
Optimization Techniques for Abstract State
Machines-Based Programs

Fabio Tirelo Roberto da Silva Bigonha

Departamento de Ciência da Computação, Universidade Federal de Minas Gerais,
Av. Antônio Carlos, 6627, CEP 31270-010, Belo Horizonte, MG, Brazil

{ftirelo,bigonha}@dcc.ufmg.br

Abstract

Optimization techniques are applied on compiling code for language based on Ab-
stract State Machines (ASM). The techniques are intended to be used on translating
ASM code into imperative language such as C. This paper also shows quantitative
analysis of the code produced from the selected benchmark. Experiments show that
these optimization techniques may improve the performance of the code execution
in up to 94%.

1 Introduction

Abstract State Machines (ASM) are a formal specification model [11]. A for-
mal specification method based on ASM may be directly executed on von Neu-
mann machines and its mathematical foundations provide the basis for formal
system verification. The model is considered very simple and can be easily
used by programmers. Different sorts of systems, such as Computer Archi-
tectures [3,5], Programming Languages Semantics [6,7], Distributed Systems
[2,4], and Real-time systems [10,12], have been specified using ASM.

An ASM specification consists of a basic model which is successively refined
until it is completely implemented, i.e., it is in its most detailed or concrete
level. However, a näıve code generator may produce inefficient code because
of some particular characteristics of the model. In fact, one can obtain opti-
mized and efficient code by applying optimization techniques which directly
attack the distinguishing traits that separate ASM model from imperative
programming.

There are various ASM implementations including interpreters and com-
pilers. The most important interpreters are those of Michigan[8] and ASM-
Workbench[9]. In those implementations, the main focus is not efficiency,

Preprint submitted to Elsevier Preprint 17 November 2003

so sophisticated optimization techniques are not applied. Compilers which
apply optimization techniques are Xasm [1] and EvADE [15]. In Xasm,
the only optimization reported is the efficient representation of functions by
means of hash tables. The only optimization reported in EvADE is common
sub-expressions elimination. No existing tool applies optimization techniques
which directly address ASM inefficiency prone features, since they use only
classical techniques from imperative code optimization.

2 Abstract State Machines

This section presents a brief description of ASM model. A complete definition
can be found in [11].

An ASM specification consists of defining an algebra, or initial state, and
a transition rule. The algebra consists of a vocabulary, i.e., the set of symbols
used in the transition rule, and the interpretation of the vocabulary symbols.
The transition rule defines the state transition by redefining the interpretation
of the vocabulary symbols.

In ASM, systems are operationally defined by means of a state sequence
caused by the transition rule. In this model, there exists the notion of current
state, denoted by S, and a new state is created by executing the transition
rule at S. A state is a mapping from locations to values.

A location is a pair (f, x̄), where f is a n-ary function name and x̄ is a
tuple of n elements. An update is a pair (l, y), where l is a location and y is
an element of the co-domain of f .

A transition rule can be of the following types:

• update – when it has the form “f(x̄) := y”, it has the effect of modifying
the function f at the point x̄, i.e., the location (f, x̄) so as to return y in
the next state;

• conditional – when it has the form “if g then R1 else R2 end”, where g is
a boolean expression and R1 and R2 are transition rules. It has the effect
of executing R1, if the guard g evaluates in true, or executing R2 otherwise;

• block – when it has the form “R1, R2”, where R1 and R2 are transition rules,
it has the effect of executing rules R1 and R2 in parallel.

Executing an ASM program consists of repeatedly applying its transition
rule, with the restriction that updating rules only take effect in the next
state. A rule R, when fired at state S, generates an update set, denoted by
Updates(R,S), which is defined as:

• if R ≡ “f(x̄) := y”, where x̄ = 〈x1, · · · , xn〉, then

Updates(R,S) = {((f, 〈S(x1), · · · ,S(xn)〉),S(y))},
where S(E) the evaluation of expression E in state S;

• if R ≡ “R1, · · · , Rk”, then

Updates(R,S) =
k⋃

i=1

Updates(Ri,S);

• if R ≡ “if g then R1 else R2 end”, then

Updates(R,S) =

Updates(R1,S), if g = true

Updates(R2,S), otherwise.

Firing R at S generates a new state S ′ in which the application of a function
f to 〈a1, · · · , an〉 is defined as:

S ′(f(a1, · · · , an)) =

y, if ((f, 〈a1, · · · , an〉), y) ∈ Updates(R,S)

S(f(a1, · · · , an)), otherwise.

