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Av. Antônio Carlos, 6627 – Pampulha – CEP: 31270-010 – Belo Horizonte-MG

{kecia,mariza,bigonha}@dcc.ufmg.br

Abstract. Software evolution has been the subject of research in the last
decades, revealing that a software system has continuing growth, continuing
changes, increasing complexity and declining quality. However, the knowledge
about how this process occurs is not consolidate yet. This paper presents the
results of a study about software evolution characterization based on concepts
of Complex Networks. We analyzed 16 open-source software systems and one
commercial application, in a total of 129 versions. The results of this study
show that: the density of a software network decreases as the software system
grows; the diameter of such networks is short; the classes with higher in-degree
keep this status; such classes are unstable and their internal cohesion degrades.
Our investigations also revealed an interesting picture which models the macro-
scopic structure of software networks. We called it the little house.

1. Introduction

Despite all the knowledge about high-quality software construction consolidated
in well-known principles, criteria, rules, design-patterns and techniques, it is known that
as a software system evolves and changes, its architecture becomes more complex and
rigid and, due to this design degradation, the program becomes increasingly hard to main-
tain. The Lehman’s Laws [Lehman et al. 1997] describe this evolutive nature of software
by postulating that every software system grows and suffers maintenances continuously,
has increasing complexity and decreasing quality throughout its evolution.

Most of the researches carried out to describe software evolution are con-
cerned in investigating whether the Lehman’s laws are applied in open source soft-
ware, especially in the growth and complexity aspects [Koch 2007, Xie et al. 2009,
Israeli and Feitelson 2010]. Growth has been usually evaluated by means of met-
rics such as LOC or number of files [Godfrey and Tu 2001, Herraiz et al. 2006], while
complexity has been evaluated by means of McCabe or Halstead complexity metric
[Mens et al. 2008, Israeli and Feitelson 2010]. A few researches have used other soft-
ware metrics to study software evolution, for instance: number of deleted/added/changed
files [Mens et al. 2008], coupling and cohesion metrics [Lee et al. 2007]. Recently,
the concepts of complex networks have been timidly applied to understand the be-
havior and the nature of software structure [Jing et al. 2006, Jenkins and Kirk 2007,
Louridas et al. 2008, Zimmermann and Nagappan 2008]. Common findings in such
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works are that the in-degree of vertices in the network of modules within a software sys-
tem follows a power-law and this network seems to conform to the so-called small-world
phenomenon [Newman 2003]. However, there is still a great lack of solid knowledge
about the evolution of software systems design.

In this work, we carried out an exploratory study to investigate how the design
of object-oriented program evolves, by applying Complex Network concepts. An object-
oriented program can be modeled as a network in which the vertices correspond to classes,
and the edges correspond to relationships between classes. Such networks are referenced
in this paper as software networks. The aim of this study is to get insights on how software
networks evolve in terms of: density, which measures how connected one to another are
the vertices in a network; diameter, which is a measure of the distance between vertices in
a network; in-degree, which is the number of vertices in the network which depend upon
a given vertex. These metrics are considered in this work because they express properties
of the dependence among vertices in the network, which is an important aspect of the
quality of software design. We also investigate how the internal quality and the size of
the central classes of a software system evolute over the time. The central classes of a
system are those which have a high number of dependent classes, i.e, a high in-degree.
The research questions investigated in this study are the following: (1)How the density
of software networks evolves? (2)Is the diameter of software networks short? (3)Which
are the central classes in a software system? (4)Does the internal quality of such classes
degrade over the time? (4)Is there a generic macroscopic figure of software network?

The data set analyzed in this work is from 16 open source object-oriented software
systems and from one commercial object-oriented software system, in a total of 129 ver-
sions of the programs. Our analysis yields a novel insight into the evolution of software
system structure: the classes with a higher in-degree tend to maintain this status as the
software system grows, they also gain more methods and have declining internal cohe-
sion; the network of modules within a software system has short diameter and shrinking
density. Even more interesting, our analysis reveals the picture of the macroscopic struc-
ture of software systems. By analysing this pattern of software networks, we also find
that such networks have a strongly connected component which enlarges as the software
system grows. The findings of this study identify properties of software design evolution
which are not described by previous works. They can be used for improving software
development tasks, such as maintenance and test plans.

