
Disconnected Operation in a Mobile Computation System

Marco T. de O. Valente, Roberto da S. Bigonha,
Mariza A. da S. Bigonha, Antonio A.F. Loureiro

Department of Computer Science
University of Minas Gerais

31270-010 Belo Horizonte, MG, Brazil
+55 31 3499 5860

{mtov,bigonha,mariza,loureiro}@dcc.ufmg.br

ABSTRACT
With the increasing use of mobile devices to access the Inter-
net anytime and anywhere, the relevance of disconnected op-
eration has emerged. Disconnected operation allows users to
execute applications during temporary failures in networks
or when they explicitly decide to work off-line. This paper
presents a system, calledJamp, that uses mobile computa-
tion (or logical mobility) to handle disconnections.Jamp
has abstractions supporting the migration of groups of ob-
jects and classes to other nodes of the network. In this way,
programmers canpushapplications to clients with code and
data that makes disconnected operation possible.

Keywords
Disconnected operation, mobile computation, mobile com-
puting.

1 INTRODUCTION
Current advances in wireless networks and portable hard-
ware technology is makingmobile computingpossible.
Users carrying handheld devices, like personal digital assis-
tants (PDAs), can now access the Internet anytime and any-
where. In this new paradigm, disconnected operation is a
relevant requirement, i.e., users should be able to continue
executing their applications during temporary failures in the
network or when they explicitly decide to work off-line [11].
The reason is that wireless networks are subjected to higher
error rates and larger bandwidth fluctuations than fixed net-
works. In addition, voluntary disconnections are often re-
quested by users to reduce communication costs.

Involuntary disconnections can also happen in the fixed In-
ternet. Recent studies have shown that traditional Web ser-
vices are unavailable for nearly 15 minutes per day due to
failures in the network communication infrastructure [6].
This unavailability can have relevant impacts in applications
such as e-business and prevent the use of the Web in mission-
critical systems.

Previous research in distributed systems has shown that
caching of data is a central idea in disconnected opera-
tion [7, 8]. The reason is that cache can be used not only
to improve performance but also to enhance data availabil-
ity. On the other hand, in mobile computing it is important
to send to clients not only data but also code. In this way,
it is possible to design applications that can bepushedto
their users with code and data that makes disconnected oper-
ation possible. For example, a conference reviewing system
canpushto the program committee members code and data
to support reviewing of papers in disconnected mode. Simi-
larly, an e-business site can proactively send applications that
allow users to choose off-line the item they want to buy.

In this paper we present the programming model of a system,
calledJamp, that uses mobile computation to support opera-
tion in disconnected mode. Mobile computation is the notion
that the execution of a program need not be tied to a single
node of the network [4]. Thus the system described in this
paper uses mobile computation (or logical mobility) to deal
with the problems raised by physical mobility of portable
computing devices. When compared to other mobile sys-
tems,Jamp shows differences related to the mobility and
communication model supported by the system:

• Mobility model: Jamp has its own abstraction to the im-
plementation of mobile applications, calledcontainer. A
container is a group of objects and classes defined by the
programmer. A container is also a mobile entity and thus
can move into execution environments provided by nodes
of the fixed network or by mobile devices. InJamp, these
environments are organized into a two level hierarchy in
order to deal with disconnections that can constrain the
migration of containers and to support operation across
several administrative domains.

• Communication Model:Jamp does not make use of any
construction that requires continuous connectivity or that
creates “static bindings” that can restrict the migration of
containers.

The remainder of the paper is organized as follows. Section 2
describes the programming model supported byJamp. Sec-



tion 3 gives an overview of howJamp is implemented. Sec-
tion 4 reviews the related work and Section 5 concludes the
paper.

2 PROGRAMMING MODEL
This section presents the mobility and communication con-
structions that exist inJamp to deal with the connectivity
failures that are typical in the Internet and in wireless net-
works.

Mobility Model
The main construction available inJamp to the implementa-
tion of mobile applications is calledcontainer. A container
is a group of objects and classes that can be dispatched to
another node of the network. The system provides methods
to create containers and also to insert and remove objects
and classes from containers. The option to move objects
and classes can be used to support operation in disconnected
mode since we can transfer in a single operation data and
code that an application needs to execute. Once the transfer
is completed, the application no longer depends on the net-
work to run. The programmer, however, can make the choice
to move only objects in containers when the destination node
already has the code to run the application. In this way, the
network load is reduced.

In order to receive and execute containers, fixed nodes or mo-
bile devices should provide acontextto this execution, i.e.,
contexts are services available in some nodes of the network
to receive and execute containers. InJamp, contexts can
also provideresourcesto this execution like, for example, a
data structure.

In wireless networks, however, it is not realistic to suppose
that it is always possible to move a container directly from
any contextA to another contextB. The first reason is that
B may be running in a mobile device that is not connected to
the network when the migration is requested. And the second
reason is thatB can be in an administrative domain different
fromA and a firewall protects access toB.

In order to solve these problems, the mobility model of
Jamp organizes the contexts of the network into a two level
hierarchy. The first level is composed bysystem contextsand
the second level byuser contexts. A system context is a ser-
vice that can receive containers from other contexts and then
proceed in one of the following ways: start a new thread
for the execution of the container or store the container in
secondary memory.The later option is chosen when the con-
tainer is shipped to a specific user of a system context. In
Jamp, system contexts should run in a node of the fixed net-
work that is always connected to the Internet and it should
be possible to send containers from other administrative do-
mains to this node.

A user context is always associated with a system context
and a user of the mobile application. From time to time, a
user context retrieves all the containers shipped to its user

that are stored in the associated system context. The execu-
tion of a container in a user context does not start automati-
cally after downloading it. This execution only starts after a
request from the user of the context. InJamp, user contexts
can run in mobile devices since they do not need to execute
continuously nor need a reliable connection to the Internet.

The system provides support to the so-calledobjective mi-
gration of containers [5]. This means that containers in the
system can only be moved from the outside of a container.
The move method only operates in containers that are not
active, i.e., no threads should be running in the objects of
the container when the migration is requested. Otherwise,
an exception is raised. In the design of the system the al-
ternative solution of stopping all the threads running in the
container was not chosen because it could leave the objects
of the container in an inconsistent state.

The mobility model ofJamp is similar to the one used by an
electronic mail system, which is the oldest and most popular
pushapplication available currently in the Internet. In this
analogy, a container can be compared to an electronic mail,
with the difference that containers have code and data and
not only text. A system context can be compared to a mail
server and a user context can be compared to a mail reader
system.

The mobility model ofJamp can also be compared to the
one used by a Java applet [1], which is the most used mobile
code application in the Internet. In this analogy, a system
context is similar to a Web server where applets are stored.
A user context can be compared to a Web browser where ap-
plets are executed, and a container is similar to an applet. But
unlike applets, containers support both code and data mobil-
ity. Containers can also be proactively shipped to users and
then support the construction ofpushapplications. The com-
munication model ofJamp, described in the next section, is
also more flexible than thesandboxmodel used by applets.

Communication Model
In Jamp, objects communicate by calling methods, as usual
in object oriented languages. A mobile object, i.e., an object
that is part of a container, can hold references to objects of
the same container and to objects of another container. Since
in the Internet it is not possible to suppose continued con-
nectivity, references inJamp can be in two states: connected
and disconnected, as explained below:

• A reference isconnectedwhen it references an object lo-
cated in the same context as the object that holds the ref-
erence.

• A reference isdisconnectedwhen it references an object
located in a different context from the object that holds the
reference.

A connected reference can be used to call methods of the



object that it references. But when a method is called using
a disconnected reference, an exception is raised. Therefore,
the system uses references to name objects, but only a con-
nected reference can be used to call methods of the named
object.