Thus, given an initial state S0, the repetitive execution of the transition
rule R produces a sequence of states S0,S1,S2, · · ·, where Si+1 is the state
generated by firing R at Si, i ≥ 0.

It is important to emphasize that control flow in ASM is quite different
from traditional imperative language model. First, rules in the same block
are all executed in parallel. For instance, the block “x := y, y := x” has the
effect, in ASM, of exchanging the values of x and y. The second difference
is that in ASM there are not linguistic constructions for loops such as while
commands or recursion. Transition rules just show how a new algebra can be
built by means of assigning new values to the vocabulary symbols.

3 Näıve Compilation of ASM Programs

In this section, we show how C code can be generated from a transition rule
R.

Basically, update rules are compiled into C commands to insert update
sets into the update list. Conditional rules are compiled into appropriate flow
of control commands. The rules of a block are compiled into a sequential C
code, not necessarily in the same order as they occur.

At the end of the transition rule, the compiler generates code to fire all
updates collected in the list and concludes the code with an unconditional
jump to the first instruction of the transition rule, in order to implement the
repetitive character of the execution of R.

The update list is a structure in which information on all updates in the
current transition rule step are saved. At the end of the execution of each
step, all updates in the list are fired. For instance, consider the transition rule
“f(x) := 1 + g(k), g(p) := 1 + f(x)”. The generated code is:

INIT: SAVE_UPDATE(f[x], 1 + g[k]);

if i < n then

if k < i then

f(k) := f(i),

f(i) := 1 + f(k),

k := k + 1

else

i := i + 1

end

end

INIT:

if (i < n)

{

if (k < i)

{

SAVE_UPDATE(&f[k], f[i]);

SAVE_UPDATE(&f[i], 1 + f[k]);

SAVE_UPDATE(&k, k + 1);

}

else

SAVE_UPDATE(&i, i + 1);

FIRE_UPDATES;

goto INIT;

}

(A) (B)

Fig. 1. Example of program translation. (A) Original program in ASM. (B)
Correspondent program in C.

SAVE_UPDATE(g[p], 1 + f[x]);
FIRE_UPDATES;
goto INIT;

SAVE_UPDATE is a C macro that, for any update “f(x̄) := y”, inserts the
pair (&f[x],y) into the update list. FIRE_UPDATES is a C macro that, for
each pair (e,y) found in the update list, where e is a location and y is a
value, performs the C assignment *e = y. Note that in the above example we
assumed that, in the generated code, the function f could be implemented as
an array, so that the value of f(x) is directly obtained by evaluating f[x].

Although transition rules R1 and R2 of “R1, R2” are to be executed in
parallel, in the compiled code, they are executed in sequence. This is correct
because this implementation guarantees that the execution of an update rule
does not affect the evaluation of any other rules, since updates are only com-
mitted in the following step, after the computation of all values. In the above
example the expression “1 + f[x]” is evaluated before the value of f[x] be
modified by the first update. Figures 1 (A) and 1 (B) show, respectively, an
ASM program and its translation into C.

4 Main Sources of Optimization

Code of better quality could be produced if the updates could be carried out
directly in place instead of being inserted into the update list and delayed until
the end of each step. The compiler should be aware of this fact and identify
the updates whose aims are not used in the subsequent instructions. These
updates can be directly executed in place, with clear benefits to the execution
speed.

Of course, there are updates which do not fall into this category. Thus,
in order to increase the number of updates that can be executed in place,
the compiler should perform instruction scheduling which consists of finding
an instruction ordering that minimizes the length of the update list. These
updates can be more efficiently directly executed in place, with clear benefits
to the execution speed.

A second source of optimization is the possibility of avoiding re-evaluation
of conditional rule guards, whenever the compiler could infer that their evalua-
tion will reproduce the values of the previous step. The process of determining
the best execution point to start the next step is called branch optimization.

The third optimization is to find an efficient way to implement the pro-
cessing of the update list.

Although an optimizer compiler may be smart enough in finding updates
which could be done in place, there exist programs whose updates have circular
dependencies (see the example program of Section 3). In those programs, not
all updates can be done in place, thus some have to be delayed using the
update list. For this reason, it is important to implement update lists in an
efficient way in order to guarantee execution efficiency.

Furthermore, a set of update rules enclosed by several boolean guard is a
sort construction which constantly appears in ASM programs, because it may
be used to simulate sequence execution in ASM. For this reason, additional
optimization can be obtained by identifying such constructions in programs
and compile it to the desired sequence, avoiding the evaluation of unnecessary
boolean guards.