This paper is organized as follow: Section 2 describes the metrics and provides
a background of Complex Network concepts used in our study; Section 3 is a review
of related work; Section 4 describes the methodology applied in the study; Section 5
reports the experiments and its results; Section 6 brings the conclusions and future works
recommendation.

2. Background

An object-oriented software system can be modeled as a directed graph (a net-
work) in which the classes are the vertices and a connection between two classes is an
edge. We consider that a class A is connected to another class B if A uses a field or a
method of B or if A extends B. In this situation, there is an edge from A to B. In the
present study, software evolution is evaluated by means of software metrics and network
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metrics that are described in this section. We also give a background about the network
analysis terminology and the concepts used in this paper.

2.1. Metrics
Coupling among modules is an important aspects of software design quality, be-

cause the high coupling among modules in a software system makes the software design
more complex and rigid. Due to the importance of this aspect, we consider the following
network metrics which evaluate the connectivity among vertices in a network:

• Network density: in a network with a edges and n vertices and without
self loops, this metric is given by a/(n(n − 1)) [Leskovec et al. 2007]. In
the context of software metrics, this metric is called COF (coupling factor)
[Abreu and Carapua 1994].

• Diameter: the diameter of a network is the length, given in number of edges, of
the longest geodesic path within the network. A geodesic path is the shortest path
between two vertices. In a social network, for example, it is an indicator of how
rapidly information would spread throughout the network [Newman 2003].

• In-degree: the in-degree of a vertex is given by the number of vertices from which
there is an edge that reaches the vertex [Newman 2003]. In a software system
network, it is the number of classes that use services of a given class or extend it.

In this work, we explore how the central classes evolve in terms of size and internal
quality. The size of a class is evaluated by means of the number of public methods and
number of public fields. We considered these metrics because they represent the size of
the interface of the class, what will reveal whether a class is changed over the time to
adapt to connections with other classes. The internal quality of a class is evaluated by
means of a cohesion metric, because cohesion is one of the most important aspects of
modularity. There are several class cohesion metrics proposed in the literature, however
there is no consensual way to measure cohesion yet. In this work we use the metric
Cohesion by Responsibility (COR) [Ferreira 2011], which is a different interpretation of
LCOM4 [Hitz and Montazeri 1995]. This metric is given by 1/C, where C is the number
of disjointed sets of methods within the class. Each set consists of similar methods. Two
methods are similar when they use a common field or a common method of the class. If a
method a is similar to a method b, and b is similar to a method c, then a is also similar to
c. For instance, if there are two sets in a class, COR will result in 0,5. This indicates that
the class has 2 responsibilities. If there is only one set in the class, COR will result in 1,
indicating a high cohesion.

2.2. Complex Networks
Empirical observation of real networks yielded valuable comprehension of such

networks. The work of Newman [Newman 2003] presents a wide review about advances
in the field of Complex Networks. The study of properties of networks includes con-
cepts such as the small-world phenomenon, degree distributions, scale-free networks and
models of network growth. Models of networks help us understanding network topology
and the processes taking place inside networks. In this work, we explore the structure of
software system networks using concepts and characteristics of complex networks.

Networks with power-law degree distribution are referred as scale-free networks.
A power-law is a probability distribution function in which the probability of a random
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variable X take a value x is proportional to a negative power of x, denoted by P (X =
x) ∝ cx−k. In a scale-free network there is a large number of vertices with low degree
and a small portion of them with high degree. There has been a spate of interest in such
networks in the literature, since power-law degree distribution has been observed in a wide
range of networks like the Web, the Internet, metabolic networks, telephone calls graphs
and software system networks [Wheelson and Counsell 2003, Puppin and Silvestri 2006,
Baxter et al. 2006, Louridas et al. 2008]. An important property of a scale-free network
is its resilience to the removal of their vertices. A study on vertex deletion in the Internet
and Web shows that such networks are resilient against random failure of vertex in the
network, whereas the target removals at the highest degree vertices in the network are
destructive [Newman 2003]. Since software systems networks are also scale-free, this
property might be applied to them: an error or maintenance in a class with high in-degree
could widely affect other classes in the system.

