
XAJ: An Extensible AspectOriented Language

Leonardo V. S. Reis, Roberto S. Bigonha, Mariza A. S. Bigonha

Departamento de Ciência da Computação

Universidade Federal de Minas Gerais

Belo Horizonte, Brazil

leo@dcc.ufmg.br, bigonha@dcc.ufmg.br, mariza@dcc.ufmg.br

Vladimir O. Di Iorio, Rodolfo C. Ladeira

Departamento de Informática

Universidade Federal de Viçosa

Viçosa, Brazil

vladimir@dpi.ufv.br, rodolfo53821@hotmail.com

Abstract—This work presents the language XAJ (eXtensible
AspectJ), giving a formal syntax definition and implementation
details. The main purpose of the language is to increase the
modularity and portability of extension definitions for the
aspectoriented language AspectJ. XAJ is itself an extension
of AspectJ, introducing the concept of syntax classes, units
that extend classes with syntax definitions. Syntax classes also
define the semantics of extensions and serve as a representation
for nodes of abstract syntax trees. The language can be used
as a tool to create domainspecific extensions to AspectJ,
and domainspecific aspectoriented languages embedded into
AspectJ.

Keywordsaspect oriented programming; domain specific lan
guages; language extensions;

I. INTRODUCTION

Aspectoriented languages give the programmer a power

ful code transformation tool, but for many applications, pro

grammers need only a subset of aspect languages function

ality. Domainspecific aspectoriented languages (DSALs)

are domainspecific languages (DSLs) with aspectoriented

features. They may be a solution for several problems

involving crosscutting concerns, offering enough power to a

specific application together with an intuitive and productive

syntax. Some of the benefits of using DSALs are higher

expressiveness, easiness to use, gain in productivity and

reduction of maintenance costs [15].

The same benefits described above can be achieved by

using domainspecific extensions [4] on existing aspect

oriented languages. So, the research on DSALs is tightly

connected to the development of tools and techniques for

building extensions for aspectoriented languages, specially

for AspectJ [1], [3], [6], [17].

This paper presents XAJ (eXtensible AspectJ), a new

language which allows the extension of the concrete syntax

of the AspectJ programming language and can be used for

the definition of DSALs embedded into AspectJ. Syntax

classes are the main concept of XAJ. They are units that

encapsulate the specification of extensions, adding syntax

definition to classes. The AspectJ grammar can be modified

at virtually any point, and the semantics of the new proposed

elements are defined by manipulation of the abstract syntax

tree (AST) inside special methods of syntax classes.

XAJ represents an attempt to increase the modularity and

portability of extensions defined for AspectJ. We say that

XAJ extensions are modular because the syntactic definition

of an extension, the attributes for representing it as an

AST node and the translation that defines its semantics are

all encapsulated in a single program unit. XAJ is portable

because extensions are completely defined with the language

itself, not depending on additional development tools. The

proposal of the language was first published in [11], showing

some possible examples of usage. This paper presents the

formal syntax definition of XAJ, discusses informally the

semantics of some of its most important features and gives

implementation details. Interesting modifications of the orig

inal definition are also proposed.

This paper is structured as follows. Section II proposes a

new construct for AspectJ, as a motivation for a language

extension. In Section III, a formal definition of the syntax

of XAJ is presented, and the semantics of some of its

most important elements is informally discussed. Section IV

gives implementation details of the first compiler for the

language. Related work is presented and compared with XAJ

in Section V. The conclusions and future work are discussed

in Section VI.

II. MOTIVATION

In the Visitor design pattern [12], an accept method must

be inserted in all classes which may be “visited” by a visitor

object. Using Java, the code for this method may be:

void accept(Visitor v) { v.visit(this); } .

An AspectJ implementation for this design pattern may use

intertype declarations to define the accept method for the

classes to be visited. The hole implementation can be encap

sulated in a single code unit (an aspect), but a programmer

must still repeatedly write an intertype declaration of accept

for every class.

Chiba and Nakagawa [8] propose a new construct for

AspectJ that could avoid or minimize the code repetition

discussed above. If the classes to be visited are exactly the

subclasses of class named Base, the syntax of the proposed

construct could be:

void Base+.accept(Visitor v) { v.visit(this); } .

III Latin American Workshop on Aspect-Oriented Software Development

57

The use of Base+ in the declaration means that the intertype

declaration will be inserted on all subclasses of Base. This

new command saves code repetition and has another impor

tant advantage: if the structure of the hierarchy is altered,

with new classes being included or excluded, the code needs

no modification, provided that Base remains the superclass

of all classes to be visited.

The extension described above is a simple example of a

problem solved with the definition of a new construct for

the AspectJ language. It will be referred in the next sections

as multiintroduction, meaning that it produces multiple

intertype declarations (also called member introductions in

AspectJ).

III. THE XAJ LANGUAGE

The XAJ language is an extension of AspectJ which uses

the concept of syntax classes to modify its own concrete

syntax. Syntax classes encapsulate the specification of As

pectJ extensions, adding syntax and semantics definitions to

classes, and also serve as a representation for AST nodes.

The syntax of language extensions is defined with syntax

grammar declarations, allowing the modification of virtually

any element of the AspectJ grammar. The semantics can be

given by a translation to pure AspectJ code, implemented in

a special method named desugar. The information for AST

representation is automatically generated from the grammar

definition.

Figure 1 shows how XAJ extends the AspectJ gram

mar, using a BNF representation. The nonterminal symbol

class_member_declaration belongs to the original AspectJ

grammar, defining the set of elements that may appear inside

a class, such as attribute or method declarations. The first

production in Figure 1 adds two new elements to this set.

Syntax grammars are defined using the keyword @Grammar

followed by extends (adds new productions to the Aspectj

grammar) or overrides (changes the semantics of produc

tions). The keyword @numberOfPasses defines the number

of parser passes required to translate the new construct. A

class with a syntax grammar is called a syntax class.

We explain some of the elements of a syntax class giving

a definition for the multiintroduction extension discussed in

Section II. The syntax class presented in Figure 2 is defined

using the keyword extends, meaning that the following new

productions are inserted into the original AspectJ grammar:

intertype_member_declaraction → MultiIntro

MultiIntro →

modifiers_opt type

IDENTIFIER "+" "." IDENTIFIER

"(" formal_parameter_list_opt ")" block

All nonterminal grammar symbols, except MultiIntro,

are defined on the original AspectJ grammar. The symbol

intertype_member_declaration is used for the definition of

declarations inside an aspect, such as pointcuts and advices.

class_member_declaration →

syntax_grammar | number_passes.

syntax_grammar →

"@Grammar" "extends"

non_terminal "{" {production} "}"

| "@Grammar" "overrides" non_terminal.

production →

non_terminal "::=" expression ";".

expression →

term [semantic_action]

{"|" term [semantic_action] }.

term →

factor {factor}.

factor →

| STRING_LITERAL

[identifier "="] non_terminal

| [identifier "="] "(" exp ")"

| [identifier "="] "[" exp "]"

| [identifier "="] "{" exp "}".

exp →

term {"|" term }.

non_terminal →

IDENTIFIER.

semantic_action →

"{" {statement} "}".

number_passes →

"@numberOfPasses" "=" INTEGER_LITERAL.

Figure 1. Main elements of the XAJ grammar.

So, the new construct is treated as a new kind of declaration

which may appear inside an aspect.

A syntax class acts also as a representation for AST

nodes. New attributes are automatically declared inside class

MultiIntro, associated with each nonterminal symbol of the

production given in Figure 2. The identifiers used together

with nonterminal symbols define the names of the new

attributes – for example, modifiers and className. The types

of these attributes are automatically selected from a prede

fined set of classes that represent AST nodes for the AspectJ

grammar. Other automatically generated code includes get

and set methods for the access to the new attributes and

also a constructor that creates an AST node representing a

multiintroduction, called when such construct is found by

the parser. If a semantic action is attached to a production,

the action must create an AST node representing the new

construct, overriding the default constructor call automati

cally generated by the XAJ compiler. All the automatic code

generation explained in this paragraph are improvements

proposed by this work to the original definition of XAJ.

Figure 1 shows that a @Grammar block may contain

more than one production. One of them is the main pro

duction, initiating with a new nonterminal symbol with the

III Latin American Workshop on Aspect-Oriented Software Development

58

public class MultiIntro {

@Grammar extends

intertype_member_declaration {

MultiIntro ::=

modifiers = modifiers_opt

returnType = type

className = IDENTIFIER

"+." methodName = IDENTIFIER

"(" params =

formal_parameter_list_opt ")"

introducedCode = block ; }

public AST desugar(NodeFactory nf,

Context ctx) {

ClassDecl cd = ctx.getClass(className);

ClassDecl sub[] = cd.getSubClasses();

List list =

nf.TypedList(ClassMember.class);

for(ClassDecl x : sub)

list.add(

nf.IntertypeMethodDecl(modifiers,

returnType, x, methodName,

params, introducedCode));

return list; }

}

Figure 2. Definition of multiintroductions.

same name of the syntax class (MultiIntro, in Figure 2).

