
A Literate Logic Programming System

Pierre Deransart �

Roberto da Silva Bigonha
Patrick Parot �

Mariza Andrade da Silva Bigonha
Jos�e de Siqueira

Universidade Federal de Minas Gerais
Departamento de Ci�encia da Computa�c�ao

Abstract

The purpose of this paper is to present an experimental hypertext programming environ�
ment for PROLOG based dialects and its application to some logic program development
according to a logic programming methodology� The genericity of the tool makes it easily
adaptable to other logic programming languages and to other applications in the �eld of
logic programs development� in particular to handle logic programs with constraints� We
propose a tool which permits to record all the experiences accumulated during the life cycle
of a software�

� The Software Documentation Problem

Software documentation is a perennial problem and a very important issue which still
deserves research e�orts� Almost all software systems evolve along their lifetime and thus
require continuous maintenance� which is usually expensive and di�cult to accomplish
because most systems are poorly documented� Indeed� software documentation is often
noexistent� incomplete or out�of�date�

Information contents of software documentation are naturally redundant� since the
main purpose of any documented software is to provide at least two alternative views of
the same material� the program view for the machine and the text view in a literate style
for human consumption� It is also a fact that program documentation tends to become
a large collection �les� which is prone to discourage programmers to keep the text part
of the documentation up to date to the corresponding software� A good documentation
system should then provide way to check automatically inconsistency of this kind� perhaps
by creating strong ties between the documentation and its related pieces of programs� The
consistency between descriptive texts and the corresponding program code clauses should
be always enforced somehow�

Additionally� modern program documentation must be computer processable and com�
pilable� so errors in coding can be detected earlier in the design process� All error messages�

�Institut National de Recherche en Informatique et en Automatique�France
�Service de Cooperation �CSN� France



including those produced by compilers� must refer to the original document �les� so that
programmers should be encourage to do debugging or testing only on the original document
�les�

Documentation of software must also be organized in a way to provide di�erent levels
of abstraction of the documented software in order to help the understanding of large
systems�

� Characteristics of Logic Programming

Logic Programming is issued from researches in Arti�cial Intelligence and Logics� Software
engineering tradition has been of relatively few in�uence on discovery and design of pro�
gramming languages and adapted environments based on the new logical paradigms� Furt�
hermore the axiomatic form of programming in logic makes programs similar to speci�
�cations and therefore more attention has been given to their use in rapid prototyping
rather than their use in very large applications� Logic program documentation and ve�
ri�cation have thus received relatively little attention� In contrast implementations have
been considerably improved and new logic programming languages compete favourably
with commonly used imperative languages� Although a language like Prolog has reached
an industrial maturity 	there exists now an ISO standard 
�� ��� it is not as extensively
used as it could be� People realise now that the lack of well adapted development tools is
one of the reasons for its painful growing�

On the other side� the positive qualities of logic programming 	highly declarative lan�
guage� versatility� natural modularity� robustness� recommend various industrial applica�
tion 	see 
� for a survey�� also limited by the lack of good development tools� Nowaday
the need for such tools is well recognised� Classical tools� developed for imperative or
functional programming� cannot be directly re�used� The peculiarities of logic program�
ming demand for well adapted tools which take into account the high level and declarative
aspects of the language�

With Constraint Logic Programming 	CLP� the situation is even more accurate� CLP
programs are relatively short pieces of code� but often constitute the sensible kernel of
an application� Due to their high level of expressiveness they are closer to a speci�cation
rather than to a traditional program� Furthermore� due to commitment to e�ciency of
implementations� the same CLP program is maintained along the whole life cycle of the
application� from its conception until its �nal uses and further improvements or updating�
This has an important consequence� there must be some way to mantain also the whole
documentation concerning the program of an application� during its whole life�

� Logic Programming Tools

Logic Program development has been considered by di�erent authors from di�erent point
of views� Most of them consider program development as a transformation process from
a speci�cation to an e�cient Prolog program� Deville 
� starts from �rst order logical
formulas and �mode� declarations� More generally a mode declarations can be viewed as
type declarations� His ideas have been experimented in the FOLON system 
�� The system



imposes a strict disciplin in logic program development and performs automatically some
optimising transformations� Leon Sterling 	Case Western Research University� Ohio� USA�
and Jan Komorowski 	University of Trondheim� Norway� developed pure logic program
transformation systems to progressively 	and semi automatically� specialize programs by
applying transformation rules� A complete survey on logic program transformation can be
found in 
���

Most of the systems intend to help the programmer in developing correct programs�
or verifying afterwards that the program satis�es some properties� In logic programming
di�erent kind of proof systems have been designed� In 
�� one of these system is described�
In 
� a systematic approach of logic program validation is presented� Some of the ideas have
been implemented in the system LDS� described in 
�� and used to de�ne a methodology
for writing speci�cations in logic programing style 
�� ��

� Other Systems for Documentation

At the current state�of�the�art� there are no satisfactory tools or widely accepted methodo�
logies for documenting PROLOG programs� The Knuth�s Literate Programming philosophy
for documenting Pascal or C programs 
��� ��� ��� �� apparentlty o�ers the basis to esta�
blishing a methodology to document programs in the logic programming paradigm� but it
seems not su�cient as we shall see�

In the context of Web�like literate programming systems developed since ����� the
following are the most important documentation systems� �� Knuth�s Web for Pascal and
C 
��� ��� ��� �� Ramsey�s Noweb 
��� ��� ��� �� Thimbleby�s Cweb 
��� a variant of
Knuth�s Web� �� Ramsey�s Spider 
�� which is a Web generator�

The basic idea behind Literate Programming is that programmers should use three
languages� a typesetting language� such as LaTEX 
��� a programming language� such as
Pascal� and a language which allows �exible combination of the typesetting and the pro�
gramming texts into a single document� Thus� a literate program contains pieces of pro�
grams interleaved with descriptive texts� A literate programming system integrates these
languages by providing tools to extract 	and process�� from the input �les� program texts
and to generate documents containing summaries� index tables� cross�references� etc� The
result is called a �literate programming� because the �nal document is not only readable�
but may� according to Knuth 
�� actually be appreciated as literature work�

Donald Knuth introduced literate programming in the form of Web� his tool for writing
literate Pascal programs 
��� Since then many other systems have been designed in order
to satisfy particular styles of literate programming� In the mid����s� Web was adapted
to programming languages other than Pascal� including C� Modula��� Fortran� Ada� and
others 
��� ���

Cweb 
�� is a tool to produce program documentation in a combination of C� the
programming language� and tro�� a text�formating language� The combined code and do�
cumentation can be processed and possibly typeset to result in a high�quality presentation
including a table of contents� index� cross�referencing information� and related typographi�
cal conventions� Cweb di�ers from Knuth�s Web system mainly in the choice of languages�
Web is based on Pascal and TEX instead of C and tro� 	or nro���



Spider
�� was designed for developing veri�ed Ada programs� The di�culty of using
Web directly is that the intended target programming language is SSL 	language for spe�

cifying structured editors�� and the only languages for which Web implementations were
available were Pascal and C� Spider is a Web generator� akin to parser generators� Using
Spider the user can build a Web without understanding the details of web�s implementa�

tion� and can easily adjust that Web to change as a language de�nition changes�
Recently� Norman Ramsey has proposed a new literate programming system� called

Noweb 
��� ��� ��� which is intended to be a simple and extensible tool� It was developed
on Unix and can be ported to non�Unix systems provided that they can simulate pipelines
and support both ANSI�C and either awk or icon� Noweb can also work with HTML� the
hypertext markup language for Netscape and the World�Wide Web�

A Noweb �le is a sequence of chunks� A chunk may contain code or documentation
and may appear in any order� Code chunks contain program source code and references
to other code chunks� Several code chunks may have the same name� Noweb tools are
implemented as pipelines� Each pipeline begins with the Noweb source �le� Successive
stages of the pipeline implement simple transformations of the source until the desired
results appears from the end of the pipeline� Users change or extend Noweb inserting or
removing pipelines stages rather than recompiling it�

Ramsey claims that Noweb is simpler than Knuth�s Web due to its independence
of the target programming language� but it also means that Noweb can do less� The
system is extensible in the sense that new tools can be easily added to it� requiring no
reprogramming� Its Weave tool preserves white spaces and program indentation when
expanding chunks� Theses features are necessary to document program in languages like
Miranda and Haskell� in which indentation is signi�cant� In Noweb one can extract more
than one program from a single source �le� It also generates compiler directives so as to
given the underlying compiler the location of lines on the original input �les� This facility
help issuing good error messages�

Most of the di�erences between Web and Noweb come from the fact thar Web has
language�dependent features which are not present in Noweb� Web works poorly with
LaTEX� LaTEX cannot be used in Web source� and getting weave output to work in LaTEX
documents requires tedious adjustments by hand� At last� Noweb works with both plain
TEX and LaTEX� Web takes the monolithic view of literate programming� while Noweb�s
approach is to compose simple tools that manipulate �les in the Noweb format�

Modern tools 
��� Nuweb and Funnelweb are also language�independent� To users
Noweb and Nuweb look very similar� There are minor syntactic di�erences� Nuweb uses

markup within the source �le instead of command�line options to show things like the
names of output �les� but both are simple ad easy to master� Funnelweb is a complex
tool that includes its own rudimentary typesetting language and command shell�

To conclude� no system today went beyond the experimental stage or beyond the capa�
city to handle small programs� Programming in the large with such systems is an objective
still far to be reached� Moreover the problem of documenting the programs is marginally
considered�

Our purpose is thus to o�er a tool which permits to record all the experiences accu�
mulated when developing an application based on 	constraint� logic programming� and
maintaining it� programming� debugging� performing veri�cations� The high level of ex�



pressiveness of constraint logic programming makes possible to consider a program as an
executable speci�cation� It is thus quite clear what such system has to provide� an easy way
to mixture natural language comments and program with text editing facilities� program
debugging functionalities and validation tools with easy interfaces�

Following this idea� we propose to consider that a CLP program is a unique document
written with a methodology which takes into account the peculiar aspects of logic program�
ming on one side� On the other side� it must have the �exibility of a textual document�
All the informations concerning the program development and its maintainance will be
recorded in this single document� Obviously such a document will grow very quickly and
therefore functions to help writers or readers to handle and to use it must be de�ned�
We propose here an experimental system based on the hypertext system Thot 
��� cal�
led HyperPro� whose purpose is to handle such documents and facilitate logic programs
development�

We also present a methology to develop and document logic program based on the
methods for a structured elaboration of code and comments that have been investigated
by Deransart and Renault 
���

� Proposed Methodology

The HyperPro system o�ers a way to handle two basic aspects� text editing and CLP
programming� For text editing it uses the Thot system 
��� Therefore a HyperPro program
is a Thot document written in a report style� More details are given below concerning the
Thot system itself�

A HyperPro program contains also speci�c paragraphs which correspond to relation
de�nitions� Their format re�ects strictly the methodology required for CLP program de�
velopment� The methodology is based on the works described in 
��� �� �� ��� It uses
simple basic principles� in CLP the program unit is a packet of clauses characterizing a
relation� Thanks to the declarative aspect of relational programming a relation de�nition
may be understood just looking at the clauses and the informal de�nitions of the predica�
tes used in the bodies of the clauses� The nature of the comments is obviously important�
it must bring a redundant but di�erent information� For such purpose di�erent kinds of
informations must be provided� which are precisely de�ned in the methodology� On the
other side� the text editing system must provide facilities to navigate inside the program
and its comments�

We �rst explain the basic piece of the methodology 	the relation de�nition�� then we
describe the di�erent functionalities of the HyperPro system�

��� The Relation De�nitions

Relation de�nitions 	RD� consists of two items� one containing the name and arity of the
predicate� say for example safe�� and the second being a sequence of predicate de�nitions�
Each predicate de�nition is built on the same model and has two to four items� one
informal comment 	called De�nition�� optional type statements 	called Types�� optional
assertions 	called Assertions� and the packet of clauses de�ning the relation� Di�erent
predicate de�nitions in a RD correspond to di�erent versions of the same relation� A



relation is uniquely de�ned by its name and arity� However� the same relation may appear
in di�erent sections of a document� In that case it will not be considered as the same
relation 	see Section ����� Here is an example�

safe��

De�nition �
If safe� is a list of positive integers then all the points of coordinates x�y� where y is the
integer of rank x in the list� are not on the same row neither on the same diagonal�

Types �
safe� is a list of integers�

Assertions �
For all y�v� �y in safe� and v in safe� and rank�of�y�x� and rank�of�v�u� and not x � u�
implies �not y � v and not x�u � y�v and not x�u � v�y�

safe�����

safe��Queen�Others�� �	

safe�Others�


noattack�Queen
 Other
 ���

Notice that it is possible to give several types and assertions� Arguments of a predicate
pred of arity n are denoted pred� to predn everywhere� Each information plays a speci�c
role and contributes to a clear understanding of a predicate de�nition�

� De�nition � it is an informal comment which characterizes the semantics of the
de�ned relation� It must be a partial correctness property� i�e�� a property of all
possible argument values satisfying the relation�

� Types � There are formal or informal expressions� They characterize the form of
the arguments either when the predicate is used� or the kind of solutions of interest�
Sometimes both informations coincide� It is the case here� safe� must be a list
of integers when calling safe��� But if one considers this predicate alone it has
nonground solutions� and only solutions consisting of lists of integers are interesting�

� Assertions � Di�erent assertions are possible� depending on the kind of intended
use� Here one uses partial correctness assertions 
� written in a formal language�
a �rst order formula� The formula states clearly that the argument denotes points
corresponding to reciprocally non attacking queens�

� Packet � The packet of clauses�

To understand a predicate it should be su�cient to read its de�nition and the ones of
the used predicates� For example safe�� uses noattack�� de�ned as� If noattack� denotes
a point of coordinates 	x� noattack�� and noattack� is a positive integer and noattack�

denotes a list of points at a horizontal distance noattack� from x� then no point 	x �
noattack� � r � � � v�� where v is the element of rank r in noattack�� is on the same
diagonal�



Therefore an informal �logical� reading of the second clause should be� after obvious
simpli�cations�

If 	De�nition of noattack�� �� if Queen denotes a point of coordinates 	x� Queen�
and Other denotes a list of points after x� then no point 	x � r� v�� where v is the element
of rank r in Other� is on the same diagonal� and

If 	De�nition of safe�� in the body �� if Others is a list of positive integers then all
the points of coordinates x�y� where y is the integer of rank x in the list� are not on the
same row neither on the same diagonal�

Then 	De�nition of safe�� in the head �� if 
Queen j Others is a list of positive
integers then all the points of coordinates x�y� where y is the integer of rank x in the list�
are not on the same row neither on the same diagonal�

The implication is obviously satis�ed� Such reading helps to understand the clausal
predicate de�nition� It comes as an additional useful information�

The formal assertions may also be used� However they are intended to be used by a
proof system interfaced with the HyperPro system�

It happens usually that such local de�nition is not su�cient to explain the program�
It is the purpose of the report style� At any place 	but not inside a predicate de�nition�
more comments may be added�

��� Navigation Facilities� index and pointers

Writing a document in a disciplined manner is not easy without navigating facilities� We
have considered two ways of navigation� references to de�nitions and indexes�

References include references to RD�s and references to predicate de�nition inside a
RD� Anywhere in the document a RD may be referenced� in particular it is associated
with every predication in a clause body� With the name�arity of a relation� an associated
reference points to the current version� With such pointers it is possible to identify at any
time the current version which is under development or testing�

Indexes o�er the possibility to the user to focus an important notion and to point to
all the parts of the text where this notion or related notions are used� Index is a true
thesaurus and helps considerably to maintain the consistency of the text� Predicate cross
references are also part of the index� They are built automatically�

��� Editing Facilities� document views and projections

The main originality of the HyperPro system is the possibility to use views and projections
instead of the full text� In fact� very quickly� the document grows and becomes untractable�
The synchronized views approach helps the user to write the program� Four basic views
are provided corresponding to the items in a predicate de�nition� the comments view
	De�nition�� the type view 	Types�� the assertion view 	Assertions� and the program
view 	packet��

The program view o�ers the possibility to program directly� as usual� with the editing
help of syntactic menus� Each view corresponds to a window with the corresponding
information only� but concerning all the de�ned relations in the document� All the views



are synchronized in such a way that when pointing for example to a clause of a predicate
de�nition in the �program view� the corresponding informal de�nition is selected in the
�comment view� and the other views�

Projections are views corresponding to selected portions of text which are gathered
into a single window� The selection criterion is on the same basis as for a �grep� function�
There is also the possibility to open a view of the index�

The combination of all these views o�ers great possibilities of navigation and facilitate
construction� consultation and maintainance of the program�document�

��� Document Exportations� interfaces

The purpose of the system is not just to write a program but also to test it or to make
some experimentation with it� Therefore there are possibilities of exportation� Two kinds
of program exportations have been considered� syntactic one and global one� The �rst one
is used to test the syntax of lines of code� the user may select some lines and a language
	Prolog or clp	fd� for example� and the system runs the corresponding compiler on the
considered code and reports syntactic errors�

The global program exportation consists� for example� of selecting a goal or a portion
of text and a language� and the system create a �le with the corresponding program 	built
from the current versions� and opens a window running the corresponding processor and
consulting the program�

Finally Thot o�ers also the possibility to de�ne sophisticated applications� In particular
interfaces with proof systems are possible� In that case there is a possibility to export
assertions with the purpose to run a proof system and thus to report in the text the results
of the validation activity� We intend in particular to make integrations with the LDS�
system 
�� and the theorem prover SEQUOIA 
���

� The HyperPro System

HyperPro is an experimental environment we have designed for logic programs development
based upon the Grif�Thot 
�� tool� a powerful WYSIWYG� structured editor that includes
hypertext features 
�� 
���

	�� Thot � principles and main concepts

Thot allows the user to create� modify and consult interactively documents that comply
with models� These models enhance production of homogeneous documents� Formatting
and typography are handled by the editor itself � thus� the user mainly focus his attention
on the logic organization and on the contents of documents� Thot performs automati�
cally other operations such as numbering� updating cross references� building index tables�
spelling correction� etc 	see 
�� and 
�� for further information��

�What You See Is What You Get



����� Generic Structure

Functionalities and services provided by the Thot editor are mainly based on the internal
representation of the documents in the editor� This representation derives from a document
model that can be speci�ed by the user through a description language 
�� provided by
Thot� A such document model allows the user or an external system to operate on the
di�erent logic elements that design the document organization� Those elements� such as
chapters� sections� paragraphs and notes are entities that compose the logical structure of
a document class� This structure speci�es types of usable elements and relationships that
can relate them� Speci�cations of the logic entities and their relations describe the generic
structure 	or generic model� of a document� Each instance of a generic structure is called
speci�c structure� A class of documents is a set of documents having similar structure
	e�g� articles� reports� books and thesis�� more formally� it means that a class is a set of
documents whose speci�c structure is built according to the same generic structure�

The editor itself ensures that each document being handled complies with its generic
model � thus� it only allows operations which keep logical structure consistency according
to the document generic structure 
��� The editor also uses the generic structure to
guide the user during its writing process� and to generate automatically document chunks
	potentially empty� to be �lled��

����� Generic Presentation

Since the generic structure describes organization of a document class� it is possible to
specify presentation models for the considered class � the user de�nes presentation rules
that will be applied to all documents of the given class� Such a presentation can be very
�ne�grained because rules may be applied to all kinds of entities that are de�ned in the
generic structure� Thus it is possible to specify di�erent presentations for chapter titles�
section titles and similarly to specify� for example� titles for the sections according to their
level in the section hierarchy� The set of rules which specify the presentation of the elements
de�ned in a generic structure is logically called generic presentation� A whole document
model in Thot consists of both a generic structure and a generic presentation�

����� Hypertext Features

The generic structure previously mentioned is mainly hierarchical� However the Thot sys�
tem o�ers possibilities to model non hierarchical organization through hypertext features�
notably as hyperlinks and cross�references� Hypertext features emphasize more �exibility
of the underlied structure � hyperlinks allow to relate freely any types of data� The reader
could refer to 
�� for more information about hypertexts notions�

	�� The HyperPro Prototype

We have designed a well�suited document generic structure for logic programs according
to the usually admited methodology in Logic Programming� With few alterations the
prototype could be applied to other programming languages as we will see in the conclusion�
The associated generic presentation has been designed according to criteria relative to the



nature� the importance� the expected position of the elements in a program document�
etc� Use of the prototype allows us to assess results that we present further� as well as
evaluating the impact and the relevance of our technique relative to �directed�methodology
programming� in the process of logic program developments�

����� Prototype Architecture

A whole program document is visualized in the integral document view� Other views may
be speci�ed in the generic presentation� Di�erent conversion schema may be de�ned to
export a program into di�erent speci�c formalisms 	e�g� LaTEX�� Document exportation
may be achieved upon views to collect information that can be used as input of various
external systems as a Prolog evaluator� a spell checker� a theorem prover system� etc�
The Application Program Interfaces 	API� provided by Thot allows us to develop our
speci�c applications that potentially could act on the editing document� The Thot toolkit
is a comprehensive set of editing functions 	written in C� that can be used for building
the previously mentioned applications � such functions perform operations on structured
documents through the UNIX X�window environment�

����� Views

A program 	document� can be seen from di�erent perspectives called views � each of them�
speci�ed in the generic presentation� is a way to visualize exclusively speci�c elements of
the generic structure that are relevant for the programmer during a given stage of the
development process � for instance the user might want to focus on the clauses part of
the program� or on the assertions or comments parts� Automatic synchronization of views
allows the programmer to navigate on its document by pointing or selecting some chunks in
any views� This aspect may be very relevant for large programs and facilitates �real�time�
information retrieval� The user can work 	write� in a speci�c view instead of editing the
integral document since the editor itself will achieve real�time up�date of all the other views
	as well as the integral document view�� All the views can be opened simultaneously� Such
features enhance �exibility and facilitate the program development process� Four kinds of
views have been speci�ed in HyperPro�

� Program view � allows to visualize exclusively the clauses parts 	predicate de�nition�
of the integral document�

� Comment view � allows to visualize exclusively the comments parts relative to the
predicate de�nitions�

� Assertion view � allows to visualize exclusively the assertions parts relative to the
predicate de�nitions�

� Typing view � allows to visualize exclusively the typing parts relative to the predicate
de�nitions�

����� Document Format Conversions and Exports

Thot is an open system � that means that documents may be exchanged with other systems
through a �exible exporting mechanism�



Speci�cations of document models enhance Thot to produce documents in a high�level
abstract form� called canonical form well�suited to handle documents� For each document
a set of translation rules can be de�ned� specifying how the canonical form has to be
transformed into the wished speci�c formalism� We have de�ned di�erent export schemes of
our program documents � a LaTEX conversion� an ASCII conversion of the whole document
or of certains speci�c parts as the comments part� the clauses part� the assertions part � all
of them corresponds to the di�erent views of the program document�

����� Hypertext Functionalities� links	 
exibility

The program document model we de�ned contains relation de�nitions 	elements of the
generic structure� where the same predicate may be de�ned by several versions� Our
prototype o�ers possibilities to put links according two ways� ��to point the current version
of a given predicate de�nition in a relation de�nition block� ��to relate a use of a predicate
to its whole de�nition 	that contains all the information about the considered predicate
such as comments� assertions and predicate type��

We speci�ed many optional elements in the generic structure and elements that could
be chosen through menus� For instance a user who wants to write a clause could choose
to insert a fact� a rule or a goal� etc� and the prototype will give him automatically the
corresponding template to be �ll out accordingly�

	�� Executable Documentation

At the beginning a user might think that the writing process is too rigid� due to the un�
derlying generic structure� and this may be seen as a drawback� But he will rapidly change
his mind after more practice because this potential rigidity turns to be a great advantage
of our approach � it gives orientations to respect a programming methodology during the
writing process and allows automatic and powerful processing 	views� translation� etc��
that can be performed on the whole document or only on speci�c chosen elements of the
underlied generic structure�

Here we give a few examples of such operations developed with the application program
interfaces 	API� provided by the editor system �

� Partial tangle � the user select a chunk of program 	packet of clauses� and requires
to test it� After clicking on a special menu item the considered chunk is saved on
a �le� the system opens a window� calls a Prolog evaluator and loads the previous
�le� Then the user can perform any test he wants within the Prolog evaluator� A
possibility to load automatically all the current predicate de�nitions that often are
necessary to test a part of code is been studying�

� Global tangle � possibility to extract exclusively the referenced program part of a
document in order to load it to an evaluator�

Possibilities to include some results in the program document are been studying�



� Main Results and Prospectives

One of the main results is that our system enhances logic programs writing according to
a given methodology supported by the editor itself through consistency between a generic
structure and the speci�c structure of an editing program document�

As we already mentioned before� such a prototype allows to create and to elaborate
homogeneous program documents according to the chosen programming methodology� This
is a great advantage to control e�ciently the di�erent stages of the software developments
and notably during the maintenance stage� Di�erents presentations can be available and
the user may carry out some customizations to match its speci�c needs or tastes�

HyperPro o�ers possibilities to work in di�erent views � that facilitates the writing
process because the user can focus on speci�c document parts that turn to be more relevant
for him during a given stage of the program development�

Hypertext features as hyperlinks allows the user to follow predicate de�nitions and to
retrieve the current version of a predicate de�nition� Very useful to perform some tests
when there exists several implementation versions of the same predicate de�nition�

HyperPro o�ers possibilities to export a document into di�erent formalisms � it allows
the user to exchange or to transfer piece of documents with other systems such as LaTEX
or World Wide Web for instance�

HyperPro is an interactive WYSIWYG system that is an other advantage 
� in com�
parison with the �classical� Web family systems described in Sections � and ��

Thot is an integrated and extensible system� It allows to process with the same tool and
within the same document not only structured text but also graphics� pictures� complex
tables� mathematical formulas� etc� This is not an exhaustive list � users can add other
types of information by specifying the appropriate models� In this sense our prototype
enhances programs to be documented with hypermedia style comments � Moreover possi�
bilities to add a complete bibliography and some annexes at the end of the programs are
available�

An other advantage of the HyperPro prototype is emphasized by the fact that all the
future improvements of the Thot editor system will be available in the HyperPro system
without a lot of work because of the reciprocal interaction�

We claim that all those previous points are great improvements in comparison with the
usual Web systems that are used in the industry� We intend to apply our experiment to
imperative programming with languages as C or Pascal�

� Conclusion

In any area or programming paradigms� software documentation is a serious and yet not
satisfactorily solved problem� Documentation has a direct impact in the cost of software
maintainance� Particularly� with constraint logic programming there is a great need for a
good documentation system� Due to the high level of expressiveness of CLP� programs are
closer to a speci�cation rather than to a traditional program� Usually� as a consequence
to commitments to e�ciency of implementations� the same CLP program is maintained
along the entire life cycle of the application� from its conception until its �nal uses and



further improvements or updating� The role of the HyperPro system is exactly to o�er the
facilities to mantain also the whole documentation concerning the program of an applica�
tion� during its whole life� The HyperPro approach allows texts� clauses and assertions to
share a single document helps keeping consistent the software documentation throughtout
their lifetime� Inconsistencies are not automatically checked� but we expect that the fact
that program code� i�e�� Prolog clauses and their corresponding explanatory texts are tigh
together encourages maintenance people to keep software changes well documented�

Documentation of software must also be organized in a way to provide di�erent levels
of abstraction of the documented software in order to help the understanding of large
systems� The synchronized viewing facilities provided by Thot� and used in the HyperPro
system� permit the de�nition of levels of abstraction� which are the key to build large�
understandable and maneageable documents� Furthermore� the view windows implemented
in HyperPro also accept updating operations of their contents with automatic re�ection in
all other

Additionally� HyperPro views program documentations computer processable� compi�
lable� and executable� so errors in coding can be detected earlier in the design process� All
error messages� including those produced by compilers� must refer to the original docu�
ment �les� so that programmers should be encourage to do debugging or testing only on
the original document �les�

At the present stage of development� HyperPro does not check automatically inconsis�
tency among clause de�nitions� assertions and their informal descriptions presented in the
documents� A solution for this hard problem still has to be envisioned� perhaps by crea�
ting strong ties between the documentation and its related pieces of programs� Thus� the
consistency between descriptive texts and the corresponding program code clauses could
be always enforced somehow�

References


� Pierre Deransart and G�erard Ferrand� An Operational Formal De�nition of Prolog�
a Speci�cation Method and its Application � New Generation Computing �� 	������
�������� �����


� Abdelali Ed�Dbali and Pierre Deransart� Software Formal Speci�cation by Logic pro�
gramming� Logic Programming Summer School� Zurich� N� E� Fuchs and G� Comyn�
����� Zurich� Suisse� Springer Verlag� LNAI� ���� �������� September�


� Ciancarini� Paulo and Levi� Giorgio� Applications of Logic Programming in Software
Engineering� University of Bologna� ����� cianca�cs�unibo�it� ���


� Deransart� Pierre and Ma luszy�nski� Jan� The MIT Press� A Grammatical View of
Logic Programming� novembre� �����


� Deransart� Pierre and Ed�Dbali� Abdelali and Cervoni� Laurent� Springer Verlag� Pro�
log� The Standard	 Reference Manual� �����


� Deville� Yves� Addison Wesley� Logic Programming� Systematic Program Develop�
ment� �����




� Henrard� J� and Le Charlier� B�� FOLON� an Environment for Declarative Construc�
tion of Logic Programs� PLILP���� Leuven� Belgium� �������� ����� August ������


� Furuta� R� Quint� V� and Andr�e� J�� Interactively Editing Structured Documents� Elec�
tronic Publishing� ����� �� �� ������ April�


� ISO� Programming Languages � Prolog � Part 
� General core� Information Technology�
����� ISO�IEC �������� May�


�� Siqueira� J� de� SEQUOIA� a theorem prover for counter model construction� XVth
conference of the Chilean Computer Science Society� Arica� Chile� ����� August�


�� Knuth� Donald� The Web System of Structured Documentation� Technical Report
���� Stanford Computer Science� Stanford� California� September �����


�� Knuth� Donald D�� Literate Programming� The Computer Journal� Vol� ��� No� ��
����� pp� �������


�� Knuth� Donald� Literate Programming� CSLI lecture notes� Stanford� CA� Center for
the study of language and information� ����� ��� ��������


�� Knuth� Donald� and Levy� Silvio� Cweb System of Structured Documentation� Version
���� Addison�Wesley Publishing Company� �����


�� Lamport� L�� Latex � A Document Preparation System� Addison�Wesley Publishing
Company� �����


�� M� Berg!ere and G� Ferrand and F� Le Berre and B� Malfon and A� Tessier� La Pro�
grammation Logique avec Contraintes Revisit�ee en Termes d�Arbre de Preuve et de
Squelettes� LIFO� Orl�eans� ����� LIFO ������ February�


�� Loveland� D�� Near�Horn Prolog and Beyond� Journal of automated Reasoning� �����
�� �����


�� Parot� P�� Construction incr�ementale et modulaire de modeles de documents� M�emoire
de DEA� Universit�e d�Orl�eans� �����


�� Pettorossi� Alberto and Proietti� Maurizio� Transformation of Logic Programs� Com�
plog II Deliverables of Year �� D������� Apt� K�R� and Marchiori� E�� CWI� Amster�
dam� NL� ��� ����� August�


�� Quint� V� and Vatton� I�� Grif � an interactive System for structured Document Mani�
pulation� Proceedings of the International Conference on Text Processing and docu�
ment Manipulation� ����� November� �������� Cambridge University Press�


�� Quint� V� and Vatton� I�� Hypertext aspects of the Grif structured editor � design and
applications� Rapports de Recherche "����� INRIA Rocquencourt� ����� July�


�� Quint� V�� Les langages de Grif� Internal report 	in french�� INRIA�CNRS� ����� May�




�� Quint� V�� The Thot user manual� Internal report� INRIA�CNRS�

�����


�� Ramsey Norman� The noweb Hacker�s Guide� Departament of Computer Science�
Princeton University� September ���� 	Revised August ������


�� Ramsey Norman� Literate�Programming Tools Can be Simple and Extensible� Depar�
tament of Computer Science� Princeton University� November �����


�� Ramsey Norman� Literate Programming Simpli�ed� IEEE Software� V���	��� �������
September �����


�� Ramsey Norman� Literate Programming� Weaving a language�independent Web �
Communications of the ACM� ��	��� ���������� September �����


�� Richy� H�� Grif et les index �electroniques� INRIA Rocquencourt� ����� October �


�� Rizk� A� Streitz� N� and Andr�e� J�� Hypertext � concepts� systems and applications�
Proceedings of the European Conference on Hypertext� ����� November� University
Press�


�� S� Renault and P� Deransart� Design of Redundant Formal Speci�cations by Logic
Programming� Merging Formal Text and Good Comments� International Journal of
Software Engineering and Knowledge Engineering� ����� �� ��


�� Renault� Sophie and Deransart� Pierre� Design of Redundant Formal Speci�cations
by Logic Programming� Merging Formal Text and Good Comments � International
Journal of Software Engineering and Knowledge Engineering� vol �� No� �� ����� ����
����


�� Thimbleby� H�� Experiences of �Literate Programming� using Cweb�a variant of
Knuth�s Web�� The Computer Journal� Vol� ��� No� �� �������� �����


