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Abstract. Denotational semantics is a powerful technique for the formal defi-
nition of programming languages. However, because language constructs are
not always orthogonal, usually many semantic equations in a definition must
be aware of unrelated constructs semantics. Current modularity approaches for
this formalism do not address this problem, providing for this reason tangled
semantic definitions. This paper proposes an incremental approach for denota-
tional semantics, in which each step can either add new features or adapt exist-
ing equations, by means of a formal language based on function transformation
and aspect weaving.

1. Introduction
Formal semantics of large scale programming languages is inherently complex due to the
large number of crosscutting details that must be coped with. It is then desirable that
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such specifications be modular and extensible, and be written in an incremental way, so
that constructs may be successively added to the definition of a core language. Moreover,
this incremental process must not impose the redefinition of previously written modules,
and additionally must require that the language designer use only simple features and
techniques.

However, large scale programming languages usually are composed by constructs
which are not always orthogonal, and therefore providing separate definitions for them
is not trivial. An example of this problem is found in the definition of method calls and
exception handling in Java: not only must the definition of the return statement specify
its expected behavior, but also it has to be aware of possible finally blocks which must
be executed before restoring the execution control to the caller function, either by normal
return or via exception handling mechanism. Furthermore, because the semantics of a
program is produced by the semantic equations in a top-down way, each construct may
be responsible for preparing context for each possible constituent.

As a consequence, not only are the semantic equations responsible for specifying
the meaning of the constructs, but also they must define how such constructs interact with
each other. Moreover, for defining an interaction between two constructs, at least one of
them must be aware of the existence of the other. For instance, the problem of return
statements inside try blocks may be solved by redefining the continuation associated with
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the sequencer so that the finally block is executed before returning. Since traditional
approaches of denotational semantics specifications (see Section 2) there is a one-to-one
mapping of language constructs to semantic equations, such interactions definitely induce
tangled elements in at least one semantic equation1.

This property directly impacts the modularity of the language’s denotational se-
mantics definition, because the description of one construct must contain elements of
unrelated ones, which violates the principle of module high cohesion. In addition, the
incremental definition of a language usually requires that previously defined modules be
rewritten whenever a new construct is defined, so that the whole writing and rewriting
process becomes tedious and error-prone. From the reader point of view, crucial infor-
mation about the language may be obscured by several details in the semantic equations,
which makes it hard to fully understand some constructs.

The main contribution of this paper is an aspect-oriented-based technique for im-
proving the process of incrementally defining programming language denotational se-
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mantics. In this approach, constructs are defined in a two phases: first, the construct is
separately defined, and the semantic equations may not be aware of other constructs; then,
the influence of other constructs on it is specified. Understanding such specifications is
also a two-phases process. First the reader can understand the key concepts on the lan-
guage constructs; in this first reading the relation among those constructs is abstract. After
having acquired expertise on the individual constructs, the reader can focus on how such
constructs interact, having then the whole picture of the definition.

2. Current Approaches
One of the first steps to the modularity of denotational semantics has been made by
Mosses in the Action Semantics [Mosses 1977]. Further attempts to improve the mod-
ularity of denotational semantics have been made since then, with highlight to Monadic
Semantics [Liang et al. 1995, Moggi 1991, Wadler 1990] and Monadic Action Seman-
tics [Wansbrough and Hamer 1997]. Recently problems related to separation of con-
cerns in semantic specifications were addressed in [de Moor et al. 2000, Mosses 2004,
Mosses 2005]. This work improves the results of those contributions by presenting a
modular mechanism for defining and transmitting context information among program-
ming languages constructs.

The existence of a one-to-one mapping between language constructs and seman-
tic equations, which leads to the lack of modularity as discussed in Section 1, is found in
Action Semantics, Monadic Semantics, and Monadic Action Semantics. In fact, both ac-
tion notation and monads provide elegant mechanisms to abstract the structure of context
information for antecedents and destinations. However, structural context information is
usually propagated by means of stores and environments, so that such propagation appears
tangled in the semantic equations.

