
Iterators, Templates and Queries in Program Analysis and
Manipulation

Anonymous1

1Anonymous Institute

{anonymous}@anonymous

Abstract. Maintenance and software evolution tasks can benefit from reverse
engineering and program restructuring. Tools and meta-tools for source code
analysis and manipulation play an important role on these activities. However,
these tools are hard to develop due to their intrinsic complexity. Better meta-
tools could alleviate the challenges in developing such tools. Several meta-tools
have been already proposed, but challenges still remain. This work proposes the
integrated use of iterators and relational queries for supporting the construction
of modules for program analysis and manipulation. These mechanisms operate
on the notion of typed source code references and pattern-matching on syntax
trees. The construction of a static semantics graph of Java programs based
on declaration, scope and use of symbols is presented to demonstrate the ef-
fectiveness of the approach. Also, two refactorings for Java programs were
implemented using both iterative and declarative styles inorder to assess the
performance of each style. The meta-tools shown in this paper have presented
advantages over related tools and thus can be considered to help developers
involved in maintenance activities.

1. Introduction

Maintainance and software evolution have posed challengesfor software developers.
Software systems are still becoming increasingly complex,and during the maintainance
process, systematic code restructuring is being widely adopted, aided by integrated de-
velopment environments enhanced with refactoring facilities[Mens and Tourwé, 2004].
Indeed, the context can be much wider, for instance, restructuring processes may also
consider evolving object-oriented systems into aspect-oriented systems.

In this scenario, tools that help developers manipulating source code systemat-
ically are welcome. Such tools are often not adequate because they do not match en-
tirely the requirements of development or maintenance teams. Unfortunely, the con-
struction of such customized tools for specific needs of software teams are costly and
difficult. General meta-tools that help tackling the task ofconstructing those tools
have already been extensively studied in the literature[Johnson, 1975, Cordy et al., 2002,
van den Brand and et.al., 2001]. These meta-tools provides mechanisms for constructing
tools for program analysis and manipulation. However, theystill are not widely adopted
by software engineering teams, maybe because some of them are too low-level, such as
Yacc, and some others require learning a paradigm based on rewriting systems.

The goal of this paper is to investigate the integration of some well-known con-
cepts of general meta-tools for program analysis and manipulation into an object-oriented
language. These concepts are iterators and relational queries applied on typed source code
references, and templates for pattern-matching over syntax trees.

This paper uses the MetaJ environment to provide iterators and templates, and the
SCQL language to provide SQL-like queries[Oliveira, 2004,de A. Oliveira et al., 2004].
Thes proposed mechanisms can be divided in two classes: (i) declarative, such as, tem-
plates and queries, and (ii) imperative, such as visitors and iterators.

This paper presents issues related to use of imperative and declarative meta-
programming resources together, and argues that this approach has some advantages over
others. Applications built using MetaJ templates and iterators and using SCQL queries
are presented. MetaJ and SCQL were chosen because they are compatible with each other
and can be used in the same program. The programmer decides which is more appropri-
ate.

Next section presents the MetaJ Environment. section 3 presents the SCQL lan-
guage. In section 4 related work is presented. section 5 presents a case study that brings
MetaJ and SCQL together to implement a Java program model suitable for static seman-
tic analysis. section 6 presents results of implementing Java refactoring with an iterator-
based approach and a query-based approach. In section 7, this work is discussed. And
finally, concluding remarks are presented.

2. The MetaJ Environment

MetaJ is an object-oriented meta-programming environment. It is implemented as an
extension of the Java programming language. It has four basic concepts for meta-
programming: program references (p-references), programtemplates, program iterators
and language-dependent plug-ins. MetaJ meta-programs areJava programs that use im-
plementations of these concepts. This design decision enables the meta-programmer
to use all the knowledge of object-oriented software development to produce meta-
programs. See an example of MetaJ program below.

// importing p-reference API and a user defined template
import metaj.framework.PReference;
import myTemplates.SelectPackageName;
public class Main {

public static void main (...) throws ...{
// Creating a typed p-reference
PReference r = MetaJSystem.createPReference("java","#compilation unit");
// Setting a p-reference value
r.setFile("/samples/HelloWorld.java");
// Using a template defined by the user
SelectPackageName spn = new SelectPackageName ();
// Verifying if the code matches with the pattern defined by the template spn
if(spn.match(r)){

// Get an iterator to explore the package name
Iterator it = spn.getPackageName().getIterator();
// Iterating to access each identifier of the package name
while(it.hasNext()){

it.next();
...

