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Abstract

This paper proposes a new approach for concurrency in abstract state machines (ASM) and presents the
MIR Architecture, an infrastructure designed to serve as basis for abstract state machine compilers. This
new concurrency model improves ASM with truly concurrent capabilities. Besides the implementation of
this new approach, the proposed infrastructure also allows the implementation of optimizations specially
designed in order to address specific ASM optimization opportunities.
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1 Introduction

Abstract State Machines (ASM) is a formal semantic method introduced by Yuri Gurevich in order to provide
operational semantic for algorithms [11, 12]. This paper describes a new model for specifying concurrent
systems based on ASM and proposes an infrastructure, called MIR, to implement ASM-like languages. This
infrastructure provides two important features:

• It implements the concurrency model proposed in this paper. This model is based on Lamport’s
concept of distributed systems [15], and it is intended to improve the original ASM model.

• It is also designed to allow some optimizations to be performed over ASM specifications [20, 24, 25].
These optimizations can be those specific for the ASM model, and do not overlap with the customary
code optimizations.

According to Gurevich, ASM are abstract machines whose states are algebraic structures, which can be
viewed as abstract memories. The arguments of the functions in the algebra are locations of the memory,
whereas the values of the functions are their contents [4]. Some basic concepts related to the ASM model
are introduced following.

Vocabulary and states: a vocabulary or signature is a finite collection of function names, each with a
fixed arity. A state is a nonempty set called the superuniverse, together with interpretations of the function
names.



Transition Rules: a transition rule resembles a program written in an imperative language.In a transition
rule there is no iteration command,because it is not necessary due to the intrinsic cyclic execution of an ASM.
Given an initial state, the transition rule is applied to it, leading to a new state, over which the transition
rule is applied again. This process repeats over and over, until no modifications are observed in the state.
Although the vocabulary stays unchanged along the execution, its interpretation is modified by the transition
rule, from state to state. The execution of ASM transition rules produces update sets, which is used to obtain
the new state. Transition rules are update rule, block constructor and conditional constructor. An update rule
is an expression f(t):=t0, where f is the name of a function, t is a tuple of terms whose length equals the arity
of f and t0 is another term. Terms have no free variables and are recursively built using names of distinct
elements of the superuniverse and the application of function names to other terms. A conditional constructor
is an expression with the following format: if g0 then R0 elseif g1 then R1 . . . elseif gk then Rk endif
The semantics is: the rule Ri, 0 ≤ i ≤ k, will be executed if the boolean terms g0, ..., gi−1 evaluate to false
and gi evaluates to true, in a given state. A block constructor is a set of rules R0, R1, . . . , Rk. The effect of
the execution of a block is the execution of all its components at the same time.

Programs and Runs: a program is a transition rule. A run is a sequence of states. Each state is
generated by firing an update set in the previous state.

The original Gurevich’s ASM does not fit to the most general concept of distributed systems. Particularly,
the coherence condition requires only one agent be active at each time, while the others remain blocked. In
other words, a transition made by an agent (see Section 3.2) is atomic with respect to others agents. This
active agent acts over a world that, in the very moment of its action, can be changed exclusively by it. There
is no real concurrency in the strict sense of this word. Moreover, there is no real parallelism between agents,
just the interleaved execution of a transition rule, which also occurs in the single-agent case. It is as if the
execution of a transition rule is always perfomed inside a critical section. This approach leads to a simpler,
more treatable model, but it does not reflect the reality of distributed systems.

According to Lamport [15], a distributed system may be defined as a collection of processes that are
somehow separated and communicate with each other by exchanging messages. If inside a system the
message transmission delay is not negligible comparing to the time between events in a single process, then
such a system can be considered distributed.

One of the remarkable features of a distributed system is that it is not always possible to say if an
event will occur before or after another one. So, it is possible to get some non-predictable behaviour from a
distributed system, regarding that the order of events is not predictable. It is responsibility of the designer
to use the available synchronism mechanisms in order to avoid such undesirable, anomalous behaviour.