5 Instruction Scheduling

Let B be the block R1, ..., Rn, where each Ri is an update rule or a conditional
rule. Scheduling B consists of rearranging the rules Ri in order to minimize
the number of insertions into the update list. For instance, suppose B is the
block “x := 1, f(x) := 2”. The compilation that preserves this execution
order must save the value of x before performing the update “x := 1” because
it is used in the second rule. However, if we exchange the order of these rules,
it will not be necessary to save the value of x anymore, because this function
will only be modified after all of its uses.

The scheduling algorithm operates in three phases.

In the first phase, the block is inspected in order to verify which locations
are modified and which ones are read from. For instance, for the transition
block of Figure 2 (A), this phase determines, for each rule, which functions are
modified and which ones are read, and constructs the table in Figure 3 (A).

In the second phase, we build the conflict graph to the block. The vertices
of this graph are the block components. There is an arc from a rule R1 to a

1 f(x) := 1 + g(k),
2 f(y) := x - k * f(1),
3 a := f(1) + f(2),
4 x := g(y),
5 y := f(x)

3 a := f(1) + f(2),
5 y := f(x),
2 f(y) := x - k * f(1),
1 f(x) := 1 + g(k),
4 x := g(y)

(A) (B)

Fig. 2. Instruction Scheduling. (A) Original code. (B) Scheduled code.

Instruction Modifies Consults

f(x) := 1 + g(k) f x g k

f(y) := 2 * x - k * f(1) f y x k f

a := f(1) + f(2) a f

x := g(y) x g y

y := f(x) y f x

1

2

34

5

(A) (B)

Fig. 3. Code Scheduling. (A) Information collect. (B) Conflict graph – weights
have been omitted because they are all equal to 1.

rule R2 when R1 modifies any function consulted in R2. For instance, in the
example of Figure 2 (A), there is an arc from instruction 1 to instruction 2,
since f is updated in 1 and consulted in 2. To each arc, say R1 to R2, we
associate a weight that represents the number of conflicts, i.e., the number of
updates occurring in R1 whose aims are consulted in R2. The conflict graph
of the example of Figure 3 (A) is shown in Figure 3 (B).

In the third and last phase, scheduling is actually done. Instruction
scheduling is a NP-Complete problem [14], so we must use heuristics to solve
it. The kernel of the scheduling algorithm consists of criteriously taking off
vertices from the conflict graph until it becomes empty. For each vertex re-
moved from the graph the scheduler generates either a C code to perform the
associated update immediately in place or a C instruction to insert the update
into the update list. The selection of the next vertex to be removed from the
graph obeys the following criteria:

(i) The preferable candidates are those vertices whose output degrees are
equal to zero. These vertices may be removed and scheduled in any order
for execution.

(ii) When there is no vertex whose output degree is equal to zero, the con-
didates are those which have the maximum input degree in the graph. If
there is only one candidate, it is removed and scheduled for execution.

(iii) When criterion 2 produces more than one candidate, the vertex to be

removed and scheduled can be any of those whose output degree is min-
imum.

Vertices selected by criterion 1 are translated into code to perform the
update immediately, whereas vertices determined by criteria 2 and 3 are com-
piled into instructions that insert update information into the update list of
the execution step. The more vertices are selected by criterion 1, the better
would be the code produced.

The reasoning behind this heuristics is as follows: criterion 1 has prece-
dence over the others because vertices (updates) which do not affect other
rules can be scheduled for execution in place. Criterion 2 is founded on the
idea that whenever a vertex is eliminated from the graph, the output degree of
some other vertices may be reduced, thus they may become eligible to satisfy
criterion 1. Therefore, we should preferably schedule the vertices with the
maximum input degree in the hope that a greater number of vertices will have
their output degree reduced to zero. Criterion 3 tries to minimize the number
of insertions into the update list.

This algorithm, applied to the previous example, would produce the or-
dering presented in Figure 2 (B), in which only instructions 2 and 5, instead
of all of them, cause insertions into the update list. Note that otherwise there
would be necessary to perform four insertions.