}
}else{ ... // error }

}
}

The code above shows a simple MetaJ program, which manipulates the Java pro-
gram specified in the file /samples/HelloWorld.java. First,a p-reference to manipulate
Java programs is created and its value is defined as the content of the file. After that, an
instance of a user defined template (see it in section 2.3) is used to select the package name
declared in the program. Finally, an iterator is created from the selected package name
and used to explore each identifier which occurs in the name. It is important to highlight
the implicit use of language dependent plug-ins. This MetaJcomponent holds specific in-
formation about the source language. When a p-reference or template is created, the name

of the plug-in must be provided. This name defines implicitlythe source language manip-
ulated by the new p-reference or template. In the above example, when the p-reference
r is created, the name of the plug-in ("java") is passed as the first parameter of the
methodMetaJSystem.createPReference. More information about plug-ins can be
found in [Oliveira, 2004, de A. Oliveira et al., 2004]. OtherMetaJ features are presented
in the next sections.

2.1. Program References

Program references (p-references) are abstractions that store pieces of source code. They
hide the internal representation of the code, and only allowoperations that guarantee
syntactic consistency of this code. Program references aretyped with the corresponding
type of its syntax tree root node. Nodes of the syntax tree aretyped with corresponding
types extracted from the nonterminals of the language grammar. Plug-ins are responsible
for generating this functionality from a specific grammar.

The available functionality for p-references is shown in Table 1.

Method Functionality

set, setFile, setDeref, modifies the value
add, remove, replace of a p-reference
match, equals,contains, compares and verifies
hasType, isComposedBy, p-reference value
duplicate, toString, duplicates , converts to
get, getSize string or retrieves values
getIterator returns an iterator to the stored code

Table 1: Methods for the p-reference abstraction

P-reference API is not detailed in this paper, but more information about these
methods can be found in [Oliveira, 2004, de A. Oliveira et al., 2004]. The last method
shown in Table 1 returns an iterator, which is described in the next section.

2.2. Iterators

Iterators are objects used to traverse the source code stored in a p-reference. Such objects
encapsulate iterative top-down traversal, starting from the root node of the program tree.
TheIterator interface provides methods that allow full control of the traversal. The main
methods of the interface are presented in Table 2. More information about these methods
can be found in [Oliveira, 2004, de A. Oliveira et al., 2004].

Method Functionality

boolean hasNext() verifies if there is some piece of code
to be reached in the next step

void nextIn() reaches the next nested piece of code,
in a top-down order.

PReference getPReference returns a new p-reference with the piece of code
reached in the last call to thenextIn method.

Table 2: Iterator interface main methods

2.3. Templates

A template is an abstraction which encapsulates a program pattern used to decompose and
compose pieces of programs. The pattern is a sentence of the source language (language

of the program being manipulated) where a meta-annotation can appear in place of a spe-
cific syntactic construction. The pattern is composed by twotypes of meta-annotations:
meta-variables and markers for optional pieces of sentence. Every meta-annotation has
an associated type, which corresponds to a syntactic structure of the source language.
Templates provide two basic operations:match, which verifies if a piece of code is in
accordance with the pattern, andprint, which builds a piece of program based on the pat-
tern structure. The syntactic structures available for themeta-programmer are selected
from the non-terminals of the source language grammar. Theycoincide with the types for
program references. Every syntactic type symbol must be prefixed with the anti-quotation
symbol (#). Following, a template declaration is shown, supposing the source language is
Java.

// package declaration
package metaj.examples.basicTemplates;
language java; // plug-in name (language for template)
template #compilation unit SelectPackageName #{

package #name pack;
#import declaration opt[#import declarations imps]#
#type declarations tds

}#

This template matches with any Java program (compilation unit) which has a
package declaration and any type declaration. Notice the language declaration, which
specifies the plug-in for the source language (Java in this case), and meta-variable dec-
larations, such as#name pack, #type declarations tds, and the optional sentence
#import declaration opt[...]#. This last construction makes the occurrence of
import declarations in the Java program optional .

To make all features of a template (meta-variables, match and print operations)
available to the meta-program, a template declaration mustbe compiled into a Java class
with the MetaJ template compiler. After this, a class with the same name and package of
the template is created. It provides the methods presented in Table 3.

Method Functionality

boolean match(PReference), verifies if the code received by parameter matches
boolean match(String), the template pattern. This operation assigns
boolean matchFile(String) values to template meta-variables.
setXXX(String), defines the value of the
setXXX(PReference) meta-variable XXX.
PReference getXXX() returns a p-reference to the code assigned to the

meta-variable XXX.
String toString(), builds a program from the template
toFile(String), and returns it as a file, a String, or a p-reference
PReference getPReference()

Table 3: The templates API

These are the basic methods to access templates’ features. More information about
templates can be found in [Oliveira, 2004, de A. Oliveira et al., 2004].