Auxiliary productions may be used to define a more sophis

ticated syntax, allowing also recursiveness. Only the main

nonterminal symbol is visible outside of the syntax class.

Internal classes are automatically generated to represent AST

nodes associated with the auxiliary productions, and these

internal classes are not visible outside the syntax class where

they are defined.

The semantics of extensions is given with the special

method desugar. This method is executed at compilation

time, after the parser builds an AST for the input program.

It must build and return a new AST node containing only

pure AspectJ code to replace the extension node in the orig

inal AST. Figure 2 shows desugar for multiintroductions,

slightly simplified. The code searches for all classes which

are subclasses of className. For every subclass, a new inter

type declaration is inserted into a list of class members.

Finally, this list is returned. This means that a MultiIntro

node is replaced by a list of intertype declarations, written

with pure AspectJ.

In the original XAJ proposal [11], the code to replace an

extension node is produced using generative programming

with a quasiquote notation, a resource that hides most

AST implementation details. In the current version of the

compiler, this feature is not implemented yet, so the code in

Figure 2 uses a factory and explicit references to the XAJ

predefined classes for AST representation.

IV. IMPLEMENTATION

We have used the AspectBench Compiler (abc) [1] to

implement the first version of a compiler for XAJ, which

we call xajc. The main reason for choosing abc was that

it gives a modular and efficient implementation of AspectJ.

The frontend of abc is built using Polyglot [16], a highly

extensible compiler frontend for Java, so syntax extensions

for abc are defined using the same principles used by

Polyglot. In fact, abc is itself a Polyglot extension. The XAJ

language is also a Polyglot extension, adding the productions

presented in Figure 1 to the AspectJ grammar defined by

abc.

The first step of the xajc compiler is the extraction of

the extension information from the syntax classes, followed

by the compilation of these classes, before the rest of the

source code. Then, the parse table is extended with the new

constructs, the remaining code is parsed using the new parse

table and an AST is built, including nodes which represent

userdefined extensions. This AST is translated into pure

AspectJ by the code inserted in desugar methods, before

the final bytecode generation. Figure 3 presents a simplified

scheme of the compilation process adopted by xajc, which

is explained bellow.

Figure 3. Compilation scheme.

The first step of the xajc compiler is performed by

a program which we call scc (Syntax Class Compiler).

This program creates a ppg file [7], based on grammar

III Latin American Workshop on Aspect-Oriented Software Development

59

productions extracted from syntax classes. This file is used

by Polyglot to extend grammars. The PPG compiler (from

Polyglot) is then executed over the ppg file, generating a

new parse table including syntax information of the user

defined extensions. PPG uses LALR parsing, so extensions

may generate conflicts when they are combined with the

XAJ grammar. The programmer is supposed to solve these

conflicts modifying the new productions of the language.

Our plans for future versions of xajc include features for

automatically minimize conflicts.

An extended compiler is built combining the new parse

table generated by the PPG compiler and the code from

desugar methods of syntax classes. The code inserted on

desugar methods may not contain extended syntax or As

pectJ elements, it must be pure Java code.

The source code (excluding syntax classes) is parsed using

the generated extended compiler. An AST is built including

nodes which represent userdefined extensions. The desugar

methods are executed over extension nodes and the resulting

AST represents only pure AspectJ code. The final translation

to bytecode is executed by the abc compiler.

The Polyglot architecture is based on an extensible set of

passes. The first pass executes parsing on the input program

and builds an AST. The input of all subsequent passes is

this AST, that must be processed and possibly modified.

The execution of most passes over the AST is based on

an alternative version of the Visitor pattern [12], calling

specific methods on the extension nodes. Polyglot allows

users to define new passes that may be executed in any

desired order. We have defined a new pass as a subclass

of the abc pass for type analysis. The new pass replaces the

original one, calling desugar methods on extension nodes,

before proceeding to type analysis. This approach allows the

translation of extension nodes to pure AspectJ using also

information about the context where constructs are inserted

in the input program.

V. RELATED WORK

The goal of XAJ is to serve as a tool for defining AspectJ

extensions and DSALs embedded into AspectJ, with modu

larity and portability as important issues. In this section, we

compare XAJ with similar tools, analyzing the resources for

language extensibility, generation of code with crosscutting

features, modularity and portability of extensions.

The idea of XAJ syntax classes is borrowed from XJ

[9], a proposal for extensible Java. From the original XAJ

proposal, important differences between the two approaches

are: in XJ, every new construct must be prefixed with the

“@” character, having only a local effect; the semantics of

the existing Java constructs may not be modified; extensions

in XJ must be translated to pure Java code, with no cross

cutting resources. Syntactically, XAJ syntax classes have

become less similar to XJ syntax classes with the improve

ments on automatic code generation described in Section III.

