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Abstract. MetaJ is an environment that facilitates metaprogramming using the
Java language. The environment is designed to be extended with plug-ins that
can manipulate programs written in different languages. This requirement have
influenced MetaJ design since the facilities of the environment concern only syn-
tactical aspects. Semantics aspects are language-dependent and are not treated
here, but could be tackled with other tools, which could even be layered in the
top of MetaJ. Accessing patterns by example inside ordinary Java programs is
a major feature of MetaJ programming. This paper presents a conceptual de-
scription of the environment, implementation details and three applications on
analysis, restructuring and generation of programs.

1. Introduction

Computer programs define internal data structures to abstract from the entities of a prob-
lem domain. Since, it is potentially possible to abstract from every concrete entity one
can imagine, it is possible to write programs to reason about everything, even another
programs. Metaprograms are special programs (meta level programs) whose problem do-
main are another programs (base level programs). Some applications of metaprogram-
ming are program translation from one language to another, program transformation,
refactoring, program comprehension, program optimization, partial evaluation, program
verification, type inference/checking, design patterns detection/application, program slic-
ing [Sheard, 2001] [Partsch and Steinbr¨uggen, 1983] [Oppen, 1980] [Mens et al., 2001]
[Tip, 1995] [Rugaber, 1995].

In principle, a metaprogram can be written in any general-purpose program-
ming language. Generally, the programs being manipulated are represented inter-
nally as (abstract) syntax trees, which are either registers in procedural languages,
or objects in object-oriented languages, or terms in functional languages or rewriting
systems[Cameron and Ito, 1984]. Using such representation is not a comfortable task
because: i) there is a large conceptual gap between concrete programs and the operations
used to compose and decompose such structures; ii) metaprograms are not meant to be
written only by programmers with expertise in compilation techniques [Visser, 2002].

Metaprogramming is hard because programs are complex. Programmers utilize
many features to manage this complexity. These features are often built into program-
ming languages and include: type-systems (to catch syntactically correct, yet semanti-
cally meaningless programs), scoping mechanisms (to localize the names one needs think



about), and abstraction mechanisms (like functions, object hierarchies, and module sys-
tems to hide irrelevant details). These features add considerably to the complexity of the
languages they are embedded in, but are generally considered worth the cost. Writing pro-
grams to manipulate programs means dealing with this complexity twice[Sheard, 2001].

A possible solution to alleviate the inherent difficulty of metaprogramming is the
use of metaprogramming-specific languages. One approach for constructing these meta-
level languages is extending a general-purpose language, which has, generally, two major
drawbacks: it is required from the metaprogrammer a great effort for expressing queries
on the source code; and the developed metaprograms, usually, lack extensibility and are
hard to mantain [Klint, 2003]. Another approach is the definition of a new metalanguage,
which provides built-in functionality for expressing high-level operations on the source
code, thus yielding simpler metaprograms. On the other hand, it is more difficult to learn
a new language rather than a new library for a known language. This difficulty is even
more dramatic if the language paradigm is not widely popular. It is also more difficult
building a new language from the scratch rather than building a new library.

In [Cordy and Shukla, 1992], it is highlighted two difficulties concerning the
metaprogramming process: the lack of a general approach for developing metaprogram-
ming languages, and the difficulty in learning metalanguages. In [Klint, 2003], it is ar-
gued that despite the resemblance between compilation, restructuring and comprehension
of programs, the last two processes should not be approached with the well-known tech-
niques developed for the first one. Some differences can be pointed out. Compilation
deals, generally, with only one source language, while restructuring and comprehension
may involve several languages. A compiler can abstract from the source code as soon
as it becomes available. On the other hand, in restructuring it is necessary to keep a
link between the abstraction and the source code because the latter should be rewritten.
Program comprehension requires user interaction while compilation is usually batch pro-
cessed. Program comprehension and restructuring are used for reverse engineering, while
compilers are used in forward engineering.

Since providing a desirable metaprogramming tool is still a challenge, below it is
pointed out some requirements, which such a system should satisfy, and that has guided
MetaJ design:

• Expressiveness and readability. The main goal of a metaprogramming tool is to fa-
cilitate a hard task of metaprogramming. So, the tool should provide abstractions
that hide the internal representation of the source program.

• Flexibility. the tool should support analysis, generation, manipulation and trans-
formation.

• Easiness of learning. according to Cordy [Cordy and Shukla, 1992], one of the
reasons why metaprogramming is not largely used is that most tools are hard to
learn.

• Definition of program patternsby example. In this case, the tool should support
the matching of source program fragments.

• Consistency. When generating, manipulating, or transforming a program, it is nec-
essary to guarantee that the target program satisfies at least the syntactic properties
of the base language.

• Multiple base languages. Software systems artifacts are usually written with more
than one language. So, the tool should be able to accept new base languages on
demand.

In the rest of the paper, it is presented MetaJ, an extensible framework for develop-
ing metaprograms in Java. In Section 2, it is shown a general picture of the environment,



its design decisions, and how it can be used. In Section 3 it is discussed the implemen-
tation details. In Section 4, it is shown some applications that are being carried out with
MetaJ. In Section 5, MetaJ is compared with another metaprogramming tools. Finally,
conclusions and future work are presented.

2. The MetaJ Environment

MetaJ is an object-oriented framework that defines a set of concepts that are independent
of the base language: syntax trees, code references, and code templates. However, each
instance of each concept is dependent on a specific base language. The framework sup-
ports this independence by isolating the features common to any language and defining
generic operations for them and besides, it allows plugging components that are language-
dependent. Metaprograms are written in Java, and access the generic concepts of MetaJ,
dealing with the syntax of specific base languages.

2.1. Internal Representation of Base Prograams

Base programs are represented as syntax trees. All node types are derived from the non-
terminals of the base language grammar. An important consideration is that this grammar
may need a reformulation to include all important node types as non-terminals, i.e., the
node types that the metaprogram may have access. In the case of JavaCC grammar of
Java, these changes were few and trivial.

All nodes are accessed with an interfaceReference. Thus, references are used
to manipulate fragments of base language code. References hide the tree nodes and pro-
vide only operations that preserves the syntax consistence of the resulting tree. Tree
traversal is possible using iterator objects. They implement the classical design pattern.
During the traversal it is possible to use reference operations to test or modify a fragment
of base code.

The most important methods of theReference interface are:

• String print(); Returns the corresponding source code of the node sub-tree
• boolean match(Reference); Structural comparison of sub-trees
• Iterator getIterator(); Returns an iterator to traverse the node sub-tree
• void set(Reference); Updates the value of a reference
• String toString(); Returns the corresponding code fragment of a reference

2.2. Variables and Templates

A first requirement for a metaprogramming language is providing high-level abstractions
that hide the internal representation of base programs. MetaJ enables plugging small
domain-specific languages for writing program patterns by example, called templates1.
Each template language is specific for a base language and is generated from it. In this
sense, a template language is a superset of the base language.

Templates are abstractions that encapsulate a program pattern written by example.
A template has a name, a type and a body. The type of a template must be one of the node
types defined from the base language grammar. The body of a template must include a
sentential form, which must match any sentence that can be derived from the non-terminal
that defines the respective type of that template. A sentential form can be written with
appropriate terminals, code variables and delimiters of optional sentential sub-forms.

1In Section 5 templates are usually referred as patterns. Templates were preferred to avoid confusion
with software engineeringdesign patterns



A code variable stores a reference for a code fragment. It has a type which must
be one of the node types, just as templates. The types of code variables are classified
as asingle-valued type or amultivalued type, the latter ended with suffixList. For
example, aImportDeclaration denotes a type that references one import declara-
tion. An ImportDeclarationList denotes a type that references multiple import
declarations, and has additional operations for inserting and removing elements.

An optional sentential sub-form is acceptable only if the original grammar of the
base language allows it to be optional.

A template is translated into a Java class, which has the same name of the tem-
plate. In Listings 1 and 2, it is shown an example of a template translation. The template
MyTempl has typeCompilationUnit; has an optionalPackageDeclaration
which can be bound to any reference with typePackageDeclaration; has a class
with signature exactly equals the fragment with tokensclass followed byMyTempl.

package myTemplates;
language = Java // plug-in name
template #CompilationUnit MyTempl {
#[#PackageDeclaration:pck]#
#[#ImportDeclarationList:imps]#
class MyTempl { ... }
#TypeDeclaration:td
}

Listing 1: An example of template

package myTemplates;
import metaj.framework.AbstractTemplate;
public class MyTempl extends AbstractTemplate{
public final Reference imps, td, pck;

//Implementation of superclass abstract methods
...

}

Listing 2: Java class generated from template of Listing 1

Each template can be arbitrarily instantiated. Each instance of a template has
its own environment, i.e., its own binding from code variables to references. The code
variables occurring in templates are available in the corresponding template instances –
besides, an API is available to manipulate the template. The most important methods are:

• String print(); Returns the corresponding source code of the template. Re-
quires all variables to be bound.

• boolean match(Reference); Pattern-matching with a syntax tree. Binds all
code variables toReference objects on the tree. If a code variable is already
bound, it verifies if the corresponding references match.

• Iterator getIterator(); Returns an iterator to traverse the template tree
• void setXXX(Reference); These methods are available for each code variable

in the template, whereXXX is the name of the code variable with its first letter
capitalized.

• void addInXXX(Reference, int); Idem as previous, but adds a child reference
in a multivalued code variable namedXXX.

In Section 4, it will be presented examples of how templates may be used.



3. Implementation Details

MetaJ environment has three major components: the MetaJ framework, base language
plug-ins, and the template compiler. In order to introduce a new plug-in into the environ-
ment, a context-free grammar processor is available. Figure 1 shows the major compo-
nents and their respective interdependence.

Therefore, there are two kinds of MetaJ users: the metaprogrammer and the plug-
in developer. The metaprogrammer is the final user of the environment. A MetaJ metapro-
gram developed by this user is a Java program that uses framework abstractions to manip-
ulate the base code.

Designing and building a plug-in is not a trivial task, mostly because of the
meta/base language implementation. Even using a parser generator does not simplify
the task. These difficulties create the necessity of a tool to help theplug-ins devel-
oper. QUAIS DIFICULDADES??? ACHO MELHOR TIRAR ESTE PARAGRAFO OU
COLOCA-LOS COMO UM TIPO DE CONCLUSAO.

The grammar-processing tool generates a template language grammar from a spe-
cific base language grammar. A template language is a superset of the base language
because it can accept any base program, i.e., a template containing no metavariables. The
generated grammar will be the source code to a parser generator, which will produce the
template language parser. The MetaJ environment will use this parser to build the both
the template body and the base program syntax trees. The current implementation uses
the Cup parser generator.

The generated grammar is an extension of the base language grammar. It has new
productions to allow meta-constructions to be combined with base language construc-
tions. There are two kinds of new productions: metavariables productions, which allow
declaration of meta-variables, and productions that allow usage of optional marks. In
the former case, the user specifies information about which types of metavariables are
allowed. In latter case, the decision about which base language structures can be delim-
ited by optional marks is made through the detection of anullable symbols (that symbols
can produce an empty string (lambda)). The structures derived by these symbols must
necessarily be delimited by optional marks.

It is important to highlight that some base language grammar adjustments may be
necessary in order to the user to achieve the desired metalanguage grammar. However, in
the case of Java, these adjustments have proved to be very simple.

The MetaJ framework encapsulates all MetaJ concepts containing no base lan-
guage specific information, which should be provided by theplug-ins. The framework
provides abstract and concrete base elements used to develop plug-ins and metaprograms.
The main generic operations carried out by the framework are matching and printing:

1. The matcher is the component which verifies if a base program is in accordance
with a pattern encapsulated by a template. The result of this operation is a table
that defines a value for each metavariable of the pattern. Metavariables values can
be accessed using references.
The match operation expects two parameters: the patternp (a template body) and
the input base language codec. The matcher starts aligning the beginning ofp and
c, and follows comparing each reached structure ofp with the reached structure of
c. The patternp guides the matching process. The matcher defines its next action
based on the kind of the current structure ofp, so that:

(a) If the current structure ofp is a base language fragment of code and this
fragment of code occurs on the current position ofc, then the matching



Figure 1: The relationship between MetaJ components

process continues on the next structure ofp andc; otherwise a matching
error occurs;

(b) If the current structure ofp is delimited by optional marks then the match-
ing process tries to continue without this structure. If matching the fol-
lowing segment results in error, then matching is tried again using the
delimited structure;

(c) If the current structure ofp is a simple variable, then the compatibility
between the type of thep current structure and the type of thec current
structure is verified. If they are compatible, then the matching follows
verifying next structures ofp andc;

(d) If the current structure ofp is a list variable, then the smallest number of
structures ofc, which are compatible with the type of current structure of
p, and succeeding the matching continuation, are matched with the list. If
no structure is matched, then a matching error occurs.

2. The printer is capable of rebuilding the program source code from a syntax tree.
The print operation expects only one parameter: the pattern or base language code
syntax tree to be printed. If the tree represents a base language code, then the
printer just prints its corresponding code. When the tree is a pattern, then all oc-
currences of metavariables are replaced by their respective value. It goes through-
out the syntax tree and makes its decisions about what to do based on the kind of
reached structure:

(a) If the current structure is a base language fragment of code, it is converted
to its textual representation. The printer prints each token stored in the
subtree of the structure to perform this operation.

(b) If the current structure is a metavariable (simple or list), then its value is
printed.

(c) If the current structure is delimited by optional marks, then it is printed if,
and only if, all meta-variables used in this structure have a defined value.
Optional marks are not printed.



If any metavariable without a defined value is reached and it is not delimited by
optional marks then a printing error occurs.

Plug-ins will implement the language specific interfaces and abstract methods of
the framework. The framework components related to the plug-in construction are listed
below:

1. Template language parser interface. The framework does not define a specific
parser. It just provides an interface which should be implemented by the template
language parser.
The most important plug-in component is the template language parser. This
parser should build syntax trees for templates bodies and base language programs
using the syntax tree nodes provided by the framework.

2. Syntax tree nodes. The template language parser will use these elements to build
syntax trees. There are three kinds of nodes: (1) simple nodes, which are used to
represent base code fragments, (2) variable nodes, which represents metavariables
occurrences, and (3) optional marks, which are nodes that mark optional fragments
of code.

A MetaJ program is a Java program that use MetaJ components. The decision
to implement this link was compiling templates are to Java classes, so they could be
accessed in the metaprogram. Although the template compiler depends on the template
language parser, the plug-in developer does not implement it. The template compiler
is a language-independent compiler that uses the template language parser interface to
access the parser implemented by the plug-in developer aided by the grammar processor
tool. The template compiler is an automatic way to implement the abstract methods of
the classAbstractTemplate provided by the framework. The concrete methods of
this class act as a front-end of the framework. They hide details about how to use the
framework operations. In addition to implementing the abstract methods of the class
AbstractTemplate, the compiler generates methods to access and set the value of
each template metavariable, as it has been shown in Section 2.

4. Applications

MetaJ has been applied in the development of several applications. Here are shortly pre-
sented some examples that range over analysis, transformation and generation of pro-
grams.

4.1. Metrics Collector

Any software tool that requires source code analysis usually produces, internally, a suit-
able representation for the code. Figure 2 shows a class diagram as an example of how
one could model a Java system. This representation usually requires more expressiveness
than that already available in a syntax tree. For instance, for program slicing tools, it is
necessary to have a control flow graph[Tip, 1995]. Another example could be an expert
tool for detecting specific refactorings, which represent opportunities for enhancing the
internal quality of a system. A required infrastructure to develop this kind of tool is a
collector of system metrics that enables the definition of a quality function for the system
code. Most of the implementation of such a collector can be driven by the syntactic rep-
resentation of the code. In this case, MetaJ appears to be a useful environment to extract
the skeleton of the code. This skeleton could be represented by the metamodel shown in
Figure 2. In Listing 3, it is presented a method that given any possible class member, it
identifies member’s type and creates a respective concrete object for that member (one of