The small-world phenomenon refers to a characteristic of networks in which most
pairs of vertices are connected by a short path. This is related to the easiness of informa-
tion propagation in the network. Depending on the kind of network, information should
assume different meaning, such as the spread of a disease in a population, dissemination
of a rumor in a social network, or an change propagation in a software system network.

Figure 1. The bow-tie model of the Web

2.3. The Bow-tie Model
Broder et al. [Broder et al. 2000] have concluded that the macroscopic structure

of the Web can be modeled by a picture known as bow-tie, shown in Figure 1. By this
model, web pages can be divided into five groups: LSCC, in, out, tendrils, tubes and
disconnected. It reveals that in the Web graph there is a central core in which all pages
can reach one another. This central core is called the giant strongly connected component
(LSCC). Another group of pages can reach the ones in LSCC but cannot be reached by
them. This group is called in. Out consists of pages that can be reached from LSCC but
cannot link it back. Tendril consists of pages that cannot reach LSCC and are not reachable
by it; pages in tendrils can be reached by in and can reach out without passing through
SCC. There is a group of pages in tendrils that can be reached from in, then be connected
to another tendril, leading into out. This group of pages is called tubes. This model has
important applications in studies of the web, such as the analysis of web algorithms and
the prediction of the evolution of web structures. In the present work we investigate how
well the bow-tie model fits to the software system network. Our analysis reveals a simpler
picture that can represent the way classes in a object-oriented software system connect to
one another.
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3. Related Work

One of the most noted works in the field of software evolution resulted in the
Lehman’s laws which include: continuing change, increasing complexity, continuing
growth and declining quality [Lehman et al. 1997]. Many researchers have recently stud-
ied whether these laws can be applied to open-source software systems. Mens et al.
[Mens et al. 2008] studied the evolution of Eclipse by means of software metrics, such
as number of added, changed and deleted files and number of errors. They found ev-
idences of continuing growth and increasing complexity in Eclipse. Israeli and Feitel-
son [Israeli and Feitelson 2010] used software metrics in order to analyze Linux kernel
evolution. The results of their study support most of Lehman’s laws, however they ob-
served that functions within the program have a decreasing average complexity. Xie et al.
[Xie et al. 2009] evaluated the evolution of 7 open source software systems. The results
of their study demonstrate that the following Lehman’s laws are applicable to open-source
software systems: continuing change, increasing complexity, self regulation and continu-
ing growth. In addition they observed that most of modifications occur in a small portion
of the source code.

Software evolution has been usually studied by means of software system growth.
Koch [Koch 2007] analyzed the growth of a large sample of open source software systems,
concluding that the mean growth rate is linear or tends to decrease over time, but a signifi-
cant percentage of projects exhibit superlinear growth. Herraiz et al. [Herraiz et al. 2006]
carried out a comparative study of two software metrics commonly used for characteriz-
ing the evolution of software: number of lines of code and number of files. They analyzed
a package in Debian GNU/Linux and concluded that both metrics have the same behavior.

Other approaches have been used in the study of software evolution and software
characterization. Many researchers have identified that in-degree distribution in software
system network follows a power-law [Wheelson and Counsell 2003, Baxter et al. 2006,
Louridas et al. 2008]. Jenkins and Kirk [Jenkins and Kirk 2007] evaluated software evo-
lution by using complex network theory. Their study was performed over some re-
leased versions of a component from the Sun Java2 Runtime Environment (rt.jar) and
concluded that the degree distribution in the network of software class dependencies
follows power law. They propose an instability metric that they claim to be con-
formed with the growth process of the software system. Zimmermann and Nagappan
[Zimmermann and Nagappan 2008] found that measures from network analysis, such as
centrality and closeness, can predict defects for binaries of Windows Server 2003.

