
A Java�based Simulator for Ad Hoc Mobile

Distributed Systems

Fernando Pereira�� Marco Tulio Valente�� Roberto S� Bigonha�� and Mariza A�
S� Bigonha�

� Department of Computer Science� Federal University of Minas Gerais� Brazil
� Department of Computer Science� Catholic University of Minas Gerais� Brazil

ffernandm�bigonha�marizag�dcc�ufmg�br� mtov�pucminas�br

Abstract� This paper presents a Java�based simulator for the Peer�
Spaces coordination model� PeerSpaces is a shared space coordination
model designed for ad hoc mobile networks� The model is based on the
concept of tuple spaces �rstly proposed by Linda� In order to address the
dynamic environment that characterizes ad hoc networks� PeerSpaces
does not assume the presence of any centralized structure for commu�
nication and coordination� This paper also describes an algorithm for
termination detection in ad hoc networks built on PeerSpaces�

� Introduction

Ad hoc networks are wireless networks that do not rely on any based station
infrastructure for communication ���� ��� Instead� hosts depend on each other to
send and receive messages� In ad hoc networks� two hosts can exchange messages
whenever they happen to be at communication range� Bluetooth is an example of
network technology that makes this form of wireless communication possible �����

Designing applications for such networks presents many interesting prob	
lems ��
� ���� Particularly� coordination is a challenging task� Since a user can
�nd himself in a di
erent network at any moment� the services available to him
change along the time� Thus� computation should not rely on any prede�ned and
well known context� Also� coordination should not assume the existence of any
centralized node because permanent availability of this node cannot be granted�
Communication should also be uncoupled in time and space� meaning that two
communicating entities do not need to establish a direct connection to exchange
data nor must know the identity of each other�

This paper describes a Java based simulator for the PeerSpaces model and a
distributed algorithm built on this simulator� PeerSpaces is a coordination model
for ad hoc networks based on Linda ���� In Linda� several process communicate
through a central data repository called tuple space� Processes communicate
by inserting �out�� reading �rd� and removing �in� ordered sequences of data
from this space� Tuple retrieving is associative because it is based on a pattern
against which a matching tuple is non	deterministically chosen from the space�
If a matching tuple is not found� the caller process is suspended until such tuple
is posted in its tuple space�



Communication in Linda presents many characteristics that are desirable
in mobile environment� Particularly� communication is asynchronous and un	
coupled in time and space� Communicating processes do not need to create a
socket	like connection to exchange data� The associative mechanism allows com	
munication based on the contents of the messages rather than on their addresses
or other identi�ers� Moreover� the blocking semantics used to retrieve tuples
automatically provides synchronization among processes� All these features are
important in mobile systems� since they are characterized by dynamic and short	
lived patterns of communication

In traditional Java	based Linda systems� like TSpaces ���� and JavaSpaces
���� the tuple space is a centralized and global data structure that runs in a
prede�ned service provider� In the base station scenario this server can easily
be located in the �xed network� However� if operations in ad hoc mode are
a requirement� this is not possible because in this case the �xed infrastructure
simply does not exist� This suggests that standard client�server implementations
of Linda are not suitable for ad hoc scenarios� since they assume a tight coupling
between client and servers and the permanent availability of the latter�

Aiming to answer the new requirements posed by ad hoc mobile computing
systems� PeerSpaces departs from the traditional client�server architecture used
in Linda and push towards a completely decentralized one� In this model� each
node �or peer� has the same capabilities� acting as client� shared space provider
and as router of messages� In order to provide support to operations in ad hoc
mode� service lookup is distributed along the network and does not require any
previous knowledge about the network topology�

This paper is organized as follows� In Section �� the PeerSpaces model is
informally presented� including its main design goals� concepts and primitives�
Section � provides an overview of a stochastic simulator for PeerSpaces� Section �
presents the implementation and simulation in PeerSpaces of a termination de	
tection algorithm� Detecting the termination of di
using computation is an im	
portant problem in distributed systems and is used in this paper as an example
of algorithm that can be built on PeerSpaces� Finally� Section � concludes the
paper�

� PeerSpaces� A Coordination Model for Ad Hoc Mobile

Systems

PeerSpaces assumes an ad hoc network of mobile devices� Thus� there is no infras	
tructured network and hosts may connect or disconnect at any moment� As usual
in ad hoc settings� two hosts can communicate when their wireless interfaces are
in the same vicinity� The model does not assume any centralized structure and
does not promise to provide any kind of shared memory abstraction encompass	
ing connected hosts� Instead� it fosters a peer to peer model of computation�
where any connected node has the same capabilities� Furthermore� hosts can
discover each other using a decentralized lookup service and then communicate
using remote primitives�



The main concepts used in PeerSpaces are the following�

Hosts The model assumes that hosts are mobile devices� Each host has its own
local tuple space and a set of running threads� The host	level tuple space has
three main purposes� Firstly� it is used for local coordination among threads
running in the host� Secondly� it is used for remote communication� since there
are primitives in the model to retrieve and output messages in the space of
remote hosts� Thirdly� it is used to publish services and to retrieve the results of
lookup queries� A service is any entity available in the host that can be useful to
other hosts� Services in PeerSpaces are de�ned by tuples� whose �elds describe
the attributes of the service� Finally� a lookup query is a query performed in the
network to discover services�

Network Mobile hosts in the model are connected by a wireless and ad hoc
network� As usual in such networks� connectivity is transient and determined by
the distance among hosts� Consequently� the topology of the network is contin	
uously changing� Moreover� any host in the network can act as router� relaying
messages between nodes that are not directly connected�

��� PeerSpaces Primitives

PeerSpaces de�nes a set of primitives to assemble applications using the previ	
ous de�ned concepts� The set of primitives of PeerSpaces is a superset of the
primitives originally proposed by Linda�

As in Linda� the out v primitive inserts tuple v into the tuple space of the
local node� The remote outh� v primitive inserts tuple v in the tuple space of
host h� Remote out is asynchronous meaning that if host h is not reachable the
operation immediately returns after leaving tuple v stored in space of the issuing
host h�� When a communication path is established between h� and h the tuple
is automatically transmitted to its �nal destination�

The in p� x primitive removes a tuple that matches pattern p from the local
space and binds it to x� If there are several matching tuples� one of them is
chosen non	deterministically� If there is no matching tuple� the calling thread
remains blocked until the operation can be completed� The remote operation
speci�es a remote host name as a parameter as in inh� p� x�

The non	blocking version of in is called inp �probe in �� If it is not possible
for inp p� x to match a tuple� a null reference is bound to name x� There is also
a remote version for the inp operation� The last primitive of the in family is
called ing� The operation ing p� a�� retrieves from the local tuple space all tuples
which match pattern p and stores them into the array a� The operation does not
block the calling thread if no tuple is found�

In order to retrieve information from tuple spaces without removing data
PeerSpaces provides a reading operation� The rd p� x operation is similar to a
local in but it does not change the state of the tuple space� The remote version
of the operation is rdh� p� x and the non blocking version is named rdp� Like



rd� the non	blocking operation also has a remote version� Finally� rdg p� a�� �lls
the array a with all tuples in the local space matching pattern p�

PeerSpaces extends Linda with a lookup primitive used to discover services
in the network� Since the model is designed for use in ad hoc networks� this
primitive does not make use of any central authority� as a directory service�
Instead� the execution of the lookup primitive� called �nd � is distributed along
the federation of connected devices� The �nd p operation queries hosts in the
network for tuples matching pattern p� All matching tuples found are copied
asynchronously to the local space of the host that has called the operation�

For example� a PDA	based auction system that wants to �nd other PDA�s
users selling ��	inch TVs despite their brand� price and seller can issue the follow	
ing operation� �nd hmall� sellersi� htv� ��� �� �� �i� The operation will trigger a
query for tuples that match the pattern htv� ��� �� �� �i in the hosts of subgroup
sellers of the root group mall� Matching tuples� like htv� ��� foo� ���� hi� where
foo� ��� and h are respectively the TV�s brand� price and the name of the mobile
host o
ering the TV� will be outputted in the local space of the PDA sometime
after the operation was issued� The PDA system can then retrieve these answers
using the local in primitive and place an o
er v using the remote operation
outh� v�

The �nd primitive originates a query that is propagated to all nodes of
the network� Basically� the host that originated the query transmits it to its
neighbors� that retransmit it to their neighbors and so on� until the network
graph is covered� This protocol is similar to the one used by distributed �le
sharing systems in the Internet� like Gnutella ���� Not surprisingly� the logical
network created by Gnutella over the �xed Internet presents many characteristics
that are typical of wireless and ad hoc networks�

Often it is useful to query connected hosts for a service and keep the query
e
ective until such service is available� In this way� a client does not need to pe	
riodically send lookup queries to detect new services that may become available
since the last query was issued� In PeerSpaces� lookup queries that remain ac	
tive after their �rst execution are called continuous queries� Continuous lookup
queries are issued adding the lifetime t to the �nd primitive� �nd p� t� This
primitive will search hosts of the network for available services matching pattern
p and for services that may become available in t time units�

� A Java�based Simulator for PeerSpaces

In order to design and test distributed ad hoc systems in PeerSpaces� a simulator
was implemented for the model� The simulator is written in Java and is available
as a Java package� For tuple space manipulation� the simulator uses a Java	based
tuple space system named LighTS �
��

The simulator supports a stochastic model of simulation� The behavior of
network elements is based on probabilistic parameters� The simulation is driven
by a discrete time and random events are generated following the parameters
de�ned by the user� The user specify the number of nodes in the network and



the size of the grid where the nodes are located� For each node� the user de�nes
its pattern of movement and the range of its wireless interface�

In order to implement and test a distributed algorithm� the user has to extend
some prede�ned classes and interfaces� Each algorithm is a set of classes that
implements the Command interface� This interface has two methods� eval �to
evaluate the command guard� and exec to execute the command action� Several
algorithms can be composed together in order to create a more complex one�

The simulator was implemented in two layers� In the �rst layer the user has
the illusion that communication between two entities is carried out directly� In
this layer� the user makes use of the primitives of the model� The second layer
implements the routing protocol used by the PeerSpaces primitives� In this layer�
messages are transmitted only between adjacent nodes�

The routing algorithm implemented in the second layer of the simulator is
based on �ooding ����� According to this technique� after receiving a message
whose �nal address is not its own� a node send the message to all its neighbors�
Although the implementation of this algorithm is straightforward� the exchange
of information between two nodes that are not neighbors can generate a large
number of messages in the network� On the other hand� �ooding is fast and
reliable in the sense that if there is a path connecting sender and receiver� then
a message will be delivered in the shortest possible time� The problem of loops in
the transmission of messages is solved by assigning identi�ers to each message�

� Example� A Termination Detection Algorithm

In order to introduce the design of distributed algorithms within PeerSpaces� an
algorithm for termination detection of di
using computation is described next�
Termination detection is an important problem in distributed systems� Basically
the problem consists in a node getting the information that a computation pre	
viously spread through the network has been completed by every element in the
system� For instance� in some public key cryptographic systems each node must
change its public key after a certain amount of time for the sake of security� If
such a system is used in a distributed environment� when a node changes its key
it should be assured that each other element of the network knows the new key
before sending secure messages�

The solution described next was �rst presented in ���� and is based on a well	
known solution proposed by Dijkstra and Scholten ���� The approach adopted
is divided in three phases� In the �rst phase� a partial ordering is built on the
network� starting with a root node in such a way that in the end of the process�
any nodes a� b and c will have di
erent identi�ers� Those identi�ers must follow
the transitive property on the less than operation� meaning that if a � b and
b � c than a � c�� The second phase of the algorithm involves the activation of
idle nodes through the propagation of the job� Upon activation� a node becomes
the child of the activating node and enters the active state� In the third and

� In the algorithm� a � b means that the rank of node a is smaller than the rank of b�



last phase� the termination of the distributed computation is actually detected�
Each node after terminating the requested job� passes this information to a node
of higher rank and eventually all termination reports will reach the root node�
which has the highest rank�

Figure � describes the main variables and auxiliary functions used by the
guarded commands of the algorithm�

n Host identi�er
root Root node identi�er
� Name of the local tuple space of the node
count�t� Number of occurrences of tuples matching pattern t
isBetter�r�� r�� True if r� is a better rank than r�

Fig� �� Global variables for node n and auxiliary functions

The termination detection algorithm is implemented in three separated mod	
ules� The �rst one creates a partial ordering in the network� Since this module
implements a well	known algorithm� it will be not described in this paper� The re	
sult of this algorithm is the insertion of a tuple in the format h�rank�� root� ranki
into the tuple space of each connected node� In this tuple� root is the name of
the node which started the ranking process and rank is the position of the node
in the ordered sequence� The complete implementation of the partial ordering
algorithm can be found at �����

��� Job Di�usion

Job di
usion begins with the root node and follows a �ooding pattern of trans	
mission� Each node� after receiving a job� activates all of its neighbors by re	
transmitting the job� The job executed in each node is represented by a tuple
that matches the pattern h�job�� no� ttli� where no is the node that sent the tuple
and ttl is an integer used to simulate the time needed to �nish the execution of
the job�

The activation of a node by another one is recorded by both participants�
but in di
erent ways� The node na that has received the job posts the tuple
h�child�� nai in the tuple space of the node that sent the job� Node na then
changes its states from idle to active� which is indicated by the insertion of the
tuple h�activeJob�� �� �i in the tuple space of the just activated node� Figure �
describes the commands responsible for the job di
usion� The value job duration

in the command StartJobDi�usion simulates the time that each node will
need to �nish the task�

��� Detecting Termination

The tuple h�activeJob�� �� ttl as Integeri simulates the job assumed by a node� ttl
is an integer representing the job complexity� At each iteration of the command



StartJobDi�usion
Guard�

h�job�� n� Integeri �� � � n � root
Action�

out h�job�� n� job durationi

JobPropagation
Guard�

h�activeJob�� String� Integeri �� � � count �h�job�� String� Stringi	 � �
Action�

rdp h�job�� s� as String� ttl as Integeri� �
if�s� �� n	

out s�� h�child�� ni
� neighbor v of n do

out v� h�job�� n� ttli
out h�activeJob�� s�� ttli

Table �� Job di�usion

nodeExecuteTask the ttl value is decremented by one until it reaches zero�
meaning the job is completed� When a node �nishes the task it was given� it
generates an idle report by putting a tuple matching h�idleReport�� n� childreni
in its local tuple space� In the next step the idle report is propagated to a node
with a better rank� A node performs this action by sending to every neighbor
a tuple containing information about the idle reports it currently holds� This
tuple� called node info� contains the rank� activated children and the identi�er
of the node� Upon receiving such tuple� the receiving node compares its rank
with the rank of the remote node� If the local rank wins� the receiving node
attempts to retrieve the idle report tuple from the remote node� A non	blocking
inp operation is used in this case because as the node info may be sent to several
nodes more than one in operation could be performed over the same tuple�

The propagation of idle reports does not continue forever because there is
not a node with a better rank than that of the root node� When receiving the
idle reports the root attempts to build and prune a tree of activated nodes� If
it is possible for the root to recursively remove all the leaves from the tree the
termination algorithm is �nished�

� Related Work

Many characteristics of PeerSpaces have been inspired in �le sharing applica	
tions popular in the Internet� like Napster ����� Freenet ��� and Gnutella ����
Particularly� the peer to peer network created by Gnutella over the �xed Inter	
net presents many properties that are interesting in mobile settings� like absence
of centralized control� self	organization and adaptation to failures� PeerSpaces
is an e
ort to transport and adapt such characteristics to mobile computing
systems�

Jini ��� is a distributed object infrastructure that adds support to dynamic
service registration and lookup to Java RMI ����� However� the system assumes
the existence of a central server to run the lookup service� which restricts its use



NodeExecuteTask
Guard�

h�activeJob�� s� as String� ttl as Integeri � � � ttl � 

Action�

inp h�activeJob�� s� as String� ttl as Integeri� �
out h�activeJob�� s�� ttl� �i
if �ttl� � � 
	

Tuple �� children

ing h�child��Stringi� children
� h�child�� si as Stringi � children do

out h�idleReport�� n� s�js�j � � � ski

PropagateIdleReports

Guard�
h�nodeInfo�� String� String� String� Stringi �� � �
h�idleReport��String�Stringi � � � n �� root

Action�
rdp h�rank�� root as String� rank as Stringi� �
rdp h�idleReport�� father as String� children as Stringi� �
� neighbor v of n do

out v� h�nodeInfo�� father� children� rank� ni

AcceptIdleReports

Guard�
h�nodeInfo��String�String� String�Stringi � �

Action�
inp h�nodeInfo�� f as String� ch as String� r as String� s as Stringi� �
rdp h�rank�� root as String� localRank as Stringi� �
if �isBetter�localRank� r�	

out h�idleReport�� f� chi
inp s� h�idleReport�� f� chi� x

PruneTree
Guard�

count �h�idleReport�� String� Stringi	 � � � h�done�i �� �
Action�

inp h�idleReport�� father as String� children as Stringi� �
inp h�idleReport�� child as String� 	i� �
if � � � h�idleReport�� root� 	i 	

out h�done�i
else

out h�idleReport�� father� children � childi

Table �� Termination detection

to networks with base station support� The Jini framework also includes a Linda	
like shared data space implementation� called JavaSpaces ���� Once more� the
system assumes that the data space resides in a central server� which precludes
its utilization when operating in ad hoc mode� The same problem is shared by
other client�server implementations of Linda� like TSpaces �����

Lime ���� �� introduces the notion of transiently shared data space to Linda�
In the model� each mobile host has its own tuple space� The contents of the local
spaces of connected hosts are transparently merged by the middleware creating
the illusion of a global and virtual data space� Applications in Lime perceive
the e
ects of mobility by atomic changes in the contents of this virtual space�
However� even when used in a small federation of hosts� the main problems of
transiently shared spaces are e�ciency and scalability� The reason is the amount
of global synchronization required to assure the consistency of the virtual space�



Particularly� query operations must run as a distributed transaction to retrieve
matching tuples� Moreover� the model allows users to de�ne the destination tuple
space of an outputted tuple� This leads to the notion of misplaced tuples� i�e��
tuples that are temporally in a wrong tuple space waiting for the connection to
its target host� Thus� the host engagement protocol also requires a distributed
transaction to deliver misplaced tuples� Finally� disengagements in Lime should
be announced in order to remove event handlers placed at remote hosts�

There are several simulators for mobile distributed systems� Probably� the
most well known are ns ���� and GloMoSim ����� They do not support� however�
the implementation of distributed algorithms using high level abstractions� like
tuple spaces�

� Conclusions and Future Work

In this paper we have presented a simulator for PeerSpaces� a coordination model
for mobile computing systems� PeerSpaces was designed to overcome the main
shortcoming of shared space coordination models when used in ad hoc wireless
networks � the strict reliance on the traditional client�server architecture � while
preserving the main strengths of such models � the asynchronous and uncoupled
style of communication� The design of the model has privileged observance to
ad hoc networks principles� As usual in such models� transparency is sacri�ced
in name of scalability and soundness� In order to illustrate the programming
approuch proposed by PeerSpaces� a termination detection algorithm was pre	
sented�

There are many research opportunities in the PeerSpaces model� For instance�
PeerSpaces lacks mechanisms to control the access to the shared space� Also� we
intend to investigate the use of more e�cient routing algorithms�

The PeerSpaces simulator� including its source code� can be downloaded from
the URL� http���www�dcc�ufmg�br�fernandm��peerspaces�

References

�� K� Arnold� The Jini Speci�cations� Addison�Wesley� �nd edition� �����
�� I� Clarke� O� Sandberg� B� Wiley� and T� Hong� Freenet	 A distributed anonymous

information storage and retrieval system� In ICSI Workshop on Design Issues in

Anonymity and Unobservability� International Computer Science Institute� �����

� E� W� Dijikstra and C� S� Scholten� Termination detection for di�using computa�

tion� Information Processing Letter� i ����
� Aug �����
�� E� Freeman� S� Hupfer� and K� Arnold� JavaSpaces principles� patterns� and prac�

tice� Addison�Wesley� Reading� MA� USA� �����
�� D� Gelernter� Generative communication in Linda� ACM Transactions on Pro�

gramming Languages and Systems� ���
	������� Jan� �����
�� S� Giordano� Mobile Ad�Hoc Networks� chapter of Handbook of Wireless Networks

and Mobile Computing� John Wiley � Sons� �����
�� Gnutella Home Page� http���gnutella�wego�com�
�� LighTS Home Page� http���lights�sourceforge�net�



�� A� L� Murphy� G� P� Picco� and G��C� Roman� Lime	 A middleware for physical and
logical mobility� In Proceedings of the ��st International Conference on Distributed

Computing Systems� May �����
��� Naspter Home Page� http���www�napster�com�
��� NS Home Page� http���www�isi�edu�nsnam�ns��
��� F� M� Q� Pereira� Implementation of a termination detection algorith in the

peerspaces model� Technical report� Universidade Federal de Minas Gerais� Brazil�
Sept� �����

�
� C� Perkins� Ad Hoc Networking� Addison�Wesley� �����
��� G� P� Picco� A� L� Murphy� and G��C� Roman� Lime	 Linda meets mobility� In

D� Garlan� editor� Proceedings of the ��st International Conference on Software

Engineering� pages 
���
��� ACM Press� May �����
��� R� Mettala� Bluetooth Protocol Architecture� http���www�bluetooth�com�
��� C� Roman and J� Payton� A termination detection protocol for use in mobile ad hoc

enviroment� Technical Report WUCS������� Washington University� Department
of Computer Science� St� Louis� Missouri� �����

��� G��C� Roman� G� P� Picco� and A� L� Murphy� Software Engineering for Mobility	
A Roadmap� In A� Finkelstein� editor� The Future of Software Engineering� pages
�������� ACM Press� �����

��� M� Satyanarayanan� Fundamental challenges in mobile computing� In ACM Sym�

posium on Principles of Distributed Computing� May �����
��� A� S� Tanenbaum� Computer Networks� Prentice Hall� 
rd edition� �����
��� A� Wollrath� R� Riggs� and J� Waldo� A distributed object model for the Java

system� In �nd Conference on Object�Oriented Technologies � Systems� pages
�����
�� USENIX Association� �����

��� P� Wycko� S� W� McLaughry� T� J� Lehman� and D� A� Ford� TSpaces� IBM

Systems Journal� 
��

	�������� Aug� �����
��� X� Zeng� R� Bagrodia� and M� Gerla� Glomosim	 A library for parallel simulation of

large�scale wireless networks� InWorkshop on Parallel and Distributed Simulation�
pages �������� �����


