
Electronic Notes in Theoretical Computer Science 38 (2005)
URL: http://www.elsevier.nl/locate/entcs/volume38.html

ML Has Principal Typings

Carlos Camarão and Lućılia Figueiredo

Abstract

Is there a type system for core-ML that, using exactly the same syntax of types
of the Damas-Milner system, types exactly the same terms of this system, and has
principal typings?

In this article we answer this question affirmatively.

A definition of principal typing is given, capturing the simple idea of representing
the set of all typings that can be obtained in derivations for a given term in a given
type system. This definition is parameterised on an ordering on types, enabling it
to be used for different type systems.

A type system for core-ML is presented that uses type expressions with the same
form as the Damas-Milner system, and considers as well-typed the same expressions
of the Damas-Milner system. A type inference algorithm is then presented, which
computes principal typings with respect to the given type system.

1 Introduction

This article answers affirmatively the following question. Consider the lan-
guage of core-ML[Mil78,MH88,MH93], where terms have the simple context-
free form given by e ::= x | λx. e | e e′ | let x = e in e′, with meta-
variable x ranging over a countably infinite set of variables , and consider that
types of these terms have the simple syntax given by τ ::= α | τ → τ ′,
and σ ::= ∀α. σ | τ , where meta-variable α ranges over a countably infi-
nite set of type variables , disjoint from the set of (term) variables; then, is
there a type system that types exactly the same terms as the Damas-Milner
system[Mil78,DM82], and has principal typings?

As usual (c.f. [MH93,Hen93,KTU93,KW94]), we do not include term con-
stants, neither type constants (constructors) other than the functional type
constructor, for simplicity of notation and because their presence is not rele-
vant in this work (c.f. [CDDK86]).

As well known, core-ML is a simple extension of the simply-typed lambda
calculus[Chu40,CF58,Hin69] with let-bindings, where variables introduced in
these bindings may be used in contexts requiring expressions of different types.
Such variables are said to have quantified (or polymorphic) types; the constrast
with variables introduced in lambda-abstractions, which may not be used in
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contexts requiring expressions of different types, is a distinctive characteristic
of core-ML. Thus, an important simplification of the language of types of the
Damas-Milner system, which adequately describes the context-sensitive syn-
tax of core-ML, is that the universal quantifier can only appear as prefixes
of types (a critical difference with respect to the impredicative second-order
lambda-calculus, also called system F[Gir71,Gir72,Rey74], and other predica-
tive polymorphic systems based on the second-order lambda calculus).

This work is concerned with the concept of principal typing [Dam84,Jim96],
not principal type. As pointed out by Damas[Dam84] and emphasized by
Jim[Jim96], the Damas-Milner system has principal types, but not principal
typings. In this paper we show that this is a property of the Damas-Milner
system, not of core-ML, in contrary to what is currently believed[Jim96]. We
present a type system ML′ and an algorithm MLo that infers principal typings
for ML′. Type system ML′ considers as well-typed exactly the same terms as
the Damas-Milner system, and uses type expressions with exactly the same
form as in the Damas-Milner system.

Some readers might draw an analogy to the situation that occurs when
a type system for the simply-typed lambda-calculus is extended with sub-
types, a subsumption rule, and subtyping constraints[FM90,Mit88]. Fuh and
Mishra[FM90], as well as Mitchell[Mit88], use subtyping constraints in typing
contexts to recover the principal type property for the simply-typed lambda-
calculus extended with subtypes and a subsumption rule. 1 However, core-ML
has principal types, as shown by Damas and Milner[Mil78,DM82]. We show
in this paper that it does have also principal typings, without the need for
extending the language of types with intersection types or some form of con-
strained types. 2 We require that the context-free form of terms be that of
core-ML and the simple language of types be the one used in the Damas-Milner
system.

