
Removing Overflow Tests via Run-Time Partial Evaluation
Rodrigo Sol1, Fernando Magno Quintão Pereira1 and Mariza A. S. Bigonha1

1Departamento de Ciência da Computação – UFMG
Av. Antônio Carlos, 6627 – 31.270-010 – Belo Horizonte – MG – Brazil

{rsol,fpereira,mariza}@dcc.ufmg.br

Abstract. Trace compilation is a new technique used by just-in-time (JIT)
compilers such as TraceMonkey, the JavaScript engine in the Mozilla Firefox
browser. Contrary to traditional JIT machines, a trace compiler use only part
of source program, normally a linear path inside a heavily executed loop. Be-
cause the trace is compiled during the interpretation of the source program the
JIT compiler has access to the values manipulated at run-time, a fact that opens
the doors to very aggressive optimizations. This fact gives the compiler writer
the possibility of improving code via partial evaluation techniques at run-time.
In this paper we rely on this observation to present an analysis that removes
unnecessary overflow tests from JavaScript programs. Our optimization uses a
variation of range analysis to estimate the lower and upper limits of the values
assumed by variables during the execution of the program. Such information al-
lows us to prove that some operations cannot produce overflows. Our analysis
runs in linear time, in terms of both time and space, and is much more effective
than traditional range analyses, given that we have access to values known only
at execution time. We have implemented our analysis on top of TraceMonkey,
and our experiments show that our non-optimized implementation removes 56%
of all the overflow tests that we found, reducing the code size by 2.6%, while
increasing the overall time in 6.3%.

1. Introduction
JavaScript is a dynamically and weakly typed language, heavily used in the client side of
web applications [Chugh et al. 2009, Gal et al. 2009]. Web browsers normally interpret
JavaScript programs. However, to achieve execution efficiency, JavaScript programs can
be compiled during interpretation – a process called just-in-time (JIT) compilation. There
are many ways to perform JIT compilation. One of them is the V8 approach, which com-
piles each JavaScript method before the method is called 1. Another is the approach used
in the Mozilla Firefox 3.1’s JIT compiler, the TraceMonkey [Gal et al. 2009]. In this sec-
ond strategy, bytecodes are interpreted, and the program traces often executed are directly
compiled to machine code. A program trace is a linear sequence of code representing a
path inside the program’s control flow graph. The Firefox method, proposed by Andreas
Gal and Michael Franz [Gal 2006, Gal and Franz 2006, Gal et al. 2006], is the approach
discussed in this paper.

The Firefox JIT compiler, among many optimizations, tries to perform some sim-
ple type specialization on JavaScript programs. This means, for instance, that, although
JavaScript sees numbers as float-point values, TraceMonkey tries to manipulate them as

1http://code.google.com/apis/v8/design.html

integer values every time it is possible. Dealing with integers is much faster than han-
dling floating-point arithmetics; but it is necessary to ensure that this optimization does
not change the semantics of the program. For instance, JavaScript assumes arbitrary pre-
cision arithmetics, a property that cannot be guaranteed with 32-bit integer values. So,
every time an operation produces a result that might exceed the precision of the integer
type, it is necessary to perform an overflow test. In case the test fails, float point numbers
must replace the original integer operands.

Overflow tests are pervasive in the machine code produced by TraceMonkey, a
performance flaw already acknowledged by the Mozilla community 2. A major problem
of overflow tests is the increase in code size: about 3.2% of the binaries produced by
TraceMonkey are overflow tests. This extra code, often unnecessary, is a complication
on mobile applications that feature JavaScript capabilities 3. We have attacked this bug
via dynamic analysis, and we present the results of this work in this paper. We have
designed and implemented a flow sensitive analysis that proves that some overflow tests
are redundant. Our analysis runs in linear time on the number of instructions in the source
program. This analysis is implemented on top of TraceMonkey; however, we emphasize
that the analysis does not depend on a particular compiler. On the contrary, it works on any
JIT engine that uses the trace paradigm of code generation. Our experiments show that
this analysis is fast enough to be used in the context of a JIT compiler. A non-optimized
implementation of our algorithm adds 6.3% of time overhead on the core TraceMonkey
implementation, running without other optimizations enabled. Our implementation finds
about 59% of the overflow tests in the TraceMonkey test suite. Our algorithm eliminates
54% of these tests, reducing the size of the binaries in 2.6%.

