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Abstract. Concurrency is a fundamental trend in modern programming. Lan-
guages should provide mechanisms allowing programmers to write correct and
predictable programs that can take advantage of the computational power pro-
vided by current architectures. Chords is a high level synchronization construc-
tion adequate for multithreaded environments. This work studies chords through
the implementation of a chords library in Lua.

1. Introduction
Concurrency is a fundamental trend in modern computer programming. However, mul-
tithreaded programming, the de-facto standard model for concurrent programming, is
known to be hard and error-prone [Lee 2006]. The difficulty to design and write cor-
rect concurrent programs following that model comes from the conjunction of the shared
memory model with the preemptive execution of multiple threads, which may produce
unpredictable executions. When the execution of the processes interferes, programmers
need to resort to synchronization mechanisms in order to prune the spectrum of possible
histories to the desired ones.

There are various approaches to cope with concurrency, some proposing alter-
natives to multithreading either based on non-preemption or avoiding shared memory.
In any case, the idea consists in discarding the multithreading as programming model,
maybe building above it another model, deterministic and reliable. New asynchronous
concurrency abstractions have been proposed for multithreading based languages like
Polyphonic C# [Benton et al. 2004]. One of those mechanisms is called Chords. A chord
is a synchronization construction that allows coordinating events. It is composed of a
header and a body. The header reflects the association of the body with a set of meth-
ods defined in the header: the execution of the body is deferred until all the invocations
declared on the chord header are issued. Methods can be synchronous or asynchronous.
Synchronous methods block until the chord is enabled (all the methods in the header have
been called), asynchronous methods return immediately. A particular method may appear
in several headers; if several chords are enabled, in theory an unspecified chord is selected
for execution.

Advantages of Chords include explicit declarative concurrency support and en-
capsulation of the underlined platform. That makes them a suitable construction for
local concurrency and also distributed computing, while avoiding the problems related
to lock-based programming. Chords are an object oriented version of the join pat-
terns from the join-calculus process calculus [Fournet and Gonthier 2000]. They have
been implemented in Polyphonic C# and its successor Cω [Benton et al. 2004], also
in MC# [Guzev and Serdyuk 2003] and Parallel C# [Guzev 2008] that extend Poly-
phonic C#. There are also Java implementations, based either in the modification
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of the JVM (Join Java [Itzstein and Jasiunas 2003] or source-to-source transformation
(JChords [Vale e Pace 2009]). This work studies the issues related to the project and
implementation of chords through the construction of a chord library in Lua, available at
[MB10 2010].

2. Brief introduction to Lua
Lua [Ierusalimschy et al. 2007] is an interpreted, procedural and dynamically-typed pro-
gramming language. It is based on prototypes and features garbage collection. Tables
are the language’s single data structuring mechanism and implement associative arrays,
indexed by any value of the language except nil. Closures and coroutines are first-class
values in Lua. Lua coroutines are lines of execution with their own stack and instruction
pointer, sharing global data with other coroutines. In contrast to traditional threads (for
instance, Posix threads), coroutines are collaborative: a running coroutine suspends exe-
cution only when it explicitly requests to do so. Lua coroutines are asymmetric. They are
controlled through calls to the coroutine module. A coroutine is defined through an invo-
cation of create with a function as parameter. The created coroutine can be (re)initiated
by invoking resume, and executes until it suspend itself explicitly calling yield. The first
value returned by coroutine.resume is true or false indicating whether the coroutine was
resumed successfully, further results are the values passed optionally to yield.

Listing 1. Example using Lua coroutines

1 function func ( )
2 corou t ine . y i e l d ( "Now I ’m y i e l d i n g " )
3 end
4

5 co = corou t ine . c reate ( func )
6 pr in t ( co rou t ine . resume ( co ) ) −−> t rue Now I ’m y i e l d i n g
7 pr in t ( co rou t ine . s ta tus ( co ) ) −−> suspended
8 corou t ine . resume ( co )
9 pr in t ( co rou t ine . s ta tus ( co ) ) −−> dead

3. Proposal
Before initiating the implementation of our chord library, there are some aspects that must
be defined:

1. Parameters substitution. How to behave on collision? Parameter substitution is
done by name. That leads to the restriction that methods on the same header
cannot have the same parameter names. On collision the behaviour is unspecified.

