Iterators, Templates and Queriesin Program Analysisand
Manipulation

Anonymous'

L Anonymous Institute
{anonynous }@nonynous

Abstract. Maintenance and software evolution tasks can benefit frorarse
engineering and program restructuring. Tools and metdgdor source code
analysis and manipulation play an important role on thestvétes. However,
these tools are hard to develop due to their intrinsic coxipfe Better meta-
tools could alleviate the challenges in developing suckstd®everal meta-tools
have been already proposed, but challenges still remairs Whrk proposes the
integrated use of iterators and relational queries for sogijmg the construction
of modules for program analysis and manipulation. Thesehax@sms operate
on the notion of typed source code references and pattetohimg on syntax
trees. The construction of a static semantics graph of Jaegrams based
on declaration, scope and use of symbols is presented torderate the ef-
fectiveness of the approach. Also, two refactorings foraJakograms were
implemented using both iterative and declarative stylesrder to assess the
performance of each style. The meta-tools shown in thisrdagees presented
advantages over related tools and thus can be considere@lfp developers
involved in maintenance activities.

1. Introduction

Maintainance and software evolution have posed challefgesoftware developers.
Software systems are still becoming increasingly comex, during the maintainance
process, systematic code restructuring is being widelyp&dh aided by integrated de-
velopment environments enhanced with refactoring faedjMens and Tourwé, 2004].
Indeed, the context can be much wider, for instance, rdsifing processes may also
consider evolving object-oriented systems into aspeetted systems.

In this scenario, tools that help developers manipulatmgee code systemat-
ically are welcome. Such tools are often not adequate beddwey do not match en-
tirely the requirements of development or maintenance seaknfortunely, the con-
struction of such customized tools for specific needs ofwsn# teams are costly and
difficult. General meta-tools that help tackling the taskcohstructing those tools
have already been extensively studied in the literatuhg{Son, 1975, Cordy et al., 2002,
van den Brand and et.al., 2001]. These meta-tools providgehamisms for constructing
tools for program analysis and manipulation. However, ttédlyare not widely adopted
by software engineering teams, maybe because some of tleetacdow-level such as
Yacc, and some others require learning a paradigm basedwoitimg systems.

The goal of this paper is to investigate the integration shsavell-known con-
cepts of general meta-tools for program analysis and mé&tipa into an object-oriented
language. These concepts are iterators and relationaégugaplied on typed source code
references, and templates for pattern-matching over syreas.

This paper uses the MetaJ environment to provide iteratat$emplates, and the
SCQL language to provide SQL-like queries[Oliveira, 200d A. Oliveira et al., 2004].
Thes proposed mechanisms can be divided in two classesd@rdtive, such as, tem-
plates and queries, and (ii) imperative, such as visitodst@nators.

This paper presents issues related to use of imperative eddrdtive meta-
programming resources together, and argues that thisagphas some advantages over
others. Applications built using MetaJ templates and ftgsaand using SCQL queries
are presented. MetaJ and SCQL were chosen because theyrgatitibe with each other
and can be used in the same program. The programmer deciddsig/more appropri-
ate.

Next section presents the MetaJ Environment. section pteshe SCQL lan-
guage. In section 4 related work is presented. section ®ptea case study that brings
MetaJ and SCQL together to implement a Java program modabseifor static seman-
tic analysis. section 6 presents results of implementing defactoring with an iterator-
based approach and a query-based approach. In sectiors Wdtk is discussed. And
finally, concluding remarks are presented.

2. The MetaJ Environment

MetaJ is an object-oriented meta-programming environménis implemented as an
extension of the Java programming language. It has fourchasncepts for meta-
programming: program references (p-references), progeamplates, program iterators
and language-dependent plug-ins. MetaJ meta-prograndaeagprograms that use im-
plementations of these concepts. This design decisionlenahbe meta-programmer
to use all the knowledge of object-oriented software dgwalent to produce meta-
programs. See an example of MetaJ program below.

I/ inmporting p-reference APl and a user defined tenplate
i mport netaj.framework. PRef erence
i mport nyTenpl at es. Sel ect PackageNane;
public class Main {
public static void main (...) throws ... {
/1l Creating a typed p-reference
PRef erence r = MetaJSystem creat ePRef erence("java", "#conpilationunit");
/1 Setting a p-reference val ue
r.setFile("/sanpl es/Hell owrld.java")
/1 Using a tenplate defined by the user
Sel ect PackageName spn = new Sel ect PackageNane ();
/1 Verifying if the code matches with the pattern defined by the tenplate spn
if(spn.match(r)){
/Il Get an iterator to explore the package nane
Iterator it = spn.getPackageNane().getlterator();
/1 lterating to access each identifier of the package name
whi | e(it. hasNext()){
it.next();

telse{ ... // error }

The code above shows a simple MetaJ program, which mangsulla¢ Java pro-
gram specified in the file /samples/HelloWorld.java. Fiesp-reference to manipulate
Java programs is created and its value is defined as the taftdr file. After that, an
instance of a user defined template (see itin section 2.3pd 1o select the package name
declared in the program. Finally, an iterator is createthftbe selected package name
and used to explore each identifier which occurs in the nameirhportant to highlight
the implicit use of language dependent plug-ins. This Metedponent holds specific in-
formation about the source language. When a p-referenesmmiate is created, the name

of the plug-in must be provided. This name defines impli¢hly source language manip-
ulated by the new p-reference or template. In the above eleawpen the p-reference

r is created, the name of the plug-ihj @va") is passed as the first parameter of the
methodMet aJSyst em cr eat ePRef er ence. More information about plug-ins can be
found in [Oliveira, 2004, de A. Oliveira et al., 2004]. OthdetaJ features are presented
in the next sections.

2.1. Program References

Program references (p-references) are abstractionstthatmeces of source code. They
hide the internal representation of the code, and only abperations that guarantee
syntactic consistency of this code. Program referencetypesl with the corresponding
type of its syntax tree root node. Nodes of the syntax treeyged with corresponding
types extracted from the nonterminals of the language graimiiug-ins are responsible
for generating this functionality from a specific grammar.

The available functionality for p-references is shown ibl&al.

Method Functionality

set, setFile, setDeref, | modifiesthe value
add, renove, replace of a p-reference

mat ch, equal s, contains, | compares and verifies
hasType, i sConposedBy, p-reference value

duplicate, toString, duplicates , converts to
get, getSize string or retrieves values
getlterator returns an iterator to the stored code

Table 1. Methods for the p-reference abstraction

P-reference API is not detailed in this paper, but more mftion about these
methods can be found in [Oliveira, 2004, de A. Oliveira et2004]. The last method
shown in Table 1 returns an iterator, which is described emtéxt section.

2.2. |terators

Iterators are objects used to traverse the source codel stoago-reference. Such objects
encapsulate iterative top-down traversal, starting frbenrbot node of the program tree.
Thelterator interface provides methods that allow full control of theversal. The main
methods of the interface are presented in Table 2. Morenmdtion about these methods
can be found in [Oliveira, 2004, de A. Oliveira et al., 2004].

Method | Functionality

bool ean hasNext () verifies if there is some piece of code
to be reached in the next step

voi d next | n() reaches the next nested piece of code,

in a top-down order.
PRef er ence get PRef erence | returns a new p-reference with the piece of code
reached in the last call to tmext | n method.

Table 2: Iterator interface main methods

2.3. Templates

A template is an abstraction which encapsulates a progréerpased to decompose and
compose pieces of programs. The pattern is a sentence auheedanguage (language

of the program being manipulated) where a meta-annotasinrappear in place of a spe-
cific syntactic construction. The pattern is composed bytypes of meta-annotations:
meta-variables and markers for optional pieces of senteBeery meta-annotation has
an associated type, which corresponds to a syntactic steucf the source language.
Templates provide two basic operatiomeatch which verifies if a piece of code is in
accordance with the pattern, apdnt, which builds a piece of program based on the pat-
tern structure. The syntactic structures available forniga-programmer are selected
from the non-terminals of the source language grammar. Toimcide with the types for
program references. Every syntactic type symbol must decptewith the anti-quotation
symbol (#). Following, a template declaration is shown pgging the source language is
Java.

/| package decl aration
package netaj.exanpl es. basi cTenpl at es;
| anguage java; [// plug-in nane (language for tenplate)
tenpl ate #conpilation.unit Sel ect PackageNanme #{
package #nanme pack;
#i nport _decl aration_opt[#inport _declarations inps]#
#type_decl arati ons tds

o

This template matches with any Java program (compilatiat) which has a
package declaration and any type declaration. Notice thguige declaration, which
specifies the plug-in for the source language (Java in tlge)cand meta-variable dec-
larations, such agnane pack, #t ype_decl ar ati ons t ds, and the optional sentence
#i nport decl arationopt[...]#. This last construction makes the occurrence of
import declarations in the Java program optional .

To make all features of a template (meta-variables, matdhpaimt operations)
available to the meta-program, a template declaration beisbmpiled into a Java class
with the MetaJ template compiler. After this, a class with §ame name and package of
the template is created. It provides the methods presemfEabie 3.

Method | Functionality

bool ean mat ch(PRef erence), | verifies if the code received by parameter matches

bool ean match(String), the template pattern. This operation assigns

bool ean mat chFile(String) | valuestotemplate meta-variables.

set XXX(String), defines the value of the

set XXX(PRef er ence) meta-variable XXX.

PRef er ence get XXX() returns a p-reference to the code assigned to the
meta-variable XXX.

String toString(), builds a program from the template

toFile(String), and returns it as a file, a String, or a p-reference

PRef er ence get PRef erence()

Table 3: The templates API

These are the basic methods to access templates’ featuoes ifNbrmation about
templates can be found in [Oliveira, 2004, de A. OliveiralgtzD04].