Our analysis is a variation of range analysis [Harrison 1977, Patterson 1995].
However, our approach differs from previous work because we use values known only at
run-time in order to put bounds on the range of values that integer variables might assume
during the program execution. This is a form of partial evaluation [Jones et al. 1993], yet
done at run-time [Carette and Kucera 2007], because our analysis is invoked by a just-
in-time compiler while the target application is being interpreted. By relying on such
values we are able to perform much more aggressive range inferences than traditional
static analyses.

The remainder of this paper is organized as follows. Section 2 describes the Trace-
Monkey JIT compiler. In that section we show, by means of a simple example, how a trace
is produced and represented. We describe our analysis in Section 3. Section 4 provides
some experimental data that shows that our analysis is both fast and effective. We discuss
related work in Section 5. Finally, Section 6 concludes this paper.

2. TraceMonkey in a Nutshell
Trace compilation is a new technique, and the literature contains the description of only
two implementations: one is Tamarim-trace [Chang et al. 2009], a JIT compiler imple-
mented on top of Tamarim-central, the Adobe’s Flash 9 engine. The other is TraceMon-
key. In order to explain this new compilation paradigm, in this section we describe the
TraceMonkey implementation. TraceMonkey has been built on top of SpiderMonkey, the

2https://bugzilla.mozilla.org/show bug.cgi?id=536641
3http://opensource.nokia.com/projects/S60browser/

jsparser jsemitter jsinterpreter JIT

file.js AST Bytecodes
LIR x86

spiderMonkey nanojit

trace
engine

Figure 1. The TraceMonkey JavaScript JIT compiler.

original JavaScript interpreter used by the Firefox Browser. In order to produce x86
machine code from JavaScript sources, TraceMonkey uses the nanojit 4 compiler. The
whole compilation process goes through three intermediate representations, a path that
we reproduce in Figure 1.

1. AST: the abstract syntax tree that the parser produces from a JavaScript source
file.

2. Bytecodes: a stack based instruction set that is directly interpreted by the spider-
Monkey interpreter.

3. LIR: the low-level three-address code instruction representation that nanojit re-
ceives as input.

SpiderMonkey has not been originally conceived as a just-in-time compiler, a fact
that explains the seemly excessive number of intermediate steps between the source pro-
gram and the machine code. Segments of LIR instructions – a trace in TraceMonkey’s
jargon – are produced according to a very simple algorithm [Gal et al. 2009]:

1. each conditional branch is associated to a counter initially set to zero.
2. If the interpreter finds a conditional branch during the interpretation of the pro-

gram, then it increments the counter. The process of checking and incrementing
counters is called, in the TraceMonkey nomenclature, the monitoring phase.

3. If the counter is two or more, then the trace engine starts translating the bytecodes
to LIR instructions, at the same time that the byte codes are interpreted. Overflow
tests are inserted into the LIR segment that the trace engine produces. The process
of building the trace is called recording phase.

4. Once the trace engine finds the original branch that started the recording process,
the current segment is passed to nanojit.

5. The nanojit compiler translates the LIR segment, including the overflow tests, into
machine code, which is dumped into main memory. The program flow is diverted
to this code, and direct machine execution starts.

6. After the machine code runs, or in case an exceptional condition happens, e.g, an
overflow test fails or a branch leaves the trace, the flow of execution goes back to
the interpreter.

2.1. The Running Example

We use the program in Figure 2 (a) to illustrate the process of trace compilation, and also
to show how our analysis works. This is an artificial program, clearly too naive to find use
in the real world; however, it contains the subtleties necessary to put some strain on the

4https://developer.mozilla.org/en/Nanojit

foo (N) {
var sum = 0;
var i = 0;
while (i < N) {

i++;
if (i % 2 != 0) {
sum += i;

} else {
sum -= i;
i = 2147483648;

}
}

}
print(sum);

push 0
st sum
push 0
st i

push i
push N

lt
br

push i
inc
st i

push 2
mod

push 0
ne
br

push sum
push i
add

st sum

push sum
push i
sub

st sum
push 2147483648

st i

goto

push sum
print

1

2

3

4
5

6

7

(a) (b)

Figure 2. Example of a small JavaScript program and its bytecode representation.

cheap analysis that must be used in the context of a just-in-time compiler. This program
would yield the bytecode representation illustrated in Figure 2 (b). Notice that we took
the liberty of simplifying the bytecode intermediate language used by TraceMonkey.

