
4

5th Workshop on Formal Methods

Using Denotational Semantics in the Validation of

the Compiler for a Mutation-Oriented Language

Adenilso da Silva Simão1, José Carlos Maldonado1, and Roberto da Silva Bigonha2

1 Departamento de Ciências de Computação e Estat́ıstica
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo – Campus de São Carlos

Av. Trabalhador Sãocarlense, 400
Cx. Postal 668
CEP. 13560-970

São Carlos — São Paulo — Brazil
{adenilso,jcmaldon}@icmc.usp.br

2 Departamento de Ciências de Computação
Instituto de Ciências Exatas

Universidade Federal de Minas Gerais

Av. Antônio Carlos, 6627
CEP. 31270-010

Belo Horizonte — Minas Gerais — Brazil
{bigonha}@dcc.ufmg.br

Abstract. Systems which produce large amount of output are very difficult
to teste due to the expense of checking whether the outputs are correct or not.
In other words, there is no simple oracle that can establish the acceptance
of the outputs. For such systems, one plausible alternative is to use a second
implementation as an automated oracle. The automated oracle is then run
with the test cases applied to the system under testing and the outputs are
compared.
MuDeL is a language for describing mutant operators and is supported
by mudelgen, a system that generates the actual mutants from a given
description. Usually, the number of mutants that are generated is very large.
Therefore, testing mudelgen is very difficult. To tackle this problem, we
have described the semantics of MuDeL using denotational semantics and
developed an automated oracle by implementing this semantics in the SML
language. In this paper, we describe the results of this approach. We indicate
how using a formal framework (i.e., denotational semantics) and a functional
language (i.e., SML) helps improving the confidence of the mudelgen system.

Keywords: Denotational Semantics, Functional Programming, SML, Mu-
tation Testing, Testing

1 Introduction

The applicability and feasibility of testing rely heavily on the existence and tractabil-
ity of the oracle problem and the availability of supporting tools. An oracle is a
mechanism that is able to determine whether the output obtained by executing the
system under test with a given input is correct or not. Although the existence of an
oracle for a given system is usually simply assumed [14, 15], there are some classes

5

5th Workshop on Formal Methods

of systems for which no such a mechanism exists. As pointed out by Weyuker [14],
these systems can be regarded as non-testable. Examples of non-testable systems
are those for which the amount of output generated is prohibitively large for being
exhaustively examined. Even if an oracle potentially exists, it is very costly to
determine the correctness of the resulting output.

An important and desirable feature of an oracle mechanism is that the decision
of acceptance must be taken on consistent grounds. This emphasizes the importance
of the system specification. The specification should define the expected behavior of
the system. It can range from informal (e.g.natural language) to formal approaches
(e.g.denotational semantics), passing through semi-formal ones (e.g.UML). In some
cases, formal methods are required, since they allow rigorous verification of the
results, as well as provide a basis for automating the oracle.

MuDeL [11] is a transformational-based language developed for describing mu-
tant operators [4, 5, 8], which are key components in mutation testing [3, 6] —
a fault-based testing criterion. Assuming a fixed grammar, a mutant operator de-
scription in MuDeL can be thought of as a tree manipulator. A source program is
converted into a syntax tree. After execution, a set of trees is produced. The actual
mutants are obtained by traversing these trees. We developed a system — mudelgen

— for compiling a mutant operator description and actually generating the mutants.
The number of mutants generated is often very large and manually checking them
is very costly and error-prone. This fact severely hinders the tractability of the
oracle. Therefore, testing mudelgen is a hard task, due mainly to the amount of
output yielded, and we can consider it a non-testable system. To cope with this
problem, we adopted an approach that can be summarized in two steps. Firstly,
we employed denotational semantics [1, 12] to formally define the semantics of the
MuDeL language. Secondly, supported by the fact that denotational semantics
is primarily based on lambda calculus, we used the language SML [7], which is
also based on lambda calculus, to code and run the denotational semantics of
MuDeL. We included the SML implementation into mudelgen and introduce a
new executing mode: the testing mode. In the testing mode, both the actual and
SML implementations are executed and the mutants are compared. Any discrepancy
is reported. With this approach, we can automatically derive the expected output
and provide an automated oracle.

This paper is organized as follows. Basic concepts needed for the discussion in
the remaining sections are presented in Section 2. In Section 3 we introduce the
MuDeL language and informally present its semantics. The formal, denotational
semantics of the MuDeL is presented in Section 4. In Section 5 we illustrate how
this semantics can be mapped onto SML code, allowing its execution. The overall
execution schema of the oracle is also presented. Finally, in Section 6 we make a
general discussion on the strengths and limitations of our approach and point some
future work.

2 Basic Concepts

2.1 Mutation Testing and Mutant Operators

Mutation Testing [3, 6] is a testing approach that has been proposed to assess the
quality of a test case suite in revealing some specific classes of faults. In this sense,
Mutation Testing can be classified among the fault-based testing techniques. The

6

5th Workshop on Formal Methods

main idea behind Mutation Testing is to employ a set of alternative products (the
so-called mutants) of the product under test (the original product). These mutants
are derived from the original product through some syntactical changes made to
induce specific faults in the product. Then, the ability of a test case suite in revealing
those faults is estimated by running the mutants and comparing their results against
the result of the original product in the same test cases.