3. The SCQL language

SCQL is a declarative source code query language definedunwdbrlying MetaJ con-
cepts, such as p-references and non terminal syntactictistes. The language allows
writing SQL-like queries to select occurrences of syntastiuctures in the source code,
e.g., identifiers, variable declarations, class declamatietc..

The SCQL design was carried out based on the concepts of ldteonal data-
base language SQL. The program source code (a syntax tkeg)adized as a table, thus
making relational queries possible. The operator VIEW TR&ESsponsible for this vi-
sualization and it can be compared to the CREATE TABLE SQLraj@n. The operator
SELECT performs projections, selections and joins. Theapes INSERT, UPDATE
and DELETE modify the content of the source code referencedresult set.

A shell that executes queries on program files is providedgoAdn API, which
allows MetaJ programs to execute queries as easily as Jayaprs execute SQL queries
on databases by using JDBC API, is provided. The languagesynd semantics is
presented here by means of examples that assume that Jaga@irce language.

A VIEW TREE query returns visualization of a program piecehe format of
a table. The query presented below visualize the program as a table with only one
column,lvd.

VI EW TREE pr og
AS TABLE #l ocal .vari abl e.decl aration |vd

The column [vd is filled with all syntactical constructions of type
#l ocal vari abl e decl arati on,i.e., with all local variable declarations.

The query below visualize the programog as a table of two columngyd andt.

VI EW TREE pr og
AS TABLE #l ocal _vari abl e.decl aration |vd, #type t
WHERE | vd. i sConposedBy(t)

Each line of this table is filled with a paifvd, t), wherelvd is a local variable
declaration is the usage of a type ariccomposes syntacticallyd. The condition #
composesgvd” is specified by the predicated.isComposed By(t). SCQL calculates the
values to be filled in the table by combining (cartesian pobdall constructions of type
#t ype with constructions of typé&l ocal _vari abl e_decl ar at i on. This combination
generates a lot of paifévd, t), but just those pairs which satisfy ti{ERE condition are
inserted in the table.

This is a simple and yet important query, since it is the ahitiase for the imple-
mentation of complex queries to extract simultaneous bfegdeclarations.

The VIEW TREE command also provides the operators FILTERED BO-
CUSED ON and EXCLUDING which allow the optimization of theeagy by filtering
values to be inserted in a column, focusing the query in aisp@tece of the program
tree and avoiding some undesirable pieces of program, cesply.

The SELECT operation allows the combination of queries tikdtau new table.
This table is filled with tuples generated by the combinatibthe composed queries re-
sults. A predicate can be specified to select just the deipdels. The example presented
below joins local variable declarations that occur ingideg1 with type declarationsd
that occur insider og2.

SELECT Ivd, t, td, id FROM
VI EW TREE pr ogl
AS TABLE #l ocal _vari abl e.decl aration |vd, #type t
WHERE | vd. i sConposedBy(t),

VI EW TREE pr og2
AS TABLE #type._declaration td, #identifier id
WHERE outer.verifier.isTypeNanme(td,id)

WHERE t . mat ch(i d)

The isTypeNane(PRef erence, PReference) method of object
outer.verifier verifies if the identifieri d is the same as the type identifier of
t d. This method can be easily implemented with templates aredgvences.

As an example, considgr ogl andprog2 to be the following pieces of Java
code.

progl:
public class Test {
int x;
Test (int x) { this.x = x;}
void calc() {
Uil u=new UWil();
G her z1,;
Systemout.println(u.fat(x));

public static void main(...) {
O her z2;
new Test (10).cal c();
}
}

prog2:
class Uil {
int fat (int x){
if(x == 0) return 1;
el se return x*fat(x-1);

}

interface O her{
int test();

}

First, the following result sets for each internal VIEW TREKpression are cal-
culated.

‘ | vd: #l ocal vari abl e_.decl arati on ‘ t:#type ‘

Uil u = new Util() util
G her z1 O her
G her z2 O her

‘ td: #t ype_decl arati on ‘ i d:#identifier ‘

class Uil Uil
interface G her ... O her

The entries of these tables are combined to produce the ésaltrset: a table with four
fields and three lines, which holds the selected tuples. Ealchhas a name and a type
that corresponds to a p-reference for the correspondirug Eeprogram.

| ivdi#ioc... | tistype | tdistypedect... |idi#i... |
Uil u = util class Util{...} util
new Util ()
Gt her z1 Q her interface Oher{...} Q her
Ct her z2 Q her interface Oher{...} Q her

Since SELECT operation results in a table, it can be combm#dother queries com-
posing a bigger one. However, it must be used carefully tscaf the computational
cost of the cartesian product operation.

Details on UPDATE, INSERT and DELETE operations can be fouatd
[Oliveira, 2004].