2 Related Work

Del Castillo presents in [7] a definition of an evolving algebra abstract machine (EAM) as a platform for
developing ASM tools and [6] introduces an implementation called ASM-Workbench. The ASM-Workbench
[5, 6] describes a system that is able to transform an ASM specification to a C++ program. The specification
language is called ASM-SL, and it is a typed ASM specification language based in functional programming
language ML. The ASM-Workbench is an important implementation. It is also given a formal definition of
the EAM ground model in terms of a universal ASM. [8] (apud [7]) performs a description of a functional
interpreter for ASM, with applications for functional programming languages. Some extensions to the
language of ASM are proposed, as well. [13] (apud [7]) presents a Prolog interpreter for ASM specifications
that are made in a particular language.

The AsmGofer is an ASM programming environment presented by Schmidt [22, 21], which extends the
Gofer functional language. It provides an interpreter, and therefore it is not so fast as a compiled specification
could be. On the other hand, it is usefull in order to build prototypes.

Anlauff presents in [1] the XASM, an ASM language, together with a compiler for it. A formal definition
of the language is given by Kutter in [14].

The current AsmL version of Gurevich is AsmL 2, also known as AsmL for the Microsoft .NET, and it
can be found at [2]. It does not provide multi-agent mechanisms. On the other hand, it benefits from the
vast library of the Microsoft .NET platform.

Finally, Visser have developed the EvADE compiler [27], which implements an optimization: the common
sub-expression elimination. However, this one does not belong exclusively to the ASM model.
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Figure 1: The Mach̆ına Project.

Figure 2: The Context of MIR.

All these systems are concerned with only a few optimizations, and none of them addresses the con-
currency issue nor mention an intermediate representation with features for disttributed ASM. The infras-
tructure presented by this paper aims to properly address the concurrency issue, using an intermediate
representation language, and it also provides an optimization environment where specific ASM optimiza-
tions can be plugged in order to produce efficient code. The infrastructure proposed and how these results
are achieved are explained in the sequel.

3 The MIR Architecture

The idea of developing a general infrastructure for concurrent ASM compilers arised from the purpose of
bringing this powerful semantic modeling methodology to the world of distributed systems. It would be
helpful to have a general infrastructure available, which could be the basis of compilers aiming at different
ASM oriented languages. As it provides the concurrent execution capability, such an infrastructure would
be usefull to implement concurrent algorithms, at the same time providing a formal semantic model over
which one could prove or deduce some properties. The MIR architecture was designed in order to answer
these needs. MIR stands for Mach̆ına Intermediate Representation. It was originally used as an intermediate
representation for the Mach̆ına language under the Mach̆ına project. The MIR project has grown up and
nowadays it serves as the basis of compilers for concurrent ASM oriented languages.

The Mach̆ına project, illustrated in Figure 1, is composed of three distinct parts. The first one comprises
the Machina front-end, which translates Machina program to MIR, the intermediate representation language.
The second part receives a MIR file, optimizes it, considering the optimizations specially designed for the
ASM model and produces as output a MIR file optimized. The third part translates from MIR to C++.This
paper addresses the design and implementation of MIR. For details of the Mach̆ına project refers to [3, 16,
17, 19].

The main feature of the MIR Infrastructure is to produce C++ code from a MIR specification and thus
allowing rapid development for ASM compilers. Figure 2 shows MIR usage context.

Another remark worth mentioning about MIR is that it was designed to be easily optimized, as shortly
introduced in Section 3.5. These optimizations do not overlap with those who are normally performed by
the C++ compiler. Rather, they belong exclusively to the ASM model. For details, see [18].

MIR Infrastructure means all the classes and software components that compose the infrastructure pre-
sented in this paper and its implementation. The expression MIR Architecture refers to the general structure
of an ASM specification using the MIR Infrastructure .
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Figure 3: The MIR Architecture.

Figure 4: A Module of MIR.

3.1 Agents, Modules and Other Elements

A MIR specification is basically composed by a set of agents, each of them of a given type, and a common
Global Name Space, which is accessible by each agent belonging to that MIR specification. This picture is
depicted in Figure 3. The Global Name Space is defined as tables for static, derived, external and dynamic
functions, and for the actions, as well. Static functions are those which can not have values in points of their
domain changed by update rules. These functions are defined by parameterized expressions, and remain
unchanged during the whole execution of the MIR architecture. It is not allowed to call a dynamic function
inside its definition, as well. A derived function is similar to a static function, except that it may call dynamic
functions. Dynamic functions can have values in points of their domain changed or even defined by update
rules. External functions are those defined outside the MIR architecture definition, and only their signatures
and return types are known. They are usefull to model interaction with the environment. Finally, actions
are the abstraction of agents. They allow the implementation of the notion of submachine, as pointed out by
Tirelo [24]. Static and derived functions are grouped together, because their definitions are closely related.

The type of an agent is a module. Figure 4 presents the structure of a module in MIR. A module contains
a transition rule augmented with some support structures: the update lists and the Local Name Space.
Like the global one, the Local Name Space consists of the tables for static, derived, external and dynamic
functions, and for the actions, as well.

The transition rule is a tree of rules. The nodes of such a tree are given by the simple and compounded
rules of the MIR Architecture. Simple rules appears always in the leaves of a rule tree, while compounded
rules are used in order to build rules from other ones. Simple rules are:

• update rule, which changes the value of a dynamic function at a specific point;

• create rule, which creates a new agent and starts its execution;

• destroy rule, which deletes an agent;

• stop rule, which indicates that the execution of the rule must be halted;
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Figure 5: The Structures of the Tables.

• return rule, used inside actions to indicate that the execution must return to the calling rule;

• action call rule, which starts an action as a submachine;

The compounded rules of the MIR Architecture are:

• conditional rule, the traditional if-then-else rule;

• forall rule, which applies a rule to all the elements of a set;

• choose rule, which applies a rule to a randomly chosen element of a set;

• let rule, which allows ad-hoc expressions definitions;

• case rule, which executes a rule according to the value of an expression;

• with rule, which executes a rule according to the type of an expression;

• and the block rule, used in order to define a rule that is the union of many rules.

The Static and Derived Function Table is a list whose entries have three components: Function Name,
Function Type and Function Definition, as depicted in Figure 5. The function type is a tree of types, whose
root is possibly a functional type node, except when the function is nullary. A Type Tree is a tree whose nodes
are either basic types or type constructors. High order functions are not allowed. The Function Definition
is a tree, as well, and it can be recursively constructed from basic expressions and expressions constructors.
The definition of each of the type and expression nodes are beyond the scope of this paper, and the reader
is referred to [18] in order to get more details about them.
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The entries of the Dynamic Function Table have also three components, but its third component, the
Function Definition, now leads to a dynamic mapping between points in the function domain and their
values. The Dynamic Function Table is illustrated in Figure 5.

As external functions are defined outside the MIR architecture definition, the entries of the external
functions table have just two components: the Function Name and the Function Type. External functions are
written in C, and the communication protocol and the parameter mapping policy are defined in Section 3.3.
The External Function Table is depicted in Figure 5.

The Action Table represents the table of agent abstractions, and its entries are pairs whose first component
is the Action Name and the second component is the Rule Tree. This table is presented in Figure 5.

3.2 The MIR Approach for Concurrency

The original definition for concurrent ASM programs, as presented in [11], is too limited to model properties
usually found in concurrent systems. In the Gurevich’s model, two or more agents are not allowed to execute
their transition rules simultaneously, which make it inapproprieted to model real multiagent systems.

According to Zambonelli [29], an agent is a software entity that exhibits autonomy, situatedness and
proactivity. The concept of agent used here pursuits these features in the following sense:

Autonomy: there is a transition rule associated with each agent, giving it an autonomous and independent
behaviour from other agents.

Situatedness: every agent is immersed in a common global context where they can interact among each
other, which are referenced by their names or by the special word self 1.

Proactivity: an agent has the freedom on calling actions over other agents.

Agents also interact with each other through cooperation, coordination or negotiation. This kind of
interaction is called sociality.

This section presents a new approach for concurrency in ASM in order to cope with real concurrent
systems. The main features of this new approach are the possibility of simultaneous moves by different
agents and the concept of “delayed knowledge” [15], meaning that agents may store copies of the global
state which may not always be kept up to date.

Our intention is to model systems with agents of different speed of execution. When the update set
of an active agent is processed, it means that the agent has had enough time to execute an iteration of
the associated transition rule. This time can differ from agent to agent, leading to an unpredictable delay
between the moment some changes are performed by one agent and the moment when these changes are
perceived by another agent. In a distributed system, the delay may be also associated with the time for
information transmission.

The proposed model does not provide any primitive for communication between agents. The model is
general enough to allow inconsistent simultaneous updates produced by different agents. All communication
must be explicitly programmed by the designer of an ASM concurrent specification. For example, suppose a
set of agents in a distributed system, meaning that all communication is handled via message exchange. The
designer of the system may represent communication channels by ASM functions which are updated by a
sender agent and read by a receiver agent, avoiding inconsistent updates. Many ASM-based languages [26, 2]
offer mechanisms for hiding information and visibility control, and also for the definition of abstractions for
ASM rules. These concepts may be used by the designer to ensure that all communication will be executed
using only the defined channels, allowing an agent to update only the ASM functions related to its output
channel.

In the MIR Architecture, the scope of a function or action may be declared either local or global. Local
declaration specifies the elements that belong to a specific module, and therefore these elements are accessible
just inside that module. Conversely, a globally declared function or action can be accessed by each agent at
execution in the context of a MIR specification. Global elements are declared at the top-most level, namely,
the MIR specification outside the modules. Name conflicts between elements of both scopes are not allowed.

Every agent in a MIR specification is executed concurrently, and each of them has local copies of the
global dynamic functions it makes use of. The local copies are used by the transition rule of the agent,
and occasionally a synchronization window opens and the local copies and their global correspondents are

1The interpretation of self is the agent itself in whose transition rule this word is found.
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updated. As argued in [15], in a concurrent system, it is sometimes impossible to say in advance which
one of two events will occur first, and therefore the relation “happened before” is only a partial ordering of
the events of the system. This is particulary true for the event of synchronization in the MIR approach for
concurrency, since the synchronization is made by each agent at the end of the execution of its transition
rule, and it is not possible to assure that every agent will be going to finish it at the same time.

The execution of an agent transition rule produces three types of update lists, namely: the local updates,
the import updates and the export updates. These update lists are maintained inside the MIR module, and
are employed in the proper situation.

The local updates are related to the update rules that act over locally defined dynamic functions. They
are fired at the end of every execution of the transition rule. The entries of the local update list are cleaned
up after they are fired, and then the new execution of the transition rule will fill in it again. This gives the
local update list a transient, dynamic nature. The import and export update lists, however, are associated
with globally defined dynamic functions.

The import updates are fired every time the local copy of a global dynamic function needs to be refreshed.
This happens at two occasions:

1. the import is done when the execution of an agent starts;

2. it is also done at the moment the values of dynamic functions of the agent are synchronized with the
global name space.

The entries of the import update list of a module are all those globally defined functions used as right
hand side values by the transition rule of the module. This list can be constructed from the analysis of the
transition rule, and it remains unchanged during all the execution. The export updates take effect when the
local copy of a global defined dynamic function is to be uploaded into its global counterpart, hence its local
value becoming available to other agents which imports that dynamic function. The entries of the export
update list of a module are all those updates of global dynamic functions used as left hand side values by
the transition rule of the module.