Another example is the instruction scheduling of the following selection
sort algorithm:

1 if mode = 1 and i < n then 12 j := j + 1
2 k := i, 13 end
3 j := i + 1, 14 elseif mode = 3 then
4 mode := 2 15 if k != i then
5 elseif mode = 2 then 16 f(k) := f(i),
6 if j > n then 17 f(i) := f(k)
7 mode = 3 18 end,
8 else 19 i := i + 1,
9 if f(j) < f(k) then 20 mode := 1

10 k := j 21 end
11 end,

The blocks to be analyzed are B1 (2-4), B2 (9-12), B3 (16-17), and B4
(15-20). Block B1 has three components, the update rules of lines 2, 3, and 4.
Block B2 contains the guarded updates of lines 9-11 and the update rule of
line 12. Block B3 consists of the update rules of lines 16-17. Block B4 contains
the guarded updates of lines 15-18 and the update rules of lines 19 and 20.
For blocks B1, B2, and B4, no order exchanging is necessary, since no update
modifies the functions used in other components. In block B3 instruction
16 modifies the function f, used in instruction 17 and vice-versa. Thus, the
update of instruction 16 must be stored in the update list in order to avoid

conflict with instruction 17. Therefore only one insertion into the update list
is necessary.

6 Branch Optimization

A transition rule R is compiled into an endless loop such as “L: R; goto L;”,
where R is the translation of the instructions in R. This conforms with the
ASM theoretical model which defines that transition rules are to be executed
continuously. However, if R is a guarded rule such as “if g then R

′
end”,

the execution may stop when guard g becomes false, since no further up-
date will be done. This means that R can be advantageously compiled into
“L: if (g) { R; goto L; }”. For instance, the rule:

if i < n then sum := sum + f(i), i := i + 1 end

can be translated into C code as:

L: if (i < n) { sum = sum + f[i]; i = i + 1; goto L; }

The compiler may infer which paths will be traversed until reaching the
execution of each rule Ri. In addition, by inspecting left-hand sides of update
rules, it is possible to know which instructions modify guards that have already
been evaluated. These information allows the compiler to determine which
guards will necessarily produce the same result as in the previous step, and
thus driving the execution through the same path. Therefore the re-evaluation
of such guards can be avoided whenever their outcome could be inferred.

Branch optimization improves programs which consist of various nested
conditional rules. Consider the transition rule:

if g1 then
if g2 then R1 else R2 end

else
if g3 then R3 else R4 end

end

Suppose R1 only modifies values of operands of guard g2, and R2, R3, and
R4 modifies those of guard g1. This means that, after the execution of R2,
R3, and R4, the compiler should generate a goto to the point in the code
where guard g1 is evaluated. However, since R1 does not modify g1, after the
execution of R1 the program could jump directly to the evaluation of g2:

EvalG1: if (! g1) goto EvalG3;
EvalG2: if (! g2) goto ExecR2;
ExecR1: ... /* Execution of R1 */

goto EvalG2; /* Avoids re-evaluation of g1 */
ExecR2: ... /* Execution of R2 */

goto EvalG1; /* Jumps to the evaluation of g1 */
EvalG3: if (! g3) goto ExecR4;
ExecR3: ... /* Execution of R3 */

g1

g2 g3

R1 R2 R3 R4

g1

g2 g3

R1 R2 R3 R4

(A) (B)

Fig. 4. Control-flow graph (A) without branch optimization (B) with branch op-
timization.

goto EvalG1; /* Jumps to the evaluation of g1 */
ExecR4: ... /* Execution of R4 */

goto EvalG1; /* Jumps to the evaluation of g1 */

Control-flow graphs of Figure 4 show a graphic representation of the opti-
mization which has been performed.

7 Update Lists Implementation

This section shows the memory organization used in the generated code and
how the C macros SAVE_UPDATE and FIRE_UPDATES are implemented.

Elements of the update list are pairs of the form (addr,val), where addr

is the location of the update and val is the value to be assigned. We can
either organize lists by type, i.e., one update list for each type, or create a
polymorphic list, which may contain all updates collected in the step.

In the first approach, all lists, even the empty ones, have to be processed
at the end of all steps. The second approach requires the use of an additional
level of indirection in order to implement polymorphism. The pair (addr,val)
should be stored in a structure whose first field is of type void** and the
second of type void*. Therefore, it would be necessary to use indirection
in accessing both the address and the value of an update. Firing the update
stored in this pair would be implemented as the C command “*addr = val;”.

For this reason, an element of type integer should be stored, in the object
code, as a pointer to integer instead of the integer itself. This implies an addi-
tional level of indirection for all accesses to values. Furthermore, all updates
would require a dynamic allocation of memory to contain the new value to be
assigned, which would turn this approach unbearably inefficient.

