Optimized Compilation of Around Advice for Aspect Oriented
Programs

Eduardo S. Cordeiro', Roberto S. Bigonha'!, Mariza A. S. Bigonha!, Fabio Tirelo?

'Departamento de Ciéncia da Computacio — Universidade Federal de Minas Gerais
Av. Presidente Antonio Carlos, 6627 — Campus Pampulha
31270-901 — Belo Horizonte — MG — Brazil

Instituto de Informatica — Pontificia Universidade Cat6lica de Minas Gerais
Av. Dom José Gaspar, 500 — Coragao Eucaristico
30535-610 — Belo Horizonte — MG — Brazil

{cordeiro,bigonha,mariza}@dcc.ufmg.br, ftirelo@pucminas.br

Abstract. The technology that supports Aspect-Oriented Programming tools is
inherently intrusive, since it changes the behavior of base application code. Ad-
vice weaving performed by AspectJ compilers must introduce crosscutting be-
havior defined in advice into Java programs without causing great performance
overhead. This paper shows the techniques applied by the ajc and abc Aspect]
compilers for around advice weaving, and identifies problems in code they pro-
duce. The problems analyzed are advice and shadow implementation repetition
and context variable repetition. Performance gain provided by solving these
problems is discussed, showing that bytecode size, running time and memory
consumption can be reduced by these optimizations.

1. Introduction

Advice weaving is the process of combining crosscutting behavior, implemented in ad-
vice, into the classes and interfaces of a program. Aspect] defines three types of advice,
which are activated upon reaching certain points in the execution of programs: before
and after advices are executed in addition to join points; around advice may completely
replace join points, though a special proceed command activates these points at some
moment after the advice execution has begun.

The compilation of the proceed command in around advice at bytecode level re-
quires join points to be extracted to new methods. Furthermore, this command might
appear inside nested types in the advice body, which requires passing context from the
advice’s scope to extracted join points. While discussing around advice weaving, join
points are also called shadow points, or simply shadows. During weaving, a join point
comprising a single Java command is often composed of several bytecode instructions.

There are two important Aspect] compilers: the official Aspect] Compiler (ajc)
[Aspect] Team 2006], and the extensible, research-oriented AspectBench Compiler (abc)
[Aspect Bench Compiler Team 2006]. ajc builds on the JDT Java compiler!, and provides
incremental compilation of Aspect] programs. It accepts Java and Aspect] code, as well
as binary classes, and produces modified classes as output. The abc compiler also accepts

"http://www.eclipse.org/jdt

Java and Aspect] code, and its output is semantically equivalent to that of ajc, but instead
of providing fast compilation by means of an incremental build process, abc produces
optimized bytecode. This compiler is also a workbench for experimentation with new
Aspect] constructs and optimizations, providing researches with extensible front- and
back-ends.

These compilers apply the same basic techniques for weaving before and af-
ter advice. Around advice, however, is woven differently. Performance analyses on a
benchmark of Aspect] programs showed that around advice is one of the performance
degradation agents in code produced by the ajc compiler [Dufour et al. 2004]. Based on
this insight, the developers of abc created another approach for around advice weaving
[Kuzins 2004, Avgustinov et al. 2005].

Both approaches for around advice weaving, however, still present problems re-
lated to repeated code generation. These problems are due to advice inlining and shadow
extraction for advice applications. The remainder of this paper describes these problems,
our proposed solutions and results obtained from their application to a small set of Aspect]
programs.

1.1. Aspect] Compilers

The ajc compiler is built upon the extensible JDT Java compiler, which allows
the introduction of hooks in the compilation process that modify its behavior
[Hilsdale and Hugunin 2004]. These hooks are then used to adapt the front- and back-
ends to compile both Java and Aspect] source-code. Java code for classes and interfaces
is directly transformed into bytecode. Definitions of aspects, however, are handled in a
different way: first, bytecode is produced to implement aspects as classes, so that code
defined in advice and methods can be executed by standard JVMs. Finally, after bytecode
has been generated for both Java and Aspect] source, the weaver introduces crosscutting
behavior defined in aspects into the bytecode for the program’s classes and interfaces,
using crosscutting information gathered from the parsing phase.

During compilation, in-memory representations of bytecode are used for code gen-
eration and weaving, and actual bytecode files are only generated at the end. The ajc com-
piler uses BCEL [Dahm et al. 2003] as a byfecode manipulation tool. BCEL interprets
bytecode contained in class files, and builds in-memory representations of the classes and
interfaces they define. It provides facilities for adding and removing methods and fields
to existing classes, modifying method bodies by adding or removing instructions, and
creating classes from scratch. Its representation of bytecode is very close to its defini-
tion [Lindholm and Yellin 1999], providing direct access to such low-level structures as a
class’ constant pool.

Extensibility in the abc compiler, as described in [Avgustinov et al. 2004], is
achieved by combining two frameworks: Polyglot [Myers 2006] for an extensible front-
end, and Soot [Vallée-Rai et al. 1999] for an optimizing, extensible back-end. Polyglot is
a Java LALR(1) parser, and its grammar can be modified to add or remove productions.
Soot implements several optimizations for Java bytecode, including peephole and flow-
analysis optimizations such as copy and constant propagation. Extensions are linked to
Soot at runtime, via a command line flag, thus requiring no modifications to its source
code. This extension model, however, isn’t flawless, and it can be difficult to implement

optimizations that modify the weaving algorithms for existing Aspect] constructs. Diffi-
culties found during the development of this work are presented further in this paper.

The intermediate representation used in abc, Jimple, is provided by Soot. Jimple is
a typed 3-address code that makes it easier to perform analyses like use-definition chains
than the stack code of bytecode. Weaving is performed in abc with Jimple representations
of classes and interfaces.

1.2. The Compilation Process

The compilation process for Aspect] programs differs from ordinary Java compilation in
that crosscutting behavior defined in aspects must be combined to classes and interfaces.
This process is called weaving, and is usually done at binary-code level.

In both compilers, Java and Aspect] source code is transformed into ASTs and
then intermediary representations of the binary code. On ajc, bytecode is generated
and manipulated directly via in-memory representations of its structure using the BCEL
framework; on abc, Jimple code is used. The front-end is also responsible for generating
crosscutting information for the weaver. This structure identifies locations on classes and
aspects where advice must be woven into. The advice weaver then applies advice to join
points, producing the final woven code for AspectJ programs.

An advice is transformed into a regular Java method, and the weaving phase ap-
plies calls to this method at its join points. For instance, the weaving of a before advice
includes a call to the advice implementation before its join points, leaving the join points
themselves unmodified. Weaving of around advice is more complex, however, as the orig-
inal join points must be replaced by calls to advice implementations. This stage gives rise
to problems with repeated code generation, and is discussed in detail in Section 2.

2. Around Advice Weaving

The most powerful type of advice defined in Aspect] is the around advice. It can be used
to simulate the behavior of both before and after advice, as well as to modify or com-
pletely avoid join points. Context used in the shadow may be captured in the advice, but
must be also passed on to shadow execution. The power of modifying join points inside
around advice comes from the proceed command, which activates the shadow captured
by the executing advice: context variables captured by the advice may be modified be-
fore the proceed call. Avoiding shadow execution altogether is achieved by omitting this
command.

Listing 1 shows a small Aspect] program. Line 7 contains a shadow of the around
advice defined in lines 21 - 23. This advice has no effect on the semantics of its join
points, since it simply proceeds to shadow execution.

The remainder of this section presents the weaving techniques applied in the com-
pilation of this program by the ajc and abc compilers.
2.1. The ajc Approach

Around advice weaving in the ajc compiler is briefly described in
[Hilsdale and Hugunin 2004]. Since around advice shadows must be executed as a
result of proceed calls, these instructions are extracted from their original locations to

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

public class Circle {
private int radius;
private int x,y;
public Circle(int x, int y, int radius) {
setX(x);
setY (y);
setRadius (radius);

}

public int getRadius() { return radius; }
public void setRadius(int radius) { this.radius = radius; }
public int getX() { return x; }

public int getY () { return y; }

public void setX(int x) { this.x = x; }

public void setY (int y) { this.y =vy; }

public static void main(String[] args) {
Circle ¢ = new Circle(0,0,10);
}
¥

public aspect RadiusCheckAspect {
void around(): call(void Circle.setRadius(int)) {
proceed () ;
}

Listing 1. The running example for this paper.

separate methods, called shadow methods. The proceed call inside around advice bodies
is then replaced by calls to these methods.

Figure 1 is a visual representation of this process. The darkened boxes in this
figure represent the shadow in line 7 of Listing 1. Notice that only the parts affected
by weaving are shown in this figure. The result of weaving the around advice defined in
RadiusCheckAspect into class Circle is a modified version of this class. Each around
advice shadow in a given class is extracted into its own method. For each shadow method,
an inlined implementation of the advice is generated, whose proceed call is replaced with
a call to the shadow method.

Method shadowl in the woven Circle class shown in Figure 1 contains a
shadow, which is a call to method setRadius. The instance of Circle and the argu-
ment to this method, which are context variables required for executing this shadow, are
passed from the join point to the advice implementation and then to the shadow. Context
passing can be seen in Figure 1 as the target object and the arguments from the shadow’s
setRadius call are passed as arguments to the advice and shadow methods.

The proceed call may appear inside nested types in the advice body. In this sce-
nario, this call may attempt to access local variables in the advice environment after its
scope has ended. A different approach is used to handle this special case, which involves
creating an object to store both the advice environment variables and the shadow code to

public class Circle {
Ixoooo %/
public Circle(int x, int y, int radius) { public aspect RadiusCheckAspect {
setX(x); void around():
setY(y); call (void Circle.setRadius(int)) {
setRadius(radius);) proceed ();
} }
Ve V4
}

Weaver

public class Circle {
VE Y
public Circle(int x, int y, int radius) {
setX(x);
setY(y);
aroundAdvicel (this ,radius);

[x oo %/
public static void aroundAdvicel(Circle arg0, int argl) {
shadow1 (arg0,argt);

public static void shadowi(Circle arg0, int argl) {

arg0.setRadius(arg1);

}

}

Figure 1. Around advice weaving in ajc.

be executed at the proceed call.

Objects used to implement this type of around advice application are called clo-
sure objects. These objects are implementations of an interface called AroundClosure,
which defines a method run to contain the shadow code. Environment variables are
placed on the shadow environment as arguments to its closure’s run method. Thus for
each advice application at runtime an object must be created to cope with the proceed
call.

2.2. The abc Approach

Kuzins details, in [Kuzins 2004], the structure used to implement around advice weav-
ing in the abc compiler, and presents benchmarks suggesting that the code produced for
around advice in abc is faster than the one produced by ajc. The performance gain is
related to avoiding closure object creation, which is required in ajc for around advice that
contains proceed calls inside nested types in the advice body.

In the abc approach, each shadow is labeled with an integer identifier, called shad-
owlD, and the class that contains it is also labeled with an identifier called classID. All
shadows for an around advice in a given class C are extracted to a single shadow method
introduced into C. The shadow method for class C' contains all its shadows, and execu-
tion is routed to each one via the shadowlID. This identifier is a parameter to the shadow
method and is set by every inlined advice implementation at the proceed call. Each advice
implementation sets the shadowID according to its shadow.

The classID-shadowlD pair appears on code generated by previous versions of
the abc compiler. On version 1.1.0, however, this approach has been taken a step further,

16
17
18
19

avoiding shadow selection at runtime. This is achieved by inlining advice methods and
shadows for each one of the advice’s applications.

When closures are necessary to implement an around advice a, abc makes class
C, which contains shadows of a, implement an interface called AroundClosure. This
interface defines a method to which shadows are extracted. The advantage of this ap-
proach, when compared to the one adopted by ajc, is that the class containing a shadow is
itself a closure object, and thus there is no need to create a new object at advice applica-
tions. This weaving strategy introduces fields in class C' that are linked at runtime, during
preparation for the advice call, to environment variables required for advice and shadow
execution.

Code woven for around advice in abc is similar to that produced by the algorithm
applied in agjc, except that advice methods are created in the bytecode class that represents
the aspects in which they were declared, rather than the class where their shadows appear.

3. Repeated Advice Implementations

Repeated advice implementations are generated during around advice weaving when a
class (' contains several identical shadows of an around advice a. If a class contains n
identical shadows of any given around advice, the around weaving strategy described in
Section 2 creates n identical pairs of advice and shadow implementations. This generation
of repeated advice implementations appears on code compiled by both ajc and abc. It is
due to the naive generation of inlined around advice implementations, with no regards
as to whether or not other identical implementations have already been generated for
identical shadows in the same class.