The definition of whether a typing for a given expression is principal or
not should be based on a partial order on typings, which in turn should be
based on both an ordering of types and on an ordering of typing contexts. The
definitions given in this paper do exactly that. Somewhat unfortunately, our

1 As shown by Fuh and Mishra, in the presence of the simplest possible subtype relation,
defining that one type constant is a subtype of another — say, int is a subtype of real — the
principal type for λx. x in the empty context, which should be of the form α → α, cannot
be used to obtain, by substitution of types for type variables, type int → real, which
can be derived for λx. x. Fuh and Mishra also show that it is not enough to redefine the
principal type property, by considering principal types as representing instances, obtained
by substitution, or supertypes of these instances. This can be seen by considering for
example function twice, where twice ≡ λf. λx. f(f x). Due to the contravariance of the
function type constructor, the principal type of twice in the empty context, which should
be of the form (α → α) → (α → α), cannot, using this redefinition of principal type,
represent type (real→ int)→ (real→ int), which can be derived for twice.
2 It has been shown by Jim[Jim96] that the system of rank 2 intersection types can be used
to give principal typings for core-ML terms.



definition of principal typing turns out to be original. But its intent is the same
as in other approaches, namely, to capture the simple idea of representing the
set of all typings that can be obtained in derivations for a given expression in
a given type system. The results in this paper are based on two simple points:
first, on the definition of a partial orders on types, and from that on typing
contexts, then on typings; and second, on the use of multiple assumptions for a
variable in typing contexts. Whereas the use of multiple assumptions in typing
contexts is equivalent to using intersection types in typing contexts, this work
shows that intersection types are not needed for the types of expressions, in
order to ‘recover’ the principal typing property for core-ML.

We do not discuss in this paper why principal typing is important and
why it has different practical applications with respect to the property of
principal type, for which we refer the reader to Jim’s article[Jim96]. We
point out though that the principal typing property would make it possible,
during program development, to specify which modules should be considered
for type checking (or which modules should not), in a system with separate
compilation. For names imported from modules that are not selected, the
type inference algorithm would automatically infer a type general enough not
to issue any type error at all on the use of these names.

In the remaining of this section we introduce some common notation and
basic terminology. The following syntactic meta-variables range over the fol-
lowing sets of syntactic terms: x, y for variables, e for terms (expressions), σ
for types, τ for simple types, α, β for type variables, and Γ for typing contexts.

To define the syntax of a language, including context-sensitive constraints,
it is often necessary to use types for checking whether a given phrase is syntac-
tically valid. For example, if (from the definition of f we can conclude that)
f behaves as a function from τ to τ ′ (i.e. has type τ → τ ′), and (from the
definition of x we can conclude that) x has type τ , then the application of f to
x is well-formed, and has type τ ′. Typing contexts are used to gather (type)
information that can be used for enforcing context sensitive constraints.

A typing context is a finite set of pairs x : σ (called assumptions). An
assumption x : σ is an assumption for x. If Γ = {x1 : σ1, . . . , xn : σn},
also written as {xi : σi}i=1..n, then dom(Γ) = {x1, . . . , xn}, also written as
{xi}i=1..n (and similarly for other sets). We also use ∀(αi)i=1..n. τ as an abbre-
viation for ∀α1.∀α2. · · · ∀αn. τ , where n ≥ 0. We may drop the superscripts
(i = 1..n), and write, for example, ∀αi. τ as an abbreviation for ∀(αi)i=1..n. τ .

If Γ is a typing context in which each variable x occurs only once, then: if
x : σ ∈ Γ, then σ is the type of x in Γ, denoted by Γ(x); Γ 	 x is defined as
Γ − {x : Γ(x)}, if x ∈ dom(Γ), and Γ otherwise; and (Γ, x : σ) is defined as
(Γ	 x) ∪ {x : σ}.