The faults considered to generate the mutants are based upon knowledge about
errors that typically occur during the software development and are usually related
to a fault model. In the Mutation Testing approach, the fault model is partially
embedded in the mutant operators [8]. From an abstract viewpoint, a mutant op-
erator is a function that takes a product as input and generates a set of products
in which the fault modeled by that particular operator is injected. The fault model
has great impact in the Mutation Testing cost and effectiveness, and, hence, so
do the mutant operators. In general, when the Mutation Testing is proposed for
a particular language, one of the first steps is to describe the fault model, part of
it usually in the form of a mutant operator set. The fault model, as well as the
mutant operator set, has to be assessed and evolved to improve its accuracy w.r.t.
to the language in question. This is usually made by theoretical and/or empirical
analyses. Specifically for empirical analysis, it is necessary to design and construct
a prototype or a supporting tool, once the manual generation of mutants is very
costly and error-prone. However, the tool design and construction are also costly
and time-consuming tasks. An approach often used to tackle this problem is to
establish prototyping mechanisms that provide a low-cost alternative, easing the
experimentation with the mutant operators without requiring too much effort to be
expended in the implementation of supporting tools. One of the primary motivations
of the MuDeL language (and mudelgen thereby) is to provide such a mechanism.

2.2 Grammars and Syntax Trees

In this section we present a brief introduction of grammar and language theories,
needed for the discussion that follows. A thorough presentation can be found else-
where [10]. Syntax grammars are finite devices to describe usually infinite languages.
Given a grammar G, we have L(G) as the set of all sentences that can generate
by the productions in G. Most, if not all, programming or computer language
is characterized by a grammar. Grammars can be classified based on the kind of
productions they possess. An important class is the context-free grammars. They
are simple and expressive enough to catch most constructions that are usual in com-
puter languages. Moreover, the algorithms to recognize them are computationally
tractable. Context-free grammars are usually described in BNF [13]. We will refer to
them as BNF grammars, as a shortcut for context-free grammar described in BNF.
A BNF grammar G is formed by a 4-tuple G = (N, T, S, R), where N is the set of
non-terminal symbols, T is the of terminal symbols, S ∈ N is a non-terminal symbol
referred to as initial symbol, and R is the production rules (with R ⊆ N ×(N ∪T)∗).
Rather informally, a production rule of the form (n, α) states that the non-terminal
symbol n (the left-hand symbol) can be replaced by the sequence α (the right-hand

symbol sequence) of terminal and non-terminal symbols without “inflicting” the
grammar. From a sequence γ〈n〉δ, we can derive another sequence of form γαδ, for
any production (n, α). The language L(G) defined by G is the set of all sequences of
terminal symbols that can be derived from the initial symbol S with the productions

7

5th Workshop on Formal Methods

in R, i.e., ϕ ∈ L(G) if and only if ϕ ∈ T ∗ and S ⇒ . . . ⇒ ϕ. The derivation of ϕ
from S can be summarized in a syntax tree of ϕ. The syntax tree is a tree where
the non-leaf nodes are non-terminal symbols, the leaf nodes are terminal symbols,
and the root node is the initial symbol. If a node 〈n〉 has the children nodes with
labels α1, α2, . . . , αk, then there exists a production of form 〈n〉 ::= α1α2 . . . αk. If
by collecting the terminal symbols in a depth-first, left-to-right traversal of a syntax
tree t of grammar G we obtain a sequence ϕ, then t is a syntax tree of ϕ w.r.t. G.

We introduce a set M of meta-variables and extend the syntax tree by allow-
ing for leaves to be meta-variables as well as terminal symbols. Moreover, in this
extension, the root node can be any non-terminal symbol (not only the initial one,
as in syntax trees). We call these extended syntax trees pattern trees, or, if it is
unambiguous from the context, just patterns. Each meta-variable has an associated
non-terminal symbol, which is called its type. A meta-variable can be either free or
bound. Every bound meta-variable is associated to a sub-tree that can be generated
from its type. As a way to distinguish from ordinary identifiers, we prefix the
meta-variables with a colon ‘:’. In the MuDeL language, the simplest pattern is
formed by an anonymous meta-variable, as its root node. This pattern is expressed
just by the non-terminal symbol that is its root node enclosed in squared brackets.
For example, [A] is a pattern whose root node is an anonymous meta-variable of
type 〈A〉. In a more elaborated pattern definition, the non-terminal root symbol is
put in squared brackets, as before, but following it, in angle brackets, is included a
sequence of terminal symbols and meta-variables that should be parsed to generated
the pattern tree. For example, [S< (:a) ∗ :b>] is a pattern (for a given grammar)
whose type is S and which includes two meta-variables, namely, ‘:a’ and ‘:b’. Note
that inside the angle brackets the grammar of the product, rather than the MuDeL’s
grammar, is to be respected.

