type of
each overloaded symbol must be explicitly annotated (in Haskell, annotations
occur in type class declarations) and a definition of an overloaded symbol is
required to exist only when overloading is resolved. In a closed world, on the
other hand, each principal type is determined according to the types of defini-
tions that exist in the relevant context and, furthermore, overloading resolution
for an expression considers only the context of the definition of its constituent
symbols. In this paper we formally characterize open and closed worlds, and
discuss their relative advantages. We present a type system that supports both
approaches together, and compare the defined system with Haskell type classes
extended with multi-parameter type classes and functional dependencies. We
show in particular that functional dependencies are not necessary in order to
support multi-parameter type classes, and present an alternative route.

1 Introduction
The type system of Haskell [23, 12, 10, 20] and related type systems[31, 2, 26, 13, 4, 8]
are based on an open world approach for overloading. In an open world, the principal type
of each overloaded symbol must be explicitly annotated, and a definition of an overloaded
symbol is required to exist only when overloading is resolved.

In Haskell, type annotations occur in type class declarations, and definitions of
overloaded symbols are given in instance declarations.

For example, the principal types of (==) (“equal”) and (/=) (“not equal”) are
annotated in type class Eq (defined in the Haskell prelude) as follows:

class Eq a where
(==), (/=) :: a→ a→ Bool
x /= y = not (x == y)
x == y = not (x /= y)

165



A class may contain, apart from type annotations of overloaded symbols, also
default definitions, as shown in class Eq above. The following is an instance of class Eq
for values of type Int, assuming that primEqInt is a function for comparing values of type
Int for equality. The definition of (/=) in this instance is the default definition given in
class Eq, since it is not explicitly given in the instance declaration.

instance Eq Int where
(==) = primEqInt

In an open world, a definition of an overloaded symbol is required to exist only
when overloading is resolved. For instance, no definitions of equality are required to be
in the context where a definition of (polymorphic) equality of lists is given.

In a closed world, on the other hand, for any given expression the types of defi-
nitions available in the context where this expression occurs determine if the occurrence
of this expression is well-typed or not and, in the first case, its principal type. A closed
world is “closed” only in the level of modules, which introduce separate typing contexts.
If, say, x is imported from a module M into another module M ′, then the uses of x in M ′

consider only the definitions of x that occur in M . If new definitions of x need to be given
or used in M ′, an open world must be used. On the other hand, inside a module, a closed
world is, in fact, “more open” than an open world, in the sense that a new definition of
an overloaded symbol is not required to be an instance of any given annotated type. Each
new definition of an overloaded symbol x implies a redefinition of x’s principal type, as
the least common generalization of the types of definitions of x in the typing context.

In this paper we construct a framework that allows us to give precise definitions
of open and closed worlds, and discuss their relative advantages. A useful result of this is
the presentation of an alternative to the use of functional dependencies in an extension of
Haskell with multi-parameter type classes. The paper starts by giving some preliminary
definitions, in Section 2. Section 3 presents constraint-set satisfiability and simplification.
In Section 4 we give formal definitions of open and closed worlds; relative advantages
are compiled in subsection 4.1. Formal definitions of type systems to support both closed
and open worlds are presented in Section 5. Inference of principal typings is discussed
in Section 6, together with some relevant implementation issues. A brief discussion of
ambiguity is given in Section 7. Section 8 concludes.

2 Preliminaries
We use types and terms of a language that is basically core-ML [21, 3, 22] extended with
the possibility of introducing overloaded definitions in the outermost program scope, by
means of a leto construct which does not introduce nested scopes. In this way, typing
contexts are allowed to be stepwisely extended and may have more than one assumption
for the same variable. The context-free syntax of expressions, their types and kinds of
types is presented in Figure 2.

Each simple type expression has a kind, identified by an upper index in a simple
type expression. A simple type is a type expression of kind ?, which is usually omitted.
Meta-variables α, β, a, b, c dente type variables and C type constructors, of any kind.

Types of expressions are constrained polymorphic types. A set of constraints κ is
a possibly empty set of pairs x : τ , where x denotes an overloaded symbol and τ a simple

166



Programs p ::= e | leto x = e in p
Expressions e ::= x | λx. e | e1 e2 | let x = e1 in e2

Kinds ι ::= ? | ι1 → ι2
Simple type expressions τ ι ::= αι | Cι | τ ι→ι′

1 τ ι
2

Constraints κ ::= {x1 : τ1, . . . , xn : τn} (n ≥ 0)
Types σ ::= τ | κ. τ | ∀α. σ

Figure 1: Context-free syntax of expressions and types

type. A constrained polymorphic type is written as ∀α1. . . . . ∀αn. κ. τ , where n ≥ 0. If
κ = ∅, we have an unconstrained polymorphic type.

The set of free type variables of type σ is defined as usual and denoted by tv(σ).

We use ∀ᾱ. κ. τ as an abbreviation for ∀α1. · · · ∀αn. κ. τ , for some n ≥ 0, and
similarly for τ̄ , σ̄. Naturally, ∀ᾱ. σ = σ if n = 0, and ∀ᾱ.∅.τ = ∀ᾱ.τ . We also use ᾱ as a
set of type variables, as in ᾱ = tv(τ).

A substitution S is a kind-preserving function from type variables to simple type
expressions. The identity substitution is denoted by id. Sσ represents the capture-free1

operation of substituting Sα for each free occurrence of type variable α in σ. This opera-
tion is extended to constraints in the usual manner. We define dom(S) = {α | Sα 6= α}.
It is sometimes convenient to use a finite mapping notation for substitutions, where S =
{(αj 7→ τj)}j=1..m is used to denote the substitution such that dom(S) = {αj}j=1..m and
Sαj = τj , for j = 1, . . . ,m. We also write S † {αi 7→ τi}i=1..n to denote the substitution
S ′ such that S ′β = Sβ, if β 6∈ {α}i=1..n, and S ′αi = τi, for i = 1, . . . , n. We define
σ[τ̄ /ᾱ] = (id † (ᾱ 7→ τ̄))σ.

In type systems with support for (universal) polymorphism, the type ordering is
such that ∀α. σ ≥ σ[τ/α], for all τ . The principal type of an expression in a typing
context is the least upperbound, in this ordering, of all types that can be derived for this
expression in this typing context. If σ ≥ σ′, then σ′ is called a generic instance of σ.

3 Constrained Polymorphism, Satisfiability and Simplification
In type systems with support for overloading, a typing context may include multiple as-
sumptions for an overloaded symbol. The set of valid type assumptions which constitute
a typing context is usually restricted by an overloading policy.

The principal type of an overloaded symbol x is obtained from the least common
generalization (lcg) of the set of types in assumptions for x in the relevant typing context
(unless the principal type of x is explicitly annotated). We say “the” least, instead of
“a” least, by considering polymorphic types as equivalent up to renaming of bound type
variables. Let τ ≥S τ ′ if Sτ ′ = τ , and also τ ≥ τ ′ if there exists S such that τ ≥S τ ′.
The lcg of a set of types {σi = ∀ᾱi. κi. τi}i=1..n is ∀ᾱ. τ , where ᾱ = tv(τ) and: i) τi ≥ τ
(i.e. ∀ᾱ. τ ≥ ∀αi. τi, ᾱi = tv(τi), for i = 1, . . . , n; and ii) τi ≥ τ ′ implies τ ≥ τ ′

(i.e. ∀β̄.τ ′ ≥ ∀ᾱ. τ , where β̄ = tv(τ ′)).
1The operation of applying substitution S to σ is capture-free if tv(Sσ) = tv(S(tv(σ))), where appli-

cation of substitution S to a set of type variables {αi}i=1..n is given by {Sαi}i=1..n.

167



The constrained least common generalization of the types of x in a typing context
Γ is the type σ = ∀ᾱ. {x : τ}. τ , where ∀ᾱ. τ is the lcg of Γ(x) — written as clcg(x, Γ, σ).

EXAMPLE 1. Consider that the assumptions for (==) in a typing context Γ(==)
are (==) : Int → Int → Bool and (==) : Float → Float → Bool. The following types
can be derived for (==) in this typing context:

Int→ Int→ Bool, Float→ Float→ Bool,∀a. {(==) : a→ a→ Bool}. a→ a→ Bool

The last one is the principal type of (==) in Γ(==). It can be instantiated to types of the
form {(==) : τ → τ → Bool}. τ → τ → Bool, for which the constraint is satisfiable in
Γ — in this particular case, τ can be either Int or Float or α, for some type variable α. If
τ is Int or Float, the set of constraints can be simplified to an empty of constraints. �

EXAMPLE 2. Consider the following definition of function ins, that uses (==):

ins a [] = [a]
ins a (b:x) = if a==b then b:x else b:ins a x

The principal type of this definition, obtained as the clcg of types of (==) in Γ(==), is:
∀a. {(==) : a → a → Bool}. a → [a] → [a]. Thus ins can be used in any context
with a type that is an instance of ∀ᾱ. τ → τ → Bool, where ᾱ = tv(τ), if constraint-set
{(==) : τ → τ → Bool} is satisfiable in this context.

EXAMPLE 3 (Functions overloaded over distinct type constructors). Assume that
there exist distinct definitions of function ins, in a typing context Γins, for inserting ele-
ments in lists and trees, with types ∀a. {(==) : a → a → Bool}. a → [a] → [a], and
∀a. {(==) : a → a → Bool}. a → Tree a → Tree a. In this context, the principal type
of ins is ∀a.∀c. {ins : a → c a → c a}. a → c a → c a, where c is a type variable of
kind ? → ?. Note that this type does not contain a constraint on (==). Such constraint
is automatically recovered from constraints on types of assumptions for ins in Γins, if and
when overloading is resolved, thus creating automatically a hierarchy of dependencies
between overloaded symbols. �

EXAMPLE 4. Consider that we also want to overload ins in typing context Γ′
ins by

including definitions with the following types, in addition to those of Γins of Example 3,
that include a comparison operator as argument for working on ordered lists and trees
(this could not be in Haskell extended with MPTCs if the principal type of ins was fixed
a priori in a type class as ∀a.∀c. a→ c a→ c a):

ins : ∀a. (a→ a→ Bool)→ a→ [a]→ [a]
ins : ∀a. (a→ a→ Bool)→ a→ Tree a→ Tree a

In Γ′
ins, the type of ins is ∀a, b, c. {ins : a → b → c}. a → b → c, where a, b, c are

respectively the lcgs of:

{ a, a, a→ a→ Bool, a→ a→ Bool }
{ [a], Tree a, a, a }
{ [a], Tree a, [a]→ [a], Tree a→ Tree a }

168



3.1 Constraint-set satisfiability

A constraint-set κ on a type σ = ∀ᾱ. κ. τ restricts the set of types to which σ can be
instantiated, on a given typing context Γ, according to the type assumptions in Γ for the
overloaded symbols that occur in κ.

A definition of constraint-set satisfiability independent on provability in a type
system was given in [1]. We present below a simpler definition (◦ denotes composition):

DEFINITION 1 (Constraint and constraint-set satisfiability).

Γ |=id ∅
(SAT0)

Sτ = Sτ ′ Γ |=S′ Sκ

Γ ∪ {x : ∀ᾱ. κ. τ ′} |=S′◦S {x : τ}
(SAT1)

Γ |=S {x : τ} Γ |=S κ

Γ |=S κ ∪ {x : τ}
(SATn)

A constraint-set satisfiability problem is a problem of determining, for a given pair
(Γ, κ), where Γ is a typing context and κ is a constraint-set, whether Γ |=S κ is provable,
for some substitution S, which is called a solution to the satisfiability problem.

A solution S is principal if for any other solution S ′ there exists a substitution R
such that S ′ = R ◦ S. The application of the principal solution followed by constraint-set
simplification is called improvement[12, 14].

If Γ |=S κ is provable, for some S, then we write that Γ |= κ, otherwise Γ 6|= κ.

The constraint-set satisfiability problem has been proved to be undecidable [29].
However, practical implementations have been used, that either restrict the set of types
of overloading symbols that may be introduced in typing contexts, in order to guarantee
decidability, or use an iteration limit in order to prevent nontermination [17, 19, 11, 1].

Let a solution S to a satisfiabilty problem of κ in Γ be minimal if, for any other
solution S ′, dom(S) ∩ tv(κ) ⊆ dom(S ′) ∩ tv(κ) (informally, a solution is minimal if it
“modifies κ less” than any other solution).

DEFINITION 2 (Overloading resolution). Let Γ be any typing context and κ be
any constraint-set involving a constraint on x — i.e. let κ = {x : τ} ∪ κ′, for some
constraint-set κ′. Overloading of x is resolved, in an expression that has a principal type
with constraint-set κ, if there exists a minimal solution S to the satisfiability of κ in Γ
such that Sτ = S ′τ , for all other minimal solutions S ′. �

3.2 Constraint-set Simplification

Constraints can be simplified either by removal of resolved constraints or substitution of
constraints. For instance, {(==): Int → Int → Bool} can be simplified to an empty set
of constraints, in typing context Γ(==) of Example 1, and {ins: α → [α] → [α]} can be
simplified to {(==): α→ α→ Bool }, in typing context Γins of Example 3.

169



Simplification yields equivalent constraint-sets. Equivalence between constraint-
sets in a given typing context Γ is defined as the reflexive, symmetric and transitive closure
of the simplification relation Γ |= κ� κ′ defined below.

DEFINITION 3 (Constraint-set Simplification).

Γ ∪ {x : ∀ᾱ. κ′. τ ′} |=S {x : τ} ∪ κ Γ 6|= {x : τ} ∪ κ

Γ ∪ {x : ∀ᾱ. κ′. τ ′} |= {x : τ} ∪ κ� S(κ ∪ κ′)

The premise of the rule above implies that overloading of x is resolved.

3.3 Open world satisfiability

Open world constraints — i.e. constraints introduced due to the specification, by pro-
grammers, of the principal type of overloaded symbols — are tested for satisfiability only
when overloading of some symbol must be resolved. This can be formalized by means
of the constraint projection operation κ|∗tv(τ)∪tv(Γ), which returns all constraints with type
variables “dependent” on type variables of τ and Γ, transitively.

DEFINITION 4 (Constraint projection).

κ|V = {x : τ ∈ κ | tv(τ) ∩ V 6= ∅} κ|∗V =

{
κ|V if tv(κ|V ) ⊆ V
κ|∗tv(κ|V ) otherwise

DEFINITION 5 (Open world satisfiability). Γ |=V
S κ holds if Γ |=S κ′ � ∅, where

κ′ = κ− κ|∗V ∪tv(Γ). Γ |=V κ holds if Γ |=V
S κ holds, for some S. �

EXAMPLE 5. Consider the definition h = g True, in typing context Γg = {g :
Bool → Char, g : Char → Bool, True : Bool}. In a closed world approach, h has type
Char. In an open world, consider for example that the definitions of g with these types
are instances of the multi-parameter type class class G a b where g:: a → b.
In this case, h has principal type G Bool b⇒ b, where b is a fresh type variable (written
∀β. {g : Bool → β}. β in CT). The reason for this is that it is possible for h to be exported
and used in a program context where other definitions of g exist, and one of these could
be used in the evaluation of g True (for example, a definition with type Bool → Int).
According to Definition 5, we have: Γ |={β} {g : Bool → β}, for any Γ, that is, no
definition of g is required to exist in order to type g True.

An extension of Haskell with functional dependencies allows programmers to
“close the world”. In this example, type variable b can be explicitly defined to “depend
on a” (or a can be specified to determine b), by annotation of a functional dependency:
class G a b | a -> b where g::a → b. With such a functional dependency,
the world is closed, i.e. satisfiability is checked in typing context Γg, returning a substitu-
tion that, applied to type G Bool b⇒ b, improves (or simplifies) it to Char. �

170



4 Open and Closed Worlds: a Formal Definition
In this section we give formal definitions of open and closed worlds, based on the defi-
nitions given before. Our characterization is somewhat different from the one based on
open and closed refinement kinds of Duggan and Ophel[7]. Refinement kinds are defined
so as to a priori allow constrained polymorphic types to be “incrementally extended” (in
the case of open kinds) or not (for closed kinds). Closed refinement kinds completely
characterize (“close up”), by themselves, the possibly infinite set of instance types. For
this, refinement kinds use intersection types and fixed point operators. In contrast, our
definitions are always respective to a given typing context.

DEFINITION 6 (Open World). An open world is characterized by:

1. The principal type of each overloaded symbol is specified by a single type anno-
tation and Γ |=tv(τx) κx holds, where Γ is the typing context and x : ∀ᾱ. κx. τx is
the type assumption corresponding to this annotation.

2. In such Γ, each definition of x must have a type σ = ∀β̄. κ. τ such that β̄ =
tv(κ. τ), τ = Sτx and κ ⊇ Sκx, for some S, and Γ |=tv(τ) κ.

3. Γ |=tv(τ) κ holds for all Γ, κ, τ such that Γ ` κ. τ is derivable.

In Γ |=tv(τ) κ, the set tv(τ) can be restricted, e.g. by functional dependencies
in Haskell with MPTcs, so as to close the world (as illustrated in Example 5). In this
case, tv(τ) should be subtracted by a set of variables in κ that are specified as targets
(i.e. that occur at the right-hand side) of some functional dependency and for which the
corresponding source type variables have been instantiated (i.e. do not occur in κ).

DEFINITION 7 (Closed World). A closed world is characterized by:

1. The principal type of x in Γ is the clcg of the types of x in Γ.
2. A type annotation for e is an instance of e’s principal type.
3. Γ |= κ holds for all Γ, κ, τ such that Γ ` κ.τ is derivable.
4. If definitions of x are given in a module M — in which type assumptions are

given by Γ — and x is imported into a module N , then Γ(x) gives the types in
type assumptions for x used to type uses of x in N .

4.1 Open versus closed

This section compiles relative advantages of open and closed worlds. For space reasons,
we only include major issues. We start with the advantages of an open world:

• Overloaded symbols may be used without requiring definitions of overloaded
symbols to be visible (they must be visible only when overloading is resolved).
• The type inference algorithm can behave more efficiently in an open world, due to

satisfiability being tested only when overloading must be resolved. This is rather
significant in the case of frequently used overloaded symbols (e.g. (==)).

However, in a closed world:

• Types of overloaded symbols need not be annotated. The annotation of con-
straints of types of overloaded symbols require that programmers decide, in ad-
vance, which particular definitions an overloaded symbol might possibly have (in

171



Haskell, programmers must decide, in particular, how to organize type class hi-
erarchies). In some situations, this requirement can be rather inconvenient (as
pointed out by e.g. Odersky, Wadler and Wehr [24, page 137]). Since constraints
include information that is dependent on the implementation of a function (i.e. on
the fact that an implementation uses some particular overloaded symbols), if the
implementation of a function is changed, so that the new implementation uses a
different set of overloaded symbols, program parts that use this function need to
be modified, if they include type annotations, even if the types of argument and
result of the function remain the same. In a closed world, the hierarchy of depen-
dencies between overloaded symbols need not be given by programmers, but are
recovered automatically by the types of overloaded symbols (see e.g. Example 3).
• A closed world allows the inference of more informative types, (possibly causing

overloading to be resolved), due to earlier constraint-set satisfiability checking.
Practical examples for which an analysis of the types of overloaded symbols avail-
able in a typing context can be used to instantiate the types of expressions that use
these overloaded symbols can be found in e.g. [14, 8].
• A closed world approach opens possibilities for optimizations in code generation

which do not depend (unlike the case of an open world approach [6, 18]) on a
global analysis of the entire program for efficient dynamic dispatching to an ap-
propriate definition of an overloaded symbol.