This is the fundamental difference between the communica-
tion model ofJamp and the one normally used in distributed
object systems, where proxies encapsulate access to remote
objects. In general, it is only feasible to support transpar-
ent access to remote objects in environments with a low fre-
quency of disconnections, like local area networks [4]. Be-
sides, proxies use non-official TCP/IP ports for remote com-
munication and firewalls usually forbid any traffic through
these ports.

A context inJamp also provides resources to the execution
of containers. A resource is a non-mobile object and thus
cannot be added to any container. Resources have a name
given by the programmer when the resource is created. Sim-
ilar to references to mobile objects, a reference to a resource
can also be connected or disconnected. A reference to a re-
source with namen is connected when there is a resource
with the same name in the current context; otherwise, the
reference is said to be disconnected.

Figure 1 gives an example of how connected and discon-
nected references work. In that figure,a andb are references
to mobile objects (represented by squares) andc is a refer-
ence to a resource (represented by a diamond). In case 1, a
container is running in the contextP and all the references
a, b andc are connected. Case 2 shows the configuration of
the system when the container moves to contextQ. In this
new situation, referencesa andc are connected but reference
b is disconnected. If the container returns to contextP , the
case 1 is reestablished.

(a)
(b)


(
c)


Context P
 Context
 Q


Context P
 Context
 Q


(b)
 (a)


(
c)


Case 1: Container running in context P


Resources


Resources


Resources


Resources


Case 2: Container was shipped to context Q


Figure 1: Connected and disconnected references

The communication model ofJamp allows objects in a con-
tainer to hold references to objects in other containers. Ob-
ject sharing across containers is an important feature in the

design of mobile applications. In case object sharing is not
supported, cross container communication should use only
copy-by-value semantics, which can be very inefficient. Be-
sides, copy-by-value can make complex the distribution of
mutable objects, i.e., objects whose states change continu-
ously, like application environment objects [2]. InJamp,
however, object sharing does create “static bindings” that
restrict the migration of containers, since it is possible to
change the state of references to external objects when the
container move.

3 Jamp IMPLEMENTATION
Jamp was implemented in Java, using JDK (Java Develop-
ment Kit) version 1.3. The system has about 2000 lines of
code. All communication inJamp is implemented at the
socket level and the system does not need any Java RMI sup-
port [12]. Java showed to be a good choice to implement a
mobile computation system because the language provides
support to code mobility, dynamic class loading, object seri-
alization, reflection, multithreading and distributed program-
ming. All these features are presented in the implementation
of Jamp.

The basic construction used in the implementation of the sys-
tem is calledmediator. A mediator is an internal object used
by the system to support container migration and also to sup-
port the notion of connected and disconnected references.
Every mobile object inJamp has a mediator, which is cre-
ated at the same time as its mediated object by thenewOb-
ject method. A mediator has two fields:guid andref .
Theguid field stores a value that uniquely identifies the me-
diated object at any node of the network. This value is the
result of the concatenation of the IP address of the machine
on which it was created and a unique value in that machine
across time. The second field of a mediator, calledref , is
the only reference that exists in the system to a mobile ob-
ject since the method to create a new object (newObject )
returns a reference to the mediator of the mobile object cre-
ated and not to the mobile object itself. Figure 2 shows a
container from the programmer’s point of view and the same
container as implemented by the system, with mediators rep-
resented by circles.

B
A


D


C


A


C


B


D


E

E


mediator


(a)
 (b)


Figure 2: Containers in the programmer’s view (a) and its
internal implementation (b)

Since thenewObject method returns a reference to the me-
diator of a mobile object, any method call using this refer-



ence will first execute a method in the mediator. Therefore,
mediators must implement all the methods in the interfaces
of theirs mediated object. The mediator implementation of
these methods should first check the value of theref field.
If this field has a non-null value, it can redirect the call to
the mobile object. Otherwise, it should raise an exception
of the typeUnavailableObjectException . Thus, in
the implementation of the system a connected reference is a
reference to a mediator that has a non-null mediated object.
And a disconnected reference is a reference to a mediator
with a null mediated object.