There are two main operations in the MuDeL language that involve syntax and
pattern trees: matching and replacing. For matching, we take two pattern trees c
and m and try to unify them, using the same algorithm as the Prolog language [2].
A matching can either fail or succeed. In case of success, the meta-variables in the
pattern tree are unified (i.e., bound) either to a closed pattern tree or to another
meta-variable, in a way that makes them unrestrictedly interchangeable. In case of
failure, no meta-variable unification occurs. For replacing, we take three patterns
c, r and b, try to unify c with r and, in case of success, substitute c by b. This
is actually the most general operation, in that the matching is just a special case
where b equals r, i.e., no change is made at all. A replacement, when occurs, takes
place after the unification of c and r. Thus, meta-variables can be used to make the
pattern b refer to some parts of c and/or r.

3 Informal Introduction to MuDeL

The MuDeL language is concerned with describing how the syntax tree of the
original program is to be changed in order to generate the syntax trees of the
mutants. This is basically accomplished by composing matching and replacing oper-
ations. Each basic operation has a usual semantics, which can be tuned by applying
some modifiers. There are also some meta-operations that can be used to control
how and whether the mutants are generated. Therefore, the fundamental elements
of MuDeL are basic operations, modifiers, combinators and meta-operations. In

8

5th Workshop on Formal Methods

the next sections we provide a brief description of these elements, needed for the
discussion in Section 4. A more thorough description can be found in [11].

3.1 Basic Operations

There are three basic operations in the language. In each operation, there is an
implicit context tree. How this context tree is used depends on the operation in
consideration. An operation can either succeed or fail. If an operation fails, the
mutant in question is not generated.

matching operation A matching operation“match m” demands the pattern m be
matched (i.e., unified, borrowing the term from the language Prolog [2]) against
the context tree. It succeeds if a unification exists, and fail otherwise.

replacing operation A replacing operation “replace r by b” demands the pattern
r be matched against the context tree and, if a unification exists, the context
tree is replaced by the pattern b.

grouping operation The grouping operation1 “((op))”, where op is an operation,
has the purpose of grouping the scope of modifiers, overriding precedences of
combinators and delimiting the scope of a cut operation, explained later.

3.2 Modifiers

There are three modifiers we can apply to a basic operation. Each of them can be
applied (prefixed) at most once to the same operation.

context definition The context definition “:m @@ op” is used to define the tree (if
any) bound to the meta-variable :m as the context of the modified operation op.

negation The negation modifier “˜ op” is used to invert (negate) the result of the
modified operation. That is, if op succeeds, the negated operation ˜ op fails.
Otherwise, if op fails, the negated operation ˜ op succeeds with no unification.

in depth The in depth modifier “∗ op” is used to indicate that the modified opera-
tion op is to be applied not only to the context tree, but also each of its sub-trees,
recursively. This implies that in this point several alternatives of executions are
possible. In the execution semantics of MuDeL, every possible alternative will
be tried.

3.3 Combinators

There are two combinators we can employ to compose complex operations from the
basic ones.

sequence combinator The sequence combinator “op1 ;; op2” introduces a list of
operations to be applied in sequence. The complex operation succeeds if every
operation succeeds in sequence.

alternative combinator The alternative combinator“op1 || op2” introduces a list
of alternative operations that will be exclusively and exhaustively tried in turn.

The sequence combinator has a higher precedence than has the alternative com-
binator. Therefore, “a ;;b || c ;; d” is interpreted as a list of alternative operations
composed of two (compound) operations, namely, “a ;;b” and “c ;; d”. The grouping
can be used to override the precedence, as in “a ;;((b || c));; d”.

1 This is not a proper basic operation. We classified it as such because, as the other basic
operations, the it can also have modifiers.

9

5th Workshop on Formal Methods

3.4 Meta-Operations

There are three meta-operations that improve the control over the execution of a
mutant operator.
donothing The donothing operation always succeeds.
abort The abort operation always fails.
cut The cut operation was designed after the “cut” predicate of Prolog [2]. A cut

operation succeeds but has the side effect of “cutting” any alternative in the
innermost grouping. In other words, after an always succeeding execution of a
cut operation, any alternative in the innermost grouping is forgotten.

3.5 An Example

In this section we present an example to exemplify the main concepts of the MuDeL
language. In Figure 1 we present a simple mutant operator that is meant to change
every while statement into a do-while and2 also change the control expression into
0 and 1, if it does not already equal to 0 and 1, respectively. Figure 2(a) presents a
simple C program and Figures 2(b)-(e) present the mutants that will be generated
for this program w.r.t. the operator in Figure 1.