2. Since on the invocation of a method its parameters must be saved until the guard
succeeds, when will actual parameters be evaluated? What will happen if they are
modified in the meantime? In Lua, closures and coroutines are first class values.
This means that the chord body can receive closures and coroutines as parameters.
Also, Lua provides lexical scope and, as such, closures encapsulate the non-local
variables to the function. Thus, if the parameters of the chord body include a
coroutine or if the value of its non-local variables change, the result returned by
the chord body may be different when executed on the moment a message is issued
or after the chord is finally enabled. As result, for instance, a chord could try to
execute a coroutine that was active at the moment of the call, but now is already
dead. However, it seems that this problem comes naturally from separating the
invocation of a method/function of its execution having concurrency in a stateful
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language with shared memory. A locking solution would not do better, because
it could happen that the execution of a method/function delays while there are
others accessing a common resource, which side-effects could include modifying
a function non-local variable or executing a coroutine it received as argument.
Our implementation executes the chord body when the guard is satisfied, using
the parameters whose references were saved at the time of the invocation.

3. Synchronization methods are not mandatory in a header. In case all methods are
asynchronous, should they be executed on a new coroutine (following the Poly-
phonic C#/Cω solution)? Our implementation assumes that solution to preserve
the asynchronous specification. This solution, however, leads to another problem,
as we shall explain in Section 5.

4. The chord body is executed on the synchronous process that issued the call (if
any), thus it must block. As noted by Benton et alii [Benton et al. 2004], permiting
more that one synchronous process on a chord would allow the construction of
a rendezvous like synchronization. However, as they explain and we show in
the Example 2, (i) it is possible to construct such mechanism combining single-
synchronous-method based chords (ii) the choice of the thread where the body is
executed would influence the result of the execution.

Our proposal allows coordinating synchronous and asynchronous methods. Asyn-
chronous methods return immediately, while the synchronous method block until a guard
is satisfied. After a chord is enabled, the body is executed on the thread of the synchronous
method, which is unique for each chord. At least the synchronous method must execute
on a different coroutine (otherwise, all processes would deadlock). In order to analyze the
requirements of our implementation, we study a set of use cases we present in the sequel.

4. Use cases
The producer-consumers problem with limited buffer (or bounded-buffer problem) de-
scribes two types of processes, producers and consumers, sharing a common, fixed-size
buffer with N positions. Producers generate data and put it into the buffer and consumers
get it from the buffer, removing it. Producers cannot put data on a full buffer and con-
sumers cannot read data from an empty buffer. In our example, in case a producer finds
the buffer full, just like when a consumer finds it empty, it will block. The code in listing 2
shows a solution for the producers-consumers problem based on chords. This implemen-

Listing 2. Producers/consumers

1 l chords = require " l chords "
2 l chords . j o i n ( " sync get ( ) " , " f u l l ( va l ) " ) ( function ( va l ) l chords . empty ( ) ; return va l ; end )
3 l chords . j o i n ( " sync put ( va l ) " , " empty ( ) " ) ( function ( va l ) l chords . f u l l ( va l ) end )
4 l chords . empty ( )

tation consists on two chords that express the synchronization requirements stating that
producers produce only when there is an empty slot (line 3) and consumers consume only
when there is a full slot (line 2). Producers and consumers should block when the guards
are not satisfied, thus put() and get() methods are declared synchronous. The system is
initialized by sending an empty() message. Note that, while this implementation works
for a single-slot buffer, a N-slot buffer can be simply implemented by invoking N times
the method empty(). It is equivalent to creating N slots. Every method call will match
only a chord, thus the behaviour will still be correct (the addition of empty() and full()

messages equals the size of the buffer).
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As noted in [de Moura 2004], the producers-consumers problem is a pattern for
many different problems. Thus, problems following the producers-consumers pattern can
also be implemented using this mechanism.