3. The SCQL language

SCQL is a declarative source code query language defined withunderlying MetaJ con-
cepts, such as p-references and non terminal syntactic structures. The language allows
writing SQL-like queries to select occurrences of syntactic structures in the source code,
e.g., identifiers, variable declarations, class declarations, etc..

The SCQL design was carried out based on the concepts of the relational data-
base language SQL. The program source code (a syntax tree) isvisualized as a table, thus
making relational queries possible. The operator VIEW TREEis responsible for this vi-
sualization and it can be compared to the CREATE TABLE SQL operation. The operator
SELECT performs projections, selections and joins. The operators INSERT, UPDATE
and DELETE modify the content of the source code referenced in a result set.

A shell that executes queries on program files is provided. Also, an API, which
allows MetaJ programs to execute queries as easily as Java programs execute SQL queries
on databases by using JDBC API, is provided. The language syntax and semantics is
presented here by means of examples that assume that Java is the source language.

A VIEW TREE query returns visualization of a program piece inthe format of
a table. The query presented below visualize the programprog as a table with only one
column,lvd.
VIEW TREE prog

AS TABLE #local variable declaration lvd

The column lvd is filled with all syntactical constructions of type
#local variable declaration, i.e., with all local variable declarations.

The query below visualize the programprog as a table of two columns,lvd andt.
VIEW TREE prog

AS TABLE #local variable declaration lvd, #type t
WHERE lvd.isComposedBy(t)

Each line of this table is filled with a pair(lvd, t), wherelvd is a local variable
declaration,t is the usage of a type andt composes syntacticallylvd. The condition “t
composeslvd” is specified by the predicatelvd.isComposedBy(t). SCQL calculates the
values to be filled in the table by combining (cartesian product) all constructions of type
#type with constructions of type#local variable declaration. This combination
generates a lot of pairs(lvd, t), but just those pairs which satisfy theWHERE condition are
inserted in the table.

This is a simple and yet important query, since it is the initial base for the imple-
mentation of complex queries to extract simultaneous variables declarations.

The VIEW TREE command also provides the operators FILTERED BY, FO-
CUSED ON and EXCLUDING which allow the optimization of the query by filtering
values to be inserted in a column, focusing the query in a specific piece of the program
tree and avoiding some undesirable pieces of program, respectively.

The SELECT operation allows the combination of queries to build a new table.
This table is filled with tuples generated by the combinationof the composed queries re-
sults. A predicate can be specified to select just the desiredtuples. The example presented
below joins local variable declarations that occur insideprog1 with type declarationstd
that occur insideprog2.
SELECT lvd, t, td, id FROM

VIEW TREE prog1
AS TABLE #local variable declaration lvd, #type t
WHERE lvd.isComposedBy(t),

VIEW TREE prog2
AS TABLE #type declaration td, #identifier id
WHERE outer.verifier.isTypeName(td,id)

WHERE t.match(id)

The isTypeName(PReference, PReference) method of object
outer.verifier verifies if the identifierid is the same as the type identifier of
td. This method can be easily implemented with templates and p-references.

As an example, considerprog1 andprog2 to be the following pieces of Java
code.

prog1:
public class Test {
int x;
Test (int x) { this.x = x;}
void calc() {

Util u = new Util();
Other z1;
System.out.println(u.fat(x));

}
public static void main(...) {

Other z2;
new Test(10).calc();

}
}

prog2:
class Util {
int fat (int x){

if(x == 0) return 1;
else return x*fat(x-1);

}

interface Other{
int test();

}

First, the following result sets for each internal VIEW TREEexpression are cal-
culated.

lvd:#local variable declaration t:#type

Util u = new Util() Util

Other z1 Other

Other z2 Other

td:#type declaration id:#identifier

class Util ... Util

interface Other ... Other

The entries of these tables are combined to produce the final result set: a table with four
fields and three lines, which holds the selected tuples. Eachfield has a name and a type
that corresponds to a p-reference for the corresponding piece of program.

lvd:#loc... t:#type td:#type decl... id:#i...

Util u = Util class Util{...} Util

new Util()

Other z1 Other interface Other{...} Other

Other z2 Other interface Other{...} Other

Since SELECT operation results in a table, it can be combinedwith other queries com-
posing a bigger one. However, it must be used carefully because of the computational
cost of the cartesian product operation.