If Γ may have more than one assumption for the same variable, then,
letting {x : σi}i=1..n be the possibly empty set of all assumptions for x in Γ,
we define Γ(x) = {σi}i=1..n, Γ 	 x =

(
(Γ − {x : σ1}) − . . . − {x : σn}

)
, and

(Γ, x : σ) is defined as (Γ 	 x) ∪ {x : σ}. The cardinality of Γ(x) is denoted



by #Γ(x).

We call σ a quantified type if a quantifier occurs in σ, otherwise a simple
type. A substitution S is a function from type variables to simple types.
The identity substitution is denoted by id. The symbol ◦ denotes function
composition. The set of free variables of term e, denoted by fv(e), and the
set of free type variables of type σ, denoted by tv(σ), have the usual definitions.

Sσ represents the capture-free operation of substituting all free occurrences
of type variables α in σ by S(α). SΓ represents the typing context obtained
by replacing each x : σ ∈ Γ with x : Sσ, and similarly for S X, where X is a
set of types, or type variables. The operation of applying a substitution S to
σ is capture-free if tv(Sσ) = tv(S(tv(σ))). We define S † {α 7→ τ}(β) = S(β),
if β 6= α, and τ if β = α, and σ[τ/α] = (id † {α 7→ τ})σ.

A type σ is closed if tv(σ) = ∅. Predicate close is defined by close(τ, σ, V ) =
(σ = ∀αi. τ), where {αi} = tv(τ)−V . We overload close to define close(τ, σ) =
close(τ, σ, ∅), and define also close′(σ, σ′, V ) = (σ′ = ∀αi. σ and αi ⊆ V ).

2 Typing problems and solutions, and orderings

This section defines a typing problem, a typing solution, and orderings on
types, typing contexts and typings, induced by parametric polymoprphism.

Definition 1 (Typing Problem) A typing problem is a pair (e,Γ).

Note the possibility of including a typing context in a typing problem, that
allows the use of fixed (predefined) assumptions to be considered in typing
solutions, e.g. {True : Bool, False : Bool, 1 : Int, . . . }.
Definition 2 (Typing Solution) A solution to a typing problem (e,Γ0) in
a given type system is a pair (σ,Γ) such that Γ ` e : σ is provable in this type
system and if x ∈ fv(e) ∩ dom(Γ0) then Γ(x) = Γ0(x).

For example, given the typing problem (not True, {True : Bool, not :
Bool→ Bool}), a typing solution is (Bool, {True : Bool, not : Bool→ Bool})
(in this case this would typically be the only solution to this typing problem).

If a typing problem is an expression, and typing contexts can have quanti-
fied types, then there would exist no type error at all due to the use of a free
variable (such variable might be inferred to have a type general enough so that
no type error may ever be detected due to its use). This remark also applies
if typing contexts can have intersection types, instead of quantified types.

A minimal element of a set with respect to a partial order R is called an
R-minimal element of this set. Similarly for the smallest element of a set. We
shall now proceed to give a definition of minimal (or principal) typings as the
R-minimal element of a set of typings, where R is a partial order.

The ordering on types for languages with quantified and simple types
formed by means of type variables and type constructors should consider rela-
tions on types obtained by substitutions of simple types for free type variables),



and relations between quantified types.

We define: (i) for each substitution S, subsS(σ, σ′) = (Sσ = σ′); and (ii)

subb(σ, σ′) =
(
σ = ∀α.σ1 and close′

(
(id † α 7→ τ)σ1, σ

′, tv(τ)
))

.

Instantiation is a particular case of subb (where close′ does not introduce
any quantification). We use inst(σ, τ), meaning subb(σ, τ), for some simple
type τ .

We can now give the definition of our partial order on types.

Definition 3 (Parametric Polymorphism) An ordering on types for lan-
guages with quantified and simple types formed by means of type variables
and type constructors, which we call an ordering induced by parametric poly-
morphism, denoted by �S, is defined inductively as follows: σ �S σ′ = true,
if subsS(σ′, σ), or subb(σ, σ′) and S = id, or σ �S1 σ′′ and σ′′ �S2 σ′ and
S = S1 ◦ S2; otherwise false.