Figure 2: A possible (partial) metamodel for Java systems

the possible concrete classes that extend theMembroInfo class, colored in Figure 2).
Trying to match the member with an appropriate template for each possibility carries out
the identification. The template for simply verifying if a member is a field declaration is
shown in Listing 4. The classFieldInfoCollector creates an objectFieldInfo
and updates it with the information extracted with other appropriate templates. The whole
collector iterates the all the system using appropriate collectors.

public class MemberInfoCollector {
private String member;
private MemberInfo memberInfo;
public void execute() {
VerifyFieldDecl tvfd = new VerifyFieldDecl();
VerifyMethodDecl tvmd = new VerifyMethodDecl();
VerifyConstructorDecl tvcd = new VerifyConstructorDecl();
VerifyNestedClassDecl tvncd = new VerifyNestedClassDecl();
VerifyNestedInterfaceDecl tvnid = new VerifyNestedInterfaceDecl();
if (tvfd.match(member)) { // FieldDeclaration

FieldInfoCollector fic = new FieldInfoCollector(typeMember);
fic.execute();
memberInfo = fic.getFieldInfo();

}
else if (tvmd.match(member)) { // MethodDeclaration

... //idem
} ...

}

Listing 3: A method that collects information of a class member

template #ClassBodyDeclaration VerifyFieldDecl {
#FieldDeclaration:fd

}

Listing 4: A template for verifying a field declaration

4.2. Programmable Refactoring

Refactorings are semantics-preserving transformations on the source
code[Opdyke, 1992][Fowler, 1999]. It aims to enhance the internal quality of the
system. It is commonly agreeded that refactoring tools are extremely important when
it is necessary to proceed with a considerable system reengineering. There are already



some tools that provide built-in refactoring capabilities[Mens and et.al., 2003]. In MetaJ
approach, refactorings are proposed as common Java classes, and thus can be composed
into more elaborated transformations. They can also be reused in any part of a system
and integrated into development environments that provide open APIs, such as JBuilder
and Eclipse.

Listing 5 shows an adapted version of theMove Field refactoring[Fowler, 1999].
A field will be moved from a source class to a target class, and the dependences of this
movement will be properly arranged. The instance variables are configuration parameters
of the refactoring. There are certain preconditions that must be satisfied, for example, the
field to be moved must exist in the source class. This precondition is verified by match-
ing theClassWithField template shown in Listing 6 with the input file containing
the source class. Then, the field is encapsulated in the source class. This implemen-
tation potentially writes the modified source class to a different file, depending on the
values of the respective instance variables. For this task it is called another refactoring,
the EncapsulateField. For the lack of space, it is not presented all transforma-
tions. The template for (re)writing a file used in theEncapsulateField refactoring
is shown in Listing 7. After encapsulating the field in the source class, the bodies of the
newly created methods are modified to access the field using an instance of the target
class. The transformationRedirectMeth is responsible for this action. Note that a
new instance variable of the target class is created, if no one is encountered. Next, the
field is removed from the source class, but not the getter and setter methods. After that,
the field and corresponding getter and setter methods are inserted in the target class using
the classAddEncapsulatedField. Finally, it is checked if there is any instance vari-
able in the target class with the type of the source class. If so, all accesses to the recently
moved field qualified by that variable must be updated with the proper method call. The
transformationRedirectClass is responsible for this action.