An aspect-oriented based technique to improve the modularity of attribute gram-
mars, which can also be applied to semantics definitions, has been proposed by
[de Moor et al. 2000]. In that model, attributes may be defined in separate sections and

1It is a direct consequence of the pigeon-hole principle. However, this is not true for systems based on
structural operational semantics, because more than one clause may be used to separately define behavior
of a construct.
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“can be woven together to form a pure attribute grammar”. By letting attributes be
defined with aspect support, it is possible for instance to create a definition for repeti-



10/9/13 Disentangling Denotational Semantics Definitions

file://localhost/Users/bigonha/Dropbox/PESQUISA/OPUS/Sblp/Sblp 2008/Disentangling Denotational Semantics Definitions.html 4/18

tion which is vague with respect to sequencers. However, interactions among language
constructs may need information not available for attribute definition, specially if they
are decoupled from the syntactic structure. For instance, in the following piece of Java
code, the throw in function f to the catch in function g cannot be expressed by neither
inherit, synthesize, nor chain clauses, because there is no syntactic relation between the
constructs.

void f() { throw new E(); }
void g() { try { f(); } catch (E e) { ... } finally { ... } }

In [Mosses 2004], a model inspired on monadic semantics for defining modular
structural operational semantics (MSOS) of programming languages is proposed. As new
constructs are added to a specification, the context may evolve without requiring that
previously written equations be redefined. Context information is transmitted as labels
of transition rules, and modularity and extensibility are derived by letting them abstract
from the structure of labels. The result is a set of abstract transition rules, without explicit
context information to get in the way. In addition, as SOS allows one to separately define
the interaction among constructs, it is also possible in MSOS. However, some interactions
may need to be defined by listing all possible cases, as in the definition of Java provided
in [Cenciarelli et al. 1999]; even without defining repetition and sequencers, there are 33
transition rules to define function call and return, exception handling, and their interac-
tions2.

Reuse degree can also be improved by means of the constructive approach pro-
posed in [Mosses 2005]. In this approach, for a given language, a representative set of
abstract constructs is formally defined, and concrete constructs may be translated into
the defined abstractions, so that their semantics are straightforwardly obtained. In this
approach, sequencers can be defined as exceptions to be handled by an exception han-
dling mechanism associated with the while statement. However, by doing it, elements
for sequencers handling remain interleaved in the definition of the while statement, and
therefore bringing into the initial definition of the concrete statement concerns about the
effects of such exceptions.

3. Incremental Definitions

Programming languages semantics definitions are large and complex systems which are
better defined in an incremental way, so that new constructs and behaviors are defined
upon existing ones. For instance, when teaching a programming language, it is worth-
while to abstract away advanced concepts to explain basic constructs; later the introduc-
tion of such concepts may redefine previously explained elements, while preserving their
basic nature. Such vague explanation is desirable because it usually requires less effort
from the apprentice to learn the language concepts.

Let a semantics specification be the quaduple S = (G, D, τ, ρ), where G is the
language abstract grammar, D is the set of semantic domains, τ is a type environment

2In fact, those rules only define the behavior of a return statement inside a try block, without specifying
its behavior inside a catch block; then by those rules, if a return is executed inside a catch block the
corresponding finally block is not executed.
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which maps semantic functions into their domains, and ρ is the environment which maps
semantic functions into their definitions, i.e, the semantic equations. To achieve abstract-
ness, environment ρ maps each function name into a set of defining clauses, each one
represented by its list of patterns and its expression.

Function applications occurring inside function bodies are indirectly called by
means of environment ρ, which dynamically binds function identifiers to their definitions.
Thus, if specification S is composed by functions f1,f2,···,fn, where each fi is defined
by at least one clause with the form fi pi1 ···pik = ei, then the corresponding clause in the
environment is3 ([ρ, pi1,···,pik],ei[(ρ fj) ρ/fj,∀j]). If function f is defined by means
of cases based on pattern matching, then the environment argument is included in each
case. In addition, the list of patterns is considered as if arguments were not ruled out by
η-reductions, and don’t care patterns (like Haskell’s ) were replaced by fresh identifiers.

For instance, if a specification is composed solely by function E : Exp → Env →
Val, such that E[[Id]] r = r Id, and E[[E1 + E2]] r = E[[E1]] r + E[[E2]] r, then type
environment τ is defined as τ = {E ↦→ (Exp → Env → Val)}, and definition environment
ρ is defined as ρ = {E ↦→ {clause1,clause2}}, where clause1 = ([ρ,[[Id]],r],r Id) and
clause2 = ([ρ,[[E1 + E2]],r],((ρ E) ρ) [[E1]] r + ((ρ E) ρ) [[E2]] r).