Details on UPDATE, INSERT and DELETE operations can be foundat
[Oliveira, 2004].

4. Related work

Pattern-matching has already been largely adopted in functional programming languages.
In [Sellink and Verhoef, 1998], pattern-matching based on the language grammar is used
for source code analysis.

There are already some source code analysis tools based on iterators and queries
proposed in the literature. JJTraveler is a Java framework used to combine visitors for
analyzing source code [van Deursen and Visser, 2004]. The framework is generated with
JJForester from SDF specifications of the language grammar.This approach is based on
iteratively visiting tree nodes to perform code analysis. Astlog is a Prolog variant that aims
locating and analyzing syntactic artifacts in C/C++ abstract syntax trees[Crew, 1997].
Astlog introduces many ad-hoc features that are adapted forthe C/C++ languages. Even
though this work manipulates only Java programs, our approach does not rely on static
semantics of the target programming language, making easier the construction of plugins
for other languages. Genoa is a code analysis tool whose language core is based on the
notion of ASGs (abstract semantics graph) traversal[Devanbu, 1999], which differs from
our proposal, both on the notion of iteratively traversing astructure, and also considering
semantic information of the target language. PQL is a program query language based on
modeling several program information needed to answer queries[Jarzabek, 1998]. The
program model is the most difficult part to be constructed because it requires several se-
mantic analyses. The result sets are not based on tables and cartesian products, such as in
SCQL, but on tuple of lists. SCA is a source code algebra that permits users to express
complex source code views and queries as algebraic expressions[Paul and Prakash, 1996].
Queries in SCA are performed over a object data model that aredependent on the seman-
tics of the target language. JQuery is a language that augments Tyruba, a logic program-
ming language, with a library of predefined predicates for querying Java source code units
and the relationships between them[Janzen and de Volder, 2003]. The predicates imple-
ment semantic relationships between units, for instance, which methods call the others.
Graphlog is a logic query language for visualizing and querying software systems mod-
eled as directed graphs[Consens et al., 1992]. The construction of the graph involves se-
mantic information of the target language. Queries are constructed drawing graph patterns
with a graphical editor. Most of the information queried is based on dependency rela-
tionships. Omega is a language-based programming environment in which all calculated
program information is represented as tables using relational database[Linton, 1984]. The
underlying relational model takes into account only procedural languages, and relies both
on syntactic and semantic information. Horwitz defines a model for adding relational
query facilities to software development environments[Horwitz, 1990]. The model relies
on the use of implicit relations, which are not stored as set of tuples, but instead computed
as needed during query evaluation. This approach is similarto ours for query evaluation.
The model also relies on calculating several ad-hoc functions for extracting the desired
information from the software systems. This information goes from transitive closure of
calling functions to the dynamic information of variable values during program execution.

5. Case study: static semantics graph

This section presents a case study to motivate the usefulness of MetaJ and SCQL. Com-
plex program transformations, such as refactorings, wouldbenefit from more expressive
abstractions than syntax trees. For instance, aRename Classrefactoring for Java programs
requires updating all the occurrences of the class name throughout the whole selected sys-
tem, let be on an extends clause, on a object creation, on a variable declarator or even on
a anonymous class definition. Finding all these occurrencesin a syntax tree may require
more than just traversing the nodes and applying the necessary changes. It may require
considering issues such as scoping and visibility for general cases.

A meta-program that constructs a model that captures staticsemantics of the Java
source code is now presented. The design of this model was devised considering its
usefulness for writing refactoring functions. The model isa graph that directly represents

declarations, scopes and use of symbols as its nodes. This model is also linked with the
syntax tree of the source code.

A scope node defines an area where declarations and uses are located. Each scope
have three sets: a set of all declarations declared inside it, a set of all occurrences of
symbols inside it, and a set of all directly nested scopes.

Declaration nodes are defined by an identifier, a type (eitherthe type of a variables,
or signature of methods, or the new declared type itself). From a declaration node it is
possible to navigate to all its corresponding use nodes. This feature is not present in
conventional symbol tables. Some declarations may open a new scope, for instance, a
class body, a method body, or a local variable declaration.

Use nodes represent the occurrences somewhere in the sourcecode of a previ-
ously declared symbol. From an use node it is possible to navigate to its corresponding
declaration node.

Figure 1: Static semantics model

Figure 1 shows classes and interfaces used to represent the static semantics model.
TheNode interface defines common operations for all declaration anduse nodes. The
GrammarNode class represents nodes that have references for source code, i.e., MetaJ
references.