5 Type system
Figure 2 presents a version of system CT to support a closed world. This is extended in
Section 5.1 in order to support both open and closed worlds together. Typing formulas
Γ ` e : σ express that expression e has type σ in typing context Γ. following are used in
Figure

For any typing context Γ, (Γ ; x : σ) denotes Γ ∪ {x : σ} if Γ ∪ {x : σ} is a
valid typing context (according to the adopted overloading policy), and (Γ, x : σ) =
(Γ	 x) ; x : σ, where Γ	 x = Γ− {x : σ | x : σ ∈ Γ}. Predicate gen(κ. τ, σ) is defined
to hold if σ = ∀ᾱ. κ. τ , where ᾱ = tv(κ. τ). Instantiation of constrained polymorphic
types is restricted by constraint-set satisfiability:

DEFINITION 8 (Instance relation of constrained types).

σ ≥ ∀ᾱ. κ. τ Γ |= κ

σ ≥Γ ∀ᾱ. κ. τ

Note that if Γ(x) is a singleton {x :τ} then clcg(x, Γ,∀ᾱ. {x :τ}. τ) and clcg(x, Γ, τ) also
hold, as ∀ᾱ. {x :τ}. τ and τ are equivalent modulo constraint-set simplification in Γ.

5.1 Selectively opening a closed world
An extension of system CT to support also an open world is presented in Figure 5.1. It is
based on the use of special type annotations, that specify the types of overloaded symbols,
as in the following example: assume (==) :: a→ a→ Bool.

A clause assume x :: τ introduces in the typing context an open-world assump-
tion x : ∀ᾱ. {x : τ}. τ , where ᾱ = tv(τ). Note that the form of an assume clause
contributes to restoring data abstraction, since it does not include constraints.

172



clcg(x, Γ, σ) σ ≥Γ κ. τ

Γ ` x : κ. τ
(VAR)

Γ, x : τ ′ ` e : κ. τ

Γ ` λx. e : κ. τ ′ → τ
(ABS)

Γ ` e1 : κ1. τ2 → τ1 Γ ` e2 : κ2. τ2

Γ ` e1 e2 : κ1 ∪ κ2. τ1

Γ |= κ1 ∪ κ2 (APPL)

Γ ` e1 : κ1. τ1 Γ, x : σ1 ` e2 : κ2. τ2

Γ ` let x = e1 in e2 : κ2. τ2

gen(κ1. τ1, σ1) (LET)

Γ ` e1 : κ1. τ1 Γ; x : σ1 ` p : κ2. τ2

Γ ` leto x = e1 in p : κ2. τ2

gen(κ1. τ1, σ1) (LETO)

Figure 2: Type system CT supporting a closed world

The support for open world in system CT is based on characterizing type assump-
tions and constraints as open or closed. Open world type assumptions and constraints
are introduced in a typing context only by means of assume clauses, and the second by
lambda, let or leto bindings (type derivation for lambda and let bound variables are done
in the same manner as for leto bound variables). We define that ow and cw filters out
open and closed world assumptions, respectively, from a typing context or a constraint-
set (Γ = ow(Γ) ∪ cw(Γ) and similarly for κ). A typing context Γ must be such that
ow(Γ) satisfies the requirements in Definition 6. Γ(x) is redefined to mean ow(Γ)(x)
if ow(Γ)(x) 6= ∅, otherwise cw(Γ)(x). The satisfiability relation Γ |=∗ V κ holds if both
Γ |=V ow(κ) and Γ |= cw(κ) hold. The instantiation relation is modified in order to use

the combined satisfiability relation:
σ ≥ ∀ᾱ. κ. τ Γ |=∗ tv(τ) κ

σ ≥Γ ∀ᾱ. κ. τ
.

clcg(x, Γ, σ) σ ≥Γ κ. τ

Γ ` x : κ. τ
(VARo)

Γ, {x : τ ′} ` e : κ. τ

Γ ` λx. e : κ. τ ′ → τ
(ABSo)

Γ ` e1 : κ1. τ2 → τ1 Γ ` e2 : κ2. τ2

Γ ` e1 e2 : κ1 ∪ κ2. τ1

Γ |=∗ tv(τ1) κ1 ∪ κ2 (APPLo)

Γ ` e1 : κ1. τ1 Γ, {x : σ1} ` e2 : κ2. τ2

Γ ` let x = e1 in e2 : κ2. τ2

gen(κ1. τ1, σ1) (LETo)

Γ ` e1 : κ1. τ1 Γ; {x : σ1} ` p : κ2. τ2

Γ ` leto x = e1 in p : κ2. τ2

gen(κ1. τ1, σ1)
ow(Γ)(x) = {σ} implies σ ≥Γ σ1

(LETOo)

Figure 3: Type system CT supporting open and closed worlds

To summarize the modifications to support also an open world: i) a modified
constraint-set satisfiability relation, on the side condition of rule APPLo, considers the
possibility of occurrence of open and closed constraints together and, for open world

173



constraints, defers satisfiability to when overloading is resolved, ii) a correspondingly
modified instantiation relation is used in rule VARo, and iii) a side condition in rule LETOo

restricts the type of definitions of overloaded symbols to be an instance of its principal
type, if this type is explicitly specified.

6 Type Inference
A prototype implementation of the front-end of a compiler for a language that is essen-
tially “Haskell without type classes” but with support for constrained polymorphism as
defined in system CT, is available at http://www.dcc.ufmg.br/˜camarao/CT/. The
type inference algorithm in this prototype supports both open and closed worlds and is an
extension — to support (possibly mutually recursive) binding groups — of the algorithm
defined in Figure 6 . This algorithm is defined as a syntax-directed proof system of judge-
ments Γ ` e : (κ. τ, Γ′), where (∀ᾱ. κ. τ, Γ′) is the principal typing of e in Γ [9, 28], where
ᾱ = tv(κ. τ)− tv(Γ). The algorithm uses the following functions.

Function clcga, for computing the constrained least common generalization of the
set of types of some symbol x in a typing context Γ, is given by clcga(x, Γ) = ∀ᾱ. {x :
τ}. τ , where ∀ᾱ. τ = lcga(Γ(x)). Function lcga computes the lcg of a given set of types,
based on a function for computing the lcg of any set of simple type expressions. Finite
mappings S from type variables to pairs of simple types are used in lcg ′ to “remember”
generalizations already performed. For example, lcg applied to the set of types {α1 →
β1 → α1, α2 → β2 → α2} gives α → β → α, where α, β are fresh (and not, say, α →
β → α′). lcg ′ needs to remember generalizations only inside a pair of type expressions.
χ is used to denote a type variable or constructor.

lcga({σi}i=1..n) = ∀ᾱ. τ , where σi = ∀ᾱ.κi. τi, for i = 1, . . . , n,
(τ,S) = lcg ′({τi}i=1..n, ∅), for some S, and ᾱ = tv(τ)

lcg ′({τ},S) = (τ,S)

lcg ′({χι1
1 , χι2

2 },S) =

 (χι1
1 ,S) if χ1 = χ2 (which implies ι1 = ι2)

(α,S) if S(α) = (χι1
1 , χι2

2 ), for some α
(α′,S † {α′ 7→ (χι1

1 , χι2
2 )} otherwise, where α′ is fresh

lcg ′({τ ι1
1 τ ι2

2 , τ ι3
3 τ ι4

4 },S) =

if S(α) = (τ ι1
1 τ ι2

2 , τ ι3
3 τ ι4

4 ), for some α, then (α,S)
else if i1 6= i3 or i2 6= i4 then (α′,S † {α′ 7→ (τ ι1

1 τ ι2
2 , τ ι3

3 τ ι4
4 )}), where α′ is fresh

else (τ ι1
a τ ι2

b ,S2), where: (τ ι1
a ,S1) = lcg ′({τ ι1

1 , τ ι3
3 },S)

(τ ι2
b ,S2) = lcg ′({τ ι2

2 , τ ι4
4 },S1)

lcg ′({τ1, τ2} ∪ T ,S) = lcg ′({τ} ∪ T , id) where (τ,S ′) = lcg′({τ1, τ2}, id)

Function simplify simplifies constraint-sets, as defined in Section 3.2.

simplify(κ, Γ) = simplify(κ, Γ, ∅)
simplify(∅, Γ, κ0) = ∅
simplify({o : τ}, Γ, κ0) = if tv(τ) = ∅ then ∅ else

if o : τ ∈ κ0 then {o : τ} else
if ∃ a single ∀ᾱ.κ′.τ ′ ∈ Γ(o) s.t. Sτ ′ = Sτ , for some S

then simplify(Sκ′, Γ, κ0 ∪ {o : τ}) else {o : τ}
simplify({o : τ} ∪ κ, Γ, κ0) = simplify({o : τ}, Γ, κ0) ∪ simplify(κ, Γ, κ0)

174



Function sat implements a practical solution to the satisfiability problem by re-
turning a principal solution whenever one exists and by using an iteration limit to stop,
when it cannot find a solution. The definition of sat is given in [1].

Function unify implements unification2 (see e.g. [22]). We assume that all types
in outermost typing contexts are closed (otherwise unification would be needed in the
case of leto-bindings, as done for let-bindings), and also use st(x, Γ, Γ′) = {τ = τ ′ |
x : τ ∈ Γ, x : τ ′ ∈ Γ′} and Γ∗

x = {x : σi}i=1..n ∪
⋃

y:τ∈κi, for some τ,i∈{1..n} Γ∗
y, where

Γ(x) = {σi = ∀ᾱi. κi. τi}i=1..n.

∀ᾱ. {x : τ}. τ = clcga(x, Γ) κ = simplify({x : τ}, Γ)

Γ ` x : (κ. τ, Γ∗
x)

Γ ` (e : κ. τ, Γ′)
Γ ` λx. e : (κ. τ ′ → τ, Γ′ 	 x)

τ ′ =

{
τx if x : τx ∈ Γ′

α otherwise, α fresh

Γ ` e1 : (κ1. τ1, Γ1) Γ ` e2 : (κ2. τ2, Γ2)
Γ ` e1 e2 : (S ′S(κ1 ∪ κ2. α), SΓ1 ∪ SΓ2))

S = unify({τ1 = τ2 → α} ∪ st(x, Γ1, Γ2))
S ′ = sat(κ1 ∪ κ2, Γ), α fresh

Γ ` e1 : (κ1. τ1, Γ1) Γ, {x : σ1} ` e2 : (κ2. τ2, Γ2)
Γ ` let x = e1 in e2 : (S ′S(κ2. τ2), SΓ2 	 x)

S = unify(st(x, Γ1, Γ2)})
S ′ = sat(κ1 ∪ κ2, Γ)

Γ ` e1 : (κ1. τ1, Γ1) Γ; {x : σ1} ` p : (κ2. τ2, Γ2)
Γ ` leto x = e1 in p : (S(κ2. τ2), Γ2 	 x)

S = sat(κ1 ∪ κ2, Γ)
ow(Γ)(x) = {σ} implies σ ≥Γ σ1

Figure 4: Algorithm for Inference of Principal Typings

Proofs of theorems on soundness and principal typing of the type inference al-
gorithm (which are not even stated in this paper for lack of space) can be obtained by
induction on the type inference rules, using proofs of correctness of sat , simplify and
lcga. We are unfortunately still working on small details of the proofs.

The implementation of the type inference algorithm uses the core of an algorithm
by Mark Jones [15] and is based also on other works by the authors, covering constraint-
set satisfiability and polymorphic recursion [1, 28, 9]. We have very recently “glued” our
front-end to GHC’s[19] back-end, and a compiler will thus be publicly available soon.

Our experience with our prototype implementation, with respect to whether the
iteration limit will only be exercised in rare cases in practice, is unfortunately rather lim-
ited up to now, because we have been mostly exercising the prototype with “desugared”
versions of valid Haskell programs (with type classes replaced by assume clauses and
instances becoming normal declarations).

Even if constrained types are restricted as e.g. in Haskell 98, where type classes
can only have a single parameter, time complexity of satisfiability of a constraint on x still
grows exponentially with the number of assumptions for x in the typing context [25, 30].
In cases of heavily overloaded symbols, the performance of the type inference algorithm
thus degrades if an open world approach is not used (so as to restrict satisfiability to when

2Two types σ, σ′ are unifiable if there exists a substitution S such that Sσ = Sσ′.

175



overloading is resolved). A typical situation occurs with the overloading of (==), which
is defined for basic values (integers, floating point numbers etc.), lists, pairs, triples etc.

Recent work has been developed in order to define suitable conditions on types of
overloaded symbols that guarantee decidability of type inference and are not too restric-
tive in practice [27, 5, 16]. However, we are reluctant at the moment to incorporate such
restrictions, because of the added complexity to the language, the abscence of a semantic
characterization for such restrictions, and because restrictions prevent nontermination but
not termination after a very long time (shouldn’t the bottom line be lower/stricter?).

7 Ambiguity
A full discussion of type ambiguity and semantics coherence in the context of type sys-
tems with support for constrained polymorphism is, in our view, a subject that has not yet
been investigated in sufficient depth. Usually, an expression e is considered ambiguous
if two distinct denotations can be obtained for it, using a semantics defined inductively
on the derivation of a type for e [22]. A so-called coherent semantics does not specify a
meaning to such ambiguous expressions. With respect to derivations in the type system,
we can translate this requirement so as to avoid the existence of two or more derivations of
the same type for e that assign distinct non-unifiable types for some subterm of e. There
is also a third, more syntactic characterization, which is the one we shall briefly consider
below (again, we are not aware of any in-depth work relating any of these).

Consider a type with constraint-set κ and simple type τ , occurring in a typing
context Γ. We can consider, in type systems for constrained polymorphism:

DEFINITION 9. κ. τ is ambiguous if there exist two distinct minimal solutions S1

and S2 to the satisfiability of κ in Γ such that S1τ = S2τ . �

This definition can be relaxed, allowing a greater set of expressions to be well-
typed, if we consider instead:

DEFINITION 9.’ κ. τ is ambiguous if there exists a minimal solution S to the
satisfiability of κ in Γ such that all other minimal solutions S ′ are such that Sτ = S ′τ . �

With Definition 9, an expression such as, for example, f x is not considered am-
biguous in a typing context containing {f : Int → Int, f : Int → Float, f : Float →
Float, x : Int, x : Float}. The motivation for Definition 9 is clear: even though there exist
two distinct type derivations for f x : Float, it can be effectively used in a context requir-
ing it to have type Int. It is worthwhile to note though that Definition 9 would contradict
(in the example above) a usual definition of semantics coherence.

Though we haven’t unfortunately proved it yet, we expect that ambiguity as given
in Def. 9 is sufficient to reject all derivations that would lead to semantic incoherence.

In an open world, ambiguity must be tested, as satisfiability itself, only when
the satisfiability condition indicates so. Also, the use of constraint-projection, on which
the satisfiability condition is based upon, to avoid erroneous ambiguity detection — in
Haskell, in the case of MPTCs — eliminates the need for the programmer to specify
functional dependencies (FDs), although it has the drawback of removing from the pro-
grammer the possibility of using FDs in order to close the world. With the help of con-
straint projection, the world is closed automatically when (but only when) defined by the

176



satisfiability-trigger condition. In our view, the use of constraint projection is an adequate
tool for closing the world, releaving the programmer from the burden of specifying FDs.
For example, the use of constraint projection would avoid the ambiguity that would be
reported if FDs are removed from the class declaration below, since the type of g would
be SM m r⇒ m a.

class SM m r | m -> r, r -> m where
{ new:: a → m(r a); read:: r a → m a; write:: ...}

g x = do { r ← new x; read r }

8 Conclusion
We provide formal characterizations, in the context of constrained polymorphism, of open
and closed worlds, constraint-set satisfiability and simplification, overloading resolution
and type ambiguity. We define a type system for supporting both open and closed world
approaches together and an algorithm for computing principal typings. Relative advan-
tages between open and closed worlds are presented and briefly discussed, which suggest
that both should be supported in a programming language. The theoretical framework and
discussions presented provide a contribution to a better understanding of concepts and to
further work and evolution of programming languages in this area.

References
[1] Carlos Camarão, Lucı́lia Figueiredo, and Cristiano Vasconcellos. Constraint-set Satisfia-

bility for Overloading. In Proc. of ACM PPDP’04, pages 67–77, 2004.

[2] K. Chen, Paul Hudak, and Martin Odersky. Parametric Type Classes. In Proc. ACM
Conf. on Lisp and Functional Programming, pages 170–181, 1992.

[3] Luı́s Damas and Robin Milner. Principal type schemes for functional programs. In
Proc. of POPL’82, pages 207–212, 1982.

[4] Fergus Henderson David Jeffery and Zoltan Zomogyi. Type Classes in Mercury. Techni-
cal Report 98/13, University of Melbourne, 1998.

[5] Gregory J. Duck, Simon Peyton Jones, Peter J. Stuckey, and Martin Sulzmann. Sound
and Decidable Type Inference for Functional Dependencies. In Proceedings of
ESOP’2004 (European Symposium on Programming), 2004.

[6] Dominic Duggan, Gordon Cormack, and John Ophel. Kinded type inference for paramet-
ric overloading. Acta Informatica, 33(1):21–68, 1996.

[7] Dominic Duggan and John Ophel. Open and closed scopes for constrained genericiy.
Theoretical Computer Science, 275(1–2):215–258, 2002.

[8] Dominic Duggan and John Ophel. Type checking multi-parameter type classes. Journal
of Functional Programming, 12(2):135–158, 2002.

[9] Lucı́lia Figueiredo and Carlos Camarão. Principal Typing and Mutual Recursion. In
Proc. WFLP’2001 (Int’l Workshop on Funct. & Logic Prog.), pages 157–170, 2001.

[10] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type Classes
in Haskell. ACM TOPLAS, 18(2):109–138, 1996.

177



[11] Fergus Henderson et al. The Mercury Project, 2003. http://www.cs.mu.oz.au/research/mercury.

[12] Mark Jones. Qualified Types. Cambridge University Press, 1994.

[13] Mark Jones. A system of constructor classes: overloading and higher-order polymor-
phism. Journal of Functional Programming, 5(1):1–36, 1995.

[14] Mark Jones. Simplifying and Improving Qualified Types. In Proc. FPCA’95: ACM Conf.
on Functional Prog. and Comp. Architecture, pages 160–169, 1995.