Despite the notable contribution of the works carried out to characterize software
evolution, there are still open questions about this phenomenon. Most of the researches in
this field are limited to studying the growth of software systems in terms of lines of code
and number of modules or files. A few of them evaluate software evolution by means
of other software metrics. Since a class is the basic component of an object-oriented
software, we investigate how software systems evolve in terms of number of classes. We
study how two important network measures, density and diameter, behave as the software
system grows. Classes with higher in-degree play a central role in the software system.
We explore how such classes evolve in terms of in-degree, internal cohesion, number
of public methods and number of public fields. The results of the research carried out
reveal important properties of the software system evolution process. We also identify
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Table 1. Software systems analyzed in the study

Name Category # downloads/week Age #classes #versions #analyzed versions

JEdit Text editor 9.138 2001 a 2009 377 a 1124 13 13

Dr Java Development 3.837 2002 a 2009 596 a 3692 10 10

Java Groups Cooperation 465 2003 a 2009 696 a 1137 40 13

KoL Mafia Game 1.007 2004 a 2009 39 a 1109 13 13

DBUnit Database 448 2002 a 2009 198 a 369 25 5

FreeCol Game 7.452 2003 a 2010 112 a 5902 27 5

JasperReports Development 5.542 2001 a 2010 525 a 5304 50 5

JGNash Financial 822 2002 a 2010 782 a 3603 40 5

Java msn library Communication 271 2004 a 2010 494 a 872 10 5

Jsch Security 2.304 2004 a 2009 202 a 271 29 5

JUnit Development 1.834 2000 a 2009 78 a 230 18 5

Logisim Education 1.590 2005 a 2009 908 a 1185 28 5

MeD’s Movie Manager Storage 1.169 2003 a 2010 64 a 517 60 5

Phex Network 1.084 2001 a 2009 393 a 1352 26 5

Squirrel sql Database 7.270 2006 a 2010 424 a 1223 26 5

Hibernate Database 12.906 2004 a 2010 956 a 2446 53 5

Commercial - frontier layer Commercial application - 2005 - 2010 1100 a 1246 10 10

Commercial - model layer Commercial application - 2005 - 2010 3343 a 4031 10 10

and analyze the macroscopic structure of object oriented software systems.

4. Methodology

The selection of the open-source software systems analyzed in the study was based
on the following criteria: age, quantity of versions or releases, and category. The data
were extracted from www.sourceforge.net, which classifies the programs in categories,
such as development, games and communication. For each category, up to 10 software
systems were selected, satisfying the following criteria: they were developed in Java, they
have at least 5 versions or releases and they are 4 years old at least. Another criterion was
the availability of bytecodes because the tool used to perform the measurements evaluates
the compiled code, not the source code. The initial survey resulted in 108 programs.
Among them, we selected by category those with highest popularity, highest number of
versions or releases and with highest age. Popularity was evaluated through the number of
downloads per week. This last selection resulted in 16 programs whose data are shown in
Table 1. Data were gathered from sourcerforge.net from September 2009 to April 2010.

In order to observe the existence of a relevant difference between two consecu-
tive versions of a program, we initially analyzed data from all versions of these three
programs: JEdit, DrJava and Kolmafia. For JavaGroups, which has a large number of
versions, we selected 13 version: the first one, the last, and 11 intermediate versions,
observing a period of release approximately even between two consecutive versions. We
observed that the results of subsequent versions are very close. Due to this, for the other
software systems, we selected 5 versions: the first one, the last, and three intermediate
versions, observing a period of release approximately even between them.
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Table 2. Evolution of the open source software systems

Software Version #Classes #Connections COF Diameter Software Version #Classes #Connections COF Diameter