An incremental definition of the semantics of a language is defined as a sequence
S0,S1,···,Sn, where each Si is a semantic specification of a language’s subset, and Si+1

includes further behavior to Si. Each new specification may add new elements, but some-
times it may be necessary to adapt previous existing equations. Given a specification Si,
a new specification Si+1 = t(Si)+∆Si may be obtained from Si by applying to it a
transformation function t and including the elements defined in ∆Si.

A transformation is a function t mapping semantic specifications into semantic
specifications. This function is meant to adapt the behavior of semantic equations. The
effect of such function is to define new environments τ ,ρ mapping each function to its
new definition, so that t (G, D, τ, ρ)=(G, D, τ ,ρ ). An inclusion into a specification S,
denoted by ∆S, represents new elements to be added in the specification, usually elements
concerning new language constructs.

The working example used throughout this paper consists of a specification Si

of a language L composed by expressions, declarations, and commands, whose abstract
syntax, and semantic functions and equations for the relevant constructs to the discussion
are presented in Figure 1. In these equations4, the definition of the while statement is
vague with respect to the existence of sequencers. If specification Si+1 defines sequencer
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break, it is necessary to addapt the while equation to prepare the context in which the
sequencer is executed. The corresponding inclusions consist of defining a new grammar
rule for the break sequencer and a new semantic equation to define it.

This paper concentrates on function transformations, which is its main contribu-
tion. Other kinds of inclusions can be easily achieved by using ordinary modularity fea-
tures of programming languages and, therefore, are not further presented. Although the
running example is based on traditional continuation semantics, the proposed technique is
suitable for using with other modularity improving techniques, such as monads, as shown

3In expression ρ f, consider f be the function identifier and not the actual function itself.
4

FIX represents the fix point operator.
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Abstract syntax:

P ∈ Prog → D;C
C ∈ Com → while E C | C1;C2 | ···
E ∈ Exp →···
D ∈ Dec →···

Semantic Functions:

P : Prog → Ans
C : Com → Env → Cc → Cc
E : Exp → Env → (Val → Cc) → Cc
D : Dec → Env → (Env → Cc) → Cc

Semantic Equations:

P[[D;C]] = D[[D]] r0 (λr.C[[C]] r (λs.stop)) s0

C[[C1;C2]] r c = C[[C1]] r; C[[C2]] r c
C[[while E C]] r = FIX λfc.E[[E]] r; λv.if v then C[[C]] r (f c) else c
Other equations defining C, E, and D

Figure 1. Working Example of the Paper – Only Relevant Constructs for the Dis-
cussion Are Presented.

in the case study of Section 8.

A definition increment may affect existing semantic functions and equations by re-
quiring: (i) function signatures be redefined to include new arguments, to change the type
of some function argument, or to change return types; (ii) function arguments or its return
values be decorated5 in order to handle unpredicted situations or to conform the equations
to signature changes; (iii) some equations be completely redefined, when no automatic
transformation is implied. A function is promoted with respect to a transformation t if it
is subject to any modification defined in t. Function transformations may be defined by
means of the following construction, whose constituents are defined in Sections 4-7:
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transformation transformation-name
signature f1 : T1 to T1,f2 : T2 to T2,···,fm : Tm to Tm

default l1 = c1,l2 = c2,···,ln = cn

application l1 ⇒ e1,l2 ⇒ e2,···,ln ⇒ en

use l1 ⇒ e1,l2 ⇒ e2,···,ln ⇒ en

replace f1 p11 ··· p1k1 by e1,···,fn pn1 ··· pnkn by en

redefine f1 p11 ··· p1k1 = e1,···,fn pn1 ··· pnkn = en

Given a specification S and a transformation function t, S = t(S) is defined in
two steps: the first step collects the transformations to be performed on each individ-
ual function and produces a sequence 〈t1,t2,···,tm〉, where each ti can be an argument
inclusion, a type redefinition, a decoration, or an equation redefinition; the second step
creates the new environments by applying the transformations on each function. In such
sequence, argument inclusions and type redefinitions are performed before decorations,
which are performed before equation redefinitions.