The readers-writers problem describes a system where many processes may ac-
cess the shared memory concurrently, either for reading and writing the same location.
Only a process can access the location when it is a writer. Several readers are allowed
to access at the same time. The code in listing 3 implements a readers-writers lock with
readers preference. When a writer wishes to write it asks for an ExclusiveLockAdq().

Listing 3. A readers-writers lock

1 l chords = require " l chords "
2 l chords . j o i n ( " sync ExclusiveLockAdq ( ) " , " i d l e ( ) " ) ( )
3 local function ExclusiveLockRel ( ) l chords . i d l e ( ) end
4 l chords . j o i n ( " sync SharedLockAdq ( ) " , " i d l e ( ) " ) ( function ( ) l chords . s ( 1 ) end )
5 l chords . j o i n ( " sync SharedLockAdq ( ) " , " s ( n ) " ) ( function ( n ) l chords . s ( n+1) end )
6 l chords . j o i n ( " SharedLockRel ( ) " , " s ( n ) " ) (
7 function ( n ) i f n==1 then l chords . i d l e ( ) else l chords . s ( n−1) end end )
8 l chords . i d l e ( )

The lock is only granted when there is no other process accessing the buffer. This is
controlled with the message idle(): when there are no accesses to the buffer, it is idle.
The chord that controls writers access to the buffer is shown in line 2. When the writer
finishes accessing the buffer, it calls the ExclusiveLockRelease() method to send a new
idle() message, allowing access to the buffer. The readers ask for a SharedLock() to ac-
cess the buffer which, as described in the chord in line 4, is only granted when the buffer is
idle(). As shown, the private acquisition of the lock by readers and writers is controlled
by means of consuming an idle() message. Since the access can be shared by several
readers, the idle message is only sent when there are no more readers. This is expressed
by the chord in line 7, where the message s(n) describe the state of the readers (number of
readers processing) anytime. While the readers are still accessing the system, the counter
in s(n) is incremented (line 5).

5. Implementation
Our library provides a solely function: a join. Chords can be specified by declaring a
header and a body using the syntax join (method list) (body), where method list is a list of
method names separated by commas. The modifier sync can be used to indicate that the
method will execute synchronously.

All the information necessary to control the chords are saved in tables allChords

and allMsgs. Table allChords contains the list of chords and for every chord, the function
body, the name of the synchronous method and a table whose keys are the messages
specified in the chord header. Table allMsgs is indexed with the name of the messages
and contains the number of active invocations, the list of arguments for every invocation
and the parameter names. Basically, the library works by checking if any chord where the
message was defined is enabled. If there is one, the body is executed with the parameters
of some invocation. The code is basically divided in three parts or functions:

• the join function receives a list of methods and returns a function to allow the
syntax join(method list)(function). The parameter of the returned function is
the chord body. The declared methods are created in the chord namespace as
functions that receive a variable number of parameters (in Lua is written as (...))
and execute the matching operation we explained before.
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local j o i n = function ( . . . )
local found , args
local i dx = #a l lChords + 1
a l lChords [ i dx ] = { }
a l lChords [ i dx ] [ "msg" ] = { }
for i = 1 , select ( " # " , . . . ) do −− prepar ing the stage

local msg = select ( i , . . . )
msg , found = s t r i n g . gsub (msg, patternSync , "%1" )
msg , args = s t r i n g . match (msg, patternMsg )
a l lChords [ i dx ] [ "msg" ] [ msg]= true −−The msg i s i n t h i s chord
i f found ~=0 then a l lChords [ i dx ] . sync = msg end
al lMsgs [msg ] = { [ " c a l l e d " ] = 0 , [ " args " ] = { } }
a l lMsgs [msg ] [ "names" ] = { args : gsub ( pat ternArgs , "%1" ) } −−Name of the parameters
l chords [msg ] = function ( . . . )

return faux (msg, . . . )
end

end
return function ( func )

a l lChords [ i dx ] . func = func
end
end

• The matching function looks for enabled chords. While the method is synchronous
in some chord and no chord was enabled, it must block (yields). If the enabled
chord contains only asynchronous methods, a new coroutine is initiated.