1 ∗ replace [s t a t emen t<whi le (: e) : s >]
2 by [s t a t emen t<do : s whi le (: e) ;>]
3 ; ;
4 : e @@ ((
5 ˜ match [e xp r e s s i on < 0 >]
6 ; ;
7 replace [e xp r e s s i on]
8 by [e xp r e s s i on < 0 >]
9 | |

10 ˜ match [e xp r e s s i on < 1 >]
11 ; ;
12 replace [e xp r e s s i on]
13 by [e xp r e s s i on < 1 >]
14 | |
15 donothing

16))

Fig. 1. A multipurpose while mutant operator.

The replacing operation in lines 1 and 2 changes every while statement into
a do-while statement, in any depth. The meta-variable :e stands for the control
expression of the while. The group of operations in lines 4 through 16 makes changes
in this control expression. Observe that the context pattern declaration in line 4
affects the whole group, and, consequently, every operation therein.

The (negated) matching in line 5 makes sure that the context pattern (:e, in this
case) is not equal to 0. If so, the context pattern is changed to 0, by the replacing in
lines 7 and 8, and a mutant is generated. Note that these two operations compose
a sequence, which is part of a choice list. Then, the next choice is tried, in this turn
w.r.t. the expression 1. Finally, the donothing operation in line 15 is tried and a
mutant is generated only with the replacement of line 1.

2 Indeed, different mutant operators would be better than a general one like this. We do
so to illustrate MuDeL’s features.

10

5th Workshop on Formal Methods

int main() {

while(1) {

int c;

if((c = getchar()) == EOF)

break;

while (c > ’A’) c--;

}

}
(a) Original Program

int main() {

do {

int c;

if((c = getchar()) == EOF)

break;

while(c > ’A’) c --;

} while(0);

}
(b) Mutant #1

int main() {

do {

int c;

if((c = getchar()) == EOF)

break;

while (c > ’A’) c --;

} while(1);

}
(c) Mutant #2

int main() {

while(1) {

int c;

if((c = getchar()) == EOF)

break;

do c --; while(0);

}

}
(d) Mutant #3

int main() {

while(1) {

int c;

if((c = getchar()) == EOF)

break;

do c --; while(1);

}

}
(e) Mutant #4

int main() {

while(1) {

int c;

if((c = getchar()) == EOF)

break;

do c --; while(c > ’A’);

}

}
(f) Mutant #5

Fig. 2. (a) Original Program. (b)-(e) Mutants generated by operator in Figure 1.The
mutated parts of the code are highlighted.

Analyzing how the mutants are generated in this example illustrates the way
MuDeL processes a mutant operator description. The replacing operation (lines 1
and 2) is marked with the in depth modifier and, therefore, the whole program
syntax tree will scanned, looking for nodes that match the respective pattern and
changing them accordingly. The replacing operation and the group of operations in
lines 4 through 16 compose a sequence, i.e., every mutant should include the effects
of the replacing and the effects (if any) of the group. This group, by its turn, is
composed of a list of three choices: the first choice is in lines 5 through 8, the second
one is in lines 10 through 13, and the last one is in line 15. Only the effects (if
any) of one of these choices will be included in a particular mutant. For instance,
Mutants #1 and #2 in Figures 2(b)-(c) are generated by replacing the outermost
while of the program in Figure 2(a) and applying the first and the third choices,
respectively. (Observe that the second choice does not generate a mutant, since the
operation in line 10 does not succeed.) On the other hand, Mutants #3, #4 and
#5 in Figures 2(d)-(f) are generated by replacing the innermost while and applying
each of the choices, respectively.

11

5th Workshop on Formal Methods

4 Formal Definition

4.1 Domains

This section describes the semantic domains used to specify the denotational se-
mantics of the MuDeL language.

Basic Domains

The domain of locations Loc is a totally ordered, infinite domain. Each location
is associated with a tree node. One possibility to define Loc is to use the natural
numbers. Therefore

Loc = {0, 1, ...}

The domain of non-terminals NonTerm is the finite domain whose elements
are in one-to-one correspondence to the non-terminal symbols of the grammar in
consideration. Analogously, the domain of terminals Term are the finite domain
whose elements is in one-to-one correspondence to the terminal symbols of the
grammar.

The the elements of domain Rec are composed of a sequence of locations and a
non-terminal and represents an inner node in the syntax tree.

Rec = Loc
∗ × NonTerm

The domain Free represents the value of an unbound meta-variable and possesses
a single element free.

Free = {free} × NonTerm

The domain Undef possesses the single element undef, for a non-allocated loca-
tion.

Undef = {undef}

The state that can occur during the execution of a mutant operator basically
consists of a particular configuration of the syntax tree and the pattern trees, as
well as in the assignment of meta-variables. The meta-variables are associated with
locations, in such a way that we can formally represent the states as a function from
locations to either an undefined value, a terminal (which represents a leaf node in
a tree), another location, a free value (which represents an unbound meta-variable)
or a record of locations (which represent a non-terminal and its children nodes).

State = Loc → (Undef + Term + Loc + Free + Rec)

Note that both the unbound meta-variable and the record of children nodes are
marked with a non-terminal, which is its type. With this modeling, we can represent
any syntax tree or pattern tree. (Indeed, we can represent a graph with an arbitrary
topology.) One tree can be identified by indicating its root location.