[15] Mark Jones. Typing Haskell in Haskell. In Proc. of Haskell Workshop’99, TR UU-CS-
1999-28, Comp. Science Dept., Utrecht Univ., 1999. http://www.cse.ogi.edu/˜mpj/thih.

[16] Mark Jones. Type Classes with Functional Dependencies. In Proc. of ESOP’2000, 2000.
Springer-Verlag LNCS 1782.

[17] Mark Jones et al. Hugs98. http://www.haskell.org/hugs/, 1998.

[18] Mark P. Jones. Dictionary-free Overloading by Partial Evaluation. In ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Prog. Manipulation, 1994.

[19] Simon P. Jones et al. GHC: The Glasgow Haskell Compiler. http://www.haskell.org/ghc.

[20] Simon P. Jones et al. Haskell 98 Language and Libraries. Cambridge Univ. Press, 2003.

[21] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978.

[22] John Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[23] Tobias Nipkow and Christian Prehofer. Type Reconstruction for Type Classes. Journal of
Functional Programming, 1(1):1–100, 1993.

[24] Martin Odersky, Philip Wadler, and Martin Wehr. A Second Look at Overloading. In
Proc. of ACM Conf. on Functional Prog. and Comp. Archit., pages 135–146, 1995.

[25] Helmut Seild. Haskell Overloading is DEXPTIME-complete. Information Processing
Letters, 52(2):57–60, 1994.

[26] Geoffrey Smith. Principal type schemes for functional programs with overloading and
subtyping. Science of Computer Programming, 23(2-3):197–226, 1994.

[27] Martin Sulzmann et al. Understanding functional dependencies via Constraint Handling
Rules. Journal of Functional Programming, 17(1), 2007.

[28] Cristiano Vasconcelos, Lucı́lia Figueiredo, and Carlos Camarão. Practical Type Inference
for Polymorphic Recursion: an Implementation in Haskell. Journal of Universal
Computer Science, 9(8):873–890, 2003.

[29] Dennis Volpano and Geoffrey Smith. On the Complexity of ML Typability with Overload-
ing. In Proc. ACM Symp. Func. Prog. Comp. Archit., pages 15–28, 1991. LNCS 523.

[30] Dennis M. Volpano. Haskell-style Overloading is NP-hard. In Proceedings of the 1994
International Conference on Computer Languages, pages 88–94, 1994.

[31] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In
Proc. of ACM POPL’89, pages 60–76. ACM Press, 1989.

178



Using Visitor Patterns in Object-Oriented Action Semantics

André Murbach Maidl1, Cláudio Carvilhe2, Martin A. Musicante1,3

1PPGInf - Programa de Pós-Graduação em Informática
Universidade Federal do Paraná (UFPR) – Curitiba – PR – Brazil

2Departamento de Informática
Pontifı́cia Universidade Católica do Paraná (PUCPR) – Curitiba – PR – Brazil

3DIMAp - Programa de Pós-Graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte (UFRN) – Natal – RN – Brazil

murbach@inf.ufpr.br, carvilhe@ppgia.pucpr.br, mam@dimap.ufrn.br

Abstract. Object-Oriented Action Semantics incorporates some object-oriented
concepts to the Action Semantics formalism. Its main goal is to obtain more
readable and reusable semantics specifications. Furthermore, it supports
syntax-independent specifications due to the way classes are written. In a pre-
vious work, a library of classes (called LFL) was developed to improve specifi-
cation reuse and to provide a way to describe semantics concepts, independent
from the syntax of the programming language. This paper aims to address some
problematic aspects of LFL, as well as a case study, where a specification is
built by using the Visitor Pattern technique. The use of this pattern allows a
clear separation between the syntax of a programming language and its differ-
ent semantic aspects.

1. Introduction

Action Semantics [Mosses 1992, Watt 1991] is a formal framework for defining the se-
mantics of programming languages. A main goal of Action Semantics is to provide a nota-
tion that is intuitive for programmers. This notation has been used to describe the seman-
tics of real programming languages and presents good reusability and extensibility prop-
erties [Mosses and Musicante 1994]. However, the standard Action Semantics lacks some
syntactic support for the definition of libraries, and reusable components [Gayo 2002].

A modular approach to Action Semantics is presented in [Doh and Mosses 2001].
Their goal is to extend the Action semantics notation to define modules. The interpreta-
tion of modules introduces some new, potential problems to the semantics of the whole
specification [Doh and Mosses 2001]. These problems are related to the way the modules
and their hierarchy are interpreted.

Based on the modular approach, an object-oriented view of Action Semantics is
proposed in [Carvilhe and Musicante 2003]. This approach is called Object-Oriented Ac-
tion Semantics (OOAS). Using OOAS it is possible to organize Action Semantics descrip-
tions into classes. OOAS does not have the problems of Modular Action Semantics since
the class hierarchy is taken into account for the interpretation of a semantic description.

The LFL (Language Features Library) has been proposed in
[Araújo and Musicante 2004] to create new OOAS descriptions by composing and

179



reusing classes. The main goal of LFL is to define generic classes to describe general
semantic concepts. These classes can be instantiated to be used in conjunction to the
syntax of a specific programming language. LFL introduced some syntactic problems to
Object-Oriented Action Semantics descriptions. In particular, the way in which generic
classes were defined is cumbersome, resulting in less readable specifications.

In this work, we propose LFLv2 (read LFL version 2), a new version of LFL to
solve the problematic issues in the original library. Moreover, we incorporate in LFLv2
some of the ideas presented in [Mosses 2005, Iversen and Mosses 2005], in order to sep-
arate the syntax of the programming language from the specification of its semantics.
In addition to it, we give examples of Object-Oriented Action Semantics descriptions
using the Language Features Library version 2 and also using the Visitor Pattern tech-
nique [Gamma et al. 1998, Appel and Palsberg 2003] to improve the modularity aspects
observed in the object-oriented approach.

This work is organized as follows: the next section briefly introduces Action Se-
mantics and OOAS. Section 3 sumarizes the LFL. In section 4 we introduce the use of the
Visitor Patterns technique, as well as LFLv2. A simple imperative language is specified
as a case study in section 5. Section 6 gives the conclusions of this work.

2. Action Semantics and OOAS
Action Semantics [Mosses 1992, Watt 1991] is a formal framework developed to improve
the readability and the way of describing programming languages semantics. The frame-
work is based on denotational semantics and operational semantics. In Action Semantics,
semantic functions specify the meaning of the phrases of a language using actions. These
actions represent the denotation of the language phrases. The action notation is defined
operationally and contains the actions and action combinators needed in Action Semantics
descriptions.

The three main mathematical entities that compose Action Semantics descriptions
are: actions, data and yielders. Actions can be performed to represent the concepts of
many programing languages, such as: control, data flow, scopes of bindings, effects on
storage and interactive process. When an action is performed it can produce one of the
following outcomes: normal termination (complete), exceptional termination (escape),
unsuccessful termination (fail) or non-termination (diverge). Action notation provides
some basic actions which are written using English words in order to improve readabil-
ity in semantics specifications. These actions can be combined to obtain more complex
actions.

A data notation is used in Action Semantics to provide the needed sorts of data and
operations related to them. These sorts of data can be: truth-values, numbers, characters,
strings, tuples, maps, tokes, messages, etc.

Yielders are entities that can produce data during an action performance. Such
produced data are called yielded data. The produced data depend on the current infor-
mation processed, for instance: the transient data passed, the bindings received and the
current storage state. Actions have facets, according to their data flow:

• basic - deals with pure control flow;
• functional - deals with actions that process transient data;

180



• declarative - deals with actions that produce or receive bindings;
• imperative - deals with actions that manipulate the storage;
• reflective - deals with abstractions;
• communicative - deals with actions that operate under distributed systems.

Object Oriented Action Semantics (OOAS) [Carvilhe and Musicante 2003] is a
method to organize Action Semantics specifications. Its main goal is to provide extensi-
bility and reusability in Action Semantics by splitting semantic descriptions into classes
and treating semantic functions as methods.

In order to overcome the lack of modularity in Action Semantics, as reported
by [Gayo 2002], Object-Oriented Action Semantics introduces an extension of the stan-
dard Action Notation. Class constructors and several other object-based operators are
available, to provide an object-oriented way of composing specifications. An Object-
Oriented Action Semantics description is a hierarchy of classes. Each class encapsulates
some particular Action Semantics features. Those features can be easily reused or spe-
cialized by other objects, using well-known object-orientation concepts. As an example,
we will take a look at a simple command language, whose BNF is defined as follows:

Command ::= Identifier “:=” Expression Command “;” Command
“if” Expression “then” Command ‘else” Command “end-if”
“while” Expression “do” Command

This equation defines syntactic trees for commands, containing assignments, sequences,
conditionals and iterations. A simple strategy for defining an Object-Oriented Action
Semantics description of this language is to define Command as an abstract class, and to
define sub-classes of commands for each class of phrase. A base-class can be written as:

Class Command
syntax:

Cmd
semantics:

execute : Cmd → Action
End Class

Notice that Command is the abstract class. Initially it introduces the syntactic sort Cmd,
detailed in the syntax section. Semantics part defines the semantics of a Command, using
standard Action Notation. In this case, it establishes that a semantic function execute maps
a Command to an Action. A plain semantic function like execute is seen as a method.

The Command definition provides a foundation to specify the other classes. We
can now define every particular class as a sub-class of Command. Lets take a look at the
Selection class as follows:

Class Selection
extending Command
using E :Expression, C1:Command, C2:Command
syntax:

Cmd ::= “if” E “then” C1 “else” C2 “end-if”
semantics:

execute [[ “if” E “then” C1 “else” C2 “end-if” ]] =
evaluate E then execute C1 else execute C2

End Class

181



Selection is the specialized class. The extending directive states a particular Command
behavior (in this case, a conditional command). The using directive makes other objects
available.

A complete Object Oriented Action Semantics specification can be found in
[Carvilhe and Musicante 2003].

3. Language Features Library (LFL)
In programming languages specifications it is common to find pieces of the specification
that have similar concepts. When it happens is interesting to reuse these pieces instead
of having duplicated code. The classes concept introduced by Object-Oriented Action
Semantics [Carvilhe and Musicante 2003] helps with the code reuse due to the common
structure provided by organizing the specification into classes.

In [Araújo and Musicante 2004], was proposed a library of classes which was
called LFL (Language Features Library). The function of LFL is to congregate and or-
ganize classes, that have common specifications, into a structure and work as a repository
of classes for Object-Oriented Action Semantics descriptions.

A tree structure was adopted to represent the classes’ organization in LFL. LFL
was branched off into three main classes: Syntax, Semantics and Entity.

The node Semantics was the only one implemented in the initial version of LFL
and it also forked into another three nodes: Declaration, Command and Expression.
Pieces of code that manipulate bindings are treated in Declaration; Command represents
semantics definitions that are concerned about data flow and the storage; while those
classes for the the manipulation os values belong to Expression.

Each one of the above-defined nodes was split in two: Paradigm and Shared. The
first one is responsible to represent classes that contain features from a specific program-
ming language paradigm, such as: Object-Oriented, Functional, Logical and Imperative.
The node Shared contains classes which represent features that are common to more than
one programming paradigm.

The following example illustrates the definition of a LFL class. This class defines
the semantics of an if-then-else command:

Class Selection
� Command implementing < execute : Command → Action >
Expression implementing < evaluate : Expression → Action > �

locating LFL.Semantics.Command.Shared
using E :Expression C1:Command, C2:Command
semantics:

execute-if-then-else(E , C1, C2) =
evaluate [[ E ]] then

check(the given TruthValue is true) and then execute [[ C1 ]]
or

check(the given TruthValue is false) and then execute [[ C2 ]]
End Class

The Selection class provides the semantics of a selection command in a syntax-
independent style. The classes Command and Expression are passed as (higher order)

182



parameters. Notice that the generic arguments must comply with the restrictions defined
by the implementing directive: They must provide some methods with a specific type as
sub-parameters.

The directive locating identifies the place where the class is located in the LFL
structure.

The programming language specifications which use the LFL are similar to the
plain Object-Oriented Action Semantics descriptions. Let us now exemplify the use of
the generic Selection class to define the semantics of a selection command:

Class MyCommand
syntax:

Com
semantics:

myexecute : Com → Action
End Class

Class MySelection
extending MyCommand
using C1:MyCommand, C2:MyCommand, E:MyExpression,

objSel:LFL.Semantics.Command.Shared.Selection �
MyCommand<myexecute>, MyExpression<myevaluate> �

syntax:
Com ::= “if” E “then” C1 “else” C2 “end-if”

semantics:
myexecute [[ “if” E “then” C1 “else” C2 “end-if” ]] =

objSel.execute-if-then-else(E, C1, C2)
End Class

The classes MyCommand and MySelection, as defined above, specify the behaviour
of a selection command using the LFL. Notice that the LFL generic class Selection is
instantiated. The argument for this LFL class are the MyCommad and MyExpression classes.
Notice that the sub-paramenters are also provided.

LFL brings an interesting concept to Object-Oriented Action Semantics: the def-
inition of semantics descriptions which are independent from the syntax of the program-
ming language. This definition uses the inclusion of classes provided by a library of
classes. A main issue with the way in which LFL is defined is that its parameter-passing
mechanism is obscure and let us back to the readability problems found in other semantics
descriptions of programming languages.

4. Visitor Patterns
In the previous sections we have presented Object-Oriented Action Semantics, an ap-
proach for language definition using Action Semantics, and Object-Oriented concepts.
We also have presented LFL, a library of classes for Object-Oriented Action Semantics
descriptions. The former is based on the modularity in Action Semantics by splitting
descriptions into classes, the latter is a collection of Object-Oriented Action Semantics
classes to be used and instanced in different programming languages projects.

As it is proposed in [Mosses 2005, Iversen and Mosses 2005], we are looking for
approaches that allow us to describe programming languages semantics syntax indepen-

183



dently. LFL clearly does it, however it has a main problematic issue, related to the way
instantiation of classes is done.

In this work, we propose some changes in LFL for its improvement, namely, us-
ing LFL with no parameters passing. Visitor Patterns [Gamma et al. 1998] are added to
OOAS descriptions that use LFL in order to try to increase the modularity aspects ob-
served in the object-oriented framework. Visitor Patterns are used to define operations
that can be performed in the elements of an object structure. They allow the definition of
a new operation without changing the classes of the elements in which these operate.

4.1. Object-Oriented Action Semantics and Visitor Patterns

Visitor Pattern is a common object-oriented technique used in compiler construction. Vis-
itor Pattern helps the compiler writer to provide several semantics to the same syntactic
tree.

We can use the Visitor Pattern technique to give an interpretation to each syntax
tree in OOAS. This interpretation is an (OOAS) object, which has a visit method for each
syntax tree defined. Each Object-Oriented Action Semantics class should implement an
accept method to serve as a hook for all interpretations. When an accept method is called
by a visitor, the correct visit method is invoked. Such control can go back and forth
between visitors and classes [Appel and Palsberg 2003].

Informally, when the visitor calls the accept method it is in fact asking: “who
are you?”. The question is answered by the accept method as a result of the calling of
the correspondent visit method of the visitor. The following examples illustrate how to
use Object-Oriented Action Semantics with the Visitor Pattern. Notice that each accept
method takes a visitor as a parameter and that each visit method takes a syntax tree object
as a parameter.

Class Command
syntax:

Cmd
semantics:

accept : Visitor → Action
End Class

Class Selection
extending Command
using E :Expression, C1:Command, C2:Command
syntax:

Cmd ::= “if” E “then” C1 “else” C2 “end-if”
semantics:

accept V :Visitor = visit V
End Class

Class Visitor
syntax:

Vis ::= Command
semantics:

visit : Command → Action
End Class

184



Class Interpreter
extending Visitor
semantics:

visit [[ “if” E “then” C1 “else” C2 “end-if” ]] =
evaluate E then accept C1 else accept C2

End Class

Notice that a visitor is in fact a Command syntax tree object encapsulated by the
Visitor class. When the accept method is performed, the correct visit method is called to
interpret the syntax tree argument that actually is a visitor. In section 2 the interpreter was
implemented in the execute methods while now it is in the Interpreter class. The evaluate
method is still used in the traditional way of Object-Oriented Action Semantics.

With the Visitor Patterns we can add new interpretations without editing existing
classes since that each class has its own accept method. In section 5 we will see that
accept and visit methods can be used with different names when we need more than just
one visitor, as was used in this section.

4.2. LFLv2 and Visitor Patterns
LFL is a good approach to be used as a programming language semantics description
tool for specifying programming languages semantics syntax independently since it has
support for generic classes definitions [Araújo and Musicante 2004]. Nonetheless, the
obscure LFL syntax took us back to the readable problems found in semantic frameworks.
An alternative way to inhibit parameters passing in LFL is the use of abstractions of
actions to specify the semantics of some common concepts of programming languages.

Furthermore, we also propose the LFL usage just for semantic concepts. It implies
in the exclusion of the LFL nodes: Syntax, Semantics and Entity. Thereby, we can bind
the nodes Declaration, Command and Expression directly to the main LFL class since we
will use LFL just to represent semantic concepts. The nodes Shared and Paradigm are
maintained, as well as their respective subdivisions. The former is concerned with con-
structs that commonly appear in programming languages and the latter represents some
specialized constructs that appear in specific paradimgs.

As in the first version of the library, the set of classes is very reduced and can be
extended to support new classes. According to our proposal, the Selection class example
shown in section 3 would be written in the following way:

Class Selection
locating LFL.Command.Shared.Selection
using: Y1:Yielder, Y2:Yielder, Y3:Yielder
semantics:

if-then-else(Y1,Y2,Y3) =
enact Y1 then enact Y2 else enact Y3

End Class

Now, LFL classes are more compact since they just define their own location in the
LFL hierarchy, the methods that describe the semantics of some concepts of programming
languages and the objects used in the specified methods.

Instead of using methods that have to be passed as parameters, each method imple-
mented by the new library of classes receives a number of abstractions that are performed

185



according to the language behavior that is being represented. The enact action receives
yielders that result in abstractions (and encapsulate actions). These actions are performed
independently from the methods described in the programming language specification.
Notice that the use of the Visitor Pattern technique is something that is not tied to the new
library. Althoug it has been used since it might improve modularity in OOAS descriptions
that use LFL. Let us now see how to use the new LFL together with the Visitor Pattern:

Class MyCommand
syntax:

Com
semantics:

myexecute : Visitor → Action
End Class

Class MySelection
extending MyCommand
using E :MyExpresssion, C1:MyCommand, C2:MyCommand
syntax:

Com ::= “if” E “then” C1 “else” C2 “end-if”
semantics:

execute V :Visitor = visit V
End Class

Class Visitor
using O :LFL
syntax:

Vis ::= MyCommand
semantics:

visit : MyCommand → Action
End Class

Class Interpreter
extending Visitor
semantics:

visit [[ “if” E “then” C1 “else” C2 “end-if” ]] =
O .Command.Shared.Selection.execute-if-then-else(

closuse abstraction of (myevaluate E ),
closuse abstraction of (myexecute C1),
closuse abstraction of (myexecute C2) )

End Class

The classes are again defined as in Object-Oriented Action Semantics using Vis-
itor Patterns. The language syntax and the semantic function myexecute are also defined
in function of the visitors approach. In this way, the semantics descriptions by the library
usage are given in the visitor implementation.