The DeclNode interface defines common operations for all types of declara-
tion nodes, respectively, theSystemDeclNode that models elements of the file sys-
tem which are not defined from the grammar (PackageNode and FileNode), the
SingleDeclNode that models a single declaration, andDeclNodeList that models
a list of declarations that have the same type. The only two kinds of references modeled
by DeclNodeList are instance variable and local variable declarations.

TheUseNode interface defines common operations for two types of use nodes,
respectively, theSingleUseNode that models the occurrence of a single identifier pre-
viously declared and theUseNodeList that models a list of occurrences composing a
single syntactic structure, for instance, a qualified classname that have the occurrence of
package names and the class name itself.

TheScope interface defines common methods for two types of scopes, respec-
tively, theScopeImpl class that models scopes in which the order of declaration occur-
rences does not matter, for instance, inside a class body, and theBlockScopeImpl class
that models scopes in which the order of declarations occurrences must be considered, for
instance, inside a method body or a block statement.

The model creation process can be divided into three phases:preprocessing, pars-
ing and linking.

5.1. Preprocessing Phase

In this phase, all new types declared in the system are collected. Firstly, all subdirectories
of the system are traversed and for all files in each directorya MetaJ reference is created.
After that, SCQL queries extract the corresponding desiredtype declarations. Each found
type declaration is indexed by its qualified name. The algorithm for preprocessing is
shown below.

preProcessSystem(File directory) {
File[] subPack = Select all subpackages in directory
for each package in subPack do

preProcessSystem(package);
File javaFiles = Select all Java Files in directory
for each jFile in javaFiles do

Reference r = createReference(jFile,"#compilation unit");
Reference classSet[] =

"VIEW TREE r AS TABLE(#class declaration NOTCOMPOSING #class declaration)";
for each reference in classSet do

put reference into class declaration index.
Reference interfaceSet[] =

"VIEW TREE r AS TABLE(#interface declaration NOTCOMPOSING #interface declaration)";
for each reference in interfaceSet do

put reference into interface declaration index
}

5.2. Parsing phase

In this phase, alldeclaration, scopeandusenodes are created. The parsing process is
applied to all references collected in the previous phase. The process is to similar a
recursive descent parser, using a method for each relevant nonterminal.

Each method decomposes an inputReferenceinto its components. The method
verifies if it can be produced either scope, declaration or use nodes. Inside each
method, scope nodes are created for each file system item, andfrom syntactic
structures, such as,compilationunit, typedeclaration, methoddeclaration, block, lo-
cal variable declaration. Scope nodes are containers for declaration nodes, use nodes
and nested scope nodes.

Declaration nodes are created when analyzing syntactic structures, such as,
classdeclaration, interfacedeclaration, methoddeclaration, field declaration. For in-
stance, in the method that analyzes aclassdeclaration, a SingleDeclNode object is
created and added into the scope node previously created from the respective file.

Use nodes are created when analyzing syntactic structures that containidentifiers.

SCQL queries were used for extracting information from mostsyntactic struc-
tures which have none or simple recursive rules. For instance, consider parsing thename
syntactic structure which rule is defined below.

name ::= identifier
| name qualifiedname

qualifier name ::= identifier

name(Reference r) {
Reference[] ref = "VIEW TREE r AS TABLE(#identifier i)";
for each Reference in ref do

create a use node for this reference
put this node in the current scope

}

An alternative way to do the same thing using templates is shown below.

template #name BaseName #{
#identifier i

}#
template #name RecursiveName #{

#name n #qualified name qn
}#
template #qualified_name QualifiedName #{

#identifier i
}#

name(Reference r) {
BaseName bn = new BaseName();
RecursiveName rn = new RecursiveName();
if(bn.match(r))

create a use node for the reference bn.i
put this node in the current scope

else if(rn.match(r))
name(rn.n)
qualifiedName(rn.qn)

}
qualifiedName(Reference r) {

QualifiedName qn = new QualifiedName();
if(qn.match(r))

create a use node for the reference qn.i
put this node in the current scope

}

It seems clear that the SCQL solution is much cleaner and simple. Indeed, in some
cases SCQL could not handle with some recursive structures.For instance, consider the
Java grammar ruleconditionaland expression. In this case, the solution should be based
on templates.

conditionaland expression ::= inclusiveor expression
| conditionaland expression"&&"

inclusiveor expression

template #conditional and expression
BaseConditionalAndExpression #{

#inclusive or expression ioe
}#
template #conditional expression

RecursiveConditionalAndExpression #{
#conditional and expression cae "&&"
#inclusive or expression ioe