A mutant is an alternative program and, therefore, consists of a list of terminal
symbols. Thus

Mut = Term
∗

The result of executing a mutant operator is defined as a list of mutants, as
follows:

Ans = Mut
∗

12

5th Workshop on Formal Methods

Continuation Domains

In the terminology of denotational semantics theory, a continuation is a function
that represents the effect of further executing the program. In the MuDeL lan-
guage, there are two kinds of continuations: alternative continuation and normal
continuation.

An alternative continuation is a mapping from a partial answer with the mutants
generated so far to another (possibly partial) answer. An alternative continuation
represents a point where the execution can continue on request, either because a
mutant is generated and another will be tried, or because the current execution
fails. Thus

Ka = Ans → Ans

A normal continuation represents the normal execution until the end of a mutant
operator. It includes (i) a state (the current state), (ii) an alternative continuation (to
be tried on fail), (iii) an alternative continuation (that represent where to continue
if a cut operation is executed), and (iv) a partial answer (the mutant generated so
far) and generates another answer. Therefore

Kn = State →

retry
︷︸︸︷

Ka →

cut
︷︸︸︷

Ka → Ans → Ans

or

Kn = State → Ka → Ka → Ka

4.2 Formal Syntax

The syntax of the language is presented here to give a framework in which to
specify the denotational semantics. In this paper, for sake of space, we assume that
the syntactical analysis was already made, in such a way that syntax and pattern
trees can be handled just by identifying its root node. Moreover, we assume that
every meta-variable is replaced by a respective free location. Therefore, the primary
syntactic elements of a mutant operator are trees and operations. Figure 3 presents
the abstract syntax of a mutant operator.

Op ::= match m

| replace r by b

| ((Op
1
))

| :m @@ Op
1

| ˜Op
1

| ∗ Op
1

| Op
1
;; Op

2

| Op
1
|| Op

2

| donothing

| abort

| cut

Fig. 3. Abstract Syntax of MuDeL Language.

13

5th Workshop on Formal Methods

4.3 Semantic Valuations

The semantic valuation function A assigns the semantics to each operation. In order
to define the resulting answer, this function should be provided with (i) the location
(which represents the context tree), (ii) the normal continuation (which represents
the next operation to execute), (iii) the current state, (iv) the retry continuation
(which is an alternative continuation and represents the next point to be tried),
(v) the cut continuation (which is an alternative continuation and represents what
will be the retry continuation when a cut operation is executed), and (vi) a partial
answer (with the mutants generated so far). Therefore

A : Op → Loc → Kn → State → Ka → Ka → Ans → Ans

or

A : Op → Loc → Kn → Kn

The match operation simply consists of the unify function. Note that the unify

function (defined later is this section) takes two locations representing the root nodes
of the tree to be matched and changes the state in order to reflect the effects of any
potential free location unification.

A[[match m]] l = unify l m

The replace operation consists of matching the context and pattern locations
and continuing on success in the updated state3.

A[[replace r by b]] l kn s = unify r l

normal cont.

︷ ︸︸ ︷

(kn s[l/b]) s

The semantics of the grouping operation is the semantics of the inner operation
with the necessary adjustments to limit the effect scope of a cut operation. Observe
that the cut continuation in the normal continuation of the inner operation is fixed
(by the lambda function).

A[[((op))]] l kn s kr kc = A[[op]] l

normal cont.

︷ ︸︸ ︷

(λ s′ k′

r k′

c. kn s′ k′

r kc) s kr kr

The semantics of the context definition modifier is the semantics of the modified
operation on the location associated with the meta-variable.

A[[:m @@ op]] l = A[[op]] (loc :m)

where loc :m is the location associated with the meta-variable :m. (Note that, we
assume the mutant operator was preprocessed, so that a location can unambiguously
represent a meta-variable.)

The negation modifier inverts the continuations of the modified operation; the
retry continuation is used as the normal continuation, and vice versa.

A[[˜ op]] l kn s kr kc = A[[op]] l

normal cont.

︷ ︸︸ ︷

(λ s′ k′

r k′

c. kr) s

retry cont.

︷ ︸︸ ︷

(kn s kr kc) kr

In spite of its conceptual simplicity, the in depth modifier has a complex semantic
valuation. We employ an auxiliary semantic valuation function G (defined later in
this section), that recursively applies the modified operation to every sub-tree of the

3 The mapping s[l/b] is identical to s, except that l is mapped onto b.

14

5th Workshop on Formal Methods

context tree. Therefore, the function G will generate several alternative continua-
tions.

A[[∗ op]] l kn s kr kc = A[[op]] l kn s

retry cont.

︷ ︸︸ ︷

(G[[op]] l kn s kr kc) kc

The semantics of a complex operation composed with the sequence combinator is
the semantics of the first operation using the second one as the normal continuation.

A[[op1 ;; op2]] l kn = A[[op1]] l

normal cont.