4. Related work

Pattern-matching has already been largely adopted inibmadtprogramming languages.
In [Sellink and Verhoef, 1998], pattern-matching basedhelanguage grammar is used
for source code analysis.

There are already some source code analysis tools basegratois and queries
proposed in the literature. JJTraveler is a Java framewsekl o combine visitors for
analyzing source code [van Deursen and Visser, 2004]. Emedwork is generated with
JJForester from SDF specifications of the language gramnhés.approach is based on
iteratively visiting tree nodes to perform code analysistlédg is a Prolog variant that aims
locating and analyzing syntactic artifacts in C/C++ alittiyntax trees[Crew, 1997].
Astlog introduces many ad-hoc features that are adaptatiéo€/C++ languages. Even
though this work manipulates only Java programs, our aghroaes not rely on static
semantics of the target programming language, makingrgagi€onstruction of plugins
for other languages. Genoa is a code analysis tool whosedgegcore is based on the
notion of ASGs (abstract semantics graph) traversal[Dawah999], which differs from
our proposal, both on the notion of iteratively traversirgjraicture, and also considering
semantic information of the target language. PQL is a progyaery language based on
modeling several program information needed to answerieg|darzabek, 1998]. The
program model is the most difficult part to be constructechhee it requires several se-
mantic analyses. The result sets are not based on tablesdasian products, such as in
SCQL, but on tuple of lists. SCA is a source code algebra teahjis users to express
complex source code views and queries as algebraic expnefBaul and Prakash, 1996].
Queries in SCA are performed over a object data model thategygendent on the seman-
tics of the target language. JQuery is a language that augriigruba, a logic program-
ming language, with a library of predefined predicates fargung Java source code units
and the relationships between them[Janzen and de Vold&3].20he predicates imple-
ment semantic relationships between units, for instantéciwmethods call the others.
Graphlog is a logic query language for visualizing and qumegoftware systems mod-
eled as directed graphs[Consens et al., 1992]. The cotistnaf the graph involves se-
mantic information of the target language. Queries aretcocied drawing graph patterns
with a graphical editor. Most of the information queried mssbd on dependency rela-
tionships. Omega is a language-based programming envewonimwhich all calculated
program information is represented as tables using relaltaiatabase[Linton, 1984]. The
underlying relational model takes into account only pragatianguages, and relies both
on syntactic and semantic information. Horwitz defines a ehdor adding relational
query facilities to software development environmentsfitz, 1990]. The model relies
on the use of implicit relations, which are not stored as sttples, but instead computed
as needed during query evaluation. This approach is sitoilaars for query evaluation.
The model also relies on calculating several ad-hoc funstior extracting the desired
information from the software systems. This informatiorgdrom transitive closure of
calling functions to the dynamic information of variabldwes during program execution.

5. Casestudy: static semantics graph

This section presents a case study to motivate the usefutriddetal and SCQL. Com-
plex program transformations, such as refactorings, wbaltkfit from more expressive
abstractions than syntax trees. For instané&@ame Clas®factoring for Java programs
requires updating all the occurrences of the class namadhout the whole selected sys-
tem, let be on an extends clause, on a object creation, onableadeclarator or even on
a anonymous class definition. Finding all these occurreimcasyntax tree may require
more than just traversing the nodes and applying the negeslsanges. It may require
considering issues such as scoping and visibility for gareses.

A meta-program that constructs a model that captures se@tiantics of the Java
source code is now presented. The design of this model wasedeeonsidering its
usefulness for writing refactoring functions. The mode igraph that directly represents

declarations, scopes and use of symbols as its nodes. Thislmsalso linked with the
syntax tree of the source code.

A scope node defines an area where declarations and usesateglloEach scope
have three sets: a set of all declarations declared insidesét of all occurrences of
symbols inside it, and a set of all directly nested scopes.

Declaration nodes are defined by an identifier, a type (eilteetype of a variables,
or signature of methods, or the new declared type itselfpnFa declaration node it is
possible to navigate to all its corresponding use nodess feature is not present in
conventional symbol tables. Some declarations may opemwasoepe, for instance, a
class body, a method body, or a local variable declaration.

Use nodes represent the occurrences somewhere in the saaleef a previ-
ously declared symbol. From an use node it is possible tagagito its corresponding
declaration node.

.......
1

DeciNode

| SystemDeciNode |
I
L

| .
- : | :
| Packagentode | | rilenode || singleecinode DeciNodeList | [sngteusenoue L—C] UseNodeList |
I 11 11] F 1 I | I]
] 1 1

[]
T . |

Figure 1. Static semantics model

Figure 1 shows classes and interfaces used to represetaticesesmantics model.
The Node interface defines common operations for all declaration ws&lnodes. The
G ammar Node class represents nodes that have references for sourcei®d&letal
references.