We define also: σ � σ′ = (σ �S σ′, for some S). These simple definitions
will be sufficient for our purposes. More complex definitions of subb and inst
may be necessary to allow instantiations that are not restricted to occur at
the outermost level.

We have, for example: ∀α. α �id ∀αi. τ , from subb, ∀αi. τ �id τ from subb,
and τ �S α from subsS, for any τ such that tv(τ) = {αi}, and any S such
that α maps to τ .

We make at this point a small deviation in the course of our main objective,
in order to briefly discuss two simple properties of the ordering on types,
coming directly from the given definitions.

A first property is the antimonotonicity of quantification over a subset
of �: if subsS(σ1, σ2) then σ′1 �id σ′2, where close(σ1, σ

′
1) and close(σ2, σ

′
2).

Recall that subsS(σ1, σ2) implies σ2 �S σ1 (though in general the inverse
does not hold). This property reflects, quite simply, that if “less is required”
of a given expression e, then the type of the term obtained by closing e,
i.e. by introducing λ-abstractions on all its free variables, “provides more”.
For example, the type of λx. x provides more (is more general) than, say,
λx. λf. f x since less is required of the variable x (in expression x than in
λf. f x).

A second property is that the monotonicity of→ over subsS: If subsS(σ1, σ
′
1)

and subss(σ2, σ
′
2, then subsS(σ1 → σ2, σ

′
1 → σ′2). Note that the substitutions

in this rule must be the same. It follows that the function type constructor is
neither monotonic nor antimonotonic, with respect to � (either in the first or
the second argument) .

We can conclude that parametric polymorphism is not a form of subtyping,
nor vice-versa, since, in the case of subtyping, the function type constructor is
antimonotonic in the first argument and monotonic in the second argument,
as is well-known (see e.g. [AC96,Mit96]). This agrees with and provides a
formalisation for Cardelli and Wegner’s classification of type systems[CW85]



(inasmuch as parametric polymorphism and subtyping are concerned), where
these concepts are indeed parallel to each other[CW85, Figure 2]. Cardelli and
Wegner consider other forms of polymorphism, apart from parametric poly-
morphism (for example, subtyping is a form of polymorphism, called inclusion
polymorphism). We will leave for further work an analysis of the relation
between subtyping and parametric polymorphism, based on their semantic
models (see e.g. Mitchell[MP88,Mit96]). We point out also that principal and
minimal typing both refer to the existence of a minimal 3 element with respect
to a partial order on typings (derivable for a given term). The same applies to
principal and minimal types: both refer to the existence of a minimal element
with respect to a partial order on types (derivable for a given term in a given
context). Their current use differs only from which (partial) order on types
is considered: a partial order induced by polymorphism (for principal typing)
or subtyping (for minimal typing). 4

A partial order on typing contexts, representing “requirements on vari-
ables” occurring in these contexts, may now be defined.

Definition 4 (Ordering on typing contexts) Given any partial order �S
on types, a partial order�S on typing contexts is defined inductively as follows:
Γ �S Γ′ means x : σ ∈ Γ implies that there exists x : σ′ in Γ′ such that σ′ �S σ
and Γ− {x : σ} �S Γ′.

From this definition, ∅ �S Γ is vacuously true, for any Γ, S.

If Γ �S Γ′, then Γ requires less of its variables than Γ′. Informally, ac-
cording to this definition Γ requires less than Γ′ if for each type in Γ there is
another in Γ′ that provides more.

For example, {x : α, y : β} �S {x : α, y : α}, where S(α) = α and
S(β) = α. This example illustrates that �S is not symmetric. As another
simple example, {x : α} �S {x : τ}, for any α, τ and any S such that S(α) = τ .
This is based on τ �S α and ∅ �S ∅.