}#

conditionalAndExpression(Reference r) {
BaseConditionalAndExpression bcae = new BaseConditionalAndExpression();
RecursiveConditionalAndExpression rcae = new RecursiveConditionalAndExpression();
if (bcae.match(r))

inclusiveOrExpression(bcae.ioe);
else if(rcae.match(r))

conditionalAndExpression(rce.cae);
inclusiveOrExpression(bcae.ioe);

}

This solution is similar to a recursive descent parser. Nonetheless, it must be
pointed that templates is just a simple interface to create this kind of analyzers, and can
be applied in other applications, such as code generators orprogram transformations,
using other strategies.

Figure 2 shows the resulting model (b) for a simple Java program (a).

5.3. Linking phase

At the beginning of this phase, all model nodes have been created. The linking phase links
all declaration nodes to their respective uses and vice-versa. This phase is implemented
by three visitors, respectively,ExtendsLinkVisitor, DeclUseLinkerVisitor and
QualifiedNameVisitor, which do not use neither MetaJ nor SCQL mechanisms, but
only the model produced so far. This shows the usefulness of having meta-programs

package test;
public class Test {
public int factorial(int n) {

int f = 1;
for(int i = 1;i <= n;i++)

f *= i;
return f;

}
}

(a)

(b)

Figure 2: Result of the parsing phase

facilities embedded in an object-oriented language. Figure 3 shows the resulting model
for the program shown in Figure 2.

The first visitor is specialized on visitingextendsand implementsclauses to link
the corresponding class identifiers to their declaration. Its algorithm is shown below.

ExtendsLinkerVisitor()
for each package scopes in System root

for each class declaration in current package scope
if current class has a extends clause
// O(1) search in index from preprocessing phase
Node n = Search class declaration of this clause
if(! n.isNull())

link use node of extends clause to its decl
if current class has a implements clause
Node decl[] = Search all the interfaces declaration of this clause
Node use[] = Get all uses of implements clause
for each Node in use do

link the current use to his declaration

The second visitor links declarations and their uses that are non qualified uses.
For instance, these cases correspond to local variables andnon qualified field accesses
and non qualified method calls. The third visitor is specific for linking uses occurring
in method/constructor calls and instance variable use. This visitor traverse the current
model, in preorder, driven the scope nodes, and whenever it encounters an use node not
currently linked to its declaration and that it is not created from a qualified name, it verifies
if the respective declaration is in the current scope, and ifnot it creates another iterator that
searches the scope tree upwards until the root trying to find the corresponding declaration.
The root scope contains references to all public declarations. This guarantees that all use
nodes will be linked.

The third visitor links use nodes corresponding to qualifiednames occuring in
syntactic structures such as, import declarations, methodcalls, and field accesses. These
structures are represented in the model asUseNodeList nodes. The respective declara-
tion of the elementi+1 of this list can be found in the scope node created by the respective
declaration of the elementi of the list. The used algorithm is shown below.

QualifiedNameVisitor()
for each scope in System root

if(current use is qualified)
Node decl = null;
for each use in the current use list
if(decl == null)

decl = Search the declaration of the first use in the list
else

decl = Search the declaration of the current use in scope opened by decl
link the current use with decl

Figure 3: Result of the linking phase

6. Case study: refactorings

In this section, MetaJ and SCQL approaches are compared witheach other. The method-
ology used was implementing two refactorings, namely Rename Local Variable (RLV)
and Self Encapsulate Field (SEF) with MetaJ and with SCQL. The refactorings were ap-
plied to three artificial programs. A qualitative comparison on the writing style of the
approaches, a quantitative comparison on the metrics of therefactoring implementations,
and a performance comparison on the application of the refactorings are presented.

6.1. Qualitative Analysis

The following method was extracted from the implementationof the Rename Local Vari-
able refactoring written with MetaJ. The fragment is calledwhen there are name clashes
between the new local variable name and an instance variablename.

void addThisToFieldAccess(String var, Reference ctx) {
Iterator it = ctx.getIterator();
while(it.hasNextIn()){

it.nextIn();
Reference r = it.get();
if(r.isTypeOf("java.#postfix_expression") && r.toString().startsWith(varName))

r.set("this." + r.toString());
}

}

The same method written with SCQL is shown below.