Consider modifying the code base presented in Listing 1, adding to the main
method defined in class Circle a call to setRadius. Listing 2 shows the resulting
main method. This creates another shadow of the around advice defined in Listing 1,
producing repeated advice implementations.

public static void main(String[] args) {
Circle ¢ = new Circle(0,0,10);
c.setRadius(—1);

Listing 2. The main method, modified to contain an advice shadow.

After weaving, class Circle has two shadows of the existing around advice: one
in its constructor, and another in the main method. Listing ?? shows this new version
of the woven code for class Circle, which was originally shown in Figure ??. Notice,
however, that the single difference between the advice implementations aroundAdvicel
and aroundAdvice?2 is the shadow method called. Since these shadows are equivalent,
it can be said that the advice implementations are also equivalent, and thus redundant.

Two methods are said to be equivalent if their signatures (parameters and return
types) and instruction lists are the same. Eliminating any of these advice implementa-

[e IR Ie Y R N N R

—_
S O

11
12
13
14
15
16
17
18
19
20
21
22
23
24

tions and replacing the call to it with a call to the other one doesn’t modify the seman-
tics of this program. This reduces generated code size for Aspect] programs that use
around advice. The optimized code for the example in Listing 3 would be free of methods
aroundAdvice2 and shadow?2, and the call to aroundAdvice?2 in line 10 would be
replaced with a call to aroundadvicel. Notice that the resulting code is smaller, but
still semantically equivalent to the original.

This optimization can be performed in two different approaches: a post-weaving
unification phase, or advice implementation caching during the weaving process. At post-
weaving, one must identify repeated advice implementations and eliminate all but one of
them, and fix the calls to removed implementations. During weaving, one is required
to check whether a given shadow has already been woven into in a class, and reuse the
advice implementation created for that shadow instead of generating another inlined im-
plementation.

public class Circle {

[x ... %/

public Circle(int x, int y, int radius) {
setX(x);
setY(y);

aroundAdvicel (this ,radius);

}

public static void main(String[] args) {
Circle ¢ = new Circle(0,0,10);
aroundAdvice2 (this,—1);

}

public static void aroundAdvicel(Circle arg0, int argl) {
shadow1 (arg0,argi);
}

public static void shadowl(Circle arg0, int argl) {
‘ arg0.setRadius(arg1);

public static void aroundAdvice2(Circle arg0, int argl) {
shadow?2 (arg0,argi);
}

public static void shadow2(Circle arg0, int argl) {
’ arg0.setRadius(arg1);

}

Listing 3. Class Circle after the weaving of two shadows.

The second approach, caching generated advice implementations during weav-
ing, is more fitting for integration to the existing Aspect] compilers, since it avoids
unnecessary work. Repeated advice implementations are never generated, and so they
need not be removed. This approach has been suggested to ajc developers as a bug re-
port [Cordeiro 2006a].

The Soot optimization framework defines a phase model in which bytecode is
modified gradually. In the abc compiler, only the peephole and flow analysis phases are
activated. However, in these phases, one isn’t able to modify the structure of the opti-
mized program, and thus optimizations are restricted to handling method bodies. Since
eliminating repeated advice implementations requires eliminating methods from classes
as well as modifying method bodies, it is not possible to implement this optimization
as an abc back-end extension. The solution given by the abc was to modify the com-
piler’s around weaving algorithm to cache advice and shadow methods, integrating reuse
of advice implementations in the weaving process.

3.1. Results

Removing advice and shadow implementation replicas from the generated code of an
Aspect] program produces smaller code, since several structures required to represent
these methods in bytecode format are eliminated from it. The amount of decrease in code
size is proportional to the number of around advice applications in each of the program’s
classes, as well as the size of advice and shadow bodies.

Table 1 shows the sizes of a set of Aspect] programs that use around advice. Sin-
gleton is the test program that accompanies Hannemann’s Singleton pattern implementa-
tion [Hannemann and Kiczales 2002]. Its main method contains three identical shadows
of an around advice.

SpaceWar is a sample Aspect] programs that features several language constructs
and idioms. It is available along with the Eclipse Aspect] Development Tools?> (AJDT).
The around advice used in this program captures user and computer commands given to
ships, ensuring that their respective ship is alive at the time the command is issued.