The Decl Node interface defines common operations for all types of declara
tion nodes, respectively, theyst enDecl Node that models elements of the file sys-
tem which are not defined from the gramm#@adkageNode and Fi | eNode), the
Si ngl eDecl Node that models a single declaration, abdcl NodeLi st that models
a list of declarations that have the same type. The only twdskbf references modeled
by Decl NodeLi st are instance variable and local variable declarations.

The UseNode interface defines common operations for two types of usesjode
respectively, thesi ngl eUseNode that models the occurrence of a single identifier pre-
viously declared and theseNodeLi st that models a list of occurrences composing a
single syntactic structure, for instance, a qualified ctesse that have the occurrence of
package names and the class name itself.

The Scope interface defines common methods for two types of scopegeces
tively, theScopel npl class that models scopes in which the order of declaratioarec
rences does not matter, for instance, inside a class bodyhaBl ockScopel npl class
that models scopes in which the order of declarations oenaes must be considered, for
instance, inside a method body or a block statement.

The model creation process can be divided into three phpsegtocessing, pars-
ing and linking.

5.1. Preprocessing Phase

In this phase, all new types declared in the system are tetlie€irstly, all subdirectories
of the system are traversed and for all files in each dire@dvietaJ reference is created.
After that, SCQL queries extract the corresponding desyee declarations. Each found
type declaration is indexed by its qualified name. The alorifor preprocessing is
shown below.

preProcessSystenm(File directory) {
File[] subPack = Sel ect all subpackages in directory
for each package i n subPack do
pr eProcessSyst em package)
File javaFiles = Select all Java Files in directory
for each jFile in javaFiles do
Reference r = createReference(jFile,"#conpilationunit");
Ref erence classSet[] =
"VI EW TREE r AS TABLE(#cl ass_decl arati on NOTCOVPCSI NG #cl ass_decl aration)"
for each reference in classSet do
put reference into class declaration index
Reference interfaceSet[] =
"VI EW TREE r AS TABLE(#i nt erface_decl arati on NOTCOVPCSI NG #i nt er f ace_decl aration)"
for each reference in interfaceSet do
put reference into interface declaration index

5.2. Parsing phase

In this phase, altleclaration scopeandusenodes are created. The parsing process is
applied to all references collected in the previous phaske firocess is to similar a
recursive descent parser, using a method for each relegatenminal.

Each method decomposes an inRaferencento its components. The method
verifies if it can be produced either scope, declaration @& medes. Inside each
method, scope nodes are created for each file system item,frand syntactic
structures, such agompilationunit, typedeclaration methoddeclaration block lo-
cal_variable declaration Scope nodes are containers for declaration nodes, uses node
and nested scope nodes.

Declaration nodes are created when analyzing syntactictates, such as,
classdeclaration interfacedeclaration methoddeclaration field declaration For in-
stance, in the method that analyzeslassdeclaration a Si ngl eDecl Node object is
created and added into the scope node previously createdfi®respective file.

Use nodes are created when analyzing syntactic struchaesdntaindentifiers

SCQL queries were used for extracting information from neysttactic struc-
tures which have none or simple recursive rules. For ingtacansider parsing theame
syntactic structure which rule is defined below.

name = identifier
| name qualifiechame
qualifiername := identifier

nanme(Reference r) {
Reference[] ref = "VIEWTREE r AS TABLE(#i dentifier i)";
for each Reference in ref do
create a use node for this reference
put this node in the current scope

An alternative way to do the same thing using templates is/ahaelow.

tenpl ate #nane BaseNane #{
#identifier i
T

tenpl at e #name Recursi veNane #{
#nanme n #qualifiednane gn

b

tenpl ate #qualified_nane QualifiedName #{
#identifier i

#

name(Reference r) {
BaseNane bn = new BaseNane();
Recur si veName rn = new Recursi veNane();
if(bn.match(r))
create a use node for the reference bn.i
put this node in the current scope
else if(rn.match(r))
name(rn.n)
qual i fi edName(rn. gn)

qual i fi edName(Reference r) {
Qual i fi edNane gn = new QualifiedNanme();
if(qgn.match(r))
create a use node for the reference qgn.i
put this node in the current scope

It seems clear that the SCQL solution is much cleaner andsirimgleed, in some
cases SCQL could not handle with some recursive structi@sinstance, consider the
Java grammar ruleonditionaland.expressionin this case, the solution should be based
on templates.

conditionaland expression ::= inclusiveor_expression
| conditionaland expressiolt &&"
inclusiveor_expression

tenpl at e #condi ti onal _and_expressi on
BaseCondi t i onal AndExpr essi on #{
#i ncl usi ve_or _expression ioe
1
tenpl at e #condi tional _expression
Recur si veCondi ti onal AndExpr essi on #{
#condi ti onal _.and_expressi on cae "&&"
#i ncl usi ve_or _expressi on ioe

1

condi ti onal AndExpressi on(Reference r) {
BaseCondi ti onal AndExpr essi on bcae = new BaseCondi ti onal AndExpr essi on();
Recur si veCondi t i onal AndExpressi on rcae = new Recursi veCondi ti onal AndExpression();
if (bcae.match(r))
i ncl usi veOr Expr essi on(bcae. i oe);
else if(rcae. mtch(r))
condi ti onal AndExpr essi on(rce. cae);
i ncl usi veOr Expr essi on(bcae. i oe);

This solution is similar to a recursive descent parser. Mwless, it must be
pointed that templates is just a simple interface to crdagekind of analyzers, and can
be applied in other applications, such as code generatopsogram transformations,
using other strategies.