local function faux (msg, . . . )
a l lMsgs [msg ] . c a l l e d = al lMsgs [msg ] . c a l l e d + 1
tab le . i n s e r t ( a l lMsgs [msg ] . args , { . . . } ) −−saving args
local t o r e t u r n = true
for i , chord in ipa i rs ( a l lChords ) do

i f chord [ " sync " ]==msg then
t o r e t u r n = fa lse
i f chkMatch ( chord ) == true then return execBody ( chord ) end

e l s e i f chord [ " sync " ]== n i l and chord .msg [msg]== true then −−we a l l async , check f o r match
i f chkMatch ( chord ) == true then −− a l l async and chord matched

local f = co rou t ine . wrap ( execBody ) −− we have a match
f ( chord )
return

end
end
end
i f t o r e t u r n == true then return else corou t ine . y i e l d ( ) ; return faux (msg, . . . ) end

end

• The function that makes the appropriate arrangements for the parameters and exe-
cutes the body. The original Lua does not provide information about the function
arguments before the function is executed. To solve this problem we can use a C
function that retrieves that information, or then to receive the function as a string
and extract the argument names using pattern matching. Here we are using a Lua
version (LuaNua [Milanés et al. 2010]) that provides internal information about
the structure of the values.

local function execBody ( chord )
local args = { } −− parameters l i s t
i f chord . func then

local params = debug . content ( debug . content ( chord . func ) . p ) . l ocva rs or { }
for i = 1 , #params do

i f params [ i ] . s t a r t p c ==0 then params [ i ]= params [ i ] . varname else params [ i ]= n i l end
end
for msg in pairs ( chord .msg) do

al lMsgs [msg ] . c a l l e d = al lMsgs [msg ] . c a l l e d − 1
idx = next ( a l lMsgs [msg ] . args ) −−choose args from l i s t
for i , v in ipa i rs ( a l lMsgs [msg ] . args [ i dx ] or { } ) do −−

args [ lookup ( al lMsgs [msg ] . names [ i ] , params ) ] = v
end
al lMsgs [msg ] . args [ i dx ] = n i l

end
return chord . func ( unpack ( args ) )

end
end

This implementation poses some restrictions:

• At most one method per chord can be declared synchronous (see Section 3).
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• The body of a chord with only asynchronous methods on the header, does not have
a return statement or it is empty.

• Method on the same header cannot have the same name.
• All the formal arguments in a chord header have distinct names (if the names also

appear as body function parameters), otherwise the behaviour is undetermined.
• In all chords, the same method is invoked using the same parameters and order

(this restriction belongs to the current implementation and is simple to eliminate).

A problem that this version of the implementation is not able to resolve is how to
execute a body of a chord when the header contains only asynchronous methods. In this
case, on the invocation of the last needed method to enable the chord, the library must
execute the function in another coroutine to avoid delaying the asynchronous method.
However, Lua coroutines are asymmetric, that means that the method will not be able to
return until the coroutine yields or returns. The method should return immediately and
leave the execution of the body for an external scheduler or coroutine available, it should
be aware of. We are analyzing the modifications to the syntax to allow for that behaviour,
currently the function is executed on a new coroutine initiated by that method.

6. Analysis
The reader can notice that our implementation enjoys the simplicity of the cooperative
multithreading model, turning unnecessary to use locking mechanisms “under the hoods”.
As Benton et alii [Benton et al. 2004] comment, implementing chords require atomicity
to decide if a chord was enabled, to pop pending calls and when scheduling the chord body
for execution. In Lua, atomicity is guaranteed since it is the programmer who explicitly
give the control up by placing calls to yield on its program.

Since our library is based on coroutines, we further analyze the advantages and
disadvantages of offering chords in Lua as a concurrency mechanism compared to simple
coroutine mechanisms. The criteria of the analysis include performance, abstraction level,
error-proneness, readability and expression power.