︷ ︸︸ ︷

(A[[op2]] l kn)

The semantics of a complex operation composed with the alternative combinator
is the semantics of the first operation using the second one as the retry continuation.

A[[op1 || op2]] l kn s kr kc = A[[op1]] l kn s

retry cont.

︷ ︸︸ ︷

(A[[op2]] l kn s kr kc) kc

The semantics of the donothing operation equals to the normal continuation.

A[[donothing]] l kn = kn

The semantics of the abort operation equals to the retry continuation.

A[[abort]] l kn s kr kc = kr

The semantics of the cut operation equals to the normal continuation invoked
with the cut continuation as the retry continuation.

A[[cut]] l kn s kr kc = kn s kc kc

The semantic valuation function G possesses the same signature as the function
A. It checks with which value the context location is associated in the current state. If
the context location is associated with an element of Rec, then the function G applies
the operation to every element of this record, using the auxiliary semantic function
R. Otherwise, it tries another alternative (i.e., invokes the retry continuation). Thus

G[[op]] l kn s kr kc = isRec (s l) → R[[op]] (el 1 (s l)) kn s kr kc, kr

where el n d is the n-th component of the Cartesian product d [12].
The semantic valuation function R possesses the same signature as the function

A, except that a sequence of locations is employed (instead of a single one). If the
sequence of locations is empty, it simply invokes the retry continuation. Otherwise,
it applies the function A to the first element and makes the function R be applied
to the remaining ones as an alternative continuation.

R[[op]] r kn s kr kc = isnull r → kr,

A[[∗ op]] (hd r) kn s (R[[op]] (tl r) kn s kr kc) kc

The semantic valuation function S defines the semantics of a mutant operator.
The semantics of a mutant operator consists of defining the proper function in
invoking the semantics of the operation using addmut as the normal continuation,
print as both retry and cut continuations and an empty list of mutants as initial
answer. Note that the function S takes as parameters the root node of the syntax tree
and the initial state, which are obtained by preprocessing both the source program
and the mutant operator.

S[[op]] l s = A[[op]] l (addmut l) s print print 〈〉

The addmut function takes a location and returns a normal continuation that
adds the current mutant (obtained by traversing the tree with the location l as root)

15

5th Workshop on Formal Methods

to the partial answer and invoking the retry continuation in order to try another
alternative. Thus

addmut l s kr kc m = kr((traverse s l) • m)

where the function traverse is a straightforward depth-first, left-to-right traversal of
the tree whose root node is the location l and • is the list concatenation operator.

The print function is the identity function and simply concludes the execution
with the mutants generated so far.

print m = m

4.4 Unify

It remains to define the function unify . The unification algorithm is similar to, and
was designed after, Prolog’s one [2, 9]. Its signature is

unify : Loc → Loc → Kn → State → Ka → Ka → Ans → Ans

unify l1 l2 kn s kc kr =

l1 = l2 → kn s kc kr, (1)

isUndef (s l1) ∨ isUndef (s l2) → kr, (2)

isTerm (s l1) ∨ isTerm (s l2) →

((s l1) = (s l2) → kn s kc kr, kr), (3)

isLoc (s l1) → unify (s l1) l2 kn s kc kr, (4)

isLoc (s l2) → unify l1(s l2) kn s kc kr, (5)

(el 2 (s l1)) 6= (el 2 (s l2)) → kr, (6)

isFree (s l1) → kn(s[l2/ l1]) kc kr, (7)

isFree (s l2) → kn(s[l1/ l2]) kc kr, (8)

isRec (s l1) ∧ isRec (s l2) →

unifyRec (el 1 (s l1)) (el 1 (s l2)) kn s kc kr, (9)

kr (10)

unifyRec r1 r2 kn s kc kr =

isnull r1 ∨ isnull r2 →

(isnull r1 ∧ isnull r2 → kn s kc kr, kr), (11)

unify (hd r1) (hd r2) (unifyRec (tl r1) (tl r2) kn) s kc kr (12)

Fig. 4. Definition of the functions unify and unifyRec.

The definition of unify is presented in Figure 4. In order to clarify the meaning of
this function, in the following lines we comment each relevant part of its definition.
After checking a series of condition, it will invoke either the retry or the normal

continuation. We will refer to these outcomes as retry and continue, respectively.
(1) If the locations to be matched are the same, then continue.
(2) If either location is associated with the undef value, then retry.
(3) If either location is associated with a terminal, then continue, if the values

associated to locations are the same, or retry, otherwise.
(4) If l1 is associated with another location, unify this other location with l2.
(5) Analogous to (4), w.r.t. l2.
(6) At this point we are sure that the values associated to l1 and l2 are either Free

or Rec. Whichever the case, each of these values is a pair whose second element

16

5th Workshop on Formal Methods

belongs to NonTerm, which is its type. Therefore, if the types of both values are
not the same, retry.

(7) If l1 is free, then continue in a new state in which l1 is associated l2.
(8) Analogous to (7), w.r.t. l2.
(9) If both values belong to Rec, then invoke the auxiliary function unifyRec on the

respective sequence of locations.
(10) If none of the above cases applies, then retry.