According to Lamport [15], a distributed system may be defined as a collection of processes which are
somehow separated, and they communicate with each other by exchanging messages. If inside a system the
message transmission delay is not negligible comparing to the time between events in a single process, then
such a system can be considered distributed. The concurrent MIR approach follows the above definition.
More specifically, each agent performs a data exchange at the end of each iteration of its transition rule,
and it is at this very moment that the agent updates its knowledge about the external world. Between two
consecutive data synchronizations, the agent gets its transition rule executed, which may take an unbounded
period of time. This time differs from agent to agent since it depends upon several factors, like the size of the
rule, the parts of this rule that are executed in fact, processor speed and other hardware resources, and so
on. Meanwhile, the external environment can be modified by other agents, but these changes are perceived
by an arbitrary agent only at its next synchronization, and this time is not negligible. As it occurs with real
life distributed systems, the perception of reality may differ depending on the moment of observation.

3.3 MIR Native Interface

MIR Architecture allows the existence of external functions, also known as oracle functions, to be written as
C++ functions The external functions are present in the ASM model since the beginning and they provide a
way to specify interaction with the environment. As argumented by Gurevich in [11], an oracle function does
not need to be consistent between different execution steps of a transition rule. But the oracle should be
consistent at different uses in the same execution step of the transition rule. This effect can be achieved by
caching the accesses of the external functions at the same iteration, and that is done in MIR Infrastructure.
In order to get the external functions written in C++ to be called from the MIR specification properly, it is
required that they obey some conventions. These conventions are called MIR Native Interface, or MNI, for
short, and they determine a common protocol upon which both the MIR specification and the C++ external
function can rely.

In the external functions written in C++ it is not allowed the void return type, as they are indeed not
procedures, but functions, and so some value is expected from them. On the other side, the function can
be a nullary one. The mapping from the types of MIR and the correspondent C++ types are presented in
Table 1. They are the only types allowed both in the signature and as return type of the C++ functions
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MIR Type Correspondent C++ Type
boolean bool
character char
integer int

real double
string std::string

(T1,. . . ,Tn) struct
list of T std::vector<T>

Table 1: Type mapping in the MIR Native Interface. The std:: prefix means that the element belongs to
the Standard Template Library of C++ [23].

Figure 6: The features of the MIR implementation.

used as external ones. Due to implementation restrictions, the type of a parameter must be a basic type, a
tuple, or a list of the allowed types.

3.4 Highlights of MIR Implementation

The implementation of MIR is heavily based on design patterns, particularly on the visitor design pattern.
According to Gamma et al. [9], a visitor is a design pattern that represents an operation to be performed
on the elements of an object structure without changing the classes of the elements upon which it operates.
This concept is directly applied in the implementation of the following operations.

Serialization: the MIR representation of an ASM specification can be saved in permanent store. This
saving process is called serialization. MIR implementation allows its serialization through XML files, ac-
cording to a specific format determined by a XSD (XML Schema Definition) [28]. This serialization may
happen in both ways: it is possible to get a MIR object from a serialization file, as well as a MIR object
can be serialized in such a file. The main advantages of this represention are: XML files are just plain text
files, so they can be edited using many alternatives according to the needs of the programmer; XML files are
easily readable not just by humans, but also by machines, as it is relatively simple to build parsers for them,
and even some libraries are available in order to automate this work; and finally, an XML representation is
quite easy to produce from the hierarchical structure of the MIR architecture.

Compilation to C++ Code: the MIR implementation provides a visitor in order to obtain C++ code
that reflects the architecture under definition. The generated code matches the C++ standards, so it is pos-
sible to compile it into different machines and different operating systems with a few changes. Additionally,
the adoption of C++ as target language allows the generation of efficient, fast code, which is essential in
many scenarios. The existence of several C++ compilers, some of them available without charge, frees the
user of the MIR Infrastructure of being dependent upon specific compilers and vendors.
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Figure 7: The optimization process of a MIR specification by using the k`ar framework.