String findFieldAcc =
"VIEW TREE context AS TABLE (#postfix_expression pe
FILTERED BY pe.toString().startsWith(outer.varName))";

void addThisToFieldAccess(String var, Reference ctx) {
QueryFactory qf = SCQL.createQueryFactory("java");
qf.add("varName", var); qf.add("context", ctx);
ResultSet rs = qf.createQuery(findFieldAcc).getResultSet();
while(rs.next()){

Reference r = rs.getReference("pe");
r.set ("this." + r.toString());

}
}

The MetaJ approach defines a traversal on the code that filtersa desired syntactic
structure and applies some action on it. The SCQL approach defines declaratively all de-
sired syntactic structures. The action is then performed onall of them. When this situation
is scaled to larger specifications, the SCQL approach shows more directly which syntactic
structures are being selected and what are the respective actions on them. The code with
SCQL seems to be more organized because of the the specification of the desired structure
is separated from actions performed on them. So, it is easierto reuse SCQL queries than
the MetaJ loops.

6.2. Design Metrics Analysis

Design metrics of the implemented refactorings were collected. They are shown in Fig-
ure 6.2 and are, respectively, the number of lines of code, the number of classes, the total
number of method declarations, and the total number of field declarations. The main goal
of this analysis is to verify the size of implementations. The difference are more notably
seen in the implementation of the Self Encapsulate Field (SEF) refactoring, where the
SCQL approach has the half size. Each template used in the MetaJ implementation was
counted as a class. Each field within the template was countedas an instance variable,
and has respective get/set methods. But the number of lines collected from the template
was not from the generated class but from the template itself. The idea was to measure
the programmer’s labor. The intensive use of templates for the SEF refactoring explains
why the number of fields for SEF refactoring written with MetaJ is much bigger than that
written with SCQL.

6.3. Performance Analysis

The performance comparison of the refactorings was done over three artificial programs.
The following table shows the main characteristics of the programs. LCM is the number
of line of code per method; #C, #M, #F are the number of classes, methods and fields,
respectively; AAT is the total number of accesses and assignments to either local variables
or instance variables, in each method; AAIV is the number of accesses and assignments
to the instance variable that will be encapsulated by the SEFrefactoring, in each method;
and AALV is the number of accesses and assignments to the local variable that will be
renamed by the RLV refactoring, in each method. All methods of a class are identical,
so the SEF will affect all methods. The 60 methods in programsP1 andP2 are identical.
ProgramsP2 andP3have the same structure, but methods ofP3 are bigger.

Figure 4: Metrics of the refactorings’ codes

LOC #C #M #F LCM AAT AAIV AALV

P1 383 1 10 10 36 55/24 2 / 1 4/2
P2 1888 1 50 10 36 55/24 2 / 1 4/2
P3 3715 1 50 10 71 110/42 5 / 2 7/3

The input parameters for refactoring evaluation were chosen, such that, the RLV
refactoring renames a local variable declared in the middleof a method. The local variable
name was chosen such that it clashes with an instance variable name. The method chosen
for the RLV refactoring is located at the middle of the class.Also, the SEF refactoring
adds get/set methods for an instance variable, such a local variable with the same name
is declared in the middle of all methods. The aim of such choices was try to capture a
mean cost of refactoring evaluations. The refactorings were executed five times over each
program and in Figure 6.3 the mean execution times are presented.

(a) (b)

Figure 5: Mean execution times (a) RLV refactoring (b) SEF refactoring

Queries and updates within the SEF refactoring implementedwith SCQL were
declared to execute on a specific scope. For the above resultsthe scope was carefully
designed to be a method. In a prior naı̈ve implementation, the queries which calculated
cartesian products over 5 sets were performed on the whole class every time, and in this
case the execution time for the SEF refactoring over Program3 reached 16 hours. The ex-
ecution time of SCQL refactorings is quite acceptable in allcases for the RLV refactoring.
Special attention is needed for SEF refactoring which is more than twice slower.

7. Discussion
The presented approach for program analysis is based on the definition of several mech-
anisms for extracting syntactic information of the source code. These mechanisms were
defined considering only the syntax of the object language. These mechanisms were used
to produce more expressive (object-oriented) models than those based solely on the syn-
tax. These models can that be used in more sofisticated analyses.

As shown in section 4, many other approaches, such as Genoa and SCA, have
included ad-hoc mechanisms for constructing a knowledge base about the information
of the software being analyzed, making easier to query semantic information. However,
our approach is more stratified and reusable, if considered the construction of program
analyzers for different languages.

Our approach has shown that different mechanisms ranging from procedural iter-
ative algorithms to declarative template and queries couldbe used together within a single
object-oriented program analyzer, benefiting from design practices of object-oriented pro-
gramming.