Josh [8] is an AspectJlike language with an extensible

pointcut language and a few mechanisms for generic descrip

tion. It does not have any resources for syntax extensibility,

but it allows the definition of new pointcut designators and

a generic and reusable description of advices. The current

version of xajc does not offer resources for weavetime

manipulation like Josh, but the original XAJ proposition

allows the definition of new pointcut designators with clear

separation between runtime and weavetime processing.

Future versions of xajc will implement these resources.

A methodology for language extension using Meta

AspectJ is presented in [13]. Similarly to XAJ, it is an

approach that uses AspectJ as the underlying “assembly”

language, translating userdefined constructs to pure AspectJ

code. But it is another example of tool that lacks mechanisms

for generic syntax extensions, which are defined using only

annotations.

XAspects [17] defines a plugin mechanism for devel

oping DSALs embedded into AspectJ. The only point for

syntax extension is the definition of aspects, a very restrictive

approach for language extensibility. XAspects addresses

modularity issues, but it does not consider portability, since

extensions are completely dependent on plugin implementa

tions.

Maya [3] is similar to XAJ in a sense that extensions

are completely defined with the language itself, improving

portability. An advantage of XAJ is that extensions may be

translated into AspectJ, while Maya supports only Java. The

use of AspectJ may allow easier translation for extensions

with crosscutting features.

In [2], DSALs are considered as syntactic abstractions

over transformation libraries, analogous to the way DSLs

are syntactic abstractions over base libraries in the subject

language. Stratego/XT [5] is chosen as the program trans

formation tool which implements the crosscutting features.

This approach does not address portability, since it is com

pletely dependent on a specific tool.

The AspectBench Compiler (abc) [1] is a highly flexible

implementation of an AspectJ compiler, providing resources

for building extensions in several dimensions. XAJ has used

abc for its own implementation, adding a higher level of

abstraction to the definition of extensions. Advantages of

using XAJ, when compared to using directly abc, may be

exemplified by the definition of global pointcuts, proposed in

the abc documentation. A XAJ solution for this problem was

first outlined in [11] and the implementation with the current

version of xajc is completely encapsulated in a syntax class

and it is independent of specific development tools.

A formal definition of the AspectJ syntax, implemented by

a scannerless generalized LR parser, is presented in [6]. This

technique allows the combination of language extensions in

a much powerful way than LALR parsing, since it supports

the full class of contextfree grammars. We have used abc

on the implementation of XAJ, although it uses LALR

III Latin American Workshop on Aspect-Oriented Software Development

60

parsing, because it is a full AspectJ compiler and our plans

involve also weavetime analysis. Better results on extension

combinations could be achieved by integrating a generalized

LR parser with the frontend of abc.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a formal syntax definition of the XAJ

language, explains the semantics of some of its most impor

tant elements and describes a first implementation. AspectJ

extensions defined with XAJ are encapsulated in units called

syntax classes. Syntax classes are an attempt to improve the

modularity of extension definitions, encapsulating syntax,

semantics and the representation of AST nodes. Portability

is also an important goal: as extensions are totally defined

inside the language itself, they do not depend on specific

tools or implementations.

During the implementation of the xajc compiler using abc,

a significant problem was detected, related to the efficiency

of the compilation process. The parse table must be modified

in compile time by xajc, generating a new parser each time

a XAJ program is compiled. Polyglot and other important

parser builders are not well prepared to deal with this

requirement, since generating a parse table is not a frequent

task in most systems. When defining a language extension,

the modifications on the original parser table are punctual, so

techniques that keep most of the table unaltered and generate

only additional information for the extensions would be

more efficient. Works like [14], although presented long

ago, offer interesting solutions for this new requirement.

The use of a parse table with an efficient implementation

of the dynamic behaviour described above is part of our

future plans for XAJ.

The original specification of XAJ allows the definition of

new pointcut designators with clear separation between run

time and weavetime processing. The current version of the

xajc compiler does not implement this feature yet. Other

important XAJ proposed features not implemented yet by

the current version of the compiler are the use of generative

programming with quasiquote notation for building AST

nodes and a comprehensive library to manipulate AST

information. Both features may help writing the code for

desugar methods. All these features will be addressed in

future versions of xajc.

