
A Coordination Model for Ad Hoc Mobile
Systems

Marco Tulio Valente1, Fernando Magno Pereira2, Roberto da Silva Bigonha2,
and Mariza Andrade da Silva Bigonha2

1 Department of Computer Science, Catholic University of Minas Gerais, Brazil
2 Department of Computer Science, Federal University of Minas Gerais, Brazil

mtov@pucminas.br, {fernandm,bigonha,mariza}@dcc.ufmg.br

Abstract. The growing success of wireless ad hoc networks and portable
hardware devices presents many interesting problems to system engi-
neers. Particular, coordination is a challenging task, since ad hoc net-
works are characterized by very opportunistic connections and rapidly
changing topologies. This paper presents a coordination model, called
PeerSpaces, designed to overcome the shortcomings of traditional coor-
dination models when used in ad hoc networks.

1 Introduction

With the advent of ad hoc networks, mobile devices can detach completely from
the fixed infrastructure and establish transient and opportunistic connections
with other devices that are in communication range. Designing applications on
these dynamic and fluid networks presents many interesting problems. Particu-
larly, coordination is a challenging task. Since a user may find itself in a different
network at any moment, the services available to him change along the time.
Thus, computation should not rely on any predefined and well known context.
Specifically when operating in ad hoc mode, coordination should not assume
the existence of any central authority, since the permanent availability of this
node can not be granted. Communication should also be uncoupled in time and
space, meaning that two communicating entities do not need to establish a direct
connection to exchange data nor must know the identity of each other.

Recently, shared space coordination models, inspired by Linda [4], are be-
ing considered for communication, synchronization and service lookup in mo-
bile computing systems. The generative communication paradigm introduced by
Linda is based on the abstraction of a tuple space. Processes communicate by
inserting, reading and removing ordered sequences of data from this space.

In traditional Linda systems, like TSpaces [8] and JavaSpaces [3], the tuple
space is a centralized and global data structure that runs in a pre-defined service
provider. In the base station scenario this server can easily be located in the
fixed network. However, if operation in ad hoc mode is a requirement, the fixed
infrastructure simply does not exist. This suggests that standard client/server
implementations of Linda are not suitable to ad hoc scenarios, since they assume

a tight coupling between client and servers and the permanent availability of the
latter.

This paper formalizes our attempts to customize and adapt shared space co-
ordination models to applications involving mobile devices with ad hoc network
capabilities. The model formalized in the paper, called PeerSpaces, has primi-
tives for local and remote communication, process mobility and service lookup.
In order to answer the new requirements posed by ad hoc mobile computing sys-
tems, PeerSpaces departs from traditional client/server architectures and push
towards a completely decentralized one. In the model, each node (or peer) has the
same capabilities, acting as client, shared space provider and as router of mes-
sages. In order to provide support to operation in ad hoc mode, service lookup
is distributed along the network and does not require any previous knowledge
about its topology.

The paper is organized as follows. In Section 2 we informally present the
PeerSpaces model, including its main design goals, concepts and primitives. In
Section 3 we give the formal semantics of the model in terms of a small language
derived from the π-calculus. Besides a precise specification of the model, the
semantics presented in this section supports formal reasoning about applications
built on PeerSpaces. Section 4 compares the model with similar efforts. Finally,
Section 5 concludes the paper.

2 The PeerSpaces Model

The main concepts used in PeerSpaces are the following:

Hosts The model assumes that hosts are mobile devices. Each host has its own
local tuple space and a running process. A host is written hg[P, T], where h is
the name of the host, P is the process running in the host, T is its local tuple
space, and g is the group of the host.

In PeerSpaces, the name of a host is different from the name of all other
hosts. The model also assumes a infinite set H of possible host names.

Groups Hosts in the model are logically organized in groups. Each group has
a name and can also contain subgroups, creating a tree structure. The group of
a host is denoted by a tuple 〈g1, . . . , gn〉, that specifies the path from the root
group g1 to the leaf group gn where the host is located. For example, the tuple
〈pucminas, cs, proglab〉 denotes the set of hosts in the proglab group, which is
a subgroup of the group cs, which is nested in the root group pucminas. Two
groups can have the same name, as long they are not subgroups of the same
group.

Network Mobile hosts in the model are connected by a wireless and ad hoc
network. As usual in such networks, connectivity is transient and determined by
the distance among hosts. Consequently, the topology of the network is contin-
uously changing. In PeerSpaces, a network with hosts h1, h2, . . . , hn is denoted

by:
h1g1 [P1, T1] | h2g2 [P2, T2] | . . . | hngn

[Pn, Tn] , E

where g1, g2, . . . , gn are the group of the hosts and E : H ×H is a relation repre-
senting connections among hosts. The presence of a pair (hi, hj) in E, denoted
by hi 1 hj , indicates that host hi is in communication range with host hj . This
relation is in continuous change to reflect reconfigurations in the network.

PeerSpaces also defines a set of primitives to assemble applications using
the previous defined concepts. We spend the rest of this section describing such
primitives.

Local Primitives The local tuple space of any host is accessed using the tra-
ditional in , rd and out primitives from Linda. Furthermore, there is a chgrp g
primitive, used to change the group of the current host to the one specified by
tuple g.

Process Mobility Processes in PeerSpaces are mobile in order to model the
behavior of mobile agents. A mobile agent is a process that can move among sites
carrying computation and accessing resources locally. In wireless environments,
agents are a powerful design tool to overcome latency and to embed autonomous
computations. In the model, the primitive moveh.P is used to move a process
to node h, where its execution continues as P . If host h is not connected, the
operation blocks until a connection to such host is established.

Remote Primitives Crucial to the scalability and efficiency of any coordina-
tion model for mobile computing systems is the design of the remote operations.
Thus, from the beginning PeerSpaces departs from the idea of providing seamless
access to a global and centralized space. Instead, there are primitives that oper-
ate in the remote space of a well-known host h: outh, v; inh, p, x and rdh, p, x,
where v is a tuple, p is a pattern and x is a variable. These operations are
merely remote implementations of the traditional Linda primitives and thus do
not impact in the overall performance of the system.

As its local version, the remote outh, v primitive is asynchronous. The prim-
itive is used when a process wants to leave a information to be consumed later
in another host. In order to model its asynchronous behavior, the operation is
executed in two steps. In the first step, a tag is added to the tuple v to indicate
that it should be transfer as soon as possible to the destination host h. The
tagged tuple, denoted by vh, is then outputted in the local space of the host h′

that requested the operation. In the second step, tuple vh is transferred to the
space of host h as soon as it is connected to h′ and the tag is removed from
the tuple. Since both steps are not atomic, while the tuple is “misplaced” in
the source node it can be retrieved by an operation like in vh. For example, this
operation can be called by a garbage collector process in charge of reclaim tuples
that are waiting for the connection of their destination host for a long time.

Lookup Primitive Without a lookup primitive the remote operations de-
scribed above have little use, since a mobile host may not know in advance
the name h of a service provider in its current network. Moreover, since the sys-
tem is designed to support operation in ad hoc mode, the lookup service must
not be centralized in a single host, but must be distributed along the federa-
tion of connected devices. In order to accomplish such requirements, there is
in PeerSpaces the following primitive: find g, p. This primitive queries hosts in
group g for tuples matching pattern p in a distributed way. All matching tuples
found in group g are copied asynchronously to the local space of the host that
has called the operation.

The semantics of PeerSpaces does not assume any specific routing protocol
for propagation of lookup queries.

Continuous Queries Often it is useful to query a group of hosts for a resource
and keep the query effective until such resource is available. In this way, a client
does not need to periodically send lookup queries to detect new resources that
may become available since the last query was issued. In PeerSpaces, lookup
queries that remain active after their first execution are called continuous queries.

Continuous queries in PeerSpaces have a lifetime parameter, used to automat-
ically garbage collect the query after its expiration. Continuous lookup queries
are issued adding the lifetime t to the find primitive: find g, p, t. This primitive
will search the hosts of group g for all currently available resources matching
pattern p and for resources that may become available in t units of time after
the query was issued.

3 Formal Semantics

The ultimate goal of our research is to deploy a coordination middleware for ad
hoc mobile computing systems. In order to achieve this goal we have initially
defined the formal semantics of PeerSpaces.

The formalization presented next uses an operational semantics based on
the asynchronous π-calculus [6]. The π-calculus is a good basis as it provides
a small, elegant and expressive concurrent programming language. The main
departure from π in our semantics is the use of generative communication instead
of channel-based communication.

Table 1 summarizes the syntax of our core language. We assume an infinite
set H of names, used to name hosts and lookup queries. Meta-variables h and x
range over H. Basic values, ranged over by v and g, consist of names and tuples.
Tuples are ordered sequences of values 〈v1, . . . , vn〉. A tuple space T is a multiset
of tuples. We use the symbol ? ∈ H to denote the distinguished unspecified value.