DBUnit 2.0 198 429 0,011 9 LogSim 2.0.0 908 3294 0,004 13

2.2.1 289 666 0,008 11 2.1.0 993 3940 0,004 14

2.4.0 332 769 0,007 13 2.1.5 1018 4141 0,004 14

2.4.4 347 780 0,006 17 2.2.0 1054 4439 0,004 14

2.4.7 369 815 0,006 16 2.3.3 1185 4609 0,003 14

FreeCol 0.1.0 44 112 0,05900 5 MeD’s 1.6 64 149 0,037 6

0.5.0 416 1899 0,011 12 Movie 1.7 73 168 0,032 6

0.6.0 611 2609 0,007 11 Manager 2.0 517 1067 0,004 10

0.8.0 927 5150 0,006 13 2.8 458 1465 0,007 12

0.9.2 1087 5902 0,005 14 2.9.13 608 1845 0,005 13

Jasper 0.4.0 242 525 0,009 8 Phex 0.6 393 1078 0,007 8

Reports 1.0.0 574 1316 0,004 9 2.0.0 897 3215 0,004 18

2.0.0 1104 2435 0,002 13 2.8.0 1205 4352 0,003 16

3.0.0 1233 3038 0,002 13 3.0.0 1419 6036 0,003 19

3.7.1 1629 5304 0,002 13 3.4.2 1352 5480 0,003 20

JGNash 1.10.0 743 2757 0,005 16 Squirrel 1.0 424 717 0,004 15

1.11.1 782 2443 0,004 17 sql 2.0 729 1592 0,003 13

1.50.0 942 2659 0,003 12 2.6 940 1765 0,002 14

2.00.0 2716 7374 0,001 24 3.0 1134 2570 0,002 16

2.20.0 3603 12978 0,001 24 3.1 1223 2989 0,002 16

Java msn 10a1 171 494 0,017 10 JSch 0.1.1.4 80 202 0,032 4

library 10a2 186 516 0,015 7 0.1.20 83 204 0,028 5

10b1 203 615 0,015 7 0.1.26 94 210 0,024 5

10b2 218 662 0,014 9 0.1.34 109 271 0,023 5

10b3 270 872 0,012 9 10.1.42 117 385 0,02 5

The commercial software system analyzed in this work is developed by a software
engineering laboratory of an important Brazilian university. This laboratory provides
software and consulting solutions for different market segments. Most of its clients are
Brazilian government agencies. The software system selected for analysis is one of the
oldest and largest made by the laboratory. The program was built using the three-tier
architecture and has more than 6,000 classes, which are divided into 6 packages. We
analyzed data from two of those packages which implement the frontier layer and the
model layer. These layers were analyzed separately for the convenience of the laboratory,
which performed the data collection. Data of the commercial software system are shown
in Table 1.

Software measurements were collected by Connecta [Ferreira 2006] which gener-
ates a file in appropriate format for Pajek [PAJEK 2010], a network analysis tool.
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Table 3. Evolution of the open source software systems

Software Version #Classes #Connections COF Diameter Software Version #Classes #Connections COF Diameter

JUnit 3.4 78 138 0,023 5 Hibernate 3.0 956 2739 0,003 19

3.8 101 182 0,018 6 3.1 1118 3746 0,003 20

4.0 92 197 0,02 6 3.2 1302 4102 0,002 23

4.5 188 352 0,01 8 3.3.0 1690 5707 0,002 21

4.8.1 230 421 0,008 10 3.5.1 2446 5980 0,001 21

JavaGroups 2.2 696 1935 0,004 10 JEdit 2.4 377 1192 0,009 8

2.2.1 849 2880 0,004 10 2.5 422 1474 0,008 8

2.2.5 829 2059 0,003 10 3.1 426 1595 0,009 8

2.2.6 832 2074 0,003 10 3.2 449 1672 0,008 8

2.2.7 857 2201 0,003 10 4.0 554 2059 0,007 9

2.2.8 810 2621 0,004 8 4.1 618 2393 0,006 12

2.2.9 922 2621 0,003 8 4.1.8 646 2550 0,006 12

2.3 959 2756 0,003 9 4.2 805 3255 0,005 10

2.4.1 1013 3075 0,003 7 4.3 810 3276 0,005 10

2.5.1 967 3736 0,004 8 4.3.4 867 3444 0,005 10

2.6.1 1012 3639 0,003 8 4.3.9 954 3671 0,004 10

2.7.0 1041 3688 0,003 11 4.3.13 1008 3885 0,004 13

2.8.0 1137 3875 0,003 9 4.3.18 1124 4261 0,003 12

KolMafia 0.2 39 83 0,056 7 DrJava 1011 596 1773 0,005 10

0.4 75 222 0,04 9 2148 1064 3393 0,003 14

1.0 143 508 0,025 10 1826 1108 3680 0,003 12

2.0 191 726 0,02 11 2304 1512 4569 0,002 18

4.0 342 1399 0,012 12 2332 1622 5259 0,002 19

5.0 334 1780 0,016 11 1750 2036 8287 0,002 21

6.0 388 2102 0,014 10 1406 2187 9562 0,002 23

7.0 498 2970 0,012 12 1942 3003 9732 0,001 17

9.0 616 3410 0,009 11 r4592 3421 117000 0,001 14

10.0 708 4004 0,008 13 r4756 3692 13627 0,001 16

11.0 757 4578 0,008 14

12.0 772 5357 0,009 12

13.7 1109 7373 0,006 13

5. Experiments and Results
In this section, we present and analyze the results of our experiments. Data on the

software systems evolution are shown in Tables 2, 3 and 4.