The function unifyRec will try to unify the two sequences of locations, applying
unify to their respective elements.

(11) If either sequence is empty, then continue, if both are, or retry, otherwise.
(12) Otherwise, invoke unify for the first elements of both sequences, with as normal

continuation the application of unifyRec to the remaining elements.

5 SML Implementation and its Use as a Validation

Mechanism

Since SML [7] is a functional language based on typed lambda calculus, translating
from a denotational semantics specification into SML code is quite a straightforward
process, apart from some syntax translations. Therefore, we implement the denota-
tional semantics defined in Section 4 in SML. The purpose of this implementation
is twofold. Firstly, we could check whether the defined semantics was syntactically
correct and whether the domains are properly defined and arranged. Secondly, we
were able to “execute” it and, hence, we could employ it as a validation mechanism
for the mudelgen — a compiler we had implemented for the MuDeL language.

As a sample of the SML implementation, Figure 5 presents how the semantic
valuation functions A, G, R and S and the auxiliary function addmut and print are
implemented. Note that the definition of the A function poses some syntax changes,
once it is recursively defined. The most evident aspect is that we can not simplify the
definition by eliminating the common, unchanged arguments in the same way we can
in the denotational semantics. This occurs because SML demands all clauses have
the same explicit signature, and, thus, we had to include all arguments in each one.
Nevertheless, by comparing these lines with the respective equation (see Section 4),
one can observe similarities between SML and the denotational semantics mentioned
previously.

To employ the SML implementation as a validation mechanism, we extend
mudelgen by including a testing mode. Figure 6 depicts the execution of mudelgen
in testing mode. (The dashed line surrounds the components specific to this mode.)
Both source program S and mutant operator Op are inputted and processed by the
parse and mutant operator processor (MO processor), respectively. The syntax tree
T of the source program and the abstract representation Op′ of the mutant operator
are obtained. Then T and Op′ are processed by both SML and C++ implementa-
tions. The outputs are (a) the mutants and (b) a report of any discrepancy between
the mutants generated by both implementations. The discrepancy report contains
information about differences (if any) in the token streams of every pair of respective
mutants (one of each implementation).

6 Concluding Remarks

The efficacy of Mutation Testing is heavily related to the quality of the mutants
employed. Mutant operators, therefore, play a fundamental role in this scenario,

17

5th Workshop on Formal Methods

fun A(mtc m) l kn s kr kc = match l m kn s kr kc

and A(rpl(r, b)) l kn s kr kc = replace r b l r e kn s kr kc

and A(grp op) l kn s kr kc = A op l

(fn s’ => fn kr’ => fn kc’ => kn s’ kr’ kc) s kr kr

and A(con(v,op)) l kn s kr kc = A op v kn s kr kc

and A(neg op) l kn s kr kc = A op l

(fn t’ => fn kr’ => fn kc’ => kr) s (kn s kr kc) kr

and A(dep op) l kn s kr kc = A op l kn s (G op l kn kr kc) kc

and A(sqc(op1,op2)) l kn s kr kc = A op1 l (A op2 l kn) s kr kc

and A(alt(op1,op2)) l kn s kr kc = A op1 l kn s (A op2 l kn s kr kc) kc

and A dnt l kn s kr kc = kn s kr kc

and A abt l kn s kr kc = kr

and A cut l kn s kr kc = kn s kc kc

and G op l kn s kr kc = case s l of

rec(r, t) => R op r kn s kr kc

| _ => kr

and R op r kn s kr kc =

case r of

[] => kr

| (h, t) => A (dep op) h kn s (R op t kn s kr kc) kc

;

fun S op l s = A op l (addmut l) s print print []

and addmut l s kr kc m = kr ((traverse s l)::m)

and print m = m

;

Fig. 5. SML code for the semantic valuation functions A, G, R and S as well for
the auxiliary functions addmut and print.

...1 2 3m m m

SML/Implementation
T

Op’

ParseS

Op

...
1 2 3m’ m’ m’

Comp

mudelgen

testing mode

MO Processor

(a)

C++ Implementaion
(b)

Discrepancy
Report

Fig. 6. Oracle Implementation Schema

since they are used to generate the mutants. Due to their importance, mutant
operators should be precisely defined. Moreover, they should be experimented with
and improved. However, implementing tools to support experimentation is very
costly and time-consuming.

MuDeL language is designed for describing mutant operators. The language is
based on the transformational paradigm and also uses some concepts from logical
programming. The semantics of MuDeL was defined using denotational semantics,
making clear and precise the meaning of every construction in the language. Being
described in MuDeL, an operator can be “compiled” and the respective mutants
can be generated using the mudelgen system. MuDeL and mudelgen together form
a powerful instrument in developing and validating mutant operators.