The object O, defined in the Visitor class, represents all LFL classes and they can
be used due to the hierarchy of classes created by LFL. The visit method describes My-
Command semantics used in the language passing the abstractions to the execute-if-then-
else method specified in LFL.

The specification above defines a language with static bindings. If the language
being described has dynamic bindings, the directives closure should be taken from the
specification.

186



The notation encapsulate X will be used in the rest of this paper as an abbreviation
of closure abstraction of ( X ).

5. A case study
In this section we present the specification of a toy language called µ-Pascal. This lan-
guage is fairly similar to the Pascal language. µ-Pascal is an imperative programming
language containing basic commands and expressions. The µ-Pascal language will be
specified using Object-Oriented Action Semantics, the new LFL proposed in section 4.2
and using the Visitor Pattern technique.

5.1. Abstract syntax

Now we present the abstract syntax for the µ-Pascal language:

(1) Program ::= “begin” Declaration “;” Command “end”

(2) Declaration ::= “var” Identifier “:” Type 〈= Expression 〉?
“const” Identifier “:” Type “=” Expression
Declaration “;” Declaration

(3) Type ::= “boolean” “integer”

(4) Command ::= Identifier “:=” Expression Command “;” Command
“if” Expression “then” Command 〈 “else” Command 〉? “end-if”
“while” Expression “do” Command

(5) Expression ::= “true” “false” Numeral Identifier
Expression 〈 “+” “-” “*” “<” “=” 〉 Expression

(6) Identifier ::= Letter 〈Letter Digit 〉∗

(7) Numeral ::= Digit 〈Digit 〉∗

In the above abstract syntax we have defined that a Program is a sequence of Dec-
laration and Command. Declarations can be integer or boolean constants and variables.
Assignments, sequences, selections and iterations are defined as Commands. Expressions
might be arithmetical or logical.

5.2. µ-Pascal semantics using LFLv2 and Visitor Patterns

In this section we will demonstrate the use of the Object-Oriented Action Semantics ap-
proach with the advantages of the new LFL and the Visitor Pattern technique.

First of all, we will define the basic classes that implement some particular con-
cepts of the example language, like identifiers, numerals and types. After that we will
exemplify how declarations, commands and expressions are treated. Then we will show
how the visitors can join all together, giving the semantics of the language.

Class Identifier
syntax:

Id ::= letter [ letter digit ]∗

End Class

The class Identifier has just the syntactic part since it is used only for representing
the name of variables and constants used in the language.

187



Class Numeral
syntax:

N ::= digit+

semantics:
valuation : N → integer

End Class

In the class Numeral we define what kind of numbers are used by the example
language. In this case the numbers are integers and the method valuation is defined to
map a numeral received as a parameter to its respective integer. Notice that the valuation
parameter is a syntactic entity.

Class Type
syntax:

T ::= “boolean” “integer”
semantics:

sort-of : T → Sort
sort-of [[ “boolean” ]] = truth-value
sort-of [[ “integer” ]] = integer

End Class

The Type class is used to define that the language data types can be boolean or
integer. The method sort-of maps the language data types to their correct Object-Oriented
Action Semantics sorts.

Hence, we will see the methods parameters as visitors that carries syntactic enti-
ties. In fact, the syntactic entities are encapsulated by the visitor objects and they will be
interpreted by the visitor which implements the semantics of the encapsulated syntax.

Class Declaration
syntax:

Dec
semantics:

elaborate : Visitor → Action
End Class

The class Declaration works as an abstract class. It introduces the sort Dec which
will be redefined in the sub-classes to represent each Declaration. Both methods accept
and visit, from section 4, are represented by elaborate and visitDec. Notice that Declaration
is just an abstract class, reason why visitDec appears just in its sub-classes.

Class Variable
extending Declaration
using I :Identifier, E :Expression, T :Type
syntax:

Dec ::= “var” I “:” T [ “=” E ]
semantics:

elaborate V :Visitor = visitDec V
End Class

Constructing the declarations classes hierarchy, now we have defined the Variable
class. The Dec token is redefined giving the variables declarations syntax used in the

188



language. The elaborate method is overloaded to express the semantics of a variable dec-
laration using the visitDec method.

The method elaborate takes a visitor as an argument and through the method visit-
Dec gives the declaration performance in the Visitor class. The declaration is possible to be
performed in the Visitor class since V represents the encapsulated syntax. In this manner,
the syntax carried by the visitor object can be checked by the correct visit method.

Class Command
syntax:

Cmd
semantics:

execute : Visitor → Action
End Class

We now have the Command class. In this class we introduce the syntactic sort Cmd
which will be redefined in Command sub-classes. In commands we will define the accept
method as execute and the visit method as visitCmd. Notice that, like Declaration, Command
also is an abstract class.

Class While
extending Command
using C :Command, E :Expression
syntax:

Cmd ::= “while” E “do” C
semantics:

execute V :Visitor = visitCmd V
End Class

In the While class we express how a while-loop works in the language. To achieve
the before mentioned result, we have created the super-class Command and the sub-class
While. Using Visitor Patterns, in the abstract class we specify just the abstract method
which defines that a visitor results in an action. A command is correctly executed by
calling the execute method with the command syntax. The correct semantics will be given
by the visitCmd method since it takes the visitor object and interprets the syntax, that is in
the object, in the Visitor class.

Class Expression
syntax:

Exp
semantics:

evaluate : Visitor → Action
End Class

Again we have an abstract class, like Declaration and Command. The Expression
class is the super-class for the expressions definitions. The accept and visit methods will
be represented by evaluate and visitExp, respectively. The sub-classes of Expression can be
defined similarly to Declaration and Command sub-classes definitions. Now we will see
how the Visitor class works.

189



Class Visitor
using: O :LFL
syntax:

Vis ::= Declaration Command Expression
semantics:

visitCmd : Command → Action
visitDec : Declaration → Action
visitExp : Expression → Action

End Class

In the Visitor class we specify all the signatures of the visit methods which represent
the maps of a class, containing a syntactic tree that will be visited, to an action. We also
specify that a Visitor may carry a Declaration, a Command or an Expression syntax tree
object. The Object-Oriented Action Semantics descriptions are given in the Interpreter
class using the methods provided by LFL. The LFL methods are accessed through the
object O which is a LFL instance.

Class Interpreter
extending Visitor
semantics:

visitDec [[ “var” I “:” T ]] =
O.Declaration.Paradigm.Imper.VarDec.elaborate-variable(I , sort-of T )

visitDec [[ “var” I “:” T “=” E ]] =
O .Declaration.Paradigm.Imper.Variable.elaborate-variable(I , sort-of T ,

encapsulate evaluate E )
...
visitCmd [[ C1 “;” C2 ]] =

O .Command.Shared.Sequence.execute-sequence(
encapsulate execute C1,
encapsulate execute C2)

...
visitCmd [[ “while” E “do” C ]] =

O .Command.Shared.While.execute-while(encapsulate evaluate E ,
encapsulate execute C )

...
visitExp [[ N ]] = give valuation N
visitExp [[ I ]] = O .Expression.Shared.Identifier.evaluate-identifier(I )
visitExp [[ E1 “+” E2 ]] =

O .Expression.Shared.Sum.evaluate-sum(encapsulate evaluate E1,
encapsulate evaluate E2)

...
End Class

Notice that the visitors visit a syntax tree, specified in the Object-Oriented Action
Semantics classes, and give the correct semantics to the syntax tree visited. It is possible
by calling the accept method, this method takes a visitor represented by a syntax tree
object and then the correct visit method will be performed to give the semantics of the
syntax tree carried by the visitor.

The semantics expressed by the visit methods might be merely an action, like in
the numeral valuation, just a LFL method that results in an action, like in the identifiers
evaluation, or we can use accept calls to visit the needed syntactic entities to be used with
LFL methods; in the example the actions are encapsulated for generating abstractions and

190



these abstractions are passed to some LFL method that implements the desired semantics.
We can also pass tokens and sorts to the new LFL [Maidl 2007].

Class Micro-Pascal
using D :Declaration, C :Command
syntax:

Prog ::= “begin” D “;” C “end”
semantics:

run : Prog → Action
run [[ “begin” D “;” C “end”]] = elaborate D hence execute C

End Class

Since Object-Oriented Action Semantics allow us to organize the specification
into classes, we can define a main class. The main class in this example is the Micro-Pascal
class. In this class we specify the syntax of a µ-Pascal program and that it is mapped to
an action. The declaration semantics and command semantics are given by calling their
accept methods and passing their respective visitors.

6. Conclusions
Object-Oriented Action Semantics was designed to improve modularity in Action Seman-
tics descriptions. LFL has improved the reusability in the object-oriented approach and
also has provided a way to describe the semantics of programming languages in a syntax-
independent style. The problems found in the first version of LFL were solved by the
new version of it, through the use of abstractions of actions, instead of passing classes
and methods as arguments to LFL classes. The library of classes was also restructured
to implement only those pieces that are concerned with representing the semantics of
programming languages.

LFL became more concise and simplified due to the use of the reflective facet.
The use of the Visitor Pattern improves modularization in OOAS. Notice that this Pattern
can be used either with just plain OOAS or with OOAS plus LFL. Since the definition of
the Visitor Pattern is inherently related to the Object-Oriented paradigm, the use of this
pattern in conjunction with an Object-Oriented specification language like OOAS leads
to clear and modular specifications.

In [Maidl 2007] the author proposes an implementation of Object-Oriented Action
Semantics in Maude and LFLv2 as a case study of it.

As future work, we would investigate the use of the Visitor Pattern tech-
nique for compiler generation from OOAS descriptions and we also would trace
a careful comparsion between LFLv2 and the construtive approach [Mosses 2005,
Iversen and Mosses 2005].

The main contributions of this work can be summarized as:
• Modularity is improved. The use of Object-Oriented Action Semantics and Visitor

Patterns provide a new view of modularity in semantics descriptions of program-
ming languages.

• LFL is patched. We propose a cleaner and usable library of classes by its own
restructuration and for the fact of changing arguments by abstractions.

• LFL can describe semantics syntax-independently. The hierarchy of classes made
this possible.

191



Acknowledgments
We would like to thank the anonymous referees for their constructive comments and also
Flávia Erika Shibata for her careful English review.

References
Appel, A. W. and Palsberg, J. (2003). Modern Compiler Implementation in Java. Cam-

bridge University Press, New York, NY, USA.

Araújo, M. and Musicante, M. A. (2004). Lfl: A library of generic classes for object-
oriented action semantics. In XXIV International Conference of the Chilean Computer
Science Society (SCCC 2004), 11-12 November 2004, Arica, Chile, pages 39–47. IEEE
Computer Society.

Carvilhe, C. and Musicante, M. A. (2003). Object-oriented action semantics specifica-
tions. Journal of Universal Computer Science, 9(8):910–934.

Doh, K. and Mosses, P. (2001). Composing programming languages by combining action
semantics modules. In First Workshop on Language Descriptions, Tools and Applica-
tions.

Gamma, E., Vlissides, J., Johnson, R., and Helm, R. (1998). Design Patterns CD: Ele-
ments of Reusable Object-Oriented Software, (CD-ROM). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Gayo, J. E. L. (2002). Reusable semantic specifications of programming languages. In
SBLP 2002 - VI Simpósio Brasileiro de Linguagens de Programação.

Iversen, J. and Mosses, P. D. (2005). Constructive action semantics for core ML. IEE
Proceedings Software. Special issue on Language Definitions and Tool Generation. To
appear in Brics RS-04-37.

Maidl, A. M. (2007). Uma implementação da semântica de ações orientada a objetos em
maude. Master’s thesis, Universidade Federal do Paraná. (In preparation).

Mosses, P. (1992). Action semantics. In Action Semantics. Cambridge University Press.

Mosses, P. D. (2005). A constructive approach to language definition. Journal of Univer-
sal Computer Science, 11(7):1117–1134.

Mosses, P. D. and Musicante, M. A. (1994). An action semantics for ML concurrency
primitives. Number 873 in Lecture Notes in Computer Science, Barcelona, Spain.
FME, Springer-Verlag.

Watt, D. (1991). In Programming Language Syntax and Semantics. Prentice Hall Inter-
national (UK).

192



  

Uma Linguagem para Especificação e Combinação 
Dinâmica de Aspectos em Aplicações Orientadas a Serviços 

Nabor C. Mendonça, Clayton F. Silva, Ian G. Maia, Tiago Cordeiro 

Mestrado em Informática Aplicada, Universidade de Fortaleza  
Av. Washington Soares, 1321, CEP 60811-905 Fortaleza – CE  

nabor@unifor.br, clayton_fsilva@yahoo.com.br, iangmaia@gmail.com, 
tiagomail2@yahoo.com.br

Abstract. This article presents the Web Service Aspect Language (WSAL), 
which integrates fundamental aspect-oriented programming concepts into the 
context of service-oriented development. Differently from existing solutions 
that aim at integrating these two emerging software development paradigms, 
WSAL supports a novel aspect model, in which aspects are also implemented 
and executed as services. This characteristic allows WSAL aspects to be 
dynamically woven into the message flow exchanged between service 
consumer and service provider applications, in a way that is completely 
decoupled from their implementation technologies. The article also reports on 
an initial implementation of an aspect weaver for WSAL, which is based on an 
existing HTTP intermediary technology. 

Resumo. Este artigo apresenta a linguagem WSAL (Web Service Aspect 
Language), que integra conceitos fundamentais da programação orientada a 
aspectos ao contexto do desenvolvimento orientado a serviços. Diferentemente 
de outras soluções propostas na literatura que buscam integrar esses dois 
emergentes paradigmas de desenvolvimento de software, WSAL suporta um 
modelo de aspectos inovador, onde aspectos também são implementados e 
executados na forma de serviços. Essa característica permite a combinação 
dinâmica de aspectos especificados em WSAL ao fluxo de mensagens trocadas 
entre as aplicações consumidoras e provedoras de serviços, de uma maneira 
totalmente independente das tecnologias utilizadas na sua implementação. O 
artigo descreve ainda a implementação inicial de um combinador de aspectos 
para WSAL,  baseado em uma tecnologia de intermediários HTTP existente. 

1. Introdução 
A Computação Orientada a Serviços (COS) é um emergente paradigma da computação 
que utiliza serviços como elementos fundamentais de projeto [Papazoglou e 
Georgakopoulos 2003]. Para operar em um ambiente da COS, as aplicações provedoras 
de serviços devem, de forma declarativa, definir as características de suas operações 
(estrutura das mensagens de requisição e de resposta, protocolo de transporte, modo de 
invocação, etc.) em um formato previamente acordado e neutro [Curbera et al. 2003]. A 
partir dessas declarações, aplicações consumidoras de serviços podem, de forma 
automática ou semi-automática, descobrir, selecionar e invocar operações de serviços de 
seu interesse. 

193



  

 A manifestação mais comum da COS se dá no contexto da Web, com os 
chamados serviços web [Cauldwell et al. 2001]. Serviços web implementam funções 
básicas da COS utilizando um conjunto padronizado de tecnologias baseadas na 
linguagem de marcação XML, tais como: WSDL  [Christensen et al. 2001], uma 
linguagem para descrição de serviços; UDDI [Bryan et al. 2002], um serviço de registro 
que permite a descoberta e localização de outros serviços; e SOAP  [Gudin et al. 2003], 
um protocolo para a troca de mensagens entre serviços. Outras funções mais avançadas, 
como a composição de serviços e o estabelecimento de acordos para a provisão de 
serviços com garantias de qualidade de serviço, também já estão sendo implementadas 
por uma nova geração de tecnologias [Curbera et al. 2003]. 

 No entanto, a natureza distribuída, heterogênea e fracamente acoplada das 
aplicações baseadas em serviços web faz com que muitos de seus interesses (ou 
preocupações) de projeto, em geral de cunho não-funcional, sejam difíceis de 
modularizar usando apenas as tecnologias tradicionais de implementação. Por dizer 
respeito tanto às aplicações provedoras quanto às aplicações consumidoras dos serviços 
envolvidos, o tratamento desses interesses tende a se espalhar pelo código fonte de 
diversas aplicações, misturando-se à implementação de seus interesses funcionais. 
Claramente, tal propriedade pode afetar negativamente o desenvolvimento de aplicações 
orientadas a serviços, dificultando não apenas a sua implementação, mas também a sua 
subseqüente manutenção e evolução. 

 A constatação de que existem propriedades de um sistema de software que não 
são facilmente modularizáveis utilizando modelos de desenvolvimento tradicionais (ou 
seja, modelos que têm a decomposição funcional como princípio fundamental de 
projeto), bem como a necessidade de oferecer novos mecanismos de composição para 
implementar tais propriedades de forma localizada, em separado dos demais módulos, 
constituem a principal motivação por trás do paradigma da Programação Orientada a 
Aspectos (POA) [Kiczales et al. 1997]. A POA propõe um novo tipo de abstração – 
denominado aspecto – o qual permite separar explicitamente interesses não-funcionais 
de um sistema que do contrário estariam misturados ao seu código funcional. A POA 
fornece ainda novos mecanismos de composição de software que permitem combinar 
interesses não-funcionais, implementados como aspectos, com o código funcional do 
sistema em locais ou pontos de execução (conhecidos como pontos de junção) definidos 
pelo programador. 

 Em vista da dificuldade de se separar interesses não-funcionais fortemente 
presente na COS, e dos recursos de separação explícita de interesses oferecidos pela 
POA, há uma demanda natural por soluções que busquem integrar esses dois 
paradigmas. Embora alguns trabalhos já tenham sido propostos recentemente nesta 
direção [Verheecke e Cibrán 2003, Verspecht et al. 2003, Charfi e Mezini 2004, 
Courbis e Finkelstein 2004, Henkel et al. 2005], todos, em menor ou maior grau, estão 
acoplados a uma determinada linguagem de programação ou plataforma de execução. 
Tal acoplamento está presente tanto na implementação das aplicações consumidoras e 
provedoras de serviços, quanto na implementação de seus interesses não-funcionais na 
forma de aspectos. O alto nível de acoplamento presente nessas soluções é indesejável 
por duas razões importantes: (i) ele limita o leque de tecnologias de implementação à 
disposição dos programadores, e (ii) ele vai de encontro à própria natureza heterogênea 
e fracamente acoplada que caracteriza a COS. Portanto, uma solução mais eficaz para 

194



  

integrar aspectos e serviços deveria ter a característica de independência de tecnologia 
de implementação como um princípio básico de projeto. 

  Neste artigo, apresentamos a linguagem WSAL (Web Service Aspect Language), 
que permite a integração natural de alguns conceitos fundamentais da POA, como 
aspectos (aspects), pontos de junção (join points), adendos (advices) e combinação 
(weaving), ao contexto da COS. Diferentemente de outras soluções existentes que 
também buscam integrar esses dois paradigmas, WSAL suporta um modelo de aspectos 
inovador, onde aspectos também são implementados e executados na forma de serviços. 
Essa característica permite a combinação dinâmica (ou seja, no momento da execução 
das aplicações envolvidas, quando estas trocam mensagens) de aspectos especificados 
em WSAL ao fluxo de mensagens trocadas entre as aplicações consumidoras e 
provedoras de serviços, de uma maneira totalmente independente das tecnologias 
utilizadas na sua implementação. 

 A linguagem WSAL é descrita em detalhes na próxima seção. A seção 3 reporta 
a implementação inicial de um conjunto de ferramentas para dar suporte à linguagem, 
incluindo um combinador de aspectos que está sendo construído com base em uma 
tecnologia de intermediários HTTP existente. A seção 4 apresenta os resultados de uma 
avaliação preliminar do desempenho do combinador em diferentes cenários de 
execução. A seção 5 compara WSAL com diversos trabalhos relacionados. Por fim, a 
seção 6 conclui o artigo com as principais contribuições do trabalho e sugestões para 
trabalhos futuros. 

2. A Linguagem WSAL 
WSAL é uma nova linguagem da POA que tem como base um novo modelo de 
combinação de aspectos, proposto especificamente para o contexto do desenvolvimento 
orientado a serviços [Mendonça e Silva 2006]. Nesse modelo, aspectos (e não apenas as 
aplicações) também são implementados e executados na forma de serviços web 
fracamente acoplados, chamados serviços aspectuais [Mendonça e Silva 2005]. Dessa 
forma, o processo de combinação dos aspectos passa a ser realizada em nível de rede 
(portanto, externamente ao ambiente de execução das aplicações), por meio de um 
mecanismo de interceptação dinâmica de mensagens que faz o papel de combinador de 
aspectos da linguagem. O combinador tem como principal função interceptar as 
mensagens SOAP trocadas entre as aplicações através da rede e, uma vez que tenham 
sido identificados eventos de interesse nas mensagens interceptadas, invocar as 
operações (adendos) apropriadas do serviço aspectual especificado. 

 Essa estratégia de implementação de aspectos como serviços, utilizada 
originalmente em WSAL, fundamenta-se na visão de que, para que os paradigmas da 
POA e COS possam ser integrados de forma natural, é necessário que o próprio 
processo de combinação de aspectos seja realizado de forma desacoplada de tecnologia. 

2.1. Processo de Combinação 

A Figura 1 ilustra o processo de combinação de aspectos em WSAL. O processo inicia 
com a especificação (passo 1), interpretação (passo 2) e implantação (passo 3) dos 
aspectos especificados em WSAL pelo combinador de aspectos da linguagem. A 
combinação em si acontece em tempo de execução, através da interceptação de 
mensagens SOAP de interesse (passo 4), invocação dos serviços aspectuais apropriados 

195



  

(passo 5) e, se pertinente, retransmissão das mensagens interceptadas (possivelmente 
modificadas) às aplicações de destino (passo 6). Note que o processo não impõe 
nenhuma restrição ao papel desempenhado pelas aplicações cujas mensagens são 
interceptadas, de forma que ele pode ser aplicado tanto às mensagens de requisição de 
serviço quanto às mensagens de resposta de um ou mais serviços.  

 O principal benefício desse modelo de combinação em nível de rede é que ele 
torna o mecanismo de combinação completamente independente de quaisquer 
tecnologias utilizadas (como linguagem de programação e infra-estrutura de 
middleware), tanto na implementação dos componentes das aplicações quanto dos 
aspectos. Esta é uma característica chave para o modelo de combinação de WSAL, pois 
dá aos desenvolvedores das aplicações uma maior flexibilidade na escolha das 
tecnologias que melhor satisfazem suas necessidades e preferências. 

2.2. Elementos da Linguagem 

Como a maioria das linguagens de especificação da COS, WSAL tem sua sintaxe 
definida e validada utilizando um esquema XML próprio. Os elementos sintáticos da 
linguagem representam recursos típicos da POA, como (conjuntos de) pontos de junção, 
adendos e aspectos [Kiczales et al. 1997]. As subseções abaixo detalham alguns desses 
elementos e descrevem como eles podem ser agrupados na especificação de aspectos 
em WSAL. 

2.2.1. Pontos de Junção 

Em WSAL, pontos de junção correspondem a eventos definidos a partir das 
características das mensagens SOAP trocadas entre as aplicações consumidoras e 
provedoras de serviços web. WSAL define seis tipos de pontos de junção, todos 
associados à estrutura das mensagens SOAP ou a propriedades do protocolo de 
transporte subjacente. São eles: 

• namespace: identifica um ou mais espaços de nomes dentre aqueles definidos na 
descrição WSDL de um serviço web, por meio da identificação dos URIs 
referentes aos espaços de nomes; 

• messagePart: identifica um ou mais elementos que compõem a mensagem 
SOAP de requisição ou de resposta usada pelas operações definidas em uma 
descrição WSDL de um serviço web; 

• serviceOperation: identifica uma ou mais operações dentre aquelas definidas na 

Figura 1. Processo de combinação de aspectos em WSAL. 

196



  

descrição WSDL de um serviço web; 
• serviceLocation: identifica um ou mais URLs onde um serviço web pode ser 

provido; 
• clientLocation: identifica um ou mais endereços de rede (expresso na forma de 

um endereço IP ou nome de domínio) em que pode residir a aplicação 
consumidora de um serviço web; 

• composite: indica um ponto de junção composto por um conjunto de pontos de 
junção unidos pelos operadores lógicos and (conjunção), not (negação) e or 
(disjunção).  

 Este conjunto de tipos de pontos de junção é flexível o suficiente para permitir 
que pontos de junção sejam especificados para qualquer mensagem SOAP, tanto em 
termos de seu conteúdo (usando os tipos namespace, messagePart e serviceOperation) 
quanto em termos das propriedades relacionadas ao seu protocolo de transporte (usando 
os tipos serviceLocation e clientLocation). Além disso, usando o tipo composite, WSAL 
permite a composição arbitrária dos outros cinco tipos de pontos de junção, oferecendo 
um mecanismo bastante flexível para a definição de eventos de interação de diferente 
natureza e complexidade. 

 Sintaticamente, um ponto de junção é representado pelo elemento pointcut de 
WSAL. Além do atributo type, que indica o tipo do ponto de junção, esse elemento 
inclui também o atributo pattern, cujo valor especifica o contexto do ponto de junção. 
Para obter mais flexibilidade, valores para o atributo pattern podem ser definidos 
usando expressões regulares. A Figura 2 ilustra um ponto de junção simples e um ponto 
de junção composto definidos segundo a sintaxe de WSAL. 

2.2.2. Adendos 

  Na POA, os adendos (advices) especificam o comportamento adicional a ser 
incluído no ponto de junção por ele referenciado. Em WSAL, cada adendo é associado a 
um ponto de junção (ou a um conjunto de pontos de junção, usando um ponto de junção 
composto) e a uma operação de um serviço aspectual, a ser invocado em tempo de 
execução pelo combinador de aspectos da linguagem. 

 Adendos são especificados com o elemento advice de WSAL. Esse elemento 
inclui o atributo type, para indicar o tipo do adendo. Os tipos de adendos definidos em 
WSAL são derivados dos diferentes tipos de eventos de interação que podem ocorrer 
em tempo de execução entre as aplicações provedoras e consumidoras de serviços web, 
por meio do protocolo SOAP. Três tipos de eventos são considerados: requisição de um 

Figura 2. Exemplos de pontos de junção em WSAL. 

<!-- ponto de junção composto --> 
<pointcut name="pj1" type="composite"> 
    <and> 
        <pointcut type="serviceOperation" pattern="doGoogleSearch"/> 
        <pointcut type="clientLocation" pattern="188.188.*"/> 
    </and> 
</pointcut> 
 
<!-- ponto de junção simples --> 
<pointcut name="pj2" type=" messagePart" pattern="&lt;query*&gt;web 2.0&lt;/query&gt;"> 

197



  

serviço, resposta de um serviço, e falha (ou exceção) na execução de um serviço. A 
partir desses três tipos de eventos foram definidos sete tipos de adendos em WSAL. São 
eles: 

• beforeRequest: o comportamento a ser adicionado pelo serviço aspectual é 
invocado antes do combinador enviar a mensagem de requisição SOAP 
interceptada ao seu destino original. A mensagem interceptada não é alterada; 

• uponRequest: similar ao beforeRequest, sendo que agora a mensagem de 
requisição interceptada pode ser alterada pelo serviço aspectual; 

• afterResponse: o comportamento do serviço aspectual é invocado após o 
combinador interceptar uma mensagem de resposta SOAP, recebida do serviço 
web originalmente invocado por alguma aplicação cliente. A mensagem 
interceptada não é alterada; 

• uponResponse: similar ao afterResponse, sendo que agora a mensagem de 
resposta interceptada pode ser alterada pelo serviço aspectual; 

• afterException: o comportamento do serviço aspectual é invocado após o 
combinador interceptar uma mensagem SOAP indicando falha na execução do 
serviço originalmente solicitado pela aplicação cliente. A mensagem 
interceptada não é alterada; 

• uponException: similar ao afterException, sendo que agora a mensagem de falha 
inteceptada pode ser modificada pelo serviço aspectual; 

• around: o serviço aspectual substitui o serviço que originalmente seria invocado 
pela aplicação cliente. Para isso, o combinador repassa a mensagem de 
requisição SOAP interceptada diretamente ao serviço aspectual, cuja resposta é 
então devolvida para a aplicação cliente. 

Cada adendo também pode ser definido com o tipo de informação que será 
repassada ao serviço aspectual, com o uso do atributo context. Usando este atributo, o 
desenvolvedor do aspecto pode controlar a quantidade de informações repassadas ao 
serviço aspectual, evitando, assim, uma sobrecarga na sua invocação pelo combinador. 
Entre as opções de informações de contexto a serem repassadas estão dados referentes 
ao protocolo de transporte das mensagens (no caso, HTTP), e ao próprio conteúdo das 
mensagens SOAP interceptadas. 

 Além do tipo e do contexto, um adendo em WSAL ainda pode ser definido 
como síncrono ou assíncrono, usando o atributo mode. Um adendo assíncrono será 
invocado de forma assíncrona pelo combinador de aspectos, ou seja, o combinador não 
ficará bloqueado aguardando o fim da execução do serviço aspectual, e repassará a 
mensagem SOAP interceptada ao serviço ou aplicação de destino imediatamente após a 
sua invocação. 

2.2.3. Aspectos 

A especificação de um aspecto em WSAL é feita utilizando o elemento aspect. Esse 
elemento associa um conjunto de pontos de junção (elementos pointcut) a um elemento 
aservice, que em WSAL representa um serviço aspectual. O elemento aservice, por sua 
vez, define o nome e a localização do serviço aspectual (atributos name e location, 
respectivamente), e encapsula a especificação de um conjunto de adendos (elementos 

198



  

advice). Dessa forma, um elemento aspect contém toda a informação necessária para 
que o combinador de aspectos de WSAL possa interceptar mensagens SOAP de acordo 
com os critérios definidos nos pontos de junção especificados no aspecto, e então 
invocar as operações do serviço aspectual especificadas nos adendos, quando pontos de 
junção de interesse forem identificados nas interações entre as aplicações. 

 A Figura 3 mostra dois exemplos completos de aspectos especificados em 
WSAL. O primeiro exemplo (Figura 3(a)) corresponde a um aspecto de autenticação de 
clientes. Esse aspecto tem como objetivo encapsular o procedimento de autenticação 
necessário para que aplicações clientes possam acessar o serviço de busca do Google. O 
procedimento de autenticação consiste, basicamente, em inserir as devidas credenciais, 
previamente fornecidas pelo Google, em todas as mensagens de requisição SOAP 
enviadas ao seu serviço de busca. Para isso, o aspecto define um ponto de junção do 
tipo serviceLocation, cujo atributo pattern contém a URL referente à localização do 
serviço de busca, e um elemento aservice com um único adendo do tipo uponRequest, 
associado à operação AddCredential do serviço aspectual AuthenticationService. Essa 
operação ficará responsável por inserir as credenciais requeridas pelo serviço de busca 
do Google em uma mensagem de requisição interceptada e recebida como parâmetro do 
combinador, e então retornar a mensagem modificada ao combinador, para que ele 
possa encaminhá-la de volta ao seu destino original. 

 O segundo exemplo (Figura 3(b)) corresponde a um aspecto de cobrança. Esse 
aspecto é utilizado para registrar cada acesso realizado com sucesso a um ou mais 
serviços web, de modo a permitir a subseqüente cobrança pelo uso do(s) serviço(s) 
junto a seus usuários (aplicações clientes). Note que o aspecto está associado ao serviço 
aspectual de nome BillingService, e contém um único adendo, do tipo afterResponse, 
associado à operação BillingPerUse do serviço aspectual. Note ainda que essa operação 
foi definida para ser invocada de modo assíncrono pelo combinador, uma vez que ela 
não retorna nenhuma informação relevante para o processo de combinação. 

 É importante ressaltar que tanto o serviço aspectual de autenticação quanto o de 
cobrança poderão ser implementados e reutilizados livremente, utilizando qualquer 
tecnologia da COS. Além disso, com pequenas modificações na especificação dos 
pontos de junção, ambos os aspectos poderão facilmente ser combinados ao fluxo 
mensagens SOAP proveniente da interação entre outras aplicações e serviços. 

(a)                                                                  (b) 
Figura 3. Dois exemplos de aspectos especificados em WSAL: um 

aspecto de autenticação de clientes (a) e um aspecto de cobrança (b). 

<aspect id="ClientAuthenticationAspect"> 
    <pointcut name="googleService"  
        type="serviceLocation"  
        pattern="http://api.google.com/search/beta2"/>
    <aservice name="AuthenticationService" 
        location="http://server1/axis/AuthService"> 
        <advice type="uponRequest" 
            pointcut-ref="googleService" 
            operation="AddCredential" 
            context="infoRequest" /> 
    </aservice> 
</aspect> 

<aspect id="ServiceBillingAspect"> 
    <pointcut name="UseService" 
        type="serviceLocation" 
        pattern="http://server1/axis/upperService"/> 
    <aservice name="BillingService"  
        location="http://server2/axis/BillingService"> 
        <advice type="afterResponse" 
            pointcut-ref="UseService"        
            operation="BillingPerUse" 
            context="infoHTTP" 
            mode="asynchronous"/> 
    </aservice> 
</aspect> 

199



  

3. Implementação de um Combinador de Aspectos para WSAL 
O processo de combinação de aspectos utilizado em WSAL baseia-se na idéia de 
interceptar as mensagens SOAP trocadas entre as aplicações no nível de rede, de modo 
que a combinação dos aspectos aconteça num ambiente externo às aplicações, 
propiciando, assim, independência de plataforma e de linguagem ao processo de 
combinação. 

Portanto, o combinador precisa atuar como um intermediário (ou um proxy) 
entre as aplicações provedoras e consumidoras de serviços. Para que isso aconteça, foi 
escolhido o WBI [Barret e Maglio 1998] como plataforma de interceptação, por já 
fornecer uma infraestrutura completa para o trabalho de interceptação e tratamento de 
requisições e respostas HTTP com o uso de mecanismos de extensão (plugins) da 
plataforma. Como HTTP também é o protocolo de transporte mais comum no mundo 
dos serviços web, o WBI se mostra uma opção flexível e adequada às necessidades do 
combinador de aspectos da WSAL. 

O WBI é um proxy programável escrito em Java que promove a extensão 
através de plugins e MEGs. Os plugins são classes que podem ser dinamicamente 
implantadas na plataforma do WBI, desde que herdem de determinada classe abstrata da 
plataforma. Os plugins são acionados apenas uma vez, no momento de sua carga na 
plataforma WBI, e servem para configurar a condição de execução de um ou mais 
MEGs. MEGs são objetos especiais capazes de lidar com as requisições e respostas 
HTTP que forem interceptadas mediante as condições configuradas no MEG pelo 
plugin. MEG é a sigla para Monitor, Editor and Generator, significando o propósito de 
cada MEG. Por exemplo, apenas monitorar (monitor) o fluxo de requisições e respostas 
HTTP, alterar (editor) uma requisição ou uma resposta HTTP, ou ainda produzir uma 
nova resposta (generator). O WBI fornece classes básicas para que novas classes MEGs 
sejam criadas a partir delas por extensão, e possam ser utilizadas pelos plugins para que 
tratem o tráfego HTTP. 

 Com base nisso, tomou-se a decisão de que o combinador deveria ser construído 
na plataforma de interceptação de mensagens WBI e, portanto, na plataforma Java. 
Como o acoplamento do combinador a uma tecnologia externa à de serviços web é 
indesejável, algumas estratégias de componentização foram tomadas para garantir 
algum nível de reutilização do combinador em outras plataformas de interceptação. 
Essas estratégias serão discutidas nas subseções seguintes. 

3.1. Geração e Combinação dos Aspectos 

Primeiramente, foi preciso definir como os arquivos XML com as especificações de 
aspectos em WSAL seriam implantados no combinador, e como o combinador iria 
utilizá-los para produzir o efeito do aspecto. Duas possibilidade foram vislumbradas: 

• Geração de código estático: mediante uma ferramenta externa que leria os 
aspectos e, usando templates (código pré-definido com alguns elementos que 
podem ser substituídos a fim de gerar um novo código estático), seria gerado o 
código de classes específicas para lidar com cada aspecto. Possivelmente, seria 
gerado o código de um plugin do WBI para cada aspecto. 

• Código genérico dinâmico: seria criado um conjunto de classes capazes de 
carregar as definições de aspectos em memória e, em tempo de execução, o 

200



  

combinador iria ler os aspectos, verificar dinamicamente as suas condições de 
execução e, se for o caso, aplicar o comportamento esperado. 

 Ambas as abordagens possuem vantagens e desvantagens, mas para a atual 
versão do combinador foi tomada a decisão de utilizar a segunda abordagem: a criação 
de um conjunto de classes genéricas e dinâmicas, no formato de uma API (Application 
Programming Interface) genérica de combinação de aspectos para a WSAL. O principal 
fator motivador para esta decisão foi a possibilidade de reutilização, que poderia fazer 
com que esta mesma API fosse utilizada em diferentes plataformas de interceptação de 
mensagens, e a independência em relação ao WBI (que não aconteceria da mesma 
forma, caso optássemos por gerar código estaticamente para esta plataforma). 