A program is composed by the network N, the relation E and a global set
of names X. The relation E : H × H represents the connectivity map of the
network. The names used over several hosts in the system are recorded in the set
X, ensuring their unicity. Each host h is member of a group g and has a running
process P and a local tuple space T . Processes are ranged by P and Q. Similar

Prog ::= N , E , X

N ::= ε | H | N

H ::= hg[P, T]

P ::= 0 | P | Q | ! P | (ν x) P | out v |
in v, x.P | rd v, x.P | find g, p, t |
chgrp g | move h.P

Table 1. Syntax

to the π-calculus, the simplest term of our language is the inert process 0, which
denotes a process with no behavior at all. The term P | Q denotes two processes
running in parallel. The term ! P denotes a infinite number of copies of P , all
running in parallel. The restriction operator (ν x) P ensures that x is a fresh and
unguessable name in the scope of P. Similar to Linda, the primitive operations
out, in and rd provide access to the local tuple space. Since the out operation
is asynchronous it does not have a continuation P . The same happens to the
find and chgrp primitives. We assume that non-continuous lookup queries can
be simulated by defining the lifetime equal to zero. Finally, the move operation
simulates the behavior of single thread mobile agents.

The operational semantics of our calculus is summarized in Tables 2 and
3. The semantics is defined in terms of a reduction relation →, a structure
congruence ≡ between processes and a set of pattern matching rules.

Table 2 summarizes the core language semantics, which is basically Linda
with multiple tuple spaces. A reduction N , E , X → N ′ , E′ , X ′ defines how
the configuration N , E , X reduces in a single step computation to N ′ , E′ , X ′.
Initially, there are three reduction rules describing the effects on the configuration
of each standard Linda primitive. The output operation, out v, asynchronously
deposits a tuple in the local space (rule L1). The input, in v, x.P , and read,
rd v, x.P , operations try to locate a tuple v′ that matches v (rules L2 and L3).
If one is found, free occurrences of x are substituted for v′ in P , denoted as
P{v′/x}. In the case of the input, the tuple is removed from the space.

The next set of rules defines a structural congruence relation ≡ between
processes (SC1 to SC7) and hosts (SC8 to SC10). As in the π-calculus, such
rules define how processes can be syntactically rearranged in order to allow the
application of reductions. In such rules, we write fn(P) to denote the set of
free names in process P. The definition of pattern matching, written v ≤ v′,
allows for recursive tuple matching. Values match only if they are equal or if the
unspecified value occurs on the left hand side.

Table 3 extends the core language with the primitives proposed in PeerSpaces.
The find g′, p, t operation deposits a tuple representing a service lookup query in
the local space (rule P1). Such query is a tuple in the format 〈k, g′, p, t, h〉, where
k is a fresh name that identifies the query, g′ defines the group where the query

Reductions

Linda Primitives

hg[out v | P, T] | N , E , X → hg[P, v ∪ T] | N , E , X (L1)

hg[in v, x.P | Q, v′ ∪ T] | N , E , X → hg[P{v′/x} | Q, T] | N , E , X (L2)

hg[rd v, x.P | Q, v′ ∪ T] | N , E , X → hg[P{v′/x} | Q, v′ ∪ T] | N , E , X (L3)

The rules are subjected to the following side conditions:
(L2) if v ≤ v′

(L3) if v ≤ v′

Structural Congruence Rules

P | Q ≡ Q | P (SC1) (ν x) (ν y) P ≡ (ν y) (ν x) P (SC5)

! P ≡ P | ! P (SC2) P ≡ Q ⇒ (ν x) P ≡ (ν x) Q (SC6)

(P | Q) | R ≡ P | (Q | R) (SC3) (ν x) (P | Q) ≡ P | (ν x) Q (SC7)

P | 0 ≡ P (SC4)

P ≡ Q ⇒ hg[P, T] ≡ hg[Q, T] (SC8)

hg[(ν x) P, T] | N , E , X ≡ hg[P, T] | N , E , x ∪ X (SC9)

hg[P, T] | N , E , X ≡ N | hg[P, T] , E , X (SC10)

The rules are subjected to the following side conditions:
(SC7) if x /∈ fn(P)
(SC9) if x 6= h, x /∈ fn(N), x /∈ X

Pattern Matching Rules

v ≤ v ? ≤ v v1 ≤ v′
1 . . . vn ≤ v′

n

〈v1 . . . vn〉 ≤ 〈v′
1 . . . v′

n〉

Table 2. Core Language Operational Semantics

will be performed, p is a pattern for the desired service, t is the lifetime and h
is the name of the current host. The operation chgrp g just changes the group
of the current host to the one specified by tuple g (rule P2). If such group does
not exist, it is created. The move h′.P operation changes the location of the
continuation process P to host h′ if this host is connected (rule P3). Otherwise,
the operation remains blocked until the engagement of h′.