A domainspecific aspectoriented language derived from

AspectJ or embedded into this language may be imple

mented by defining a set of AspectJ extensions. We believe

that XAJ is an ideal tool for this task. For example, AJSyn

chro [10], an applicationspecific DSAL for synchronization,

has been completely implemented using the current version

of xajc. Our plans include also testing the compiler and

its future versions on the implementation of several other

significant DSALs and comparing the XAJ implementation

with the original ones.

ACKNOWLEDGMENT

The authors would like to thank the brazilian research

support agencies Fapemig and CNPq.

REFERENCES

[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble, “abc: an extensible aspectj compiler,” in AOSD
’05: Proceedings of the 4th international conference on
Aspectoriented software development. New York, NY, USA:
ACM, 2005, pp. 87–98.

[2] A. H. Bagge and K. T. Kalleberg, “Dsal = library+notation:
Program transformation for domainspecific aspect langua
ges,” in Proceedings of the DomainSpecific Aspect Lan
guages Workshop, October 2006.

[3] J. Baker and W. C. Hsieh, “Maya: multipledispatch syntax
extension in java,” in PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language design
and implementation. New York, NY, USA: ACM, 2002, pp.
270–281.

[4] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for
Implementing DomainSpecific Languages,” in ICSR ’98:
Proceedings of the 5th International Conference on Software
Reuse. Washington, DC, USA: IEEE Computer Society,
1998, p. 143.

[5] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser,
“Stratego/XT 0.16. Components for transformation systems,”
in ACM SIGPLAN 2006 Workshop on Partial Evaluation
and Program Manipulation (PEPM’06). Charleston, South
Carolina: ACM SIGPLAN, January 2006.

[6] M. Bravenboer, E. Tanter, and E. Visser, “Declarative, formal,
and extensible syntax definition for AspectJ,” in OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN con
ference on Objectoriented programming systems, languages,
and applications. New York, NY, USA: ACM, 2006, pp.
209–228.

[7] M. Brukman and A. C. Myers, “PPG: A parser generator
for extensible grammars,” 2008, http://www.cs.cornell.edu/
Projects/polyglot/ppg.html.

[8] S. Chiba and K. Nakagawa, “Josh: an open aspectjlike
language,” in AOSD ’04: Proceedings of the 3rd international
conference on Aspectoriented software development. New
York, NY, USA: ACM, 2004, pp. 102–111.

[9] T. Clark, P. Sammut, and J. Willans, “Beyond Annotations: A
Proposal for Extensible Java (XJ),” 2008, http://www.ceteva.
com/docs/XJ.pdf.

[10] V. O. Di Iorio, C. C. Goulart, L. V. S. Reis, and M. Oikawa,
“An applicationspecific language for synchronization using
aspectoriented programming concepts,” in Proceedings of
the II Latin American Workshop on AspectOriented Software
Development. Institute of Computing, UNICAMP, 2008, pp.
70–79.

III Latin American Workshop on Aspect-Oriented Software Development

61

[11] V. O. Di Iorio, L. V. S. Reis, R. S. Bigonha, and M. A. S.
Bigonha, “A proposal for extensible AspectJ,” in DSAL ’09:
Proceedings of the 4th workshop on domainspecific aspect
languages. New York, NY, USA: ACM, 2009, pp. 21–24.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable ObjectOriented Software.
Bookman: AddisonWesley Publishing Company, 1995.

[13] S. S. Huang and Y. Smaragdakis, “Easy language extension
with metaaspectj,” in ICSE ’06: Proceedings of the 28th
international conference on Software engineering. New
York, NY, USA: ACM, 2006, pp. 865–868.

[14] A. J. Korenjak, “Efficient LR(1) processor construction,” in
STOC ’69: Proceedings of the first annual ACM symposium
on Theory of computing. New York, NY, USA: ACM, 1969,
pp. 191–200.

[15] M. Mernik, J. Heering, and A. M. Sloane, “When and how
to develop domainspecific languages,” ACM Comput. Surv.,
vol. 37, no. 4, pp. 316–344, 2005.

[16] N. Nystrom, M. R. Clarkson, and A. C. Myers, “Polyglot:
An extensible compiler framework for java,” in In 12th Inter
national Conference on Compiler Construction. Springer
Verlag, 2003, pp. 138–152.

[17] M. Shonle, K. Lieberherr, and A. Shah, “Xaspects: an extensi
ble system for domainspecific aspect languages,” in OOPSLA
’03: Companion of the 18th annual ACM SIGPLAN confer
ence on Objectoriented programming, systems, languages,
and applications. New York, NY, USA: ACM, 2003, pp.
28–37.

III Latin American Workshop on Aspect-Oriented Software Development

62