public class MoveField {
String isf, osf; // Input/Output file with source class
String itf, otf; // Input/Output file with target class
String sc, tc; // Source/Target class
String fn; // Field name
public void execute() throws ActionException {
ClassWithField vf = new ClassWithField();
vf.setClassName(sc); vf.setFieldName(fn);
if (vf.match(...isf...) { // Verify if the source class has the field
EncapsulateField ef = new EncapsulateField(isf,osf,sc,fn);
ef.execute();
RedirectMeth rm;
rm = new RedirectMeth(osf,osf,sc,ef.getSetMeth(),tc);
rm.execute(); // Update Set method body
rm.setMethodName(ef.getGetMeth() );
rm.execute(); // Update Get method body
RemoveField rf = new RemoveField(osf,osf,sc,fn);
rf.execute();
AddEncapsulatedField aef = new AddEncapsulatedField(itf, otf, tc,

vf.fm, vf.type, vf.fieldname, vf.vi);
aef.execute();
vf.unBindAll();
vf.setClassName(getIdTC()); vf.setType(getType(sc));
if (vf.match(...otf...)) {//there is field of Source type in the Target
RedirectClass rc = new RedirectClass(otf, otf,tc,sc,

ef.getSetMeth(), ef.getGetMeth());
rc.execute();

}
}
else throw new ActionException("Field declaration not found in " + sc);

}
...

}

Listing 5: Java class for the Move Field refactoring



template #CompilationUnit ClassWithField {
#[#PackageDeclaration:pck ]#
#[#ImportDeclarationList:ids]#
#[#TypeDeclarationList:tds]#
#[#ClassModifiers:cm]# class #className #[#ClassExtends:ce]# #[#ImplementsClause:impc]#
{
#[#ClassBodyDeclarationList:cbds]#
#[#FieldModifiers:fm]# #Type:type #fieldName #[#VariableInitializer:vi]# ;
#[#ClassBodyDeclarationList:cbds2]#

}
#[#TypeDeclarationList:tds2]#

}

Listing 6: Template for a class with a field

template #CompilationUnit ClassWithFieldAndGetAndSet {
#[#PackageDeclaration:pck]#
#[#ImportDeclarationList:ids]#
#[#TypeDeclarationList:tds]#
#ClassSignature:cs {

#[#ClassBodyDeclarationList:cbds]#
#[#FieldModifiers:fm2]# #Type:type #fieldName #[#VariableInitializer:vi]# ;
#[#ClassBodyDeclarationList:cbds2]#
public void #setMethod (#Type:type arg) {
#fieldName = arg;

}
public #Type:type #getMethod () {
return #fieldName;

}
}
#[#TypeDeclarationList:tds2]#

}

Listing 7: Template used in the Encapsulate Field Refactoring

4.3. Generative Programming

This case study implements a generative domain model that constructs data-driven ap-
plications from simplified entity-relationship specifications. A framework instantiation is
generated from configuration parameters written with a domain-specific language.

4.3.1. The Application Framework

Firstly, it will be presented a framework for four-tier database applications. Since a gen-
erated application will be a specialization of this framework, the architectures of both the
application and the framework are the same. This architecture is shown in Figure 3. The
framework defines abstract classes that will be extended by concrete generated classes.
The latter implements application specific behaviors for template methods declared in
framework abstract classes. Generated applications will be constructed following a four-
tier architecture: presentation (user interface), logic, communication, and data access.
The generation process implemented in the generative domain model will be divided in
two parts: logic and data access generation process and presentation generation process.

In this case study, some constraints are imposed by the generative domain model.
The model only generates desktop applications with predefined user interface. New ap-
plications are generated from a simplified entity-relationship specification. Generated ap-
plications are constructed in a four-tier architecture: presentation, logic, communication
and data access tiers. Generated applications accesses a relational database.

Design patterns [Gamma et al., 1995] are used in all layers of both application and
framework, so the generated system is expected to have satisfactory internal quality, and
thus can be manually customized.



Figure 3: The architecture of both the generated application and the application
framework

Figure 4: The architecture of the generators

The configuration knowledge is specified in a domain-specific high-level config-
uration language. From the above restrictions, it was introduced just a data configuration
language.

Below, it is shown an example of specification. It is supposed that a corresponding
database with three tables has already been created.