Reduction rule Q1 defines how lookup queries are propagated in the network.
Basically, any host that holds a query 〈k, g′′, p, t, h〉 can propagate it to a con-
nected host h′ in group g′, if g′′ matches g′ and the query is not yet present in
h′. If such conditions are satisfied, the query is inserted in the local space of h′

and a process P ′′ is added in parallel with the other processes running in this
host. This process continuously read tuples matching the pattern p and then use

Reductions

PeerSpaces Primitives

hg[find g′, p, t | P, T] | N , E , X → hg[(ν k) P, 〈k, g′, p, t, h〉 ∪ T] | N , E , X (P1)

hg[chgrp g′ | P, T] | N , E , X → hg′ [P, T] | N , E , X (P2)

hg[move h′.P | Q, T] | h′
g′ [P ′, T ′] | N , E , X →

hg[Q, T] | h′
g′ [P | P ′, T ′] | N , E , X (P3)

Query Propagation

hg[P, 〈k, g′′, p, t, h〉 ∪ T] | h′
g′ [P ′, T ′] | N , E , X →

hg[P, 〈k, g′′, p, t, h〉 ∪ T] | h′
g′ [P ′ | P ′′, 〈k, g′′, p, t, h〉 ∪ T ′] | N , E , X (Q1)

Network Reconfiguration

E ⇒ E′

N , E , X → N , E′ , X
(N1)

The rules are subjected to the following side conditions:
(P3) if h 1 h′

(Q1) if (h 1 h′) ∧ (g′′ � g′) ∧ (〈k, g′′, p, t, h〉 6∈ T ′) ∧ P ′′ = ! (rd p, x.out h, x)

Group Matching Rule

g1 = g′
1 . . . gn = g′

n

〈g1 . . . gn〉 � 〈g′
1 . . . g′

n . . . g′
m〉

Table 3. PeerSpaces Operational Semantics

a remote output operation to send the results to the local space of the host h
that has issued the query.

The last reduction rule introduces a new type of reduction⇒ used to describe
reconfigurations in the network and consequently in the connectivity relation E.
Basically, this rule dictates that changes in E should be propagated to the current
configuration. However, we left ⇒ reductions unspecified in the semantics, since
they are dependent on the physical location of each host and on technological
parameters of the subjacent network.

There is also a special pattern matching rule for group names. Two groups
g and g′ matches, written g � g′ if all subgroups in g are equal to equivalent
subgroups in g′, which can also have extra nested subgroups.

4 Related Work

Many characteristics of PeerSpaces have been inspired in file sharing applica-
tions popular in the Internet. Particularly, the peer to peer network created
by Gnutella [5] over the fixed Internet presents many properties that are inter-
esting in mobile settings, like absence of centralized control, self-organization

and adaptation to failures. PeerSpaces is an effort to transport and adapt such
characteristics to mobile computing systems. This explains the choice of Linda
shared spaces as the prime coordination infrastructure for PeerSpaces.

Lime [7] introduces the notion of transiently shared data space to Linda.
In the model, each mobile host has its own tuple space. The contents of the
local spaces of connected hosts are transparently merged by the middleware
creating the illusion of a global and virtual data space. Applications in Lime
perceive the effects of mobility by atomic changes in the contents of this virtual
space. The scalability and performance weakness of Lime have motivated the
proposal of CoreLime [2], where in name of simplicity and scalability the idea
of transiently shared spaces is restricted to the set of mobile agents running
in a host. Another work proposing an alternative semantics to the notion of
transiently shared spaces is [1].

5 Conclusions

In this paper we have presented and formalized PeerSpaces, a coordination model
for mobile computing systems. The model was designed to overcome the main
shortcoming of shared spaces coordination models when used in ad hoc wireless
networks – the strict reliance on the traditional client/server architecture – while
preserving the main strengths of such models – the asynchronous and uncoupled
style of communication. PeerSpaces can be used as the building block of ad
hoc mobile systems like file sharing, groupware, mobile commerce and message
systems.

Acknowledgments We would like to thank Jan Vitek and Bogdan Carbunar
for the discussions that led to this paper.

References

1. N. Busi and G. Zavattaro. Some thoughts on transiently shared tuple spaces. In
Workshop on Software Engineering and Mobility, May 2001.

2. B. Carbunar, M. T. Valente, and J. Vitek. Corelime a coordination model for mobile
agents. In International Workshop on Concurrency and Coordination, volume 54 of
Electronic Notes on Theoretical Computer Science. Elsevier Science, July 2001.

3. E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and Prac-
tice. Addison-Wesley, 1999.

4. D. Gelernter. Generative communication in Linda. ACM Transactions on Program-
ming Languages and Systems, 7(1):80–112, Jan. 1985.

5. Gnutella Home Page. http://gnutella.wego.com.
6. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, 1999.
7. A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A middleware for physical and

logical mobility. In Proceedings of the 21st International Conference on Distributed
Computing Systems, May 2001.

8. P. Wycko, S. W. McLaughry, T. J. Lehman, and D. A. Ford. TSpaces. IBM Systems
Journal, 37(3):454–474, Aug. 1998.