4. Argument Inclusion
In the signature changing clauses of Section 3, each function fi having type Ti must be
transformed into a function of type Ti . Labels may be assigned to constituents of each

5Decoration has the meaning established in the GoF Design Patterns [Gamma et al. 1995]. In fact,
it can be understood as the implementation of this pattern using around advices from Aspect-Oriented
Programming [Kiczales et al. 1997].
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Ti,Ti in order to denote inclusion of new arguments, or transformation of arguments into
new ones. A labelled type has the form (l : t), where l is a label, and t is a type expression.

A signature changing clause is valid when the following rules apply: (single oc-
currence) each label occurs at most once in each Ti, and at most once in each Ti ; (left
consistency) if (l : t1) is a component of Ti, and (l : t2) is a component of Tj, then
t1 = t2; (right consistency) if (l : t1) is a component of Ti , and (l : t2) is a component of
Tj, then t1 = t2; (left-right correspondence) if (l : t) is a component of Ti, then (l : t ) is
a component of Ti for some type t .

All new arguments included by the signature clauses are passed through recursive
applications of the functions. In the absence of such value, a default value to be inserted in
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the original applications is defined by means of the default clause. In the default clauses,each li is a label for a type ti in the right-hand side of a signature changing clause, and ci

is an expression of type ti. For example, one possible solution to the problem of including
the break sequencer is to include a new argument into semantic function C representing
the continuation for a break statement, as defined by transformation include break a.

transformation include break a
signature C : Com → Env → Cc → Cc

to Com → Env → (b : Cc) → Cc → Cc
default b = λs.error

To every application of function C a new third argument λs.error will be automat-
ically inserted except when it is a recursive call, in which case the corresponding formal
parameter is simply propagated. The application of transformation include break a pro-
duces the following modified versions of the semantic equations of Figure 16:

C : Com → Env → Cc → Cc → Cc
P[[D;C]] = D[[D]] r0 (λr.C[[C]] r (λs.error) (λs.stop)) s0

C[[C1;C2]] rbc = C[[C1]] r b; C[[C2]] rbc
C[[while E C]] rbc = (FIX λfc .E[[E]] r; λv.if v then C[[C]] r b (f c ) else c ) c

Sequencer break might then be defined by: C [[break]] rbc = b.

4.1. Formal Aspects of Argument Inclusion

Transformations for argument inclusions are collected, and the following structures are
defined: α = (label,type,fmarks,def-value) is composed by the label of the new argu-
ment, its type, the list of all functions affected by the inclusion, and the default value
of the argument; fmarks = function-name → (arg,type∗,type) maps function names
into a tuple composed by a list of types, corresponding to the arguments after which the
new argument is included, and the result type of the function. When multiple argument
inclusions are performed on a function, they are sequentially handled so that each in-
clusion consider the effect of the previous ones. For instance, the inclusion defined by
transformation include break a is represented by αb = (b,Cc,fmarks, λs.error), where
fmarks = {C ↦→ (arg,[Com,Env],Cc → Cc)}.

6Equations not affected by this transformation are not reproduced here. It is important to highlight
that this version is still incomplete for the inclusion of the break sequencer and requires the application of
decorators.
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Given an inclusion α = (x, t,fmarks,x0) and specification environments τ and ρ,
new environments τ and ρ are defined as7:

τ = τ[t1 →···→ tk → t → t /fi,∀(fi ↦→ (arg,[t1,···,tk],t )) ∈ fmarks]
ρ = {(fi ↦→ MAP (include α) clauses) | clauses = ρ fi,fi bound in fmarks}

J {(fi ↦→ MAP (include α) clauses) | clauses = ρ fi,fi unbound in fmarks}

Function include performs the inclusion of the argument in the functions being promoted
and is defined as include (x, ,fmarks, ) (ρ : pats,exp)=(ρ : pats ,exp[ρ /ρ]), where
pats corresponds to the inclusion of identifier pattern x in the expected position, and ρ
is the environment in which argument x is propagated to any function bound in fmarks.
Function include adjusts the bodies of functions not being promoted and is defined as
include ( , ,fmarks,x0) (ρ : pats,exp) = (ρ : pats,exp[ρ /ρ]), where ρ is the envi-
ronment in which the default value x0 is used in applications of any function bound in
fmarks.

5. Argument and Result Type Redefinition
Changes on the types of arguments or function result are denoted by labelling the corre-
sponding changes in a signature changing clause.

If type t is labelled with l in the left-hand side of a signature changing clause,
and the same label is used for type t in the right-hand side of the same clause, then it is
necessary to define a function of type t → t to transform arguments in the applications
of function f, and a function of type t → t to transform the value of the corresponding
argument of f wherever it is used. These transformation functions are defined by means of
application and use clauses, respectively. In the application and use clauses of Section 3,
each li is a label for the transformation from type ti to ti, ei is an expression of type ti,
and ei is an expression of type ti; the corresponding transformation functions are λli.ei

and λli.ei.

For example, another possible solution to the problem of including the break se-
quencer is to change the environment argument of semantic function C to be a pair: the
first element represents the current environment, and the second element represents the
continuation for break sequencers.

transformation include break b
signature C : Com → (r : Env) → Cc → Cc

to Com → (r : (Env,Cc)) → Cc → Cc
application r ⇒ (r, λs.error)
use r ⇒ (λ(r , ).r ) r

The application of transformation include break b produces the following modified ver-
sions of the semantic equations of Figure 18:

C : Com → (Env,Cc) → Cc → Cc
P[[D;C]] = D[[D]] r0 (λr.C[[C]] (r, λs.error)) s0

C[[while E C]] r = FIX λfc.E[[E]] ((λ(r , ).r )r); λv.if v then C[[C]] r (f c) else c.

Sequencer break might then be defined by: C [[break]] r (c, b) = b.

7Function MAP f l applies function f to each element in list l, producing the list of results.
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8It is important to highlight that this version is still incomplete for the inclusion of the break sequencer
and requires the application of decorators.
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5.1. Formal Aspects of Type Redefinition

Transformations to change types are collected, and the following structures are defined:
β = (label,type1,type2,fmarks,app,use) is composed by the argument label, its orig-
inal and new types, the list of all functions affected by the inclusion, and the appli-
cation and use functions; fmarks may have the same structure as defined for argu-
ment inclusion, but can also represent a mapping from function names to (return,type∗),
which represents the types of the function arguments. As it was the case with mul-
tiple inclusions, when multiple signature changes are performed on a function, they
are sequentially handled so that each change consider the effect of the previous ones.
For instance, the inclusion defined by transformation include break b is represented
by βr = (r,Env,(Env,Cc),fmarks, λr.(r, λs.error), λr.(λ(r , ).r) r), where fmarks =
{C ↦→ (arg,[Com],Cc → Cc)}.

Given a change β = (x, t, t ,fmarks, g, h) and specification environments τ and ρ,
new environments τ and ρ are defined as:

τ = τ[t1 →···→ tk → t → t /fi,∀(fi ↦→ (arg,[t1,···,tk],t )) ∈ fmarks]
[t1 →···→ tk → t /fi,∀(fi ↦→ (return,[t1,···,tk])) ∈ fmarks]

ρ = {(fi ↦→ MAP (change β) clauses) | clauses = ρ fi},

Function change applies transformation β to each defining clause of a function, chang-
ing the environment of function applications to selectively interleave application or use
functions in the definition, and is defined as:

change β (ρ : pats,exp)=(ρ : pats,exp[ρ /ρ]),

where ρ maps each function fj to a case depending on its relation with change β.

ρ = {(fj ↦→ MAP (apply β) clauses) | clauses = ρ fj,(arg,t∗,t ) = fmarks fj}
J {(fj ↦→ MAP (apply β) clauses) | clauses = ρ fj,(return,t∗) = fmarks fj}
J {(fj ↦→ MAP (use β τ ) clauses) | clauses = ρ fj, fj unbound in fmarks}.