Entities:
Client (code:Integer; name:String; address:String; age:Integer;)
Account (number: Integer; balance: Real;)

Relationships:
AcountClient: One to many (1..*) from Client to Account

Fields: code:Integer; number:Integer;

4.3.2. The Generators

Figure 4 shows the overall architecture of framework specialization generators. Algorith-
mic generation methods receive, externally, parameters that represent the configuration
knowledge. These methods define values for the code variables of associated rules and
use eachprint template operation to generate code.



The requirement specification is translated in a method which calls the algorithmic
generation methods, shown in Listing 8. Since there is no way to specify user interface
layout, some standard behaviors were defined. For each entity, a form is generated. Text
fields representing each entity field compose this form. There is a navigation panel to
browse the entities. Relationships result on insertion of a child entity form into the parent
entity form.

In Listing 9, it is shown the configurators of the generators. The class
EntityBuilder is the façade that, in fact, is the realization of a high-level specifi-
cation language. This class encapsulates the calls to the generators. A generator is com-
posed of a class that instantiates and assigns values to all manipulation variables (e.g.
ComposedCreateEntity in Listing 9), and a rule that can be seen as a template of
the generated source file (e.g.CreateEntity in Listing 10).

public static void main(String[] args)throws ActionException{
//-- Client Entity
EntityBuilder client = new EntityBuilder ("Client");
client.setBdUrl ("jdbc:cloudscape:rmi:DataBank");
client.addField("Integer","code",20,true);
client.addField("Integer","age",20,false);
client.addField("String","name",20,false);
client.addField("String","address",20,false);
client.createEntity();
//-- Account Entity
EntityBuilder account = new EntityBuilder ("Account");
account.setBdUrl ("jdbc:cloudscape:rmi:DataBank");
account.addField("Integer","number",20,true);
account.addField("Integer","balance",20,false);
...
account.createEntity();
//-- Relationships
client.createEntityToManyRelationship(account);
account.createEntityToOneRelationship(client);
//-- Forms
client.createEntityForm();
account.createEntityForm();
client.createEntityToManyRelationshipSubForm(account);

}

Listing 8: Code Generator for High-Level Specifications

class EntityBuilder{
...
public void createEntity ()throws ActionException {

ComposedCreateEntity cce = new ComposedCreateEntity ();
cce.setEntityName (entityName);
cce.setEntityDAOName(getEntityDAOName());
cce.setEntityDataInterface(getEntityDataInterfaceName());
cce.setEntityTableName(getEntityTableName());
...
cce.setFields (fields);
cce.execute();

}
...

}
class ComposedCreateEntity {

..
public void execute ()throws ActionException {

AbstractTemplate create = new CreateEntity ();
if (entityName != null && !entityName.equals ("")) {

create.setEntityName(entityName);
}
else throw new ActionException ("Entity name not specified.");
... // set other manipulation variables of the CreateEntity rule
create.print(); // generate the file

...

Listing 9: Some methods for calling generators and the CreateEntity fac¸ade



template #CompilationUnit CreateEntity {
package #Name:entitySchema;
#ImportDeclarationList:entityDependencies import generation.*; import java.sql.*;
public class @extern #entityName #ClassExtends:entityExtends implements Entity {

private #entityDAOName #entityDAOId;
private #entityName (@extern #eDataName _entidade, #entityDAOName _edn) {

#setEntity (_entidade);
#entityDAOId = _edn;

}
#ClassBodyDeclarationList:cbdsEntityData
public static #entityName create (#eDataName data) throws ... {

#entityDAOName dao = new #eImpDAOName ();
dao.create (data);
#entityName _newInstance = new #entityName (data , dao);
return _newInstance;

}
public static #entityName findByPrimaryKey (#FormalParameterList:fp) throws ... {

...
}
public static #entityName[] findAll () throws SQLException,BDConnectionException {

#entityDAOName dao = new #eImpDAOName ();
DataInterface[] data = dao.findAll ();
if (data != null) {

int ndata = data.length;
#entityName[] entities = new #entityName [ndata];
for (int i = 0; i< ndata; i++)

entities[i] = new #entityName ((#eDataName)data[i], new #eImpDAOName ());
return entities;

} else return null;
}
...