3.2. Componentes da Arquitetura 

Os elementos que compõem a API de combinação de aspectos incluem os mecanismos 
de implantação de aspectos, interpretação dos aspectos lidos em XML, validação e, por 
fim, a combinação propriamente dita. Além destes elementos genéricos, são necessários 
elementos específicos da plataforma de interceptação de mensagens, neste caso, o WBI. 

Figura 4. Componentes do combinador de aspectos para WSAL. 

    A Figura 4 mostra os principais componentes do combinador de aspectos para 
WSAL e os seus relacionamentos. A funcionalidade e alguns detalhes de 
implementação de cada um desses componentes são descritos a seguir: 

• WSAL Setup: mecanismo simples, responsável pela carga dos arquivos XML de 
aspectos para que estes sejam levados ao componente de parse e validação. 
Funciona obtendo uma lista de arquivos que terminam com a extensão 
“.wsal.xml”, e utilizando o componente de parse validação (WSAL Validation) 
para obter o aspecto em forma de objetos. A partir dos aspectos como objetos 
produzidos pelo componente WSAL Validation, pode fornecer outras 
informações úteis aos outros componentes; 

• WSAL Validation: com os arquivos de aspectos carregados em memória, este 
conjunto de classes transforma os arquivos XML lidos em um conjunto de 
objetos usando uma tecnologia de XML binding, opção que é a mais apropriada 
para a situação, pois pretende-se percorrer a configuração XML como uma 
estrutura de objetos, podendo-se criar uma API utilizando estes objetos. Como 
boa prática, foi criado um conjunto de interfaces para isolar a estrutura de 
objetos do esquema XML de uma tecnologia de binding específica, de modo que 
ela pode ser alterada. A presente versão implementa essas interfaces utilizando 
JAXB [Sun 2006]; 

• WSAL WBI Plugin: trata-se de apenas uma classe que é responsável por utilizar 
o componente de validação, obter as configurações dos aspectos, instanciar e 

201



  

configurar os MEGs da WSAL necessários para tratá-los; 
• WSAL MEGs: composta pelos MEGs da WSAL, WsalWeavingDocumentEditor, 

WsalWeavingGenerator, e WsalWeavingRequestEditor. Cada um deles trata um 
tipo de adendo na WSAL, correspondendo ao tipo de MEG no WBI, conforme 
descrito abaixo: 

o WsalWeavingRequestEditor: como um MEG do tipo RequestEditor, ele é 
invocado a cada requisição HTTP, podendo alterá-la. Na WSAL, este 
MEG irá tratar os adendos do tipo beforeRequest e uponRequest; 

o WsalWeavingDocumentEditor: MEGs do tipo DocumentEditor lidam 
com as respostas HTTP, portanto eles são os ideais para tratar os adendos 
na WSAL do tipo afterException, afterResponse, uponException e 
uponResponse; 

o WsalWeavingGenerator: a semântica do adendo around é substituir 
completamente o uso de um serviço web pelo uso do serviço aspectual. 
Portanto, um MEG do tipo Generator é o mais adequado para este caso, 
por ser apropriado para produzir novo conteúdo; 

• WSAL Weaving: este componente tem o papel fundamental de realizar toda a 
semântica da linguagem WSAL, avaliando pontos de junção, incluindo o 
comportamento dos aspectos nos eventos dos adendos e invocando os serviços 
aspectuais. Sua implementação usa componentes para lidar com as estruturas das 
mensagens SOAP (DOM API/SAAJ) e para invocação dinâmica de serviços 
(WSIF), como apresentado na Figura 4. 

4. Avaliação Preliminar 
Esta seção apresenta uma análise preliminar do custo de desempenho imposto pela atual 
versão do combinador de aspectos de WSAL, implementado sobre a plataforma WBI, às 
aplicações envolvidas no processo de combinação. O intuito da análise é oferecer 
indícios do impacto do combinador na prática, propiciando, assim, subsídios para 
futuras análises mais abrangentes. 

 Foram realizados testes para a análise do impacto do aspecto de cobrança – 
apresentado na Figura 3(b) – no desempenho das aplicações afetadas, através da 
medição, em diferentes cenários, do tempo médio de resposta obtido quando do 
consumo do serviço web cobrado. Foram utilizadas três máquinas, todas conecadas à 
mesma rede local, onde a primeira executava a aplicação consumidora do serviço; a 
segunda executava o combinador de aspectos e o serviço aspectual associado ao adendo 
de cobrança; e a terceira executava o serviço web cobrado.  

 Os cenários analisados contemplam interações entre a aplicação consumidora e a 
aplicação provedora do serviço web, com a implementação do interesse de cobrança 
realizada de três maneiras distintas: dentro da própria aplicação provedora do serviço, 
ou seja, sem a combinação do aspecto de cobrança (Cenário 1); via combinação do 
aspecto de cobrança no modo de invocação assíncrono (Cenário 2); e via combinação 
do aspecto de cobrança no modo de invocação síncrono (Cenário 3). 

 Os experimentos foram feitos através da invocação de uma operação do serviço 
alvo que simplesmente converte os caracteres de um texto (string) recebido como 

202



  

parâmetro de entrada para caracteres minúsculos. O texto convertido é então retornado 
para a aplicação consumidora como resultado da operação. Foram realizadas quatro 
seqüências de testes. Em cada seqüência, foram feitas 15 invocações do serviço, 
envolvendo mensagens SOAP de requisição e de resposta de um mesmo tamanho. A 
cada nova seqüência, o tamanho das mensagens foi incrementado, na seguinte ordem: 
1Kb, 20Kb, 40Kb e 60Kb. Em cada invocação do serviço foi computado o tempo 
transcorrido desde o envio da requisição até o recebimento da resposta. Para amenizar 
os efeitos da latência da rede, foram descartadas as cinco primeiras invocações em cada 
seqüência. 

0

50

100

150

200

250

300

1K 20K 40K 60K

Tamanho das Mensagens SOAP

Te
m

po
 M

éd
io

 d
e 

Re
sp

os
ta

 (m
s)

C1
C2
C3

 
Figura 5. Tempo médio de resposta do serviço de cobrança. 

 A análise do resultado dos experimentos demonstra que o impacto de 
desempenho obtido com a combinação do aspecto neste serviço tende a ser, em relação 
ao cenário sem aspectos (Cenário 1), inferior a 100ms em média, quando o adendo é 
invocado no modo síncrono (Cenário 3), e praticamente nulo quando o adendo é 
invocado no modo assíncrono (Cenário 2), conforme mostram a Figura 5 e a Tabela 1.  

 
Tabela 1. Desempenho do serviço de cobrança com relação ao cenário C1. 

          Analisando mais detalhadamente o impacto no desempenho gerado pelo uso do 
aspecto de cobrança no Cenário 3, percebemos que o valor relativo deste impacto varia 
decrescentemente com o aumento do tamanho das mensagens SOAP interceptadas. O 
custo imposto pelo aspecto tende a ter um teto máximo, neste caso, representado por um 
aumento no tempo de resposta do serviço não superior a 100ms; diferentemente, o custo 
imposto pelo consumo das operações torna-se maior à medida que aumenta o tamanho 
das mensagens SOAP trocadas. Como resultado, o custo adicional advindo da 
combinação do aspecto torna-se percentualmente menor em relação ao custo total do 
consumo de uma operação do serviço web alvo que não use o aspecto, à medida que 
elevamos o tamanho das mensagens SOAP interceptadas pelo combinador. Além disso, 
considerando que, mesmo ao combinar o aspecto de cobrança, as operações ainda 

 Tamanho da Mensagem SOAP 

Cenário 1K 20K 40K 60K 

C2 -6 ms -5 ms -1 ms -7 ms 

C3 89 ms 92 ms 92 ms 62 ms 

203



  

apresentam tempos médios de resposta abaixo de 1s, a perda média de desempenho 
observada no Cenário 3 em relação ao Cenário 1, apesar de relativamente alta, ainda 
seria aceitável na medida que não comprometesse os requisitos de qualidade do serviço 
cobrado. 

  Apesar da perda não desprezível, os benefícios de reutilização e independência 
de plataforma e de tecnologia de implementação que esta abordagem traz para os 
desenvolvedores de aplicações orientadas a serviços, em nossa visão, em muitos casos 
podem compensar o custo que combinador de aspectos de WSAL certamente impõe ao 
desempenho das aplicações afetadas por ele. 

5. Trabalhos Relacionados 
Utilizar intermediários SOAP como forma de implementar interesses não funcionais de 
serviços não é uma idéia nova. Na verdade, ela faz parte da especificação SOAP desde 
suas primeiras versões [Gudin e Hadley 2003] e é suportada pela maioria dos 
frameworks de web services atuais. O modelo de serviços aspectuais adotado em 
WSAL leva essa idéia mais adiante, uma vez que ele se baseia em intermediários 
SOAP, não como tecnologia para implementar interesses não funcionais diretamente, 
mas como forma de trazer, com baixo acoplamento, a disciplina de POA para o 
desenvolvimento de aplicações orientadas a serviços. 

 Diversas outras  abordagens também propõem a integração dos paradigmas de 
POA e COS [Verheecke e Cibrán 2003, Verspecht et al. 2003, Baligand e Monfort 
2004]. Entretanto, todos eles se baseiam em um mecanismo de combinação de aspectos 
fortemente restrito a uma linguagem de programação ou plataforma de desenvolvimento 
específica. Por exemplo, as abordagens de [Verheecke e Cibrán 2003, Baligand e 
Monfort 2004] baseiam-se em mecanismos distintos, mas específicos para a plataforma 
Java, assim exigem que ambos, aspectos e aplicação, sejam desenvolvidos em Java. De 
forma semelhante, a abordagem [Verspecht et al. 2003] baseia-se num mecanismo de 
combinação específico para a framework .NET, limitando assim a implementação dos 
aspectos e aplicações ao contexto .NET e às linguagens suportadas por esse framework. 
Ao contrário do que ocorre nas abordagens acima citadas, em WSAL os aspectos 
também são implementados como serviços web fracamente acoplados que podem ser 
dinamicamente combinados ao fluxo de mensagens interceptado na rede. Embora nossa 
abordagem de combinação dinâmica reduza seu escopo de atuação aos eventos de 
interação que ocorrem fora do ambiente de execução das aplicações, isto torna possível 
implementar aspectos de maneira completamente independente de qualquer linguagem 
de programação ou plataforma de desenvolvimento específicos. 

 Dois trabalhos mais recentes seguem uma linha um pouco diferente, integrando 
conceitos da POA e da COS em nível de composição de serviços [Charfi e Mezini 2004, 
Courbis e Finkelstein 2004]. Ambos estendem a linguagem BPEL4WS [BEA Systems 
et al.], uma linguagem de composição de processos baseados em serviços, com novas 
construções para especificar aspectos, e com um novo mecanismo para combinar os 
aspectos aos processos BPEL4WS originais. No que diz respeito ao mecanismo de 
combinação que age em nível de composição de serviço, esses trabalhos, como o nosso, 
suportam a implementação de aspectos de forma independente de linguagem e de 
ambiente. No entanto, os seus mecanismos de combinação possuem escopo mais 
limitado, sendo restritos aos pontos de junção dinâmicos expressos em termos de 

204



  

eventos capazes de serem capturados pela máquina de execução BPEL4WS. Isso torna a 
implementação de aspectos fortemente acoplada à máquina de execução BPEL4WS. 

6. Conclusões 
Este artigo apresentou uma nova linguagem de POA, chamada WSAL, cujo objetivo é 
prover um mecanismo natural para integrar os paradigmas da computação orientada a 
aspectos e da computação orientada a serviços. Em WSAL, os aspectos são 
implementados como serviços web fracamente acoplados, cujas operações podem ser 
combinadas dinamicamente, em pontos de junção especificados em termos de 
propriedades de rede e do conteúdo de mensagens SOAP trocadas entre aplicações 
provedoras e consumidoras de serviços web. Comparada a outras abordagens POA 
baseadas em serviços, WSAL oferece o importante benefício de viabilizar a 
aplicabilidade de aspectos ao contexto da COS na web, independentemente de 
plataforma de desenvolvimento ou tecnologia de implementação. 

 Também foram apresentados o funcionamento, a implementação inicial e uma 
avaliação preliminar de desempenho dos mecanismos de validação, implantação e 
combinação dinâmica de aspectos definidos em WSAL, integrados através de uma 
tecnologia de intermediários HTTP existente (WBI). 

Como sugestões para trabalhos futuros, destacamos: 
• Finalizar a implementação do combinador de aspectos, implementando todos os 

cenários possíveis na linguagem WSAL em uma situação de combinação de 
aspectos, e também realizar mais testes objetivando o uso das ferramentas em 
sistemas em produção. 

• Testar o uso das APIs genéricas desenvolvidas para a WSAL em outra 
plataforma que não o WBI, como, por exemplo, em manipuladores (handlers) de 
serviços web, para que elas sejam aprimoradas e que tenham o seu caráter de 
reutilização confirmado. 

• Implementar ferramentas de suporte e monitoramento do combinador de 
aspectos, de modo a tornar todo o processo de especificação, implantação e 
monitoramento dos aspectos algo automatizado e mais simples. 

• Realizar novos e mais abrangentes testes de desempenho para o combinador 
proposto, de modo a validar de forma mais consistente as decisões que foram 
tomadas e, se necessário, realizar alterações que melhorem seu desempenho. 

Referências 
Barret, R. Maglio, P. (1998), Intermediaries: New Places for Producing and 

Manipulating Web Content. Computer Networks and ISDN Systems, 30(1-7):509-
18. 

Bryan, D., Draluk, V., Ehnebuske, D., Glover, T, et al. (2002), Universal Description, 
Discovery and Integration version 2.04. Disponível em: 
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm. 

Cauldwell, P., Chawla, R., Chopra, V., et al.  (2001), Professional XML Web Services, 
Wrox Press, Birminghan, USA. 

Charfi, A. and Mezini, M. (2004), Aspect-Oriented Web Service Composition with 

205



  

AO4BPEL, In Proc. of the Eur. Conf. on Web Services (ECOWS’04), Volume 3250 
of LNCS, Springer-Verlag, pp. 168-182. 

Christensen, E., Curbera, F., Meredith, G., et al. (2001), Web Services Description 
Language (WSDL) 1.1, W3C Note. Disponível em: http://www.w3.org/TR/wsdl. 

Courbis, C., Finkelstein, A. (2004), Towards an Aspect Weaving BPEL Engine. In 
Proc. of the 3rd AOSD Workshop on Aspects, Components, and Patterns for 
Infrastructure Software (ACP4IS’01), Lancaster, U.K. 

Gudin, M., Hadley, M., Mendelsohn, N., Moreau, J. and Nielsen, H. F. (2003), “SOAP 
Version 1.2”, W3C Recommendation. Disponível em: http://www.w3.org/ 
TR/soap12. 

Henkel, M., Boström, G., Wäyrynen, J. (2005), Moving from Internal to External 
Services using Aspects. In Proc. of the 1st Int. Conf. on Interoperability of Enterprise 
Software and Applications (ICIESA’05), Genebra, Suíça. 

IBM, “WBI Web Site”, Disponível em: http://www.almaden.ibm.com/cs/wbi/. 
Kiczales, G. J., Mendhekar, L. A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J. (1997), 

Aspect-Oriented Programming. In Proc. of the 11th Eur. Conf. on Object-Oriented 
Programming (ECOOP), volume 1241 of LNCS, Springer-Verlag, pages 220–242. 

Lafferty, D. C., Cahill, V. (2003), Language-Independent Aspect-Oriented Program-
ming. In Proc. of the 18th ACM SIGPLAN Conf. on Object-Oriented Programming, 
Systems, Languages, and Applications (OOPSLA'03), California, USA. 

Mendonça, N. C., Silva. C. F. (2005), Aspectual Services: Unifying Service- and 
Aspect-Oriented Software Development. In Proc. of the Int. Conf. on Next 
Generation Web Services Practices (NWeSP'05), Seul, Coréia do Sul. IEEE 
Computer Society Press. 

Mendonça, N. C., Silva. C. F. (2006), A Unified Model for Service- and Aspect-
Oriented Software Development. International Journal of Web Services Practices, 
2(1-2):59-67. 

Papazoglou, M. P. and Georgakopoulos, D. (2003), Service-Oriented Computing. 
Communication of the ACM, Vol. 46, No. 10, pp. 25-28. 

Sun (2006), Java Enterprise Edition 5. Disponível em http://java.sun.com/javaee/5/. 
Verheecke, B., Cibrán, M.A. (2003), AOP for Dynamic Configuration and Management 

of Web Services. In Proc. of the Int. Conf. on Web Services – Europe 2003 (ICWS – 
Europe '03), Erfurt, Alemanha. 

Verspecht, D., Vanderperren, W., Suvée, D., Jonckers, V. (2003), JasCo.NET: 
Unraveling Crosscutting Concerns in .NET Web Services. Vrije Universiteit Brussel, 
Pleinlaan 2, Bruxelas, Bélgica. 

206



Programação avançada em Common Lisp: Linguagens de
Domínio Específico e Meta-programação

Pedro Kroger1

1Grupo de Pesquisa GENOS – Escola de Música – Universidade Federal da Bahia (UFBA)
Parque Universitário Edgard Santos, Canela – Salvador – Bahia – 40110-150 – Brazil

pedro.kroger@gmail.com

Resumo. Lisp é uma linguagem avançada que é menos usada do que deveria.
Isso se dá, em parte, a mitos que foram criados e ao fato de que aexposição
inicial à linguagem muitas vezes acontece de forma incompleta e puramente teó-
rica, geralmente em cursos de “comparativos de linguagens”ou “programação
funcional”. Mas Common Lisp é uma linguagem rica definida pelo padrão ANSI
com listas, arrays, vetores, números racionais, complexos, etc. Além disso, Lisp
é multi-paradigma possuindo abstrações para programação funcional, procedu-
ral, imperativa, aspectos, um sistema avançado e flexível deprogramação ori-
entada a objetos, e um caráter dinâmico sem precedentes. Meta-programação
e a criação de linguagens de domínio específico (LDE) são maneiras poderosas
de resolver problemas específicos e possibilitar a escrita de código mais curto e
elegante. O objetivo desse tutorial é mostrar como é possível desenvolver LDE
em Common Lisp de uma maneira simples e elegante, sem ter que recorrer a
mecanismos externos (como XML).

1 Introdução

1.1 Duração

O tutorial terá a duração de 3 horas, preferivelmente divididas em duas seções.

1.2 Justificativa

Em geral apenas um subconjunto de Lisp é visto em cursos de graduação, geralmente em
disciplinas de “comparativos de linguagens”. Contudo, Lisp é uma linguagem poderosa
com um suporte avançado para meta-programação e criação de linguagens de domínio
específico (LDE). Acreditamos que esse tutorial será útil a estudantes de graduação, pós-
graduação, e mesmo aqueles que não desejem programar em Lisp, já que as técnicas
mostradas podem ser utilizadas em outras linguagens.

Outro fator que justifica esse tutorial é que Lisp tem uma tradição rica
em meta-programação e LDE, contudo, artigos como [van Deursen et al. 2000] e
[Mernik et al. 2005] que deveriam supostamente ser abrangentes, nem mencionam
essa tradição, documentada em diversos lugares como [Abelson and Sussman 1987],
[Graham 1993], e [Abelson and Sussman 1996].

1.3 Esquema do tutorial

1. Introdução geral a Lisp
2. Abstração usando macros
3. Meta-programação usando macros
4. Criando linguagens de domínio específico

207



1.4 Curriculum Vitæ

Pedro Kröger é Doutor em composição pela Universidade Federal da Bahia/University
of Texas at Austin e professor adjunto da Escola de Música da UFBA. Ele participou
de diversos projetos de Software Livre como LyX, LDP-br, debian-br-cdd e LilyPond.
Seus conhecimentos de computação são aplicados principalmente no desenvolvimento de
protótipos para pesquisas acadêmicas relacionadas à música e computação. Dentre as
linguagens que utiliza estão Tcl/TK, Itcl/iwidgets, Python, e principalmente Lisp. Ele é
um dos fundadores do Grupo de Usuários Lisp do Brasil. Desde 2006 ele tem ministrado
a disciplina MAT052—“Paradigmas de Linguagens de Programação” no Departamento
de Computação da Universidade da Bahia utilizando Lisp parademonstrar os diferentes
tipos de paradigmas.

1.5 Agradecimentos

O autor agradece aos pareceristas anônimos pelos comentários, sugestões e críticas cons-
trutivas.

2 Linguagens de domínio específico

Linguagens de domínio específico são dedicadas a resolver problemas específicos de um
domínio. Elas trocam generalidade por expressividade nesse domínio [Sloane et al. 2003]
e permitem desenvolver programas mais curtos e fáceis de manter [Graham 1993]. A
literatura sobre LDE é vasta e uma análise completa dos diversos tipos, implementa-
ções e usos de LDE está fora do escopo desse documento. Contudo [Shivers 1996],
[Sloane et al. 2003], [van Deursen et al. 2000], e [Spinellis2001] devem servir como um
bom ponto de partida dentro do contexto desse tutorial.

3 Implementação de linguagens de domínio específico

Uma LDE pode ser implementada de basicamente duas maneiras;através de um com-
pilador ou interpretador, ou através da extensão de uma linguagem de propósito geral
[van Deursen et al. 2000]. A primeira é a maneira mais comum deimplementar novas
linguagens, especialmente como “pequenas linguagens” no Unix. Essa abordagem é co-
nhecida como LDE fechada [Kieburtz 2000]. Makefiles, troff,e arquivos de configu-
ração como os do sistema de janelas xorg são exemplos. A segunda maneira, a cria-
ção de “linguagens embutidas” é a mais comum na comunidade Lisp e tem a grande
vantagem de usar a linguagemhost como base, sendo desnecessário a criação de um
compilador ou interpretador do nada. Uma desvantagem dessaabordagem é que a LDE
está limitada aos mecanismos sintáticos da linguagemhost. “In many cases, the optimal
domain-specific notation has to be compromised to fit the limitations of the base lan-
guage” [van Deursen et al. 2000, p. 4]. Essa é a principal razão que acreditamos que para
criar uma LDE embutida, é fundamental utilizar uma linguagem poderosa e expressiva
como base, que permita modificações sintáticas. Na seção 6 vamos fornecer exemplos de
como isso pode ser feito com Lisp.

Apesar das vantagens e desvantagens gerais dos tipos de implementação serem
conhecidos, nem sempre é clara qual a maneira de implementação mais apropriada para
determinado domínio. Por exemplo, Make [Stallman and Mcgrath 1998] é o utilitário
clássico para construção de programas e é implementado comouma LDE fechada. Scons

208



[Knight 2004], um outro programa para construção, por outrolado, é implementado como
uma LDE embutida em Python.

4 Meta-programação

Meta-programação é a técnica de escrever programas que escrevem ou manipulam pro-
gramas. O exemplo canônico é um compilador. Em geral, meta-programação é vista
como algo complicado e que não pode ser aplicado aos problemas do “mundo real”
[Lugovsky 2004]. Contudo, usando as ferramentas corretas,meta-programação pode ser
simples a ajudar a aumentar a clareza e simplicidade do código [Graham 1993].

A prática de meta-programação se originou em Lisp, e apesar de Lisp não ser a
única linguagem programável existente, é reconhecido o fato dela representar mais for-
temente essa prática [Fowler 2005] e de uma maneira simples,elegante e integrada à
linguagem. A prática de meta-programação é muitas vezes usada em Lisp para criar lin-
guagens de domínio específico. “In Lisp, you don’t just writeyour program down toward
the language, you also build the language up toward your program.” [Graham 1993]

Abelson sumariza em [Abelson and Sussman 1987] porque Lisp étão bem adap-
tada para meta-programação e linguagens de domínio específico:

People who first learn about Lisp often want to know for what particular
programming problems Lisp is “the right language.” The truth is that Lisp
is not the right language for any particular problem. Rather, Lisp encoura-
ges one to attack a new problem by implementing new languagestailored
to that problem. Such a language might embody an alternativecompu-
tational paradigm, as in the rule language. Or it might be a collection
of procedures that implement new primitives, means of combination, and
means of abstraction embedded within Lisp, as in the Henderson drawing
language. A linguistic approach to design is an essential aspect not only
of programming but of engineering design in general. Perhaps that is why
Lisp, although the second-oldest computer language in widespread use to-
day (only FORTRAN is older), still seems new and adaptable, and conti-
nues to accommodate current ideas about programming methodolgoy.

Ou mais sucintamente, na famosa citação de Guy Steele, "If you give someone
Fortran, he has Fortran. If you give someone Lisp, he has any language he pleases."

5 Lisp

Essa seção oferecerá uma introdução geral ao Common Lisp, demodo que os leitores
possam acompanhar os exemplos do final do artigo. Naturalmente, uma visão aprofun-
dada da linguagem está fora do escopo desse documento, mas sugestões de leitura são
providas na seção 8.

5.1 Introdução

Lisp é uma linguagem de programação inventada no final dos anos 50 por John McCarthy,
um dos pioneiros em Ciência da Computação. Ele cunhou o termo“inteligência artificial”,
inventou alocação dinâmica de memória, expressões condicionais, dentre outras coisas.

209



Em geral o termo Lisp se refere a uma família de linguagens, onde os dialetos mais co-
nhecidos atualmente são Common Lisp, Scheme e Emacs Lisp. Nesse documento Lisp e
Common Lisp serão usados de maneira intercalada.

Uma série de mitos e concepções incorretas em relação a Lisp foram acumula-
dos durante os anos. O primeiro é que Lisp é uma linguagem de programação funcio-
nal, quando na verdade dialetos modernos como Common Lisp enfatizam um uso multi-
paradigma. Common Lisp permite o uso de diversos paradigmascomo funcional, proce-
dural, imperativo, aspectos, e um sistema de programação orientado a objetos poderoso
e sofisticado. O segundo mito é que Lisp é uma linguagem interpretada e lenta. Apesar
de isso ter sido verdade no passado, atualmente existem compiladores otimizados ca-
pazes de gerar código nativo com velocidade comparável a linguagens como C e C++
[Verna 2006b, Verna 2006a, Svingen 2006]. Common Lisp usa tipagem dinâmica mas
permite a declaração de tipos, permitindo o compilador gerar código mais rápido.

5.2 Notação pré-fixa

Lisp é baseado em expressões delimitadas por parênteses (chamadas de expressões sim-
bólicas, ousexp) e todas as expressões retornam um valor. Além disso Lisp usaa notação
pré-fixa, garantindo que as expressões serão escritas de umamaneira não-ambígua. Por
exemplo, a expressão2 * 3 + 4 - 3 pode ter 7 ou 8 como resultado, dependendo de
quais elementos são calculados primeiro (exemplo 5.1). Poroutro lado, qualquer ambi-
guidade é removida com o uso da notação pré-fixa (ex. 5.2).

Exemplo 5.1Expressões com notação infixa

(2 * 3) + (4 - 3) => 6 + 1 => 7

2 * ((3 + 4) - 3) => 2 * (7 - 3) => 2 * 4 => 8

Exemplo 5.2Expressões com notação pré-fixa

(+ (* 3 2)

(- 4 3)) => 7

(* 2

(- (+ 3 4)

3)) => 8

5.3 Aplicação de funções

Em Lisp cada expressão é composta por uma lista onde o primeiro elemento é umopera-
dor que é aplicado a um ou maisoperandos(ex. 5.3). Uma das vantagens dessa notação
é que as funções primitivas e funções definidas pelo usuário tem a mesma sintaxe. E, de
fato, todas as funções no exemplo 5.3 poderiam ter sido definidas pelo usuário, inclusive
+.

210



Exemplo 5.3Aplicação de funções

(+ 1 3 4)

(raiz-quadrada 25)

(show-gui)

5.4 Formas especiais

Common Lisp usa avaliação estrita, ou seja, os operandos sãocomputados antes de serem
passados para o operador. Desse modo, seif fosse definido como uma função todos os
termos da expressão(if (= x 0) (foo) (bar)) seriam computados, mas queremos que
as funçõesfoo ebar só sejam executadas dependendo do valor dex.

Formas especiais são expressões que não seguem as regras normais de avaliação.
Elas seguem as regras da forma especial específica. Os termosnão são computados antes
de serem passados para a forma especial, entãoif pode ser implementado como uma
forma especial.

5.5 Macros

Uma das coisas que diferencia Lisp das demais linguagens é que podemos definir nossas
próprias formas especiais usando macros. Apesar de terem o mesmo nome, macros em
Lisp tem pouca ou nenhuma semelhança com macros em C. Macros em C fazem subs-
tituições de caracteres enquanto macros em Lisp operam em expressões. Por exemplo,
uma expressão condicional para fazer alguma coisa quando o valor da condição não for
verdadeiro pode ser descrita em termos deif enot (ex. 5.4).

Exemplo 5.4Expressão condicional

(if (not <condição>)

<corpo>)

Esse padrão pode ser abstraido com o comandounless. Casounless não fosse
definido em Lisp, poderia ser facilmente implementado com uma macro (ex. 5.5). Tendo
definidounless, ele pode ser usada como se tivesse sido definido como um elemento pri-
mitivo da linguagem como na expressão(unless (= x 0) (foo)). Como observamos
anteriormente, não há diferença aparente seunless foi implementado pelo usuário ou
como elemento primitivo. O significado de‘ e, no exemplo 5.5 será visto na seção 5.7.

Exemplo 5.5Implementando unless como uma macro

(defmacro unless (condicao corpo)

‘(if (not ,condicao)

,corpo))

5.6 Código como dado

Um dos recursos que distingue Lisp de outras linguagens é a capacidade de tratar código
como dado e vice-versa de uma maneira uniforme. O primeiro elemento de uma expressão

211



entre parênteses é tratado como uma função ou forma especiala menos que algo impeça a
avaliação da expressão. O operador especialquote impede a avaliação de uma expressão
e retorna ela literalmente. Por exemplo,(quote (2 + 3)) retorna(2 + 3), enquanto a
expressão semquote, (2 + 3), retorna um erro, já que 2 não é uma função. Geralmente
se usaquote em sua forma abreviada, com um apostrofo antes da expressão,como’(2 +

3).

Expressões comquote podem ser usadas para a computação simbólica com a qual
Lisp é normalmente associado. O exemplo 5.6 mostra alguns exemplos simples, onde o
resultado da expressão é mostrado depois do símbolo=>. No primeiro exemplo duas
listas são concatenadas. No exemplos seguintes, o primeiroe terceiro elementos da lista
são retornados, respectivamente.

Exemplo 5.6Computação simbólica

(append ’(Maria da Silva) ’(Santos de Oliveira))

=> (MARIA DA SILVA SANTOS DE OLIVEIRA)

(first ’(MARIA DA SILVA SANTOS DE OLIVEIRA))

=> MARIA

(third ’(MARIA DA SILVA SANTOS DE OLIVEIRA))

=> SILVA

Um exemplo um pouco mais sofisticado, contudo ainda simples,pode ser visto
no exemplo 5.7. A funçãoinfixo é definida para aceitar uma expressão infixa na forma
(infixo ’(2 + 3)) e retornar o resultado dessa expressão. O operador especialfuncall

aplica uma função an argumentos. Na funçãoinfixo, a função quefuncall irá aplicar é
o segundo elemento da lista, e os operandos são o primeiro e terceiro elementos da lista,
respectivamente. É interessante observar queinfixo é genérica o suficiente para permitir
expressões como(infixo ’(2 * 3)) ou(infixo ’(7 - 3)).

Exemplo 5.7Função simples para expressão infixa

(defun infixo (expressao)

(funcall (second expressao) (first expressao) (third expressao)))

5.7 Mais sobre macros

Macros em Lisp são funções que aceitam expressões simbólicas arbitrárias e as transfor-
mam em código Lisp executável. Por exemplo, suponhamos que queremos ter um co-
mando que atribui o mesmo valor a duas variáveis, como(set2 x y (+ z 3)). Quando
z for 2 o valor dex e y deverá ser 5. Naturalmente não podemos implementar isso como
uma função, já que os valores dex e y seriam computados antes de serem passados para
a função, e ela não teria nenhum conhecimento de que variáveis devem ser atribuídas. Na
verdade, queremos que quando Lisp veja a expressão(set2 v1 v2 e) ele a trate como
equivalente a(progn (setq v1 e) (setq v2 e)). Uma macro em Lisp nos permite fa-
zer exatamente isso, transformar o padrão de entrada de(set2 v1 v2 e) para(progn

212



(setq v1 e) (setq v2 e)). A implementação deset2 pode ser vista no exemplo 5.8.
Uma macro não computa nenhum valor, ela apenas transforma uma expressão em algo
que pode ser entendido pelo compilador. No exemplo 5.8 a macro está literalmente cons-
truindo listas que para formar a expressão desejada.

Exemplo 5.8Uma macro simples

(defmacro set2 (v1 v2 e)

(list ’progn (list ’setq v1 e) (list ’setq v2 e)))

Contudo, é fácil ver que o uso explícito delist dificulta a escrita e leitura de
expressões complexas. Geralmente se usa o recurso debackquote, que indica que na
expressão que segue, cada sub-expressão precedida por uma vírgula deve ser computada,
enquanto cada sub-expressão sem a vírgula deve ser retornada sem avaliação (i.e. como
com quote). Uma nova implementação deset2 usandobackquotepode ser vista no
exemplo 5.9. O uso debackquotepermite uma visualização muito mais clara da expressão
resultante pela macro.

Exemplo 5.9A macro simples combackquote

(defmacro set2 (v1 v2 e)

‘(progn (setq ,v1 ,e) (setq ,v2 ,e)))

5.8 Programação orientada a objetos

Em Common Lisp classes são definidas comdefclass e métodos comdefmethod. Uma
diferença em relação a maioria das linguagens de programação orientada a objetos é que
os métodos não pertencem a uma classe específica. O exemplo 5.10 mostra a implementa-
ção da função genéricasoma, que especializa em diferentes tipos de objetos como cadeia
de caracteres, listas, e vetores. Uma visão mais aprofundada do sistema de objetos do
Common Lisp pode ser vista em [Seibel 2004].

6 Exemplos de Meta-programação em Lisp

6.1 Notação pós-fixa

Conforme visto Lisp permite a criação de novas formas especiais que permitem mudar
o sentido da sintaxe. Por exemplo, como modificar a sintaxe dalinguagem para usar a
notação posfixa? Uma solução para diversas linguagens de programação seria definir a
expressão como uma cadeia de caracteres e fazer uma função para parsear-la, que seria
usada comole_dados("3 4 5 +").

Em Lisp podemos definir uma macro com duas linhas (ex. 6.1). Emambos exem-
plos uma espécie de extensão do compilador teve que ser criada. Em outras linguagens um
parsertem que ser criado pelo próprio programador e não tem (necessariamente) conexão
com a linguagem. Por outro lado, Lisp provê meios de estendera linguagem.

Apesar de curta, a macropostfix permite que expressões posfixas sejam aninha-
das, como(postfix (2 (postfix (3 4 *)) +)). Contudo, o resultado é deselegante e

213



Exemplo 5.10Exemplo de métodos com diferentes despachos

(defmethod soma ((a string) (b string))

(concatenate ’string a b))

(defmethod soma ((L1 list) (L2 list))

(append L1 L2))

(defmethod soma ((L1 list) (S1 string))

(soma (apply #’concatenate ’string (mapcar #’princ-to-string L1))

S1))

(defmethod soma ((x vector) (y vector))

(concatenate ’vector x y))

(defmethod soma (X Y)

(error (format nil "tipo de dado ~a não definido nessa função" (type-of X))))

Exemplo 6.1Notação posfixa

(defmacro postfix (expr)

(reverse expr))

(postfix (2 3 4 +))

prolixo. Seria mais interessante se pudessemos escrever algo como[2 3 5 +] e o sistema
reconhecesse automaticamente que se trata de uma expressãopostfixa. Naturalmente, isso
é fácil em Lisp. Tudo que precisamos é definir que uma expressão delimitada por colche-
tes corresponde à uma chamada depostfix (ex. 6.2). Esse tipo de macro é conhecido
como macro de leitura (reader macros). Desse modo podemos escrever expressões como
[10 30 40 +], [30 50 14.3 *], e [2 [4 9 -] *], como se esse recurso estivesse dis-
ponível na linguagem desde o começo.

Exemplo 6.2Definindo macros de leitura

(defun open-bracket (stream char)

‘(postfix ,(read-delimited-list #\] stream t)))

(set-macro-character #\[ #’open-bracket)

(set-macro-character #\] (get-macro-character #\)))

Algumas explicações para auxiliar no entendimento do código no exemplo 6.2: os
caracteres em Lisp são precedidos por#\, então “a” é representado por#\a, “b” por #\b
e abre colchete por#\[. A notação#’ é uma abreviação da forma especialfunction, de
modo que#’open-bracket e(function open-bracket) são equivalentes. A forma espe-
cial (function <nome>) retorna a função associada com o nome<name>. No exemplo 6.2
a funçãoopen-bracket está sendo passada como parâmetro paraset-macro-character.

214



Sem o#’ open-bracket seria uma variável.

6.2 Compreensão de listas

Em Haskell o algoritmo para oquick sortpode ser expressado de maneira simples e ele-
gante, com 5 linhas, (ex. 6.3) enquanto em Lisp temos uma implementação mais prolixa,
ainda que elegante, com 11 linhas, (ex. 6.4). (Veja o apêndice A para mais exemplos de
quicksortem Lisp).