5.1. Software Systems Growth

We analyze the size of a software system through its number of classes. The
number of classes in an open source software system grows drastically. In 50% of the
analyzed programs, the final version has more than twice the number of classes in the first
version. Our findings accord to other works which claim that continuing growth is a dom-
inant characteristic of open source software systems [Godfrey and Tu 2001, Koch 2007,
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Table 4. Evolution of the commercial software system

Layer Version #Classes #Connections COF Diameter Layer Version #Classes #Connections COF Diameter

Frontier V1 1100 2418 0,002 10 Model V1 3343 28420 0,003 14

V10 1162 2698 0,002 10 V10 3796 28812 0,002 14

V18 1246 1551 0,001 10 V18 4031 32490 0,002 14

Mens et al. 2008, Israeli and Feitelson 2010]. This characteristic is also observed in the
commercial software system analyzed in this work, however at a smaller scale. A possible
explanation for this fact is that an open source software system is in an environment that
may be more dynamic than most of the commercial software.

5.2. Diameter

The small-world has as consequence some network behaviors. For instance, in
a social network the small-world effect implies that the propagation of information will
be very fast. If the subject of the study is the spread of diseases, the small-world effect
implies the time it takes for a disease to spread throughout a population [Newman 2003].
The diameter is a metric that indicates this effect. The results of our experiments reveal
that the diameter of a software network is small initially and grows only slowly, so it
remains rather small. This reveal that the distance between two classes is small. Hence, a
change, for instance, in a class would widely spread, demanding changes throughout the
software system.

5.3. Software Network Density

Our study points out that the density of the network of classes within a software
system decreases as the software system grows. In terms of software construction, this
means that a new class inserted into the software system tends to be connected to a very
low number of other classes.

Table 5. The highest in-degree evolution - Freecol 0.1.0 and 0.9.2

Class in-degree Class in-degree

net.sf.freecol.client.FreeColClient 84 net.sf.freecol.client.FreeColClient 214

net.sf.freecol.common.model.Unit 84 net.sf.freecol.client.gui.Canvas 208

net.sf.freecol.client.gui.Canvas 80 net.sf.freecol.client.gui.i18n.Messages 174

net.sf.freecol.common.model.Player 78 net.sf.freecol.common.model.Player 158

net.sf.freecol.common.model.Game 67 net.sf.freecol.common.model.Unit 148

net.sf.freecol.common.model.Tile 61 net.sf.freecol.common.model.Tile 131

net.sf.freecol.client.gui.i18n.Messages 59 net.sf.freecol.common.model.Game 131

5.4. In-Degree

The analysis of our results reveals that the classes with highest in-degree maintain
this property as the software system grows. We observed that the group of the 10 classes
with the highest in-degree is roughly the same throughout the software life. Tables 5, 6
and 7 show the data of the classes with the highest in-degree in Freecol, Hibernate, and
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Table 6. The highest in-degree evolution - Hibernate 3.0 and 3.5.1

Class in-degree Class in-degree

org.hibernate.HibernateException 86 org.hibernate.HibernateException 174

org.hibernate.util.StringHelper 81 org.hibernate.util.StringHelper 139

org.hibernate.dialect.Dialect 58 org.hibernate.dialect.Dialect 97

org.hibernate.engine.PersistenceContext 54 org.hibernate.MappingException 87

org.hibernate.MappingException 49 org.hibernate.mapping.PersistentClass 78

org.hibernate.util.ArrayHelper 47 org.hibernate.util.ReflectHelper 73

org.hibernate.engine.Cascades 46 org.hibernate.Hibernate 68

org.hibernate.Hibernate 45 org.hibernate.AssertionFailure 65

org.hibernate.util.ReflectHelper 42 org.hibernate.util.ArrayHelper 59

org.hibernate.AssertionFailure 38 org.hibernate.mapping.Property 59

Table 7. The highest in-degree evolution - Commercial software 1.0 and 1.18

Class in-degree Class in-degree

A 808 A 912

B 558 C 631

C 551 B 595

D 314 X 385

E 291 D 347

F 287 E 341

G 283 F 317

H 271 H 295

I 265 G 291

J 248 Y 285

- - I 275

- - J 258

the commercial system. This finding, associated to the fact that a new class inserted in the
software system tends to be connected to a very low number of other classes, leads to a
valuable revelation about the process of software system growth: a new class inserted in
the system is preferentially attached to a class that has high in-degree.