}

Listing 10: Meta-J template for specifying an entity generator

5. Related Work

Traditional compiler generation tools such as Yacc [Johnson, 1975] (or Cup, a similar
version for Java) could be seen as a starting point for MetaJ. These tools free program-
mers from the burden of having to worry about the intricacies of parsing algorithms.
Nonetheless, they are still limited to help the verification of syntax rules and the syn-
tax tree construction. MetaJ provides higher-level abstractions for manipulating source
code. Indeed, MetaJ concepts are not entirely new. There have been developed several
systems that provide facilities for metaprogramming. Some of them are self-contained
metaprogramming systems based on the rewriting paradigm. TXL [Cordy et al., 1988],
Refine [Kotik and Markosian, 1989], and ASF+SDF [van den Brand and et.al., 2001] are
examples of such systems. Even if these systems can define patterns based on predefined
context-free languages and use them to define transformation rules, writing by-example
patterns is not directly possible. Even so, the generality of such tools enables this possi-
bility defining additional modules [Cordy and Shukla, 1992][Sellink and Verhoef, 1998].
The main disadvantage of these tools is necessity of learning a new paradigm, which may
be prohibitive in some industrial environments.

SCRUPLE [Paul and Prakash, 1994] is a framework that uses a pattern language
to define queries on the source code. Pattern languages can be derived extending the base
language with pattern-matching symbols, such as wildcards, set variables, sequence vari-
ables. The pattern language design seems to had been carried in an ad-hoc basis since it
is included some semantic dependent features, which may cause difficulties when extend-
ing the framework for different languages. Set variables, named wildcards and matching
equivalent statements are examples of such semantic dependent features. Another exam-
ple of framework for source code analysis is Genoa[Devanbu, 1999]. Both SCRUPLE and
Genoa only provide mechanisms for querying the code, allowing neither transformation
nor generation, differently from MetaJ.



A* [Ladd and Ramming, 1995] and TAWK [Griswold et al., 1996] are pattern-
action languages that extend the lexical pattern syntax of AWK, saving the programmer
the effort of emulating parsing with regular expressions. A* has mechanisms for specify-
ing the order (preorder, postorder) of the implicit loop for traversing trees. Also, matches
can be interleaved with actions. Wildcards and variables are missing in A*. TAWK is built
on top of the Ponder toolset [Griswold and Atkinson, 1995], which provides facilities for
manipulating AST’s. Extending TAWK to a new base language requires retargeting Pon-
der. Both A* and TAWK take the consequences of being embedded in a untyped language
such as AWK, advantageous for rapid prototyping, but unsafe for large projects.

JPearl is a pattern-action language for Java[Maia and Oliveira, 2002]. It defines
two specialized languages for describing restructurings of Java programs. A primitive
transformation is described in a rule language, which has four optional sections: input
pattern, input actions, output pattern, and output actions. A composed transformation is
described in a language, which is a mixture of Java code and mechanisms to instantiate
and execute primitive transformations and to access its pattern variables. Its design de-
cisions can be considered verbose and awkward compared to MetaJ. Furthermore, JPearl
cannot be extended for other base languages.

6. Conclusions

MetaJ, in a first seen, may appear to be a simple metaprogramming utility. Indeed, we
expect this feature to be a positive one in the sense that it confirms its easiness of use. But
also, the applications developed with MetaJ show the reasonably large applications can
be developed with less effort than using traditional compiler generation tools, and thus
confirming its expressiveness. However, MetaJ is far from being an definitive metapro-
gramming tool. Its simple and elegant design is bought with absence of highly expressive
features present in fully featured metaprogramming systems such as TXL, Refine and
ASF+SDF. In MetaJ, much of the metaprogramming work is done in Java. This can be an
advantage if we consider that it can be applied all successful knowledge acquired develop-
ing reusable, robust object-oriented system, but also can be seen as an disadvantage if we
consider that the metaprograms are mostly written in a imperative style, to the detriment
of the declarative style of templates. We expect to introduce such declarative features to
MetaJ within a layered architecture, without interfering with its current design.
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