We define also Γ � Γ′ = true, if Γ �S Γ′, for some S, and false otherwise.
We can now define an ordering on typings (or typing solutions) for a given
typing problem, as follows:

Definition 5 (Ordering on typings) Given a typing problem (e,Γ0), for
any typing solutions (σ,Γ) and (σ′,Γ′) to this typing problem, we have: (σ,Γ) �
(σ′,Γ′) =

(
(Γ � Γ′) and (Γ = Γ′ implies σ � σ′)

)
.

For example, (α, {x : α, y : β}) � (α, {x : α, y : α}), since both {x : α, y :
β}) 6= {x : α, y : α} and {x : α, y : β}) � {x : α, y : α}.

3 In fact, ‘smallest’ would be more appropriate, to follow the common terminology used in
the study of ordering relations.
4 Also, as pointed out for example by Mitchell[Mit96], subtyping is not a partial order in
every programming language that explores this concept, since antisymmetry may not always
be satisfied. However, a partial order has to be established for the existence, in general, of
minimal elements.



3 Principal Typing

A definition of principal typing can now be given simply as:

Definition 6 (Principal Typing) The principal typing solution to a typing
problem (e,Γ) is the �-smallest element of the set of all solutions to this typing
problem, if it exists. Otherwise, (e,Γ) has no principal typing.

Definition 7 (Principal Type) Given a typing problem (e,Γ0), if there ex-
ist σ and Γ such that (σ,Γ) is a minimal typing solution to this typing problem
and Γ ⊆ Γ0, then σ is a principal type for expression e in context Γ0. Other-
wise, there is no principal type for e in Γ0.

Usual definitions of principal type are equivalent to Definition 7, but are
written similarly to the following: a type σ is the principal type of a given
expression e in a given typing context Γ if Γ ` e : σ is provable, and Γ ` e : σ′

is provable implies that σ � σ′.

Jim [Jim96] stressed the difference between principal types and principal
typings and pointed out that the issue has not been treated properly by a
number of authors, which have published offhand claims that ML possesses
the principal typing property. As mentioned by Jim, Damas and Milner proved
that ML has principal types, not principal typings [Mil78,DM82]. As we show
in the next two sections, however, ML does have principal typings. We define
a slightly modified type system that considers as well-typed exactly the same
terms as the Damas-Milner system, and for which there is a type inference
algorithm that computes principal typings.

In Jim’s work [Jim96], a typing problem is defined to be an expression,
and the ordering on typing solutions used is as follows:

Definition 8 (σ,Γ) ≤ (σ′,Γ′) if there exists a substitution S such that Sσ ≤
σ′ and Γ′(x) ≤ SΓ(x), for all x ∈ dom(Γ).

According to our definitions, the Damas-Milner and other similar type
systems for ML do not have principal typings, as can be seen by considering
that each of the following infinite list of typing contexts can be used to derive
a valid type for x x in the Damas-Milner system, and for each such typing
context the next one in the list is smaller: {x : ∀α. α}, {x : ∀α. α → α}, {x :
∀α. (α→ α)→ (α→ α)}, . . .

4 ML has principal typings

An equivalent version of the Damas-Milner system[DM82,KTU94,CDDK86]
is presented in Figure 1. The type inference algorithm MLp, presented in
Figure 2, computes principal typings for the Damas-Milner system, for typing
problems (e,Γ0) such that Γ0 includes all typings for variables that occur free
in e and have a quantified type. For example, in ML, if x has a quantified
type then expression x x is well-typed, otherwise it is not. Thus, for a typing



problem (x x,Γ0), typing context Γ0 must include an assumption for x. Type
system MLp is then extended, so as to compute principal typings for typing
problems of the form (e, ∅), and in fact for any core-ML typing problem.

Type system MLp is in fact a type inference algorithm. It is based on an
algorithm presented by Mitchell [Mit96, Chapter 11], but avoids the use of
what Mitchell calls typing environments , which are sets of assumptions of the
form x : (σ,Γ).