Function apply checks for argument conversions in promoted functions applying function
g of β when necessary, and is defined as:

apply (x, t, t ,fmarks, g, h) (pats,exp)=(pats, λρ p1 ···pmx.exp ρ p1 ··· pm x ),
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where (p1,···,pm) is a list of fresh identifiers corresponding to the list (t1,···,tm) bound
to f in fmarks, and x = if typeof x = t then g x else x. Function apply checks for
return conversions in promoted functions applying function g of β when necessary, and is
defined as:

apply (x, t, t ,fmarks, g, h) (pats,exp)=(pats,g exp),

where g = λx.if typeof x = t then g x else x. Function use is used in non-promoted
functions, and checks the type of all their arguments of type t, applying function h when
necessary. It is defined as:

use (x, t, t ,fmarks, g, h) τ ((ρ, p1,···,pn),exp) =
((ρ, p1,···,pn),exp[p1/p1,···,pn/pn]),

where each pi = if ti = t then h pi else pi, (t1,···,tn) is the list of argument types
bound to f in fmarks, and h = λx.if typeof x = t then h x else x.
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6. Function Decoration
Some language additions may be simply implemented by changing the arguments passed
to semantic functions. For instance, the definition of sequencer break may be included in
the specification by adapting the environment in which the body of the while statement is
executed. Decoration clauses define changes for arguments and result of a given semantic
equation. In the decoration clauses of Section 3, each fi is a function of type ti1 → ti2 →
···→ tiki → ti, pij is a pattern for the j-th argument of fi, and ei is an expression of type
ti. The effect of this transformation is to replace all applications of function fi matching
the corresponding patterns by expression ei.

For example, transformation include break a of Section 4 may be completed by
the following decoration clause:

replace C [[while E C]] rbc by C [[while E C]] rcc

This decoration clause only affects the equation defining the while statement shown in
Section 4, and its modified version is:

C[[while E C]] rbc = (FIX λfc .E[[E]] r; λv.if v then C[[C]] r c (f c ) else c ) c.

6.1. Formal Aspects of Function Decoration

Transformations for function decoration and equation redefinitions are collected, and the
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following structure is defined: γ = (function-name,patterns,expression), which com-
prises the name of the function being decorated or redefined, the applicable patterns for
the function, and the corresponding new expression. As it was the case with multiple
inclusions, when multiple decorations and redefinitions are performed on a function, they
are sequentially handled so that each change consider the effect of the previous ones.
For instance, the decoration clause of transformation include break a is represented by
γC = (C,[[[while E C]], r, b, c],C [[while E C]] rcc).

Given a decoration clause γ = (fi,pats,exp) and a specification environment
ρ, a new environment ρ is defined as ρ = ρ[(MAP (decorate γ) clauses)/fi], where
clauses = ρ fi. Function decorate takes as argument the decoration clause γ and the
function clauses, and defines a decorated version of the function, considering all function
applications in exp be related to the old version of the function. This function is defined
as: decorate (f,(p1,···,pm),exp) ((p1,···,pn),exp ) = clause , where if (p1,···,pm) is
a generalization9 of (p1,···,pm), then

clause = ([p1,···,pm,pm+1,···,pn],exp pm+1 ···pn),
exp = exp[exp /f][p1/p1,···,pm/pm],

or clause = ((p1,···,pn),exp ), otherwise.

The effect of function decorate is to replace each occurrence of f in the envi-
ronment by its new version, in which whenever the arguments of the application match
p1,···,pm, the decorated expression replaces the original function application. If the pat-
terns do not match, the original definition of f is used in the application. It is important to
highlight that all free occurrences of f in exp are replaced by an application of exp , and
for this reason any application of function f refers to the original definition of f.

9Pattern p is a generalization of pattern p if all expressions matching p also matches p.

Page 10

7. Equation Redefinition

In some situations, it may be more appropriate to rewrite the definition of some constructs
by means of a redefinition clause than to adapt the existing equations. In the redefinition
clauses, each fi is a function of type ti1 → ti2 → ··· → tiki → ti, pij is a pattern for the
j-th argument of fi, and ei is an expression of type ti. For instance, the while statement
could be redefined as:

transformation include break d



10/9/13 Disentangling Denotational Semantics Definitions

file://localhost/Users/bigonha/Dropbox/PESQUISA/OPUS/Sblp/Sblp 2008/Disentangling Denotational Semantics Definitions.html 13/18

redefine C [[while E C]] r =
FIX λfc.E[[E]] r; λv.if v then C[[C]] r[c/break] (f c) else c

7.1. Formal Aspects of Equation Redefinition

Transforming redefinition clauses is similar to transforming decoration clauses. Given
a redefinition clause γ = (fi,pats,exp) and a specification environment ρ, a new en-
vironment ρ is defined as ρ = ρ[MAP (redefine γ) clauses/fi], where clauses =
ρ fi. Function redefine takes as argument the redefinition clause γ and the func-
tion clauses, and replaces the matching clauses. This function is defined as10

redefine (f,(p1,···,pm),exp) ((p1,···,pn),exp ) = clause , where if (p1,···,pm) is a
generalization of (p1,···,pm) then

clause = ([p1,···,pm,pm+1,···,pn],exp pm+1 ···pn),
exp = exp[p1/p1,···,pm/pm],

or clause = ((p1,···,pn),exp ), otherwise.