Direct Execution: the MIR implementation allows its direct execution. In other words, the MIR objects
can be executed in an interpreted fashion, without the need of being converted to C++ code and then
compiled. This is usefull, for instance, in building step-by-step symbolic debbugers. The visitor that provides
this feature can be viewed as a virtual machine for executing MIR specifications, a concept used nowadays
and that offers some advantages, as providing an abstraction layers over different machines and operating
systems.

Visualization: it is also possible to obtain a visual representation of a MIR specification through the
generation of its description in the DOT language of the GraphViz software. The DOT language is a language
designed for description of graph-like structures, and it is used in GraphViz software. This program and the
definition of the DOT language can be found at [10].

3.5 MIR and Optimization

It is not enough to a modern compiler to get executable code; this code should be also optimized. For the
target language of the MIR Infrastructure, namely, C++ code, there are several compilers that address this
request with efficiency. However, there are some optimization possibilities that belong exclusively to the
ASM model, and therefore they are not performed by the existing C++ compilers, as argued in [20] and in
[25]. These possibilities are the ones we are interested in.

In order to address this special situation, it is under development a framework [17] that provides the
proper environment to optimize MIR specifications, as depicted in Figure 7. The optimizations are easily
added or removed as plugins, thus facilitating the development of new optimizations.

As examples of such ASM-related optimizations, we can point out the Update Scale Optimization and
the Deviation Optimization, taken from [19, 20, 25]. Some brief comments about them are made in the
sequel.

Update Scheduling Optimization: let B = U1, U2 be a block where U1 and U2 are updates, so that U1

is y:=z and U2 is x:=y. According to the semantics of ASM, these updates could not be direct converted
to a sequence of attributions in C++ code, because x could receive a wrong value, according to the model.
Instead, the updates are compiled into code that inserts some entries in the list of updates to be processed at
the end of the iteration of the rule. Unfortunately, this can be time consuming, as the operations involved may
have high computational costs. It is desirable to avoid paying this cost whenever possible. Some intructions,
like U2 above, could be performed immediately without the loss of the model features. Moreover, the order
in which the elements of a block are compiled can result in a greater or smaller number of direct updates. For
instance, if U1 and U2 are commuted, no insertion in the update list would be necessary, and both updates
could be carried out directly. The optimization proposed schedules the rules inside a block in order to make
the number of direct updates maximal.

Deviation Optimization: a transition rule R must be compiled into an infinite loop of the form L: R ;
goto L; . In the case of conditional rules, like if g then R1 else R2, it is compiled into L: if (g )
R1; else R2; goto L;. Now suppose that R2 does not update any dynamic function used in g, and any
external function call can be found in g, as well. In this case, once R2 executed, it is not necessary to get
back to L, as g was not changed. An optimized code would be like L: if (g ) {R1}; else {L2: R2;
goto L2; } goto L;. This optimization detects possibilities like the one above, producing code that results
in more efficient deviations.
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4 Conclusions

After a brief review of the ASM model, this paper has presented the MIR Architecture which consists of an
infrastructure for developing concurrent ASM oriented languages. The most important contributions of the
proposed infrastructure are: (1) It can be used in order to implement a whole family of languages targeting
the ASM model. (2) The concurrent approach and the ASM modelling distributed agents are new, and
it can be used to precisely describe distributed algorithms in ASM. (3) Optimizations can be plugged in,
allowing the enhancement of the generated code. Moreover, these pluggins can also be used to other types
of program manipulation, e.g. refactoring, given that the necessary information is provided.

Future work includes the formal definition of the concurrent ASM model used in the infrastructure and
the demonstration that important properties of disttributed systems hold for it. Some examples of these
properties includes the absence of starvation and the possibility of mutual exclusion.
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