Γ, x : σ ` x : τ where inst(σ, τ) (VAR)

Γ ` e1 : τ1 Γ, x : σ ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

close(τ1, σ, tv(Γ)) (LET)

Γ, x : τ ′ ` e : τ

Γ ` λx. e : τ ′ → τ
(ABS)

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
(APPL)

Figure 1: Type System ML

Function unify gives the (usual) most general unifying substitution for a
set of pairs of type expressions (usually written as a set of type equations).
The definition is included in the next section. We define also:

Γ|V = {x : σ | x : σ ∈ Γ and x ∈ V }

s(Γ) = {x : σ ∈ Γ | σ is a simple type}

q(Γ) = {x : σ ∈ Γ | σ is a quantified type}

E(Γ,Γ′) = {Γ(x) = Γ′(x) | x ∈ dom(s(Γ)) and x ∈ dom(s(Γ′))}

U(Γ,Γ′) = unify(E(Γ,Γ′))

We use Γ ` e : τ and Γ `p e : (τ,Γ′) for derivations in types systems
ML and MLp, respectively. The proofs of theorems are ommitted, for lack of
space.

Theorem 1 If Γ0 `p e : (τ,Γ) is provable, then Γ ` e : τ is provable.

Theorem 2 If Γ ` e : τ is provable, then q(Γ) `p e : (τ ′,Γ′) is provable, where
close(τ ′, σ, tv(Γ′)), for some σ such that (σ,Γ′) is the �-smallest element of



Γ `p x : (τ,Γ′) (VARp)

where (τ,Γ′) =


(τ ′,Γ|x) if Γ(x) = ∀αi. τ ′, for some {αi}, i = 1..n, τ ′

where αi are renamed to be fresh

(α, {x : α}) otherwise, where α is a fresh type variable

Γ `p e1 : (τ1,Γ1) Γ, x : σ `p e2 : (τ2,Γ2)

Γ `p let x = e1 in e2 : (Sτ2, S(Γ2 	 x) ∪ SΓ1)
(LETp)

where close(τ1, σ, tv(Γ1)), S = U(Γ1,Γ2)

Γ	 x `p e : (τ,Γ0)

Γ `p λx. e : (τ ′ → τ,Γ′)
(ABSp)

where (τ ′,Γ′) =

 (Γ0(x),Γ0 	 x) if x ∈ dom(Γ0)

(α,Γ0) otherwise, where α is a fresh type variable

Γ `p e1 : (τ1,Γ1) Γ `p e2 : (τ2,Γ2)

Γ `p e1 e2 : (Sα, SΓ1 ∪ SΓ2)
(APPLp)

where S = unify(E(Γ1,Γ2) ∪ {τ1 = τ2 → α}) and α is a fresh type variable

Figure 2: Type System MLp

the set of solutions to (e, q(Γ)).

Theorem 3 For each e,Γ, there exists a unique (τ,Γ′), up to renaming of
type variables, such that Γ ` e : (τ,Γ′) is provable.

For typing problems of the form (e,Γ) such that Γ does not contain as-
sumptions for variables in e that are required to have a quantified type, MLp

does not give any solution (and thus no principal solution, among the set of
typing solutions derivable in ML); for example, the typing problem (x x, ∅) has
infinitely many solutions in type system ML, but none is principal. For this
problem, there is no solution in MLp: there is no type σ such that ∅ `p x x : σ
is derivable.

We present now a simple extension of MLp, called MLo, that derives a
principal ML′ typing for any given typing problem. Type system ML′ is iden-
tical to ML except that it allows a typing context to have more than one
assumption for any given variable (the type system is written without any
modification at all). The definition of (Γ, x : σ) is modified accordingly, as
defined in section 1.