A possible solution to reduce this inefficiency of update lists consists of

using “mirror copies” for all values in the ASM specification, i.e., a second
memory allocation for all functions whose update information can be inserted
into the update list. The functions that will use this memory organization are
determined in the instruction scheduling phase.

In this approach, all updates to an element modify its mirror copy and all
accesses are from the original copy. At the end of each step, mirror copies of
locations in the update list become the original copy and vice-versa. Thus,
the fire operation consists of turning mirror copies into actual copies for all
updated functions. To implement this flipping mechanism we use, for each
function, a variable cur, whose value can be 0 or 1. For each function, there
will also be a variable t containing the value 1 if a flip must be done, or 0,
otherwise. Therefore, the operation fire consists of changing the values of
cur from 0 to 1, or from 1 to 0, if the value of t is 1, so that, in the next step,
the value of the original copy will be the value assigned in the current step.

For instance, consider the block “x := y - 1, y := 1 + x * z”, in which
one of the updates have to be saved in the update list. Choosing x to be saved,
this variable must be allocated as a pair original-mirror copies. Therefore, the
declaration of x in the compiled code will be:

struct { char cur, t; int content[2]; } x;

The block “x := y - 1, y := 1 + x * z” will be compiled into:

x.content[1 - x.cur] = y - 1; x.t = 1;
y = 1 + x.content[x.cur] * z;
insertUpdate(&x);

The operation fire will modify the value of cur to point to the updated
value. The compiler has to be aware that when more than one update is
done to the same location, only one of the updates should prevail. Even
when there are more than one update for the same location in the update list,
then the value of cur can be modified only one time. Therefore, alternating
the value of cur is forbidden when t is equal to 0. Hence, the value of t

must be set to zero when the value of cur is modified. Fortunately, the test
of t and the modification of cur can be done by only one XOR operation.
This approach is interesting because it eliminates the test necessary to the
conditional modification of t implying a faster execution (see [13], Chapters
2–4).

Thus, fire can be implemented as:

#define addrE ((char*)e)

...

For each element "e" in the update list

{

*addrE = *addrE ^ *(addrE + 1); /* cur = cur XOR t; */

(addrE + 1) = 0; / t = 0 */

}

This code returns the complement of cur, if t is 1, and returns the original
value of cur, if t is 0.

8 Evaluation of the Proposed Techniques

This section describes the results of the experiments done to evaluate the
optimization techniques proposed in Sections 5 (scheduling), 6 (branch opti-
mization), and 7 (update list implementation). The benchmark programs are
the Selection Sort algorithm of Section 5 and an algorithm for finding prime
numbers using the Eratostenes Sieve.

Figures 5, 6, and 7 show for each optimization technique the average
elapsed time of the execution of each program in the benchmark varying the
size of the input. The values were normalized by the smallest time in each
experiment.

When comparing the times of execution of non-optimized programs to the
times of programs optimized using efficient update lists, we see an improve-
ment of about 65% in the case of the “primes” program and about 57% in
that of the sort program. By applying instruction scheduling to the optimized
programs we achieved an improvement of about 78% to the first program and
about 62% to the second. Applying the branch optimization technique to the
scheduled program we obtain an improvement of 1% to the first program and
of 23% to the second. We observed that this technique did not show interest-
ing results in the first program because almost all blocks modify some function
used in the first guard, so this result was expected.

The application of all the three optimization techniques produced code
which is circa 16.6 times faster to the first program and 7.9 times faster to
the second program, i.e., an improvement of about 94% and 87% respectively.
Note that the greatest improvement was obtained by using scheduling tech-
niques; this indicates that it is worthwhile to perform detailed analysis of the
code, in order to reduce the number of insertions in the update list.

9 Conclusion

In this paper we presented optimization techniques which can be used to
improve the performance of programs written in ASM-based languages.

We proposed a memory organization that reduces the inefficiency of update
lists. The main improvement comes from eliminating memory allocation for
all objects inserted into the list. Obviously, it demands more memory, but
brings very high improvements when available space is not a problem.

Code scheduling technique allowed the greatest reduction in the execution
time, which is reduced in up to 4.5 times. Basically, this technique consists of

0 200 400 600 800 1000
0

30

60

90

120

150

180

b

b

b

b

b

b

b

b

b

b

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

• NOPT

◦ UL

Number of Elements

E
la

p
se

d
T

im
e

0 200 400 600 800 1000
0

40

80

120

160

200

240

b

b

b

b

b

b

b

b

b

b

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

• NOPT

◦ UL

Number of Elements

E
la

p
se

d
T

im
e

(A) (B)

Fig. 5. Elapsed times of non-optimized programs and optimized programs using
efficient update lists. (A) Primes program. (B) Sorting program.