Suppose that we want to send a containerc =
{(m1, o1), (m2, o2), . . . , (mn, on)} to a contextd, whereoi
is an object of the container andmi is the mediator of this
object. First, we create a serialized representation of the con-
tainer, using a modified implementation of the serialization
mechanism provided in Java. In Java, the serialization of
an objectp includes the object closure ofp, i.e., all objects
that are reachable fromp fields. In the implementation of
Jamp we change this mechanism in order to restrict the se-
rialization of a container to objects that are included in this
container. Basically, the modified version of the serializa-
tion mechanism uses the reflection features of the language
to void any field in the container that references external ob-
jects. After this step, the method can thus call the default
serialization method since the object closure of the container
will not contain anymore external objects.

When the destination context receives the previous container
c it first de-serializes the representation ofc. In this process,
the destination context uses a class loader different from the
default class loader of Java [1]. The class loader used by
the system is an instance of the classJampClassLoader .
Usually, the default class loader retrieves the code of the
classes of a program from the file system of the workstation
where the program is running. However, inJamp the code
of a class can be part of a container and thus we need a cus-
tomized class loader that can retrieve classes not only from
local file systems but also from the serialized representation
of containers.

Mediators are also used to determine if a container is active
or not. A container is active if there is at least one thread
running in its object. InJamp, when a method is called, the
mediator of the called object increments a counter of calls
being executed in its container. Before returning from the
call, the mediator decrements this counter. The move method
checks this counter and raises anActiveContainerEx-
ception if it is greater than zero.

Mediators are generated inJamp using the notion ofdy-
namic proxy classthat is part of the reflection package of
JDK 1.3. A dynamic proxy class implements a set of inter-
faces specified at run-time [1].

4 RELATED WORK
Mobility is gaining momentum in the design of Internet ap-

plications. Java [1], for example, has introduced the notion
of code mobility in the Internet. Code mobility allows the
execution of applications in different nodes of the network,
despite architecture and operating system. Java applets, how-
ever, depend on the network to get access to data, and thus
the model is not robust to disconnections.

Recently mobile agents were proposed as an alternative
model to the construction of distributed applications in the
Internet. A mobile agent is a program that can migrate
from node to node in the network, carrying the state of its
execution [16]. Aglets [9], Ajanta [14],µCode [10] and
JavaSeal [3] are examples of Java mobile agent systems
which do not support the programming model proposed in
Section 2.

In Aglets and Ajanta, mobile agent classes are implemented
using a pre-defined class that comes with these systems. In
Ajanta, after migration, the code of the agent is downloaded
on demand from a code base server. Thus, the system is
not robust to disconnections. In Aglets, code is downloaded
on demand or is retrieved from a JAR file transferred along
with the agent. This mechanism requires the set of transfered
classes to be defined and fixed in configuration time.

In µCode, there is an abstraction, calledgroup, to define the
set of objects and classes that is transferred with an agent.
The system, however, does not provide support to communi-
cation across groups. Thus communication primitives should
be implemented at the application level. JavaSeal [3] also
provides an abstraction, calledseal, to the implementation
of mobile agents. Similar to containers, seals have a set
of objects and classes but programmers cannot add or re-
move classes from seals. In JavaSeal, synchronous message
passing via channels is the only inter-agent communication
mechanism present. Values exchanged over channels are
transmitted by deep copy, and sharing objects across seals
is not allowed. For some mobile applications, this can be
inefficient and cumbersome [2]

The style of mobility supported byJamp is inspired in some
process calculi that were proposed recently to model the no-
tion of mobile computation in the Internet such as the Ambi-
ent Calculus [5] and and the Seal Calculus [15].