Any term e that is well-typed in type system ML (i.e. for which there are



Γ and σ for which Γ ` e : σ is derivable) is also well-typed in type system
ML′, and vice-versa (theorem 4).

Function lcg, defined in Figure 3, computes the least common generalisa-
tion for a set of simple types. A simplification is used, that considers lcg as a
function by choosing any representative of the equivalence class of types τ that
are least common generalisations of {τi} and differ only by renaming fresh type
variables. Finite mappings are used in lcg′ so that, for example, the least com-
mon generalisation of {α1 → (β1 → α1), α2 → (β2 → α2)} is α → (β → α),
for some fresh type variables α, β (and not, say α→ (β → α′)).

lcg({σi}) = lcg({τi}), where, for i = 1, . . . , n,
σi = ∀αi1 . · · · ∀αimi . τi, for some αi1 , . . . , αimi

lcg({τi}) = τ, where (τ,m) = lcg′({τi}, ∅), for some m

lcg′({τ},m) = (τ,m)
lcg′({τ1, τ2},m) = lcgp({τ1, τ2},m)
lcg′({τ1, τ2} ∪ T ,m) = lcgp({τ, τ ′},m′)

where (τ,m0) = lcgp({τ1, τ2},m)
(τ ′,m′) = lcg′(T ,m0)

lcgp({α, τ},m) =
(

if m(α′) = (α, τ), for some α′, then (α′,m)
else (α′,m † {α′ 7→ (α, τ)}), where α′ is a fresh type variable

)
lcgp({τ1 → τ2, τ

′
1 → τ ′2},m) = (τ → τ ′,m′)

where (τ,m0) = lcgp({τ1, τ
′
1},m)

(τ ′,m′) = lcgp({τ2, τ
′
2},m0)

Figure 3: Least common generalisation of simple types

We define also lcg(Γ) = {x : σ | x ∈ dom(Γ) and close(lcg(Γ(x)), σ, tv(Γ))}.
Using `′ for type derivations in type system ML′, we have:

Theorem 4 Γ ` e : σ is provable implies that Γ `′ e : σ is provable, and
Γ `′ e : σ is provable implies that lcg(Γ) ` e : σ is provable.

Derivations Γ0 `o e : (τ,Γ) refer to derivations in MLo. Function unifyo is
defined in Figure 4. It differs from the usual function unify by the use of an
additional boolean parameter. When set to true, the function simply ignores
non-unifiable type equations; otherwise it behaves as usual. We define also:

Uo(Γ,Γ′) = unifyo(E(Γ,Γ′), true)

Type system MLo is presented in Figure 5. As with ML′, type system
MLo also allows typing contexts to have more than one assumption for the



unifyo(∅, b) = ∅

unifyo(E ∪ {α = τ}, b) =
if α ≡ τ then unifyo(E, b)
else if α occurs in τ then if b then unifyo(E, b) else fail

else unifyo(E[τ/α], b) ◦ (id † (α 7→ τ))

unifyo(E ∪ {τ1 → τ2 = τ ′1 → τ ′2}, b) = unifyo(E ∪ {τ1 = τ ′1, τ2 = τ ′2}, b)

Figure 4: Most general unifier, optionally ignoring non-unifiable equations

same variable. As an example, the principal typing solution to (x x, ∅) is
(α′, {x : α, x : α → α′}). The cardinality of Γ(x) is used, in rule (ABSo), to
follow ML in allowing only simple types as types of lambda-bound variables.
We have:

Γ0 `o x : (τ,Γ) (VARo)

where (τ,Γ) = if Γ0(x) ≥ 1 then
(
lcg(Γ0(x)), {x : τ}

)
else (α, {x : α}), where α is a fresh type variable

Γ0 `o e1 : (τ,Γ) Γ0, x : σ `o e2 : (τ ′,Γ′)