0 200 400 600 800 1000
0

50

100

150

200

250

300

b

b

b

b

b

b

b

b

b

b

bc bc bc
bc

bc
bc

bc
bc

bc

bc

• UL

◦ SCH

Number of Elements

E
la

p
se

d
T

im
e

0 200 400 600 800 1000
0

40

80

120

160

200

240

b

b

b

b

b

b

b

b

b

b

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

• UL

◦ SCH

Number of Elements
E

la
p
se

d
T

im
e

(A) (B)

Fig. 6. Elapsed times of programs using update lists and scheduled programs. (A)
Primes program. (B) Sorting program.

0 200 400 600 800 1000
0

10

20

30

40

50

60

b

b

b

b

b

b

b

b

b

b

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

• SCH

◦ BRN

Number of Elements

E
la

p
se

d
T

im
e

0 200 400 600 800 1000
0

20

40

60

80

100

120

b

b

b

b

b

b

b

b

b

b

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

• SCH

◦ BRN

Number of Elements

E
la

p
se

d
T

im
e

(A) (B)

Fig. 7. Elapsed times of scheduled programs and branch-optimized programs. (A)
Primes program. (B) Sorting program.

finding an ordering for instructions in which the number of insertions in the
update list is minimum. Since it is an NP-Complete problem, we proposed a
heuristic to solve this problem.

Branch optimization attacks one of the sources of inefficiency of ASM spec-
ification: the absence of referential locality of programs. Many times, small
portions of code depend on many boolean guards, which have to be unneces-
sarily re-evaluated in many successive steps. Applying this technique showed
an improvement of about 23% to one program in the benchmark.

Experiments showed that these techniques, when applied to ASM-based
code, may bring impressive improvements in the execution time, reducing it
in up to 94%.

References

[1] M. Anlauff, P. Kutter, and A. Pierantonio. Tool Support for Language Design
and Prototyping with Montages. In Proceedings of Compiler Construction
(CC’99). Springer Lecture Notes in Computer Science, 1999.

[2] D. Bèauquier and A. Slissenko. On Semantics of Algorithms with Continuous
Time. Technical Report 97-15, Dept. of Informatics, Université Paris-12,
October 1997.

[3] E. Börger. Why Use Evolving Algebras for Hardware and Software Engineering?
In M. Bartosek, J. Staudek, and J. Wiederman, editors, Proceedings of
SOFSEM’95, 22nd Seminar on Current Trends in Theory and Practice of
Informatics, volume 1012 of LNCS, pages 236–271. Springer, 1995.

[4] E. Börger, Y. Gurevich, and D. Rosenzweig. The Bakery Algorithm: Yet
Another Specification and Verification. In E. Börger, editor, Specification and
Validation Methods, pages 231–243. Oxford University Press, 1995.

[5] E. Börger and S. Mazzanti. A Practical Method for Rigorously Controllable
Hardware Design. In J.P. Bowen, M.B. Hinchey, and D. Till, editors, ZUM’97:
The Z Formal Specification Notation, volume 1212 of LNCS, pages 151–187.
Springer, 1997.

[6] E. Börger and D. Rosenzweig. A Mathematical Definition of Full Prolog. In
Science of Computer Programming, volume 24, pages 249–286. North-Holland,
1994.

[7] E. Börger and W. Schulte. Programmer Friendly Modular Definition of the
Semantics of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of
Java, LNCS. Springer, 1998.

[8] G. Del Castillo, I. Durdanovic, and U. Glässer. The Evolving Algebra
Interpreter Version 2.0. pages 191–214, 1996.

[9] G. Del Castillo. The ASM Workbench: an Open and Extensible Tool
Environment for Abstract State Machines. In Proceedings of the 28th Annual
Conference of the German Society of Computer Science. Technical Report,
Magdeburg University, 1998.

[10] U. Glässer and R. Karges. Abstract State Machine Semantics of SDL. Journal
of Universal Computer Science, 3(12):1382–1414, 1997.

[11] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press,
1995.

[12] Y. Gurevich and R. Mani. Group Membership Protocol: Specification and
Verification. In E. Börger, editor, Specification and Validation Methods, pages
295–328. Oxford University Press, 1995.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 1996.

[14] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[15] J. Visser. Evolving Algebras. Master’s thesis, Delft University of Technology,
1996.