2.1.1. Trace Construction

A key motivation behind the design of the analysis that we present in Section 3 is the fact
that TraceMonkey might produce traces for program paths while these paths are visited
for the first time. This fact is a consequence of the algorithm that TraceMonkey uses
to identify traces. At the beginning of the interpretation process TraceMonkey finds the
branch at Basic Block 2 in Figure 2 (b), and the trace engine increments the counter
associated to that branch. The next branch will be found at the end of Basic Block 3, and
this branch’s counter will be also incremented. The interpreter then will find the goto
instruction at the end of Basic Block 6, which will take the program flow back to Block
2. At this moment the trace engine will increment again the counter of the branch in
that basic block. Once the trace engine finds a counter holding two, it knows that it is
inside a loop, and starts the recording phase, which produces a LIR segment. However,
this segment does not correspond to the first part of the program visited: in the second
iteration of the loop, Basic Block 5 is visited instead of Basic Block 4. In this case, the
segment that is recorded is formed by Basic Blocks 2, 3, 5 and 6, as showed by the dashed
arrows in Figure 3 on the right side.

Because the trace that is monitored by the trace engine is not necessarily the trace
that is recorded into a LIR segment, we cannot remove overflow tests during the record-
ing phase. That is, the trace engine might record code that has not been seen by the in-

Monitored trace Recorded trace

push 0
st sum
push 0
st i

push i
push N

lt
br

push i
inc
st i

push 2
mod

push 0
ne
br

push sum
push i
add

st sum

push sum
push i
sub

st sum
push 2147483648

st i

goto

push sum
print

1

2

3

4
5

6

7

push 0
st sum
push 0
st i

push i
push N

lt
br

push i
inc
st i

push 2
mod

push 0
ne
br

push sum
push i
add

st sum

push sum
push i
sub

st sum
push 2147483648

st i

goto

push sum
print

1

2

3

4
5

6

7

Figure 3. (Left) Segment monitored by the trace engine (Right) Segment effec-
tively recorded by the trace engine.

terpreter, what would yield the information gathered during interpretation useless. Thus,
we perform the elimination of overflow tests when nanojit translates LIR into x86 code.
Continuing with our example, Figure 4 shows the match between the recorded trace and
the LIR segment that the trace engine produces for it.

Although it is not possible to remove overflow tests directly during the recording
phase, it is possible to collect constraints on the ranges of the variables in this step. These
constraints will be subsequently used to remove overflow tests at the nanojit level.

3. Flow Sensitive Range Analysis

The flow sensitive range analysis that we use to remove overflow tests relies on a directed
acyclic graph to determine the ranges of the variables. This graph, henceforth called
constraint graph, has four types of nodes:

Name: represent program variables. Variable nodes are further divided into input nodes
and auxiliary nodes.

Assignment: denoted by mov, represent the copy of a value to a variable.
Conditional: represent conditional operations, which are used to put bounds on the

ranges of the variables. The conditional operations considered are: equals (eq),
less than (lt), greater than (gt), less than or equals (le), and greater than or
equals (ge).

Arithmetic: represent operations that might require an overflow test. We have two types
of arithmetic nodes: binary and unary. The binary operations are addition (add),
subtraction (sub), and multiplication (mul). The unary operations are increment

Init: load %0 "i"

 load %1 "N"

 %2 = lt %0 %1

 branch %2 Exit

 load %3 "i"

 %4 = inc %3

 %5 = ovf

 branch %5 Exit

 store "i" %4

 %6 = mod %3 2

 %7 = eq %6 0

 branch %7 Exit

 load %8 "sum"

 load %9 "i"

 %10 = sub %8 %9

 %11 = ovf

 branch %11 Exit

 store "sum" %10

 store "i" 2147483648

 goto Init

push 0
st sum
push 0
st i

push i
push N

lt
br

push i
inc
st i

push 2
mod

push 0
ne
br

push sum
push i
add

st sum

push sum
push i
sub

st sum
push 2147483648

st i

goto

push sum
print

1

2

3

4
5

6

7

Figure 4. This figure illustrates the match between the recorded trace and the LIR
segment that the trace engine produces for it.

(inc) and decrement (dec). Division operator are not handled once they can
produce float point values as result.

The analysis proceeds in two phases: construction of the constraint graph and
range propagation. This last phase is further divided in the initialization and the propaga-
tion steps. The remaining of this section describes these phases.