Γ0 `o let x = e1 in e2 : (Sτ ′, S(Γ′ 	 x) ∪ SΓ))
(LETo)

where close(τ, σ,Γ), S = U0(Γ,Γ′)

Γ0 	 x `o e : (τ,Γ)

Γ0 ` λx. e : (τ ′ → τ,Γ′)
#Γ(x) ≤ 1 (ABSo)

where (τ ′,Γ′) = if x : τ0 ∈ Γ, for some τ0 then (τ0,Γ− {x : τ0})

else (α,Γ), where α is a fresh type variable

Γ0 ` e1 : (τ1,Γ1) Γ0 ` e2 : (τ2,Γ2)

Γ0 ` e1 e2 : (Sα,Γ)
(APPLo)

where S0 = unify({τ1 = (τ2 → α)}), S1 = Uo(S0Γ1, S0Γ2})

S = S1 ◦ S0,Γ = SΓ1 ∪ SΓ2, α is a fresh type variable

Figure 5: Type System MLo



Theorem 5 If Γ0 `o e : (τ,Γ) is provable, then Γ `′ e : τ is provable.

Theorem 6 If Γ `′ e : τ is provable, then, for any set of term variables X,
Γ	X `o e : (τ ′,Γ′) is provable, where, letting σ be such that close(τ ′, σ,Γ′),
(σ,Γ′) is the �-smallest element of the set of solutions to (e,Γ	X).

5 Conclusion

In this paper we show that there is a type system for core-ML that, using
exactly the same syntax of types of the Damas-Milner system, types exactly
the same terms of this system, and has principal typings.

A definition of principal typing is given, capturing the basic, simple idea
of representing the set of all typings that can be obtained in derivations for
the relevant term in a given type system. This definition is parameterised on
an ordering on types, enabling it to be used for different type systems.

A type system for core-ML is presented that uses type expressions with
exactly the same form as the Damas-Milner system, and considers as well-
typed exactly the same expressions of the Damas-Milner system. A type
inference algorithm is then presented, which computes principal typings with
respect to the given type system.
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coupures de l’arithmétique d’ordre supérieur. These D’Etat, 1972.

[Hen93] Fritz Henglein. Type inference with polymorphic recursion. ACM
TOPLAS, 15(2):253–289, Apr 1993.

[Hin69] J.R. Hindley. The principal type-scheme of an object in combinatory
logic. Trans. AMS, 146:29–60, 1969.

[Jim96] Trevor Jim. What are principal typings and what are they good
for? In Conf. Record of POPL’96: the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 42–53, 1996.

[KTU93] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the
presence of polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):290–311, April 1993.

[KTU94] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An Analysis of ML Typability.
Journal of the ACM, 41(2):368–398, 1994.

[KW94] A. J. Kfoury and J. B. Wells. A Direct Algorithm for Type Inference
in the Rank-2 Fragment of the Second-Order λ-Calculus. In Proc. of
the 1994 ACM Conference on LISP and Functional Programming, pages
196–207, 1994.

[MH88] John Mitchell and Robert Harper. The essence of ML. Proc. 5th ACM
Symp. on Principles of Programming Languages, pages 28–46, 1988.

[MH93] John Mitchell and Robert Harper. On the type structure of standard
ml. ACM TOPLAS, 15(2):211–252, Apr 1993.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, 1978.

[Mit88] John Mitchell. Polymorphic type inference and containment.
Information and Computation, 76(2/3):211–249, 1988.

[Mit96] John Mitchell. Foundations for programming languages. MIT Press,
1996.

[MP88] John Mitchell and Gordon Plotkin. Abstract Types Have Existential
Type. ACM Transactions on Programming Languages and Systems,
1988.

[Rey74] John Reynolds. Towards a theory of type structure. In Paris Colloq. on
Programming, pages 408–425, 1974. Springer-Verlag LNCS 19.


	Introduction
	Typing problems and solutions, and orderings
	Principal Typing
	ML has principal typings
	Conclusion