The effect of function redefine is to replace each occurrence of f in the envi-
ronment by its new version, in which whenever the arguments of the application match
p1,···,pm, the new expression replaces the original function application. If the patterns
do not match, the original definition of f is used in the application. It is important to
highlight that all free occurrences of f in exp are looked up to in the current environment,
and for this reason any application of function f refers to the new definition of f.

8. Case Study: Incremental Definition of Procedures and Advices
Aspect-oriented concepts of advices and dynamic join points [Kiczales et al. 1997] are
formally defined in [Wand et al. 2004], by means of a monadic denotational semantics for
a simple functional language ressembling Scheme and composed by global procedures,
advices and pointcut description. The semantic equations presented in their specification
contain interleaved elements which makes it hard to fully understand the key concepts
of the definition. This paper simplifies that formalization by applying the introduced
mechanisms of incremental specification. This case study is a first step to the validation
of the proposed technique. The presented version does not consider within and proceed
clauses, which can be straightfowardly included by means of environment decorations.

Figure 2 summarizes key features of the semantic specification, namely its main
domains and execution monad, which were taken ipsis litteris from the original paper
[Wand et al. 2004]. That paper also contains details on the algebra of pointcuts, auxiliary

10Compare with the definition of replace, which applies the original version of the function.
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Sets:
v ∈ Val Expressed values
l ∈ Loc Locations
s ∈ Sto Stores
id ∈ Id Identifiers
pname,
wname ∈ Pname Procedure names
v ∈ Val Expressed values

Join points, pointcut designators:
jp ∈ JP
jp → 〈〉 | 〈k,pname,wname,v∗,jp〉
k → pcall | pexecution | aexecution

pcd → ···

Execution monad:

T(A) = JP × Sto → (A × Sto)⊥

Semantic Domains:
π ∈ Proc = Val ∗ → T(Val) Procedures
α ∈ Adv = JP → Proc → Proc Advices
φ ∈ PE = Pname → Proc Procedure environments
γ ∈ AE = Adv ∗ Advice environments
ρ ∈ Env = [Id → Loc] Environments

Figure 2. Working Example – Basic Definitions for the Semantics of Aspect-
Oriented Advices and Join Points (Taken from [Wand et al. 2004])

functions, and monad operations, advised to readers looking foward to deeply understand
the formalization. Procedures are the starting point of the definition. Procedure declara-
tions are defined by function P, which creates an procedure environment which associates
the procedure name with the corresponding procedure semantics:

P : Procedure → PE → PE
P[[(procedure pname (x1,···,xn) e)]] φ = [proc/pname]
where proc = λ(v1,···,vn). let l1 ⇐ alloc v1;···;ln ⇐ alloc vn

in E[[e]] [l1/x1,···,ln/xn] φ

Procedure calls are defined by means of function E, which evaluates the arguments and
applies to it the procedure bound in the environment:

E : Exp → Env → PE → T(Val)
E[[(pname e1 ··· en)]] ρ φ = let v1 ⇐ E[[e1]] ρ φ;···;vn ⇐ E[[en]] ρ φ

in φ pname (v1,···,vn)

The first step to include aspect-oriented features consists of defining proce-
dures to depend on advice environments, which is solved by means of transformation
include-advices of Figure 3. This transformation: (a) includes advice environment as ar-
gument of functions E and P by means of a signature change clause; such environment
is propapagated through recursive calls of function P, and in the absence of an advice
environment the default empty environment is used; (b) decorates the procedure environ-
ment to weave execution advices, by means of the first replace clause, which decorates
the result of function P with specific joinpoint marks; and (c) decorates the execution of
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procedure call expressions to weave execution advices, by means of the second replace
clause, which decorates the procedure environment argument of function E with specific
joinpoint marks.