3.1. Construction of the Constraint Graph
We build the constraint graph during the trace recording phase of TraceMonkey,
that is, while the instructions in the trace are being visited and a LIR segment
is being produced. In order to associate range constraints to each variable in the
source program we use a program representation called Extended Static Single Assign-
ment (e-SSA) [Bodik et al. 2000] form, which is a superset of the well known SSA
form [Cytron et al. 1991]. In the e-SSA representation, a variable is renamed after it
is assigned a value, or after it is used in a conditional.

Normally, converting a program to e-SSA form requires a global view of the pro-
gram, a requirement that a trace compiler cannot fulfill. However, given that we are
compiling a program trace, that is, a straight line segment of code, the conversion is
very easy, and happens at the same time that the constraint graph is built, e.g, during the
trace recording step. The conversion works as follows: counters are mantained for ev-
ery variable. Whenever we find a use of a variable v we rename it to vn, where n is the
current value of the counter associated to v. Whenever we find a definition of a variable
we increment its counter. Considering that the variables are named after their counters,

incrementing the counter of a variable effectively creates a new name definition in our
representation. So far our renaming is just converting the source program into Static Sin-
gle Assignment form [Cytron et al. 1991]. The e-SSA property comes from the way that
we handle conditionals. Whenever we find a conditional, e.g, a < b, we learn new in-
formation about the ranges of a and b. Thus, we redefine a and b, by incrementing their
counters.

There are two events that change the bounds of a variable: simple assignments and
conditional tests. The first event determines a unique value for the variable. The second
puts a bound in one of the variable’s limits, lower or upper. These are the events that cause
us to increment the counters associated to variables. Thus, it is possible to assign unique
range constraints to each new definition of a variable. These range constraints take into
consideration the current value of the variables at the time the variable is found by the
trace engine. We determine these values by inspecting the interpretation stack. We have
designed the following algorithm to build the constraint graph:

1. initialize counters for every variable in the trace. We do this initialization on the
fly: the first time a variable name is seen we set its counter to zero, otherwise we
increment its current counter. If we see a variable for the first time, then we mark
it as input, otherwise we mark it as auxiliary. If a variable is marked as input, then
we set its upper and lower limits to the value that the interpreter currently holds
for it. Otherwise, we set the variable boundaries to undefined values.

2. For each instruction i that we visit:
(a) if i is a conditional operation, say v < u, we build a conditional node

that has two predecessors: variable nodes vx and uy, where x and y are
counters. This node has two successors, vx+1 and uy+1.

(b) For each binary arithmetic operation, e.g, v = t+u, we build an arithmetic
node n. Let the nodes related to variables tx and uy be the predecessors of
n, and let vz be its successor.

(c) For each unary operation, say u++, we build a node n, with one predeces-
sor ux, and one successor ux+1.

(d) For each copy assignment, e.g, v = u, we build an assignment node, which
has predecessor ux, and successor vy+1, assuming y is the counter of v.

Figure 5 shows the constraint graph to our running example. When constructing
the constraint graph, it is important to maintain a list with the order in which each node
was created. This list will be later used to guide the range propagation phase.

3.2. Range Propagation

It is during this phase that we find which overflow tests are necessary, and which ones can
be safely removed from the target code. This step is further divided into range initializa-
tion and range propagation. In the initialization phase, we simply replace the constraints
of the input variables with [−∞, +∞] if those variables have been updated inside the
trace. We indicate the need of an update by adding back-edges to the constraint graph,
from the last occurrence of a modified variable to the corresponding input variable.

After the initialization phase, we remove the back-edges; thus, guaranteeing that
our constraint graph is acyclic. The propagation of range intervals happens according
to the algorithm given in Figure 6. We visit all the arithmetic and conditional nodes, in

i0 [0, 0] N0 [10, 10]sum0 [0, 0]

lt

i1 [?, ?] N1 [?, ?]

inc

i2 [?, ?]

sub

sum1 [?, ?]

2^32

i3 [?, ?]

Figure 5. Constraint graph for the trace in Figure 4. The dotted edges mark
variables that have been updated inside the trace.

class ConstraintGraph() {
// This queue contains only arithmetic and conditional nodes,
// inserted in the order in which the instructions that
// represent them have been found in the trace:
private Queue<Node> workList;
// This set holds the variables that have been updated inside
// the trace:
private Set<VarNode> targetBackEdges;
public void constraintPropagation() {

// Initialization phase:
for (VarNode v : targetBackEdges) { v.setLimits(-INF, +INF);
}
// Propagation phase:
while (!workList.empty()) {
Node n = workList.removeFirst();
n.update();

}
}

}

Figure 6. The propagation algorithm.

topological order. This ordering is given by the “age” of the node. Nodes that have been
created earlier, during the construction of the constraint graph are visited first.