The imperative resources of the approach were proved to be more efficient (they
are computationally cheap), but indeed more difficult to useand reuse. The declarative
resources are more readable and easier to use, but tend to be computationally expensive.
Using templates and queries seems to be more intuitive than writing visitors like, for in-
stance, JJTraveler. The parse phase for construction of thegraph shown in section 5,
if written with JJTraveler, would require a visitor that traverse syntax trees and the im-
plemention operations for all nodes of the tree. Even if the visited node do not contain
any significant information for the model, the operation should be implemented doing
nothing. If the visited node represents a declaration, it isnecessary capturing additional
information, such as its identifier, type, modifiers, that requires specific visitors. This
could be implemented more naturally with MetaJ templates.

However, it should be noted that when iterators and visitorsare necessary with
our approach, MetaJ does not offer an elegant mechanism for combining visitors such as
JJTraveler. Implementing this parse phase with Yacc shouldpresented the similar draw-
backs, and additionally would require even more work to construct syntax trees.

8. Concluding remarks
This paper has presented an integrated use of iterators, templates and queries for analyzing
and manipulating source code. These mechanisms are much more closer to average pro-
grammers than other tools based on rewriting systems. Developer teams may effectively
consider writing meta-programs that help analyzing and manipulating source code during
the maintenance process, because the presented tools, MetaJ and SCQL, have proved to
be quite easy to use.

About, the expressive power of the tools, the underlying information model for
MetaJ and SCQL is based solely on the syntax of the target language. More powerful
queries would require incrementing the model with semanticinformation. Nonetheless,
this design decision simplifies the construction of pluginsfor other languages, and the use
of SCQL proved to be useful and simple to use in many situations.

The comparison of MetaJ and SCQL has shown that SCQL may be useful for pro-
ducing more compact and elegant analysis of source code. However, the implementation
still deserves more attention to optimization of query execution, and also there are situa-
tions pattern-matching and iterators are necessary, thus indicating the necessity to include
mechanisms to compose iterators in MetaJ.

References

Consens, M., Mendelzon, A., and Ryman, A. (1992). Visualizing and querying software
structures. InProc. of the International Conference on Software Engineering, pages
138–156. ACM.

Cordy, J. R., Dean, T. R., Malton, A. J., and Schneider, K. A. (2002). Source trans-
formation in software engineering using the TXL transformation system.Journal of
Information and Software Technology, 44(13):827–837.

Crew, R. F. (1997). ASTLOG: A language for examining abstract syntax trees. InProc.
of the USENIX Conference on Domain-Specific Languages, pages 229–242.

de A. Oliveira, A., Braga, T. H., de A. Maia, M., and da S. Bigonha, R. (2004). MetaJ: An
Extensible Environment for Metaprogramming in Java.Journal of Universal Computer
Science, 10(7):872–891.

Devanbu, P. (1999). GENOA - a customizable, front-end-retargetable source code analy-
sis framework.ACM TOSEM, 8(2):177–212.

Horwitz, S. (1990). Adding relational query facilities to software development environ-
ments.Theoretical Computer Science, 73:213–230.

Janzen, D. and de Volder, K. (2003). Navigating and queryingcode without getting lost. In
Proc. of the 2nd International Conf. on Aspect-oriented Software Development, pages
178–187.

Jarzabek, S. (1998). Design of flexible static program analyzers with PQL.IEEE Trans-
actions on Software Engineering, 24(3):197–215.

Johnson, S. (1975). Yacc: Yet another compiler compiler. Technical report, Bell Tele-
phone Laboratories.

Linton, M. (1984). Implementing relational view of programs. In Proc. of ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium - Practical Software Development
Environment, pages 132–140.

Mens, T. and Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions on
Software Engineering, 30(2):126–139.

Oliveira, A. (2004). MetaJ - An environment for metaprogramming in Java.in portuguese.
Master’s thesis, Federal University of Minas Gerais, Brazil.

Paul, S. and Prakash, A. (1996). A query algebra for program databases.IEEE Transac-
tions on Software Engineering, 22(3).

Sellink, M. P. A. and Verhoef, C. (1998). Native patterns. InProc. 5th Working Confer-
ence on Reverse Engineering, pages 89–103. IEEE Computer Society Press.

van den Brand, M. and et.al. (2001). The ASF+SDF meta-environment: A component-
based language development environment. InComputational Complexity, pages 365–
370.

van Deursen, A. and Visser, J. (2004). Source model analysisusing the jjtraveler visitor
combinator framework.Software - Practice and Experience, 34(14):1345–1379.