5 CONCLUSIONS
This paper has presented a mobile computation system,
calledJamp, that uses mobile computation to deal with com-
munication failures in wireless networks. The programming
constructions available inJamp can be used topushto mo-
bile users code and data that makes disconnected operation
possible. The mobility model used inJamp organizes the
execution contexts of the network into a hierarchy. In this
way, the system supports the construction of applications
that do not depend on continued connectivity to move from
a node to another and that can run in several administrative
domains. The system also uses the notions of connected and
disconnected references to name and access objects across



containers.

A formal semantics for the programming model supported
by Jamp is under development. This semantics will al-
low users to prove properties of applications designed in the
model. As a case study,Jamp was used to implement part
of a conference reviewing system. As future work, we intend
to transform containers into protection domains and then ad-
dress the security issues that are relevant in any application
that executes in an open network like the Internet. We also
have plans to implement a cut-down version of the system in
the K Virtual Machine (KVM), the VM designed to run in
handheld devices [13].

REFERENCES

[1] K. Arnold, J. Gosling, and D. Holmes.The Java Pro-
gramming Language. Addison Wesley, 3rd edition,
2000.

[2] C. Bryce and C. Razafimahefa. An approach to safe ob-
ject sharing. InACM Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA), Oct. 2000.

[3] C. Bryce and J. Vitek. The JavaSeal mobile agent ker-
nel. InFirst International Symposium on Agent Systems
and Applications and Third International Symposium
on Mobile Agents, 1999.

[4] L. Cardelli. Abstractions for mobile computation. In
J. Vitek and C. Jensen, editors,Secure Internet Pro-
gramming: Security Issues for Mobile and Distributed
Objects, volume 1603 ofLecture Notes in Computer
Science, pages 51–94. Springer-Verlag, 1999.

[5] L. Cardelli and A. Gordon. Mobile ambients. In M. Ni-
vat, editor,Foundations of Software Science and Com-
putational Structures, volume 1378 ofLecture Notes
in Computer Science, pages 140–155. Springer-Verlag,
1998.

[6] B. Chandra, M. Dahlin, L. Gao, A.-A. Khoja, A. Nay-
ate, A. Razzaq, and A. Sewani. Resource management
for scalable disconnected access to web services. In
Tenth World Wide Web Conference, May 2001.

[7] J. J. Kistler and M. Satyanarayanan. Disconnected op-
eration in the coda file system.ACM Transactions on
Computer Systems, 10(1):3–25, Feb. 1992.

[8] G. H. Kuenning and G. J. Popek. Automated hoard-
ing for mobile computers. In16th ACM Symposium on
Operating Systems Principles, pages 264–275, 1997.

[9] D. Lange and M. Oshima.Programming and Deploy-
ing Java Mobile Agents with Aglets. Addison-Wesley,
1998.

[10] G. P. Picco.µCODE: A Lightweight and Flexible Mo-
bile Code Toolkit. InProceedings of Mobile Agents:
2nd International Workshop MA’98, volume 1477 of
Lecture Notes on Computer Science, pages 160–171.
Springer-Verlag, Sept. 1998.

[11] M. Satyanarayanan. Fundamental challenges in mobile
computing. InACM Symposium on Principles of Dis-
tributed Computing, May 1996.

[12] Sun Microsystems. Java Remote Method Invocation
Specification, Oct. 1998.

[13] Sun Microsystems. Java 2 Plataform Micro Edition
Technology for Creating Mobile Devices, May 2000.

[14] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. D.
Singh. Ajanta - a mobile agent programming system.
Technical Report TR98-016 (revised version), Depart-
ment of Computer Science, University of Minnesota,
1999.

[15] J. Vitek and G. Castagna. Seal: A framework for secure
mobile computations. In H. E. Bal, B. Belkhouche, and
L. Cardelli, editors,Internet Programming Languages,
volume 1686 ofLecture Notes in Computer Science.
Springer-Verlag, 1999.

[16] J. E. White. Mobile agents. In J. Bradshaw, editor,Soft-
ware Agents, pages 437–472. AAAI Press/MIT Press,
1997.