Each arithmetic and conditional node causes the propagation of ranges in a partic-
ular way. Figure 7 shows the updating methods that we use for the arithmetic nodes add
and inc, and the conditional node lt. Only arithmetic nodes might cause overflows.
Thus, while we are propagating range intervals we verify, for each arithmetic node, if the
operation that the node encodes might produce an overflow. In the affirmative case we in-
dicate that the node demand an overflow test by calling the function signalOverflow
in Figure 7.

After the range propagation phase we have a conservative estimate of the intervals
that each integer variable might assume during the program execution. This information
allows us to go over the LIR segment, before it is passed to nanojit, removing the overflow

// Addition: a[la?, ua?] := b[lb, ub] + c[lc, uc]
public void update() {

// Find the lower boundary:
la = lb + lc;
if (la <= 0 && lb > 0 && lb > 0) { la = +INF; signalOverflow();
} else if (low >= 0 && lb < 0 && lc < 0) {

la = -INF; signalOverflow();
}
// Find the upper boundary:
int ua = ub + uc;
if (ua <= 0 && ub > 0 && uc > 0) {

ua = +INF; signalOverflow();
} else if (up >= 0 && ub < 0 && uc < 0) {

ua = -INF; signalOverflow();
}

}
// Inc Node: a’[la’, ua’] := a[la, ua] ++;
public void update() {

la’ = la();
if (la’ + 1 < la) { la’ = +INF; signalOverflow();
}
ua’ = ua;
if (ua’ + 1 < ua) { ua’ = +INF; signalOverflow();
}

}
// Conditional less than:
// (a[la, ua] < b[lb, ub])? => a’[la’, ua’], b’[lb’, ub’]
public void update() {

ua’ = min(ua, lb - 1);
lb’ = max(lb, ua + 1);

}

Figure 7. Range propagation for additions, increments and less than’s.

tests that our analysis has deemed unnecessary. Thus, we remove the tests associated to
each arithmetic node, as long as the function signalOverflow has not been called
for that node. Figure 8 shows this step: in this case we have been able to remove the
overflow from the inc operation. But our analysis could not prove that the test in the
sub operation is also unnecessary, although that is the case.

3.3. Complexity Analysis

The proposed algorithm has running time linear on the number of instructions of the
source trace. To see this fact, notice that the constraint graph has a number of conditional
or arithmetic nodes which is proportional to the number of instructions in the trace, and the
update method is invoked one time for each of these nodes. Notice also that during our
analysis we traverse the constraint graph only once, at the range propagation phase. We do
not have to preprocess the graph beforehand, in order to sort it topologically, because we
get this ordering for free, from the sequence in which instructions are visited in the source
trace. Our algorithm is also linear in terms of space, because each type of arithmetic node
has a constant number of predecessors and successors, all of them are variable nodes.
This low complexity is in contrast to the complexity of many graph traversal algorithms,
which are O(E), where E is the number of edges in the graph. These algorithms have a
worst case quadratic complexity on the number of vertices, given that E = O(V 2). We
do not suffer this drawback, because, in our case E = O(V).

...

load %3 "i"

%4 = inc %3

%5 = ovf

branch %5 Exit

store "i" %4

...

load %8 "sum"

load %9 "i"

%10 = sub %8 %9

%11 = ovf

branch %11 Exit

store "sum" %10

...

i0[-∞,+∞] N0[10,10]sum0[-∞,+∞]

lt

i1[-∞,9] N1[10,10]

inc

i2[-∞,10]

sub

sum1[-∞,+∞]

2^32

i3[2^32,2^32]

✓

✗

This test can be
removed, because
we have proved
that variable i is
in the range [0, 9]

This test cannot be
removed, because
we do not know
the range of sum.

✗

✓

Figure 8. Once we know the ranges of each variable involved in an arithmetic
operation we can remove the associated overflow test, if it is redundant.