Figure 2 shows the resulting model (b) for a simple Java progia).

5.3. Linking phase

At the beginning of this phase, all model nodes have beenete@he linking phase links

all declaration nodes to their respective uses and vicgaverhis phase is implemented
by three visitors, respectivel#xt endsLi nkVi si t or, Decl UseLi nker Vi si t or and
Qual i fi edNaneVi si t or, which do not use neither MetaJ nor SCQL mechanisms, but
only the model produced so far. This shows the usefulnessawahf meta-programs

package test;
public class Test {
public int factorial (int n) {

int f

1;

for(int i = 1;i <= n;i++)
f x= i;
return f;
}
}
@)
e [1 Scope
i U Component of declaration / scope
W <> Declaration
: A Use

Edge component Declaration / scope
Nesting Scope
Edge scope / declaration use

Scope creation by a declaration

Figure 2. Result of the parsing phase

facilities embedded in an object-oriented language. Eigushows the resulting model
for the program shown in Figure 2.

The first visitor is specialized on visitingxtendsandimplementslauses to link
the corresponding class identifiers to their declaratitsaligorithm is shown below.
Ext endsLi nker Vi si tor ()

for each package scopes in Systemroot
for each class declaration in current package scope
if current class has a extends cl ause

/1 (1) search in index from preprocessing phase

Node n = Search class declaration of this clause

if(! n.isNull())

Iink use node of extends clause to its decl
if current class has a inplenents clause

Node decl[] = Search all the interfaces declaration of this clause

Node use[] = Get all uses of inplenments clause

for each Node in use do

link the current use to his declaration

The second visitor links declarations and their uses tratan qualified uses.
For instance, these cases correspond to local variables@ndualified field accesses
and non qualified method calls. The third visitor is specific lfnking uses occurring
in method/constructor calls and instance variable uses Visitor traverse the current
model, in preorder, driven the scope nodes, and whenevacduaters an use node not
currently linked to its declaration and that it is not creEftem a qualified name, it verifies
if the respective declaration is in the current scope, andtift creates another iterator that
searches the scope tree upwards until the root trying tolimddarresponding declaration.
The root scope contains references to all public declarati®his guarantees that all use
nodes will be linked.

The third visitor links use nodes corresponding to qualifiagnes occuring in
syntactic structures such as, import declarations, methtis, and field accesses. These
structures are represented in the modalssNodeLi st nodes. The respective declara-
tion of the elemeni+1 of this list can be found in the scope node created by the céspe
declaration of the elemenbf the list. The used algorithm is shown below.

Qual i fi edNaneVisitor()
for each scope in Systemroot
if(current use is qualified)
Node decl = null
for each use in the current use |ist

if(decl == null)
decl = Search the declaration of the first use in the |list
el se
decl = Search the declaration of the current use in scope opened by dec

link the current use with dec

| <P Declaration — Use Edge ‘

Figure 3: Result of the linking phase

6. Case study: refactorings

In this section, MetaJ and SCQL approaches are comparecaatnother. The method-
ology used was implementing two refactorings, namely Renaocal Variable (RLV)
and Self Encapsulate Field (SEF) with MetaJ and with SCQle rEBfiactorings were ap-
plied to three artificial programs. A qualitative compansan the writing style of the
approaches, a quantitative comparison on the metrics o&thetoring implementations,
and a performance comparison on the application of thetagfags are presented.

6.1. Qualitative Analysis

The following method was extracted from the implementatibthe Rename Local Vari-
able refactoring written with MetaJ. The fragment is calidten there are name clashes
between the new local variable name and an instance vanabie.

voi d addThi sToFi el dAccess(String var, Reference ctx) {
Iterator it = ctx.getlterator();
whi l e(it.hasNextIn()){
it.nextln();
Reference r = it.get();
if(r.isTypeO ("] ava. #postfix_expression") & r.toString().startsWth(varNane))
r.set("this." + r.toString());

The same method written with SCQL is shown below.

String findFieldAcc =
"VI EW TREE cont ext AS TABLE (#postfi x_expression pe
FI LTERED BY pe.toString().startsWth(outer.varNane))";
voi d addThi sToFi el dAccess(String var, Reference ctx) {
QueryFactory gf = SCQ.. createQueryFactory("java");
gf . add(" var Name", var); qf.add("context", ctx);
Resul tSet rs = gf.createQuery(findFiel dAcc). getResultSet();
while(rs.next()){
Reference r = rs.get Reference("pe");
r.set ("this." + r.toString());
}

}

The MetaJ approach defines a traversal on the code that <dsired syntactic
structure and applies some action on it. The SCQL approduamededeclaratively all de-
sired syntactic structures. The action is then performeallaf them. When this situation
is scaled to larger specifications, the SCQL approach shaws directly which syntactic
structures are being selected and what are the respectivasaon them. The code with
SCQL seems to be more organized because of the the specifioathe desired structure
is separated from actions performed on them. So, it is esieuse SCQL queries than
the MetaJ loops.

6.2. Design Metrics Analysis

Design metrics of the implemented refactorings were ctédkcThey are shown in Fig-

ure 6.2 and are, respectively, the number of lines of cogentimber of classes, the total
number of method declarations, and the total number of fietdadations. The main goal
of this analysis is to verify the size of implementationseTifference are more notably
seen in the implementation of the Self Encapsulate Field-JSE&factoring, where the

SCQL approach has the half size. Each template used in theJNfaplementation was

counted as a class. Each field within the template was cowaseth instance variable,
and has respective get/set methods. But the number of lolesied from the template

was not from the generated class but from the template.it3&lé idea was to measure
the programmer’s labor. The intensive use of templates®ISEF refactoring explains
why the number of fields for SEF refactoring written with M&ta.much bigger than that
written with SCQL.

6.3. Performance Analysis

The performance comparison of the refactorings was donetbree artificial programs.
The following table shows the main characteristics of thegpatms. LCM is the number
of line of code per method; #C, #M, #F are the number of classethods and fields,
respectively; AAT is the total number of accesses and assgis to either local variables
or instance variables, in each method; AAIV is the numbercokases and assignments
to the instance variable that will be encapsulated by the8E€toring, in each method;
and AALYV is the number of accesses and assignments to theMagable that will be
renamed by the RLV refactoring, in each method. All metholda odlass are identical,
so the SEF will affect all methods. The 60 methods in progrBthandP2 are identical.
Programd2 andP3 have the same structure, but method®8fre bigger.

25
. 20
Y 215
i s
2 10 4
5 -
D -
RLY SEF RLY SEF
Dheta) MSCAL OMeta) MSCAL
20
15 4
£ -
% 10 E
= **
H*
5 -
U -

RLY SEF RLY SEF

Figure 4: Metrics of the refactorings’ codes

[JLOC]#C[#M | #F | LCM [AAT [AAIV | AALV |
P1[383 |1 [10 [10]36 [55/4 |2/1 |42
P2[1888 1 |50 | 10|36 | 5524 |2/1 |42
P3[3715[1 |50 | 10|71 |110/42|5/2 |73

The input parameters for refactoring evaluation were anosech that, the RLV
refactoring renames a local variable declared in the mioickemethod. The local variable
name was chosen such that it clashes with an instance variabie. The method chosen
for the RLV refactoring is located at the middle of the clas¢so, the SEF refactoring
adds get/set methods for an instance variable, such a lagable with the same name
is declared in the middle of all methods. The aim of such ad®ivas try to capture a
mean cost of refactoring evaluations. The refactoringewe&ecuted five times over each
program and in Figure 6.3 the mean execution times are pezken

160,0

50,0
T — 428 447

F1 5y SRS A —
o
11 S ——
L
B0 A -nonem s e
TG0 f-mammmsmsmmmnnsmn i

7t 0 SO P B ——
FBOLT e R R
1143 OSSO

BV, e s e ey

Execution Time +

] T P T E

Execition Time

I

L a0 AR R T 1.0
10,4 :
50 4.8 5!1_ ____________ 2D mrommsnncennamsnnae - -
0,0 : : 0,0 —
P P2 P P2
o Meta) msCaL O Meta) mSCOL
(a) (b)

Figure 5: Mean execution times (a) RLV refactoring (b) SEF refactoring

Queries and updates within the SEF refactoring implemewidd SCQL were
declared to execute on a specific scope. For the above réiseltscope was carefully
designed to be a method. In a prior naive implementatiangtreries which calculated
cartesian products over 5 sets were performed on the whads elery time, and in this
case the execution time for the SEF refactoring over Progna&ached 16 hours. The ex-
ecution time of SCQL refactorings is quite acceptable icadles for the RLV refactoring.
Special attention is needed for SEF refactoring which isentioan twice slower.

7. Discussion

The presented approach for program analysis is based oretimidn of several mech-
anisms for extracting syntactic information of the sourodec These mechanisms were
defined considering only the syntax of the object languapes& mechanisms were used
to produce more expressive (object-oriented) models thasetbased solely on the syn-
tax. These models can that be used in more sofisticated asalys

As shown in section 4, many other approaches, such as Geno3G@A, have
included ad-hoc mechanisms for constructing a knowledge ladout the information
of the software being analyzed, making easier to query seenaformation. However,
our approach is more stratified and reusable, if considdreadnstruction of program
analyzers for different languages.