The semantics of advices are given by function A, which executes the advice and
the procedure bodies in the correct order, if the corresponding pointcut is applicable to

Page 12

transformation include-advices
signature E : Exp → Env → PE → T(Val)

to Exp → Env → PE → (γ : AE) → T(Val),
P : Procedure → PE → PE to Procedure → PE → (γ : AE) → PE

default γ = []
replace P[[(procedure pname (x1,···,xn) e)]] φ γ

by [(enter-jp γ (new-pexecution pname) proc)/pname]
where proc = P[[(procedure pname (x1,···,xn) e)]] φ γ,

E[[(pname e1 ··· en)]] ρφγ
by E[[(pname e1 ··· en)]] ρ (φ[proc/pname]) γ

where proc = λv∗.enter-jp γ (new-pcall pname v∗) (φ pname)

Figure 3. Transformation Function for Including Advices in the Specification

the procedure; if the pointcut is not applicable, then only the procedure body is executed.

A : Advice → PE → AE → JP → Proc → Proc
A[[(before pcd e)]] φ γ jp π =

λv∗.PCD[[pcd]] jp (λρ.let v1 ⇐ E[[e]] ρφγ;v2 ⇐ π v∗ in v2) (π v∗)
A[[(after pcd e)]] φ γ jp π =

λv∗.PCD[[pcd]] jp (λρ.let v1 ⇐ π v∗;v2 ⇐ E[[e]] ρφγ in v1) (π v∗)

By applying the proposed transformation techniques, one can provide vague def-
inition of procedures which can be extended to support advices by means of transforma-
tions.

9. Conclusions

This paper presented a new approach to improve the modularity of denotational seman-
tics specifications. This solution, based on the vagueness properties of initial definitions
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and on their transformations, may improve the readability of semantic equations by sepa-
rating the concerns on interfering language constructs. In an incremental definition, it is
possible to include new constructs without rewriting previously written equations, even in
those cases where one construct must prepare the context for others. The objective of the
proposed model is to permit that constructs be presented in a more intuitive way, which
can be closer to their usual natural language descriptions: each construct may be isolated
for better comprehension.

The proposed methodology for incremental definition provides simple mecha-
nisms for the definition of programming languages semantics. The definition of a lan-
guage construct may be vague with regard to other constructs, and then it becomes easier
to understand its semantics, because the relationship among constructs is separately de-
fined and does not get in the way. Although vagueness is an essential feature in informal
definitions, there is no way of controlling it, and incomplete definitions may look like
vague ones. When applied to formal definitions, vagueness helps constructing the bond
to informal definitions, leading to a better readability. Furthermore, this technique can be
used along with other modularity approaches for denotational semantics, such as monads,
benefiting from their positive aspects.

Page 13

A very difficult problem to handle in denotational semantics transformation is to
preserve two essential properties: irrelevance of definition order and abstractness. The
proposed methodology defines a recommended reading order for the equations, because
each specification could be interpreted as a chapter of the language manual. However, fu-
ture tool support should provide a way of generating the complete set of equations for any
intermediate specifications, by weaving transformation code into the existing equations.

Abstractness of denotational semantics is also preserved because all transforma-
tions only require textual substitution to generate the woven specification. Thus, transfor-
mation functions do not break abstractness of existing equations, so that the denotation of
a construct remains dependent only on the denotation of its constituents and the current
context as expected.

Furthermore, extensibility is improved by the separation of concerns provided by
vagueness in specifications. Higher degrees of extensibility are only achieved in software
systems when modules are simple and independent, because it becomes easier to cope
with modifications. Modules defined by means of the proposed approach tend to handle
minimal information, with direct impact on the overall modularity quality.
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Future work comprehends the investigation of techniques for implementing the
proposed constructs and further studies of its properties and consequences. Although the
transformations presented in this paper apply on the denotations of language constructs,
the authors believe that it can be implemented on top of general term-based rewriting
systems, such as Maude [Clavel et al. 2003] and Stratego [Visser 2004]. Full validation
of the proposed model is under development. Because of the inherent complexity of
large scale programming languages, the proposed approach does not completely solve the
scalability problem of denotational semantics, but represents an important step forward in
the direction of simplifying the practical use of this method.
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