4. Experimental Results

We have implemented our algorithm on top of TraceMonkey. Our implementation handles
the five arithmetic operations described in Section 2.1.1, namely additions, subtractions,
increments, decrements and multiplications. Our current implementation performs the
range analysis described in Section 3 during the recording phase of TraceMonkey, that is,
while a segment of JavaScript bytecodes is translated to a segment of LIR. We have also
modified nanojit to remove the overflow tests, given the results of our analysis. Our cur-
rent implementation has some limitations, which are all due to our lack of understanding
of the TraceMonkey’s internals, and that we are in the process of overcoming:

• we cannot read global variables, a fact that hinders us from removing overflows
related to operations that manipulate these values.
• We cannot recognize when TraceMonkey starts tracing constructs such as
foreach{...}, while(true){...} and loops that range on iterators.

The benchmarks. We have used the TraceMonkey test suite to validate our imple-
mentation. This testing set contains 253 scripts, which provide a total of 8,469 lines of
JavaScript code. TraceMonkey produces 1,792 traces during the interpretation of these
scripts. Such traces are translated to x86 binaries by nanojit, yielding a total of 3,958
overflow tests. We can recognize 2,356 out of these tests. The remaining 1,602 tests are
due to operations on global variables, which our implementation cannot see.

How effective is our algorithm? Considering the overflow tests that our implementation
can recognize, we have deleted 1,281 out of 2,356 tests. Figure 9 is a histogram that shows
the effectiveness of our algorithm. In 71% of the scripts we have been able to remove all
the possible overflow tests. On the other hand, there are 17% of programs where we do
not remove tests. In this case we failed to remove 122 out of the 2,356 possible tests, or
5% of the total. Considering all the 253 programs, we have been able to remove 54% of
the total number of tests.

!"#$

"#$ %#$ &#$ '#$
%#$

"!#$

"((#$))*+(#$!)*,(#$ ')*-(#$ &)*%(#$ ")*"#$ (#$

!"#$

%&#$

'#$
%'#$

()*+,)$-,./$ 0*.$1,23$ 415,672/$ 8696*:6$

(a) (b)

Figure 9. (a) Histogram showing the effectiveness of our analysis. We have been
able to remove 100% of all the overflow tests in 71% of the scritps. (b) The rea-
sons that have prevent us to remove some overflow tests.

!"#!$%
&!#'$%

("#)$%

((#*$%

+#($%
)#+$%

&#($% !#)$% !#,$% (#,$%
&#+$% !#*$% (#&$% (#)$% -#,$%

.%!*-%/0123456701% !*-%8%)""% *--%8%"""% (---%8%("""% 9%!---%/0123456701%

:4;<=3%7>%?53/@21%

A37B=52=C%1/D=%3=C45670%

E524FG%1/D=%3=C45670%

Figure 10. Size reduction due to the elimination of overflow tests.

What is the code size reduction due to the elimination of overflow tests? The elim-
ination of overflow tests reduces the size of the x86 binaries produced by TraceMonkey.
TraceMonkey uses six x86 instructions to implement an overflow test: a branch, and five
copies to pass information back to the interpreter; all these instructions are removed with
the elimination of the test. On the average, our algorithm removes 2.6% of all the instruc-
tions. Once we start dealing with global variables, we hope to increase this amount to
3.2%. We have observed that we tend to remove more tests in smaller scripts. Figure 10
illustrates this fact with a histogram, where we show the number of scripts under a certain
size, the percentage of the code that is used to implement overflow tests, and the average
size reduction that we have produced. Notice that our analysis is more effective in re-
ducing the size of smaller scripts, because larger programs contain less overflow tests in
proportion to the total code size.

What is the effect of our algorithm in the running time of TraceMonkey? On the
average, our algorithm has increased the running time of TraceMonkey in 6.3%, as the
chart in Figure 11 shows. The run-time includes the time to parse and interpret the script,
the time to JIT compile it to x86 binaries and execute the binaries. We run these tests on
a 2GHz Intel Core 2 Duo, with 2GB of RAM, featuring Mac OS 10.5.8 . Our algorithm
increases the time of JIT compilation, but decreases the time of script execution. So far
the cost, in time, is negative. This fact happens due to two reasons: (i) the implementation
of our algorithm is just a prototype, yet to be optimized for performance. (ii) Most of the
scripts run for a very short time, and the effects of avoiding the overflows are negligible.

!"#$

!%#$

%#$

"#$

&#$

'#$

(#$

Figure 11. Run-time of TraceMonkey (interpretation + JIT-compilation + script
execution). We obtained each number by feeding each script to TraceMonkey 16
times, and removing the smallest and largest outliers. Average 6.3%

Concerning this last point, the only impact of an overflow test, on the script, is the cost
of executing a special x86 instruction branch-if-overflow. However, this instruction is
naturally predicted as not taken adding only 0.5 execution cycles to the program time.