Our approach has shown that different mechanisms rangang firocedural iter-
ative algorithms to declarative template and queries cbeldsed together within a single
object-oriented program analyzer, benefiting from desrgetices of object-oriented pro-
gramming.

The imperative resources of the approach were proved to be efficient (they
are computationally cheap), but indeed more difficult to aisé reuse. The declarative
resources are more readable and easier to use, but tend eonipet@tionally expensive.
Using templates and queries seems to be more intuitive thidingwisitors like, for in-
stance, JJTraveler. The parse phase for construction ajrdh shown in section 5,
if written with JJTraveler, would require a visitor that\tesse syntax trees and the im-
plemention operations for all nodes of the tree. Even if tisgad node do not contain
any significant information for the model, the operationdddbe implemented doing
nothing. If the visited node represents a declaration, fieisessary capturing additional
information, such as its identifier, type, modifiers, thajuiees specific visitors. This
could be implemented more naturally with MetaJd templates.

However, it should be noted that when iterators and visigmesnecessary with
our approach, MetaJ does not offer an elegant mechanisnofiobiaing visitors such as
JJTraveler. Implementing this parse phase with Yacc shondgented the similar draw-
backs, and additionally would require even more work to troics syntax trees.

8. Concluding remarks

This paper has presented an integrated use of iteratorglas and queries for analyzing
and manipulating source code. These mechanisms are muehahser to average pro-
grammers than other tools based on rewriting systems. Dgeeteams may effectively
consider writing meta-programs that help analyzing andipudating source code during
the maintenance process, because the presented tools), atet&5CQL, have proved to
be quite easy to use.

About, the expressive power of the tools, the underlyingrimiation model for
MetaJ and SCQL is based solely on the syntax of the targetitajeg More powerful
gueries would require incrementing the model with semanfarmation. Nonetheless,
this design decision simplifies the construction of plugorother languages, and the use
of SCQL proved to be useful and simple to use in many situation

The comparison of MetaJ and SCQL has shown that SCQL may Ihd teepro-
ducing more compact and elegant analysis of source codeevénthe implementation
still deserves more attention to optimization of query exien, and also there are situa-
tions pattern-matching and iterators are necessary, tigisating the necessity to include
mechanisms to compose iterators in MetaJd.

References

Consens, M., Mendelzon, A., and Ryman, A. (1992). Visuafizand querying software
structures. IrProc. of the International Conference on Software Engimggipages
138-156. ACM.

Cordy, J. R., Dean, T. R., Malton, A. J., and Schneider, K. 2002). Source trans-
formation in software engineering using the TXL transfotiora system. Journal of
Information and Software Technolagi4(13):827-837.

Crew, R. F. (1997). ASTLOG: A language for examining abstsyotax trees. IrProc.
of the USENIX Conference on Domain-Specific Langugupages 229-242.

de A. Oliveira, A., Braga, T. H., de A. Maia, M., and da S. BipanR. (2004). MetaJ: An
Extensible Environment for Metaprogramming in Jal@urnal of Universal Computer
Science10(7):872—-891.

Devanbu, P. (1999). GENOA - a customizable, front-endrgetable source code analy-
sis framework ACM TOSEM8(2):177-212.

Horwitz, S. (1990). Adding relational query facilities tofavare development environ-
ments.Theoretical Computer Sciencé3:213-230.

Janzen, D. and de Volder, K. (2003). Navigating and quergatg without getting lost. In
Proc. of the 2nd International Conf. on Aspect-oriented\Baie Developmenpages
178-187.

Jarzabek, S. (1998). Design of flexible static program ama/with PQL.IEEE Trans-
actions on Software Engineering4(3):197-215.

Johnson, S. (1975). Yacc: Yet another compiler compilechmeal report, Bell Tele-
phone Laboratories.

Linton, M. (1984). Implementing relational view of programin Proc. of ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium - Practctih@re Development
Environmentpages 132-140.

Mens, T. and Tourwé, T. (2004). A survey of software refaotp IEEE Transactions on
Software Engineering30(2):126-139.

Oliveira, A. (2004). Metad - An environment for metaprograimg in Javain portuguese
Master’s thesis, Federal University of Minas Gerais, Brazi

Paul, S. and Prakash, A. (1996). A query algebra for progratabdseslEEE Transac-
tions on Software Engineering2(3).

Sellink, M. P. A. and Verhoef, C. (1998). Native patterns.Phoc. 5th Working Confer-
ence on Reverse Engineerjmpges 89-103. IEEE Computer Society Press.

van den Brand, M. and et.al. (2001). The ASF+SDF meta-enment. A component-
based language development environmenCadmputational Complexifypages 365—
370.

van Deursen, A. and Visser, J. (2004). Source model analgsig the jjtraveler visitor
combinator frameworkSoftware - Practice and Experienc®4(14):1345-1379.