Laddad presents, in [Laddad 2003], a thread-safety aspect that can be applied to
programs written using the Swing library. This aspect has been applied to the Rin’G
program [Cordeiro et al. 2004], which is mostly based on user interaction and thus makes
great use of Swing classes.

Application \ Original Code — A (bytes) \ Optimized — B (bytes) H (B/A) — 1 (%)

Singleton

abc 8115 7539 7.1
ajc 17403 16667 4.2
SpaceWar

abc 150869 145391 3.9
ajc 222446 215995 2.9
Rin’G

abc 947179 805162 15
ajc 1212273 1001661 17.4

Table 1. Code generated for Aspectd programs by original and optimized compil-
ers.

The reduction in bytecode size achieved by eliminating repeated advice and
shadow implementations is shown in Table 1. Note that the optimized programs are

Zhttp://www.eclipse.org/ajdt

smaller than the original ones. Byfecode size reduction is proportional to the number of
around advice applications in the program. The decrease percentage for a given program
also depends on its total size: for instance, in the SpaceWar program the code reduction
is smaller than in Singleton, since the latter is actually much smaller.

The greatest reduction presented in Table 1 is for the Rin’G program. This occurs
due to the fact that this program is user-interface-oriented, there are roughly 500 around
advice shadows spread over 83 classes, making the program size / reduction size ratio
more noticeable.

4. Repeated Context Variables

Advice in Aspect] can capture context from join points, via the args, target or this
clauses. Once captured, these variables are made available to the advice body. In around
advice, captured context variables must be passed on to shadows in the proceed call.
However, even if the programmer doesn’t capture context variables explicitly in point-
cut expressions, the shadow’s environment must be kept after it has been extracted to a
shadow method during weaving. This is done by passing context as arguments from the
original join point environment to the advice method, and then on to the shadow method,
as can be seen in the woven code of Figure 1.

If the programmer uses the context capture clauses, there is always an intersec-
tion between this explicitly captured context and the set of variables required for shadow
extraction. Therefore, whenever an around advice uses context capture clauses in its def-
inition, redundant parameters are introduced in its implementations’ signatures.

Context variable repetition leads to three problems in bytecode generated for
around advice:

e redundant parameters add to the size of method definitions in bytecode, resulting
in larger code;

e memory consumption is larger than necessary, since activations of advice methods
in the execution stack allocate local variables for redundant parameters;

e execution time is wasted loading redundant arguments to advice method calls.

Consider replacing the around advice® from Listing 1 with the one in Listing 4,
which captures the argument from setRadius calls. Listing 5 shows the woven Circle
class after this modification. Notice that the advice implementation contains an unused
parameter, and the same local variable is used at the join point as an argument for both
repeated parameters.

Capturing environment variables required for shadow execution is part of the
shadow extraction process presented in Section 2. A corresponding parameter is added to
the advice implementation’s signature for each one of the environment variables in this
step. While the advice is being inlined, variables explicitly captured by the programmer
are also added as parameters to the advice implementation. Failure to detect the intersec-
tion between the sets of variables captured in these two separate steps leads to redundant
parameters in advice implementations.

3 This modification is performed on the original code of Listing 1, not the already modified one presented
in Section 3.

1
2
3
4
5

public aspect RadiusCheckAspect {
void around(int r): call(void Circle.setRadius(int)) && args(r) {
proceed(r < 0 ? 0 : r);
}

Listing 4. Around advice capturing and modifying context from its join points.

public class Circle {

[x ... %/
public Circle(int x, int y, int radius) {
setX(x);
setY(y);
aroundAdvicel (this ,radius ,radius);
}
public static void aroundAdvicel(Circle arg0, int argl, int arg2) {
if (argl < 0)
shadow1 (arg0,0);
else
shadow1 (arg0,arg1);
}

public static void shadowl(Circle arg0, int argl) {
‘ arg0.setRadius(arg1);

Listing 5. Class Circle after the weaving with context passing.

This problem can be fixed by keeping a record of captured local variables during
shadow extraction, so that they won’t be captured a second time while inlining the ad-
vice method. This solution has been suggested to both ajc and abc developers, and its
implementation is currently being discussed [Cordeiro 2006b, Cordeiro 2006c].