Why sometimes we fail to remove overflows? Each trace contains at least one overflow
test. This test is associated to the updating of the induction variable that controls the
number of times that the trace executes. We have performed a manual study on each of
the 42 programs in which we did not remove overflow tests, focusing on the test on the
induction variable. Figure 9 (b) explains our findings. In 69% of the traces, we failed to
remove the test because the induction variable was bounded by a global variable. As we
explained before, our implementation is not able to identify the values of global variables;
hence, we cannot use them in the estimation of ranges. In 17% of the remaining cases the
trace is produced after a foreach control structure, which our current implementation
fails to recognize. Once we fix these omissions, we will be able to remove at least one
more overflow test in 36 out of these 42 scripts analyzed. There was only one script in
which our algorithm legitimately failed to remove a test: in this case the semantics of the
program might lead to a situation in which an overflow, indeed, happens.

What we gain by knowing the run-time value of variables? We perform more aggres-
sive range estimations than previous range analyses described in the literature, because we
are running alongside a JIT compiler, a fact that give us the run-time value of variables,
including loop limits. Statically we can only rely on constants to start placing bounds in
variable ranges. Non-surprisingly, a static implementation of our algorithm removes only
472 overflow tests, which corresponds to 37% of the tests that we remove dynamically.

5. Related Work
Just-in-time compilers are old allies of those who advocate interpreted languages. Since
the seminal work of John McCarthy [McCarthy 1960], the father of Lisp, a multitude of
JIT compilers have been designed and implemented. A comprehensive survey on just-in-
time compilation is given by John Aycock [Aycock 2003].

The optimization that we propose in this paper is a type of partial evaluation
at run-time. Partial evaluation is a technique in which a compiler optimizes a pro-
gram, given a partial knowledge of its input [Jones et al. 1993]. Variations of partial

evaluation have been used to perform general code optimization [Shankar et al. 2005,
Schultz et al. 2003]. This particular type of partial evaluation, in which run-time
values are used to improve the quality of the code produced by the JIT com-
piler, is sometimes called specialization by need [Rigo 2004]. Examples of run-
ning environments that employ this kind of technique include Python’s Psyco JIT
compiler [Rigo 2004], Matlab [Elphick et al. 2003, Chevalier-Boisvert et al. 2010] and
Maple [Carette and Kucera 2007]. Partial evaluation has been used in the context of just-
in-time compilation mostly as a form of type specialization. That is, once the compiler
proves that a value belongs into a certain type, it uses this type directly, instead of re-
sorting to costly boxing and unboxing techniques. This type of specialization has been
recently used in JavaScript [Gal et al. 2009] and Matlab [Chevalier-Boisvert et al. 2010];
however, the technique itself is much older, having seen use, for instance, in the run-time
specialization of Self programs [Chambers and Ungar 1989].

Although the concept of just-in-time compilation is old, and well grounded in
Computer Science, the compilation of dynamically generated program traces is a new
idea. The first trace compiler was described by Andreas Gal in his Ph.D disserta-
tion [Gal 2006, Gal and Franz 2006, Gal et al. 2006]. A detailed description of a trace
compiler is given by Chang et al. [Chang et al. 2009], and a brief overview of the use of
type specialization during trace compilation is given by Gal et al [Gal et al. 2009].

Our algorithm to remove overflow tests is a type of range analysis [Harrison 1977,
Patterson 1995]. Range analysis tries to infer lower and upper bounds to the values that
a variable might assume through out the execution of the program. In general the algo-
rithms rely on theorem provers, an approach deemed too slow to a JIT compiler. Bodik
et al. [Bodik et al. 2000] have described a specialization of range analysis that removes
array bound checks, the ABCD algorithm, which is intended to be used by a JIT compiler.
Zhendong and Wagner [Su and Wagner 2005] have described a type of range analysis that
can be solved in polynomial time. Stephenson et al. [Stephenson et al. 2000] have used a
polynomial time analysis to infer the bitwidth of each integer variable used in the source
program. Contrary to our approach, all these previous algorithms work on the static repre-
sentation of the source program. Such fact severely constraints the amount of information
that these analysis can rely on. By knowing the run-time value of program variables we
can perform a very aggressive, yet fast, range analysis.