5.5. Evolution of Classes with Higher In-Degree

One can argue that classes with high in-degree are stable, since those classes are
services provider of services and so should be well defined, constructed and tested. Sta-
bility, here, is defined as the low frequency of modifications in a class during the life of
the software system. Intuitively it will be possible to conclude that if the system is well
designed and the open-closed principle [Meyer 1997] was appropriately applied, those
classes will suffer none or little modifications. Nevertheless our findings show that the
opposite occurs. Classes with a higher in-degree are extremely unstable. In the commer-
cial software system, however, this property is moderate. We evaluated the modifications
of a class between two consecutives versions by means of three metrics: the number of
public fields, the number of public methods, and cohesion. Table 8 shows data of a class
of an open-source software system and Table 9 shows data of a class of the commercial
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Table 8. Evolution data of the class from KoLmafia with the highest in-degree

Version in-degree COR public fields public methods

0.2 7 0,5 0 18

2.0 69 0,33 0 30

5.0 142 0,143 0 74

11.0 145 0,067 8 85

13.7 264 0,05 17 78

Table 9. Instability of classes with highest in-degree in the commercial software

Class Version in-degree COR # public fields # public methods

A 1.0 808 1 0 23

1.18 912 1 0 25

B 1.0 558 0,071 0 70

1.18 595 0,067 0 85

C 1.0 551 0,045 0 93

1.18 631 0,037 1 114

D 1.0 314 0,036 0 105

1.18 347 0,031 0 116

E 1.0 291 0,05 0 104

1.18 341 0,048 0 105

application. In each new version, the classes with higher in-degree grow in number of
public methods and sometimes in number of public fields. Moreover, their cohesion de-
creases over time. A reasonable explanation for this behavior is that due to the fact that
these classes are such great service providers, keeping them in this status by including new
services to attend new classes is the usual practice adopted. This causes the degradation
of the class cohesion, which influences system deterioration.

By those results, we inferred that the process of software evolution occurs in the
following way: as a new class is inserted in the system, instead of refactoring the system
[Fowler 1999], the common practice is usually to aggregate new services in the older
classes. This leads to the swelling of the classes which have already a lot of clients, so
they become less cohesive and have a growing in-degree. The non-refactoring practice
might hence be the cause of the small-world effect in software systems

(a)
Pajek

(b)

Figure 2. (a) Hibernate (version 3.5.1) network and (b) Kolmafia (version 13.7)
network modeled by little house

X Simpósio Brasileiro de Qualidade de Software 
     Artigos Técnicos / Technical Papers

51



Pajek

(a)
Pajek

(b)

Figure 3. (a) The frontier layer and (b) the model layer of the commercial software
(version 1.18) modeled by little house

Figure 4. Little house – The generic macroscopic structure of software network

5.6. The Macroscopic Structure of Software System Networks
For the purpose of discovering a general macroscopic structure of software sys-

tem networks, we first fitted to the bow-tie model some versions of the software systems
analyzed in this work. This analysis was carried out by using Pajek, which also generates
an image of the network and allows its manipulation. Each group from the bow-tie model
corresponds to a component in the network. We drew the picture of network by grouping
the nodes into their respective components. By manipulating those images, we find out
that the connections between the components within the network form an interesting im-
age that matches a well-known graph. Figure 2 shows the resulting images of Hibernate
and Kolmafia. Figure 3 show the resulting images of the frontier layer and the model
layer of the commercial application. The macroscopic structure of software networks we
identified is shown in Figure 4. We call it the little house. This result was massively
observed in the data set evaluated in this work. We preserved the same terminology of
components employed in the bow-tie model. The little house model is a graph in which
a node corresponds to a specific group of classes. In each of these groups, except the
disconnected node, classes are freely connected one to another. The little house is con-
stituted the following nodes. LSCC: is the largest strongly connected component of the
software system. In this component, any class can reach all the other classes of LSCC.
Therefore, every class in LSCC depends upon all the other classes in LSCC, directly or
indirectly. In: classes from in can use any other class of the software system, but they are
not used by the classes which are not in this component. Out: classes from out can be
used by any other class of the software system, but they use only classes which are in this
component. Tendril: classes from tendril use only classes from this component or from
out. Besides, a class from tendril can be used only by classes from tendril, tubes or in.
Tubes: classes from tendril use only classes from this component, out or tendril. Besides,
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Table 10. Evolution of LSCC
Software LSCC first version (#classes) LSCC first version (% of the size) LSCC last version (#classes) LSCC last version (% of the size)