Table 2 shows the reduction in code size as a result of eliminating repeated context
variables. Production Line is a dynamic programming solution to the problem proposed
in [Cormen et al. 2002, Chap. 15]; there are two production lines with equal sequences
of machines that perform the same job, but at different latencies. The problem is to find
the minimum time required to go through the production line, considering that artifacts
produces by a machine in one line may be transfered to the other line at a time cost. In this
case, however, Aspect] was used to implement transparent memoization in the recursive
solution to the problem.

Eliminating parameters from advice implementations, at bytecode level, removes
structures used to describe the type of these parameters and instructions to load them.
When compared with the total program size, this reduction is small, as can be seen in

Table 2.

The entry in Table 2 for the code generated by abc for the Production Line pro-
gram shows that the code size reduction is ten times larger than for the ajc version. This
is due to a collateral effect of eliminating repeated context variables, in which abc is
able to eliminate repeated advice and shadow implementations. After weaving, the in-
liner attempts to identify replicas among the generated methods. Since this is done on
Jimple code, there are local variables that bind context variables to advice parameters,
which yields apparently different inlined implementations. Once context variables are
eliminated, these local variables are also removed from the Jimple code, and the inliner
manages to identify that the advice implementations are equivalent*.

Application Original Code — A | Optimized - B | (B/A) — 1 (%)
(bytes) (bytes)

Production Line

ajc 14693 14568 0.9
abc 7481 6802 9
SpaceWar

ajc 222446 222310 0.06
abc 150881 150746 0.09

Table 2. Code sizes for original and optimized Aspectd programs.

Table 3 shows average execution times of calls to a few methods in the Space-
War program. Since these methods are captured by an around advice, measuring their
execution times shows the effect in advice activation time of eliminating parameters from
advice implementation signatures. The average times shown here were collected from a
sample comprising 33 executions of each method in order to diminish the impact of OS
scheduling and other external runtime interferences.

Method | Original — A (ms) | Optimized — B (ms) || (B/A) — 1 (%)

ajc

fire 2.691 2.595 -3.57
rotate 0.0117 0.0113 -3.42
thrust 0.0125 0.0114 -8.80
abc

fire 2.358 2.291 -2.84
rotate 0.0107 0.0104 -2.80
thrust 0.0138 0.0120 -13.04

Table 3. Average execution times for methods affected by an around advice in
the SpaceWar program.

Though the impact of a single advice call in execution time is almost negligible,
as shown in Table 3, the impact in the running time of programs with a great number of
advice calls at runtime can be quite large. This is especially the case when around advice

4 Equivalence between methods is determined in abc by string representations of Jimple code, rather
than their semantics.

applies to recursive methods, as in the Production Line algorithm; the running time of this
program for random production lines of different sizes is shown in Table 4.

The elimination of repeated context variables from around advice has also the
advantage of decreasing memory consumption. Parameters are stored as local variables
in frames by the JVM for each method activation. Thus removing some parameters from
an advice implementation makes its activation frames smaller, which allows programs
with around advice applied to recursive methods to run for larger inputs. This is shown in
the last four lines of Table 4: the bytecode compiled by the original ajc runs for production
lines with up to 967 machines, while the optimized version runs for inputs with up to 1017
machines — about 5% larger. The same happens with the code compiled by abc, with the
optimized version running for inputs with about 8% more machines than the original.

Input size | Original — A (ms) | Optimized — B (ms) || (B/A) — 1 (%)
(machines)
100

ajc 4.856 2.508 -48.35

abc 4.562 2.388 -47.65
500

aje 6.397 3.991 -37.61

abc 5.724 3411 -40.41
900

ajc 9.248 6.372 -31.10

abc 6.045 3.622 -40.08
967

ajc 9.363 6.399 -31.66

abc 7.529 4.844 -35.66
1017

ajc - 6.472 -

abc 7.752 5.101 -34.20
1230

ajc - - -

abc 7.083 4.860 -31.39
1341

ajc - - -

abc - 5.089 -

Table 4. Average execution times of the Production Line program for random

inputs.

5. Conclusions

This paper presented code repetition problems identified in the around advice weaving
techniques applied by two Aspect] compilers: the Aspect] Compiler, ajc, and the Aspect-
Bench Compiler, abc. Our solutions to these problems have also been presented.

Repeated advice and shadow implementations appear in bytecode generated by
ajc and abc when a single class contains several identical shadows of an around advice.

By eliminating advice and shadow implementation replicas, this optimization decreases
the bytecode size for Aspect] programs.