6. Conclusion

This paper has presented a new algorithm to remove redundant overflow tests during the
JIT compilation of JavaScript programs. The proposed algorithm, an aggresive variation
of range analysis, works in the context of a trace compiler. By relying on the values of
variables, an information known only at run-time, our algorithm is able to find very precise
ranges for these variables. We have implemented our analysis on top of TraceMonkey, the
JIT compiler used by the Mozilla Firefox browser to speed up the execution of JavaScript
programs. Currently we are in the process of turning our implementation into an official
Firefox patch. In terms of future work, we would like to improve our implementation in
terms of performance and effectiveness. For instance, currently we only find the ranges
of variables defined locally, a limitation that we are working to overcome. Besides, we

are planing to test our analysis with real scrips, using the 100 sites ranked from alexa.5

References

Aycock, J. (2003). A brief history of just-in-time. ACM Computing Surveys, 35(2):97–
113.

Bodik, R., Gupta, R., and Sarkar, V. (2000). ABCD: eliminating array bounds checks on
demand. In PLDI, pages 321–333. ACM.

Carette, J. and Kucera, M. (2007). Partial evaluation of maple. In PEPM, pages 41–50.
ACM.

Chambers, C. and Ungar, D. (1989). Customization: optimizing compiler technology
for self, a dynamically-typed object-oriented programming language. SIGPLAN Not.,
24(7):146–160.

Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A., Wimmer, C., Eich, B., and
Franz, M. (2009). Tracing for web 3.0: trace compilation for the next generation web
applications. In VEE, pages 71–80. ACM.

Chevalier-Boisvert, M., Hendren, L. J., and Verbrugge, C. (2010). Optimizing matlab
through just-in-time specialization. In Compiler Construction, pages 46–65. Springer.

Chugh, R., Meister, J. A., Jhala, R., and Lerner, S. (2009). Staged information flow for
Javascript. In PLDI, pages 50–62. ACM.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1989). An
efficient method of computing static single assignment form. In POPL, pages 25–35.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991). Ef-
ficiently computing static single assignment form and the control dependence graph.
TOPLAS, 13(4):451–490.

Elphick, D., Leuschel, M., and Cox, S. (2003). Partial evaluation of matlab. In GPCE,
pages 344–363. Springer-Verlag New York, Inc.

Gal, A. (2006). Efficient Bytecode Verification and Compilation in a Virtual Machine.
PhD thesis, University of California, Irvine.

Gal, A., Eich, B., Shaver, M., Anderson, D., Kaplan, B., Hoare, G., Mandelin, D.,
Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmair, R., Haghighat, M. R.,
Bebenita, M., Change, M., and Franz, M. (2009). Trace-based just-in-time type spe-
cialization for dynamic languages. In PLDI, pages 465 – 478. ACM.

Gal, A. and Franz, M. (2006). Incremental dynamic code generation with trace trees.
Technical Report 06-16, University of California, Irvine.

Gal, A., Probst, C. W., and Franz, M. (2006). Hotpathvm: an effective jit compiler for
resource-constrained devices. In VEE, pages 144–153.

Harrison, W. H. (1977). Compiler analysis of the value ranges for variables. IEEE Trans.
Softw. Eng., 3(3):243–250.

5http://www.alexa.com

Jones, N. D., Gomard, C. K., and Sestoft, P. (1993). Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1st edition.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation
by machine, part i. Communications of ACM, 3(4):184–195.

Patterson, J. R. C. (1995). Accurate static branch prediction by value range propagation.
In PLDI, pages 67–78. ACM.

Rigo, A. (2004). Representation-based just-in-time specialization and the psyco prototype
for Python. In PEPM, pages 15–26. ACM.

Schultz, U. P., Lawall, J. L., and Consel, C. (2003). Automatic program specialization for
Java. TOPLAS, 25(4):452–499.

Shankar, A., Sastry, S. S., Bodı́k, R., and Smith, J. E. (2005). Runtime specialization with
optimistic heap analysis. SIGPLAN Not., 40(10):327–343.

Stephenson, M., Babb, J., and Amarasinghe, S. (2000). Bidwidth analysis with applica-
tion to silicon compilation. In PLDI, pages 108–120. ACM.

Su, Z. and Wagner, D. (2005). A class of polynomially solvable range constraints for
interval analysis without widenings. Theoretical Computeter Science, 345(1):122–138.