Exemplo 6.3Quicksort em Haskell

qsort [] = []

qsort (x:xs) = qsort elts_lt_x ++ [x] ++ qsort elts_greq_x

where

elts_lt_x = [y | y < - xs, y < x]

elts_greq_x = [y | y <- xs, y >= x]

Exemplo 6.4Quicksort em Lisp

(defun qsort (lst)

(labels ((partition (left right acc)

(if (null acc)

(append (qsort left)

(cons (car lst) (qsort right)))

(if (<= (first acc) (first lst))

(partition (cons (first acc) left) right (rest acc))

(partition left (cons (first acc) right) (rest acc))))))

(if (null (rest lst))

lst

(partition nil nil (rest lst)))))

A versão em Haskell é concisa porque usa uma abstração apropriada (compreen-
são de lista). Algumas linguagens como Haskell, Python, e Miranda tem compreensão
de lista embutida da linguagem, o que não é o caso de Common Lisp. Em Miranda
a compreensão de listas pode ser escrita como[x | x <- xs ; odd x]. No seguinte
exemplo vamos implementar compreensão de listas em Lisp de modo a poder usar direta-
mente em Lisp uma notação como[x (x <- xs) (oddp x)]. É importante observar que
essa sintaxe é bem diferente da sintaxe normal de Lisp, mas ainda assim pode ser imple-
mentada facilmente usando macros, enquanto que para implementar um recurso sintático
como esse em outras linguagens o compilador teria que ser modificado. Em Lisp, um
recurso sintático maior como esse pode ser implementado em menos de 30 linhas de có-
digo, como demonstrado em [Lapalme 1991]. O código completopara a implementação
de compreensão de listas pode ser visto no exemplo 6.5. Apesar de uma análise com-
pleta da implementação estar fora do escopo desse documento, é fácil ver que a mesma
técnica geral usada para a implementação da sintaxe posfixa 6.2 é usada aqui. A fun-
ção set-macro-character associa os caracteres “[” e “]” às funçõesopen-bracket e
closing-bracket, respectivamente. A maior parte do trabalho é efetuado pelamacro de
17 linhascomp.

215



Exemplo 6.5Compreensão de listas em Lisp

(defun open-bracket (stream ch)

(defmacro comp ((e &rest qs) l2)

(if (null qs) ‘(cons ,e ,l2)

(let ((q1 (car qs))

(q (cdr qs)))

(if (not (eq (cadr q1) ‘<-))

‘(if ,q1 (comp (,e ,@q),l2) ,l2)

(let ((v (car q1))

(l1 (third q1))

(h (gentemp "H-"))

(us (gentemp "US-"))

(us1 (gentemp "US1-")))

‘(labels ((,h (,us)

(if (null ,us) ,l2

(let ((,v (car ,us))

(,us1 (cdr ,us)))

(comp (,e ,@q) (,h ,us1))))))

(,h ,l1)))))))

(do ((l nil)

(c (read stream t nil t)(read stream t nil t)))

((eq c ‘|]|) ‘(comp ,(reverse l) ()))

(push c l)))

(defun closing-bracket (stream ch) ‘|]|)

(eval-when (compile load eval)

(set-macro-character #\[ #’open-bracket)

(set-macro-character #\] #’closing-bracket))

216



Tendo implementado compreensão de listas o algoritmo para oquick sortpode
ser expressado de uma maneira bem semelhante a Haskell, comovisto no exemplo 6.6.
O ponto principal desse exemplo é que uma abstração diferente pode ser implementada
em Lisp como se fizesse parte da linguagem. E porque ela captura a idéia básica da
abstração, serve não apenas para um caso particular, mas para diferentes fins onde essa
abstração pode ser empregada.

Exemplo 6.6Quicksortusando compreensão de listas

(defun qsort (ax)

(and ax (let ((a (car ax))

(x (cdr ax)))

(append (qsort [y (y <- x) (< y a)])

(list a)

(qsort [y (y <- x) (>= y a)])))))

7 Implementando linguagens de domínio específico

7.1 Uma linguagem para gerar documentos

Nessa seção vamos criar uma linguagem de domínio especifico para gerar HTML. Ou
seja, poder escrever algo como no exemplo 7.1 ter o código HTML gerado automatica-
mente. É importante salientar que os exemplos dessa seção são meramente demonstrati-
vos. Uma implementação real usaria técnicas diferentes.

Exemplo 7.1LDE para gerar HTML

(html

(h1 "Título do Artigo")

(h2 "Autor")

(p "Primeiro parágrafo e um " (b "negrito")))

A maneira mais simples para implementar essa LDE é através douso funções,
onde criamos uma função para cada marcação HTML (ex. 7.2). Desse modo a LDE no
ex. 7.1 gera o código HTML no ex. 7.3.

O problema com o exemplo 7.2 é que todas as funções são praticamente iguais.
Em geral, repetição de código é um convite à refatoração. Umapossível solução é capturar
a abstração básica em uma função (ex. 7.4). Dessa maneira podemos não apenas substituir
todas as funções que foram definidas no exemplo 7.2 por uma única função, como ela
permite que qualquer marcador seja usado.

Conceitualmente o exemplo 7.4 é melhor e mais coeso, mas parausá-lo teríamos
que escrever o documento usando o nome da função antes de cadachamada (ex. 7.5).
Isso remove a idéia básica de usar uma linguagem de domínio específico, além de seu uso
ser menos ortogonal, limpo e claro que originalmente pretendido em 7.1.

Nós precisamos de uma maneira de capturar a abstração básica(como em 7.4)
e manter a facilidade de escrever o código (como em 7.1). Paraisso podemos criar as

217



Exemplo 7.2Funções para gerar HTML

(defun html (&rest text)

(format nil "<html>~{~a~}</html>~%" text))

(defun h1 (&rest text)

(format nil "<h1>~{~a~}</h1>~%" text))

(defun h2 (&rest text)

(format nil "<h2>~{~a~}</h2>~%" text))

(defun p (&rest text)

(format nil "<p>~{~a~}</p>~%" text))

(defun b (&rest text)

(format nil "<b>~{~a~}</b>" text))

(defun i (&rest text)

(format nil "<i>~{~a~}</i>" text))

Exemplo 7.3HTML gerado

<html>

<h1>Título do Artigo</h1>

<h2>Autor</h2>

<p>Primeiro parágrafo e um <b>negrito</b></p>

</html>

Exemplo 7.4Função para gerar marcações HTML

(defun tag (tag &rest text)

(format nil "<~a>~{~a~}</~a>~%" tag text tag))

Exemplo 7.5Uso da função tag

(tag ’html

(tag ’h1 "Título do Artigo")

(tag ’h2 "Autor")

(tag ’p "Primeiro parágrafo e um"

(tag ’b (tag ’i "negrito itálico"))))

218



funções do exemplo 7.2 automaticamente usando macros. A macro make-tag cria uma
função cujo nome é o valor do argumento formal da macro (ex. 7.6). Por exemplo, a
expressão(make-tag html) vai gerar a função vista no exemplo 7.7.

Exemplo 7.6Macro para criar funções

(defmacro make-tag (name)

‘(defun ,name (&rest text)

(format nil "<~a>~{~a~}</~a>~%" ’,name text ’,name)))

Exemplo 7.7Função gerada pela macro

(defun html (&rest text)

(format nil "<~a>~{~a~}</~a>~%" ’html text ’html))

As funções de marcação podem ser criadas com código como(make-tag html),
(make-tag h1), e assim por diante para cada marcação. Claro que é mais fácilcriar
uma função para fazer isso automaticamente a partir de uma lista (ex. 7.8). Tendo isso
as marcações podem ser definidas com algo como(make-all ’(html h1 h2 h3 h4 p i

em)).

Exemplo 7.8Função para criar diversas marcações

(defun make-all (lst)

(dolist (f lst)

(eval ‘(make-tag ,f))))

Desse modo temos um código que é mais genérico que os anteriores e mais ex-
tensível. E podemos não apenas escrever html na forma proposta no exemplo 7.1 como
estender o exemplo para criar uma LDE apropriada para descrever documentos (ex. 7.9).

Com uma pequena alteração emmake-tag podemos especificar que a marca-
ção html pode ser diferente do nome da marcação usada (ex. 7.10). Então(make-tag
html) vai gerar a funçãohtml que gera a marcação HTMLhtml como antes, enquanto
(make-tag documento html) vai gerar a funçãodocumento mas que gera a marcação
HTML html.

Finalmente, precisamos alterarmake-all para quando as marcações estiverem
dentro de uma lista como(documento html), o primeiro elemento será o nome da marca-
ção do documento e o segundo a marcação HTML que deverá ser gerada (ex 7.11). Com
a nova versão demake-all podemos definir marcações como visto no exemplo 7.12.

Resumindo, em menos de 15 linhas definimos código suficiente para criar uma
linguagem de domínio específico extensível para gerar documentos. Um exemplo de
utilização dessa linguagem pode ser vista no exemplo 7.13.

7.2 Uma linguagem de domínio específico

Nessa seção vamos demonstrar uma solução usando Lisp para a LDE proposta em
[Fowler 2005]. Nesse artigo ele usa XML e C# para criar uma LDE. Rainer Joswig de-

219



Exemplo 7.9LDE para documentos

(documento

(titulo "Título do Artigo")

(autor "Autor")

(p "Primeiro parágrafo e um" (b (i "negrito itálico"))))

Exemplo 7.10Modificação em make-tag

(defmacro make-tag (tag-name &optional html-tag)

(let ((name (if html-tag html-tag tag-name)))

‘(defun ,tag-name (&rest text)

(format nil "<~a>~{~a~}</~a>~%" ’,name text ’,name))))

Exemplo 7.11Modificação em make-all

(defun make-all (lst)

(dolist (f lst)

(print f)

(eval ‘(make-tag ,@(if (listp f)

f

(list f))))))

Exemplo 7.12Nova definição de marcações

(make-all ’(html h1 h2 h3 h4 b p i em

(documento html) (titulo h1) (autor h2) (secao p)))

Exemplo 7.13Exemplo de uso da LDE

(documento

(titulo "Meu Artigo")

(autor "Pedro Kröger")

(secao "Bla bla bla" (b "foo") (i "bar")))

220



monstrou em [Joswig 2005] que uma versão em Lisp é incrivelmente mais simples, curta
e fácil de entender. É essa versão que demonstraremos nessa seção.

No exemplo proposto por Fowler é necessário criar objetos e classes a partir de
dados de entrada, onde cada linha se relaciona a uma classe diferente. Um exemplo de
entrada de dados pode ser visto abaixo no exemplo 7.14. Os pontos representam dados que
não interessam ao exemplo. A primeira linha indica a posiçãoonde se espera encontrar
o tipo de dados. SVCL indica uma chamada de serviço, USGE um registro de uso. Os
caracteres em seguida representam os dados para o objeto, demodo que os caracteres da
posição 4 a 18 em uma chamada de serviço indicam o nome do cliente.

Exemplo 7.14Entrada de dados

#123456789012345678901234567890123456789012345678901234567890

SVCLFOWLER 10101MS0120050313.........................

SVCLHOHPE 10201DX0320050315........................

SVCLTWO x10301MRP220050329.........................

USGE10301TWO x50214..7050329........................

Fowler sugere usar uma LDE para mapear que posições estão relacionadas aos
campos e em que classes (ex. 7.15). Além dessa sintaxe, ele sugere outro exemplo de
LDE definida em XML. No exemplo 7.16 nós definimos uma sintaxe “lispficada” da LDE
proposta por Fowler.

Exemplo 7.15LDE para mapear posições

mapping SVCL dsl.ServiceCall

4-18: CustomerName

19-23: CustomerID

24-27: CallTypeCode

28-35: DateOfCallString

mapping USGE dsl.Usage

4-8: CustomerID

9-22: CustomerName

30-30: Cycle

31-36: ReadDate

Nós vamos implementardefmapping como macros. Isso significa quedefmapping
vai criar as classesservice-call eusage de acordo com os mapeamentosSVCL eUSGE. É
interessante observar que enquanto a versão de Fowler tem 70linhas, a versão de Joswig
tem apenas 12 linhas! A definição dedefmapping pode ser vista no exemplo 7.17. A ma-
crodefmapping é simples no sentido de que ela “apenas” gera uma classe, cujonome cor-
responde ao primeiro parâmetro da macro, e dois métodos,find-mapping-class-name e
parse-line-for-class. O métodoparse-line-for-class é especializado para a classe
definida emname, ou seja,service-call eusage.

O exemplo 7.18 demonstra um exemplo de uso. Os métodos
parse-line-for-class efind-mapping-class-name são usados para cada classe.

221



Exemplo 7.16LDE em Lisp

(defmapping service-call "SVCL"

(04 18 customer-name)

(19 23 customer-id)

(24 27 call-type-code)

(28 35 date-of-call-string))

(defmapping usage "USGE"

(04 08 customer-id)

(09 22 customer-name)

(30 30 cycle)

(31 36 read-date))

Exemplo 7.17Definição de defmapping

(defmacro defmapping (name mapping &body fields)

‘(progn

(defclass ,name ()

,(loop for (nil nil slot) in fields collect slot))

(defmethod find-mapping-class-name ((mapping (eql ’,(intern mapping))))

’,name)

(defmethod parse-line-for-class (line (class-name (eql ’,name)))

(let ((object (make-instance class-name)))

(loop for (start end slot) in ’,fields

do (setf (slot-value object slot)

(subseq line start (1+ end))))

object))))

Exemplo 7.18Exemplo de uso para a LDE

(defparameter *test-lines*

"SVCLFOWLER 10101MS0120050313.........................

SVCLHOHPE 10201DX0320050315........................

SVCLTWO x10301MRP220050329..............................

USGE10301TWO x50214..7050329...............................")

(with-input-from-string (stream *test-lines*)

(loop for line = (read-line stream nil nil)

while line

collect (parse-line-for-class line (find-mapping-class-name

(intern (subseq line 0 4)))))))

222



8 Conclusão e discussão

Nesse tutorial ilustramos o poder de expressão e elegância da meta-programação em Lisp
e o seu uso na criação de linguagens de domínio específico. Também ilustramos como
Lisp torna esse tipo de técnica simples através do uso de macros.

Achar exemplos adequados e didáticos é um dos problemas em sedemonstrar re-
cursos como macros. Por exemplo, em algumas linguagens com avaliação preguiçosa
como Haskell, é desnecessário o uso de macro para definir coisas como expressões condi-
cionais comoif. Desse modo os usuários dessas linguagens podem, baseado nos exem-
plos simples, achar que um recurso como macro é desnecessário na sua linguagem. Natu-
ralmente, é fora do escopo desse documento tratar de casos avançados de macros, meta-
programação e LDE. Para um tratamento mais avançado do assunto, ver [Graham 1993]
e [Norvig 1992]. [Seibel 2004] é um excelente livro direcionado para programadores ex-
perientes que mostra recursos modernos de Common Lisp de umamaneira prática.

Alguns itens e problemas relacionados a macros como capturade variáveis, ma-
cros higiênicas, e distinção de tempo de expansão de macros etempo de execução estão
fora do escopo desse documento, contudo a literatura pode ser consultada sobre esses
assuntos.

223



A Quicksort em Lisp

A seção 6.2 demonstrou o uso de macros para implementar compreensão de listas em
Lisp. É importante observar que na verdade Lisp tem uma formade compreensão de lista
na macroloop. Uma implementação doquicksortusandoloop pode ser vista no exemplo
A.1.

Exemplo A.1Quicksort usando loop

(defun qsort (lst)

(when lst

(let* ((x (car lst))

(xs (cdr lst))

(lt (loop for y in xs when (< y x) collect y))

(gte (loop for y in xs when (>= y x) collect y)))

(append (qsort lt) (list x) (qsort gte)))))

Uma outra maneira de implementarquicksortem Lisp é através do uso de filtros
comoremove-if (ex. A.2). Essa versão é particularmente elegante, apesar de não ser a
mais rápida.

Exemplo A.2Quicksort usando remove-if

(defun qsort (ax)

(and ax

(let ((a (car ax)) (x (cdr ax)))

(append (qsort (remove-if #’(lambda (y) (< a y)) x))

(list a)

(qsort (remove-if #’(lambda (y) (>= a y)) x))))))

224



Referências

Abelson, H. and Sussman, G. J. (1987). Lisp: A language for stratified design. Technical
Report AI Lab Memo AIM-986, MIT AI Lab.

Abelson, H. and Sussman, G. J. (1996).Structure and Interpretation of Computer Pro-
grams. The MIT Press.

Fowler, M. (2005). Language workbenches: The killer-app for domain specific langua-
ges? Disponível emwww.martinfowler.com/articles/languageWorkbench.html.

Graham, P. (1993).On Lisp: Advanced Techniques for Common Lisp. Prentice Hall.

Joswig, R. (2005). Martin fowler talks about lisp. Disponível emgroups.google.com/

group/comp.lang.Lisp/msg/4fe888b58ffa83b8?hl=en.

Kieburtz, R. B. (2000). Implementing closed domain-specific languages. InSAIG ’00:
Proceedings of the International Workshop on Semantics, Applications, and Implemen-
tation of Program Generation, pages 1–2, London, UK. Springer-Verlag.

Knight, S. (2004). Scons user guide. Disponível emwww.scons.org.

Lapalme, G. (1991). Implementation of a “lisp comprehension” macro. SIGPLAN Lisp
Pointers, IV(2):16–23.

Lugovsky, V. S. (2004). Using a hierarchy of domain specific languages in complex
software systems design.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop domain-
specific languages.ACM Comput. Surv., 37(4):316–344.

Norvig, P. (1992). Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Seibel, P. (2004).Practical Common Lisp. Apress.

Shivers, O. (1996). A universal scripting framework or lambda: The ultimate ’little lan-
guage’. InAsian Computing Science Conference, pages 254–265.

Sloane, T., Mernik, M., and Heering, J. (2003). When and how to develop domain-specific
languages.

Spinellis, D. (2001). Notable design patterns for domain specific languages.Journal of
Systems and Software, 56(1):91–99.

Stallman, R. M. and Mcgrath, R. (1998).GNU make: a program for directing recompila-
tion. Free Software Foundation, Boston, MA.

Svingen, B. (2006). When lisp is faster than c. InGECCO ’06: Proceedings of the
8th annual conference on Genetic and evolutionary computation, pages 957–958, New
York, NY, USA. ACM Press.

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages: An annota-
ted bibliography.SIGPLAN Notices, 35(6):26–36.

Verna, D. (2006a). Beating C in scientific computing applications. InThird European
Lisp Workshop, Nantes, France.

Verna, D. (2006b). How to make Lisp go faster than C. Hong Kong.

225



226


	Inicio
	Ficha Catalográfica
	Foreword
	Prefácio
	Comitê de Programa
	Revisores
	SBC
	Index - Sumário
	Palestra Convidada - Paulo Borba
	Palestra Convidada - Giuseppe Castagna
	CML: The C ...
	Constraint...
	Logic...
	A Methodology...
	Optimized...
	A Visual...
	Improving...
	Programming...
	A New...
	Cyclic...
	C APIs...
	Higher-Order...
	Open...
	Using...
	Uma Linguagem...
	Programação...