Jsch 16 20 16 14

LogSim 289 32 303 25

Jml 17 10 27 10

JavaGroups 9 2 13 1

DBUnit 16 8 24 7

Hibernate 100 10 477 20

Squirel 40 10 579 47

Junit 22 28 9 4

Jedit 69 20 395 35

Phex 165 41 403 29

Jgnash 276 35 322 11

DrJava 43 2 968 26

Jasper 20 8 150 9

MovieManager 50 78 92 18

FreeCol 5 11 758 70

KolMafia 15 38 748 67

a class from tubes can be used only by classes from tubes or in. Disconnected: a class in
this component have no connection with other classes.

LSCC plays a central role in the system since its classes are strongly connected
one to another, what can make this component hard to be understood, tested and main-
tained. Data of the evolution of this component, shown in Table 10, indicates that LSCC
enlarges over the time. Eleven software systems of the sample increased three times or
more in number of classes and in seven of those programs the percentile of classes in
LSCC also increased substantially. It could be thought that the connections among the
identified components in a software network should be related to the multi-tier architec-
ture. However we did not find evidences to support this hypothesis from our experiments.
A counter-example of this appears in the analysis of the data from the commercial soft-
ware. This system was constructed under the multi-tier architecture and we analyzed the
frontier layer and the model layer separately. In both cases, the relationship among classes
within the system can be modeled by the little house.

The macroscopic structure identified in software systems brings novel informa-
tion to software engineers about the nature of their work subject, especially in the sense
of software maintenance and testing. The presence of a giant strongly connected compo-
nent emphasizes the need of systematic approach of maintenance tasks in the classes of
this component, because a modification in a class within this component can be widely
spread throughout the system. Knowing the way classes are connected one to another can
lead to improvements in test techniques in such way those test tasks can be more efficient.
Furthermore the model can be used as basis to generate artificial data to be used by soft-
ware engineering researchers that usually face problems with finding data from software
systems to validate their algorithms and models.
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6. Conclusion

This paper presents the results of a study about software evolution characteriza-
tion based on concepts of Complex Networks. We analyzed 16 open-source software
systems and one commercial application, in a total of 129 versions. The empirical ob-
servation of data shows that: the density of software network decreases as the software
system grows; the diameter of such networks is short; the classes with higher in-degree
keep this status; such classes are unstable, since they grow in number of public methods
and sometimes in number of public fields, and their internal cohesion degrades. Those ob-
servations yield important insight about the nature of software evolution. How the density
tends to decrease and the classes with higher in-degree tend to have even higher in-degree,
we inferred that the common practice is to insert new requirements into such classes in-
stead of refactoring the system in order to introduce the new requirements. Thus the
non-refactoring practice might be the reason of the small-world phenomenon in software
networks and its implications. The small diameter of a software network, for instance,
can lead to ripple effects of errors or maintenance changes.

Our investigations revealed an interesting picture which models the macroscopic
structure of software networks. We called it the little house. We envision that the results
of this study can be used to improve software development tasks, such as maintenance and
test plans, and also can be applied in the construction of artificial data to support research
in Software Engineering. There is much to be done in understanding the processes taking
place inside software systems. Further works need to be carried out to expose details about
the nature of the classes which compose each component in the macroscopic structure
identified in this paper as well as the forces that make appear this kind of relationship
among classes.

This work was sponsored by FAPEMIG-Brazil, as part of the project CONNECTA Pro-
cess: CEX APQ-3999-5.01/07.
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