While capturing context variables for around advice implementations, some local
variables are captured more than once, producing repeated context variables in advice
implementations. This problem appears when context variables are explicitly captured
by the programmer at pointcut expressions, by means of the args, target and this
clauses. Solutions to this problem have been experimentally integrated into the abc and
ajc compilers, and operate in the weaving process. Once repeated variables have been
eliminated, the resulting code is smaller, uses less memory and runs faster. Memory con-
sumption and time reductions are more relevant in programs with around advice applied to
recursive methods, where several advice activation frames coexist in the execution stack.

Code generated by the abc compiler shows clearly that the Aspect] language con-
structs are not inherently expensive, but rather implemented in an expensive way in the
ajc compiler. These constructs can, in fact, be implemented efficiently, as in the abc com-
piler, though this is not the priority for ajc developers. Efforts in ajc development have
been concentrated on compilation and weaving speed, as well as the introduction of load
time weaving for the Aspect] language.

The main contribution of this paper is the identification of two problems caused
by around advice weaving in Aspect] compilers. Solutions to these problems have
been proposed to the developers of these compilers and are currently under discussion
[Cordeiro 2006a, Cordeiro 2006b, Cordeiro 2006c¢].

Though the Aspect] language is currently used in software development in pro-
duction environments, this study shows that small optimizations may still improve the
performance of programs written in this language, which indicates that the compilation
techniques for aspect oriented programs are still in a stage of continuous evolution.

References

Aspect Bench Compiler Team (2006). Official abc project page.
http://www.aspectbench.org. Last visited in December 2006.

Aspect] Team (2006). Official page for the Aspect] project and ajc compiler.
http://www.eclipse.org/aspectj. Last visited in December 2006.

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhotdk, J., Lhotdk, O., de
Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. (2004). Building the abc Aspect]
compiler with Polyglot and Soot. Technical Report abc-2004-2, The abc Group.

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhotdk, J., Lhotdk, O., de
Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. (2005). Optimising Aspect].
PLDI’05.

Cordeiro, E., Stefani, 1., Soares, T., and Tirelo, F. (2004). Rin’g: Um ambiente ndo-
intrusivo para animacao de algoritmos em grafos. In XII WEI, em Anais do SBC 2004
- XX1IV Congresso da Sociedade Brasileira de Computagdo, volume 1.

Cordeiro, E. S. (2006a). Around advice weaving generates repeated methods. Bug re-
port available at https://bugs.eclipse.org/bugs/show_bug.cgi?id=
154253.

Cordeiro, E. S. (2006b). Around weaving produces repeated context variables. Bug re-
port available at https://bugs.eclipse.org/bugs/show_bug.cgi?id=
166064.

Cordeiro, E. S. (2006¢). Around weaving produces repeated context variables. Bug report
available at http://abc.comlab.ox.ac.uk/cgi-bin/bugzilla/show_
bug.cgi?id=77.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2002). Algoritmos: Teoria e Prdtica.

Editora Campus. traducdo da 2* edicdao americana.

Dahm, M., van Zyl, J., and Haase, E. (2003). Official BCEL Project Page.
http://jakarta.apache.org/beel. Last visited in December 2006.

Dufour, B., Goard, C., Hendren, L., et al. (2004). Measuring the Dynamic Behaviour of
Aspect] Programs. OOPSLA’04.

Hannemann, J. and Kiczales, G. (2002). Design pattern implementation in java and as-
pectj. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 161-173, New
York, NY, USA. ACM Press.

Hilsdale, E. and Hugunin, J. (2004). Advice Weaving in Aspect]. AOSD’04.

Kuzins, S. (2004). Efficient Implementation of Around-advice for the AspectBench Com-
piler. Master’s thesis, Oxford University.

Laddad, R. (2003). AspectJ in Action. Manning Publications Co.

Lindholm, T. and Yellin, F (1999). The Java Virtual Machine Specifi-
cation. Addison-Wesley Professional, segunda edition. Disponivel em
http://java.sun.com/docs/books/vmspec/index.html.

Myers, A. (2006). Official polyglot project page. http://www.cs.cornell.edu/
Projects/polyglot. Last visited in December 2006.

Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., and Co, P. (1999). Soot
- a Java Optimization Framework. In Proceedings of CASCON 1999, pages 125-135.