18

5th Workshop on Formal Methods

However, the amount of output produced by executing a mutant operator is
usually very large. Therefore, the task of evaluating whether the mutants are gener-
ated in accordance with the description is very difficult. This fact characterizes the
so-called non-testable programs and hinders the testing of mudelgen. In this paper
we described how we have employed SML to implement the denotational semantics
of MuDeL. We integrated this SML implementation in mudelgen, aiming at using
it as an automated oracle for the C++ implementation.

The complete SML implementation of the denotational semantics of the MuDeL
language (including the auxiliary functions) takes ±220 lines of code. On the other
hand, the implementation of mudelgen in C++ has ±5500 lines of code. This total
includes the code for parsing and unparsing, as well as the code for interfacing with
the SML implementation. We can observe that SML is much more concise, primarily
due to the expressiveness power of the continuation based approach [12].

One important question that arises in face of these differences in size and com-
plexity is why to have the C++ implementation at all. We could limit ourselves
to implement in C++ only those parts that are not suitable to build in SML
(e.g. parsing) and use the denotational semantics based implementation in SML
for operator execution. However, a pragmatic answer is the relative inefficiency of
SML when compared against C++. Indeed, the SML code runs from 50 to 100 times
slower than the C++ code4.

When a discrepancy in the outputs are identified, we can not know a priori

which implementation is responsible for the wrong result. We then analyze both
and correct them properly. Two errors were found in this way, one in either module.
The C++ implementation had a fault in the mechanism that controls the scope
of a cut operation. The denotational semantics had a fault in the semantics of the
grouping operation. Running the implementation in the testing mode, both errors
were exposed.

From a theoretical viewpoint, there is a possibility that a fault in the implemen-
tation be not discovered, due to the fact that the SML implementation also possesses
a fault that makes it produce the same incorrect outputs. However, the probability
that this occurs in practice is very small. Both languages (i.e., C++ and SML) are
very different from one another. Moreover, the algorithms and overall architectures
of both implementations are very distinct. Whereas we employed an imperative
stack-based approach in C++, we extensively used continuation and mappings in
SML. Consequently, it is not trivial to induce the same kind of misbehavior in
both implementations. In other words, although none of them is fault free, the kind
of faults they are likely to include is very distinct. With this consideration, we
conclude that the use of denotational semantics and SML was a powerful validation
mechanism for mudelgen.

As a forthcoming step in this research, we will investigate how to insert of other
checkpoints in the execution of a mutant operator. Currently, only the generated
mutants of both implementations are compared. It may be interesting to include
other intermediate points in the middle of execution where the internal state can
also be compared, increasing the granularity of observation.

4 For this comparison, we have used the compilers Standard ML of New Jersey, Version
110.0.7 and gcc, Version 2.96, respectively. However, we have not carried out a benchmark
in order to thoroughly compare the effieciency of both implementations.

19

5th Workshop on Formal Methods

Bibliography

[1] Allison, L. (1986). A Practical Introduction to Denotational Semantics. Cam-
bridge University Press, Cambridge, U. K.

[2] Bratko, I. (1990). Prolog Programming for Artificial Intelligence.
Addison-Wesley, 2 edition.

[3] Budd, A. T. (1981). Mutation Analysis: Ideas, Examples, Problems and

Prospects, pages 129–148. Computer Program Testing. North-Holland Publishing
Company.

[4] Delamaro, M. E., Maldonado, J. C., and Mathur, A. P. (2001). Interface
mutation: An approach for integration testing. IEEE Transactions on Software

Engineering, 27(3):228–247.
[5] DeMillo, R. A. (1988). An extended overview of the Mothra testing environment.

In Second Workshop on Software Testing, Verification and Analysis, Baniff,
Canadá.

[6] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hints on test data
selection: Help for the practicing programmer. IEEE Computer, 11(4):34–41.

[7] Hansen, M. R. and Rischel, H. (1999). Introduction to Programming using SML.
Addison-Wesley.

[8] Nakagawa, E. Y. and Maldonado, J. C. (2001). Software-fault injection based
on mutant operators. In Anais do XI Simpósio Brasileiro de Tolerância a Falhas,
pages 85–98, Florianópolis, SC.

[9] Nicholson, T. and Foo, N. (1989). A denotational semantics for prolog. ACM

Transactions on Programming Languages and Systems, 11(4):650–665.
[10] Salomaa, A. (1973). Formal Languages. Academic Press, New York.
[11] Simão, A. S. and Maldonado, J. C. (2001). MuDeL: A language and a system

for describing and generating mutants. In Anais do XV Simpósio Brasileiro de

Engenharia de Software, pages 240–255, Rio de Janeiro, Brasil.
[12] Stoy, J. E. (1977). Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory. MIT Press, Cambridge, Massassuchits.
[13] Vladimir, D. (1989). Formal Languages and Automata Theory. Computer

Science Press.
[14] Weyuker, E. J. (1982). On testing non-testable programs. Computer Journal,

25(4):465–470.
[15] Zhu, H. (1996). A formal analysis of the subsume relation between software test

adequacy criteria. IEEE Transactions on Software Engineering, 22(4):248–255.