Performance: The performance of aplications implemented using coroutines di-
rectly will be better than using chords, since we are building chords over coroutines.
However, we consider that using chords does not represent a serious performance over-
head. The reason is that in our implementation (i) the structure that keeps the information
regarding every chord is filled initially when the join is called (that is, just once per chord)
(ii) the matching operations consist in indexing the table AllMsgs with the message name
to increment its call counter and to retrieve the list of chords containing the message last
invoked. Then, we check if the invocation has enabled a chord, by traversing the table
corresponding to the chord to check the messages counters. Since those lists are unlikely
to have more than a few records, those operations should be inexpensive. As noted else-
where, the most expensive operation related with this mechanism comes at the time of
executing the body of a chord composed of asynchronous methods, because a new corou-
tine will have to be created and resumed.

Abstraction: Abstraction is one of the benefits of chords: after the chord is de-
clared and the synchronization rules are stated, the synchronization of the methods spec-
ified in the header is controlled by the chord. The fact that it is build over coroutines or
other model is hidden from the user.
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Error-proneness: Writing a chord is somewhat different to the usual locking, but
after the chord is defined the programmer can forget about it. Coroutine calls must be
inserted all across the code, thus the tendency to oblivion is expected to be higher.

Readability: Chords allow to explicitly define and understand the synchroniza-
tion rules of a system. In coroutine based programming, the synchronization is encoded
implicitly inside the program, requiring to analyze the code correspondent to every corou-
tine to understand how the system works.

Expression power: The listing 4 shows the code for the producers-consumers
problem based on coroutines. This implementation has two main advantages: the pro-

Listing 4. Implementation of producers/consumers with coroutines [de Moura 2004]

1 function produtor ( )
2 return corou t ine . wrap ( function ( )
3 while true do
4 i tem = produz ( )
5 corou t ine . y i e l d ( i tem )
6 end
7 end )
8 end
9

10 function consumidor ( prod )
11 while true do
12 local i tem = prod ( )
13 consome ( i tem )
14 end
15 end

ducer does not need to know the consumer, and the consumer uses the producer as a
function, thus it is transparent if the producer is a coroutine or not. On the other hand,
the implementation based on chords requires that both the producer and the consumer are
executed inside coroutines, although they are not aware of the other’s condition, or even,
of its existence. The advantage of chords over the coroutine implementation is on the
clarity the rules are declared. Also, this example is consumer driven, while the example
shown for chords the processes run independently (“buffer-driven”): as soon as the buffer
is full the consumer can consume, as soon as it is empty, the producer can produce. Also,
to modify the example to implement a bounded buffer is simpler in the chord example in
2. The chord implementation is very compact, while the coroutine based is also short.

7. Final remarks
Concurrency is an urgent issue in modern programming. Languages should provide mech-
anisms allowing programmers to write correct and predictable programs that can take ad-
vantage of the computational power provided by current architectures. This work studies
chords, a high level synchronization construction adequate for multithreaded environ-
ments. Through the implementation of a chord library in Lua, we have analyzed the
advantages and issues related with this mechanism. We have concluded that the main
advantage of chords is in its capacity for declarative specification of synchronization. In
this subject, readability, abstraction and error-proneness are better than using coroutines
directly. The expressiveness of this construction is satisfactory, while performance should
not be mostly affected. The implementation was simplified thanks to Lua features such
as first-order functions and dynamic typing.

Future works in this direction include a thoughtful performance analysis and the
codification with chords of a real application currently implemented using a state ma-
chine. The library can also be extended in order to allow for a syntax where join state-
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ments could be used just like methods in a header definition. Also, quantifiers allowing,
for instance, to specify that a particular number of times a message should be received in
order to free the guard. Timeouts is another issue that could be considered, and policies
to indicate how to conduct matching. We also intend to explore the advantages of that
and other mechanisms can bring for the construction of truly concurrent systems, that is,
based on preemptive multithreading.
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