
Decoupled Graph-Coloring Register Allocation with
Hierarchical Aliasing

André L. C. Tavares
DCC - ICEx/UFMG

andrelct@dcc.ufmg.br

Quentin Colombet
ENS Lyon

quentin.colombet@ens-
lyon.fr

Mariza A. S. Bigonha
DCC - ICEx/UFMG

mariza@dcc.ufmg.br

Christophe Guillon
STMicroelectronics

christophe.guillon@st.com

Fernando M. Q. Pereira
DCC - ICEx/UFMG

fpereira@dcc.ufmg.br

Fabrice Rastello
ENS Lyon

fabrice.rastello@ens-
lyon.fr

ABSTRACT
Recent results have shown how to do graph-coloring-based
register allocation in a way that decouples spilling from reg-
ister assignment. This decoupled approach has the main
advantage of simplifying the implementation of register al-
locators. However, the decoupled model, as described in
previous works, faces many problems when dealing with reg-
ister aliasing, a phenomenon typical in architectures usually
seen in embedded systems, such as ARM. In this paper we
introduce the semi-elementary form, a program representa-
tion that brings decoupled register allocation to architec-
tures with register aliasing. The semi-elementary form is
much smaller than program representations used by previous
decoupled solutions; thus, leading to register allocators that
perform better in terms of time and space. Furthermore,
this representation reduces the number of copies that tra-
ditional allocators insert into assembly programs. We have
empirically validated our results by showing how our repre-
sentation improves two well known graph coloring based al-
locators, namely the Iterated Register Coalescer (IRC), and
Bouchez et al.’s brute force (BF) method, both augmented
with Smith et al. extensions to handle aliasing. Running
our techniques on SPEC CPU 2000, we have reduced the
number of nodes in the interference graphs by a factor of
4 to 5; hence, speeding-up allocation time by a factor of 3
to 5. Additionally the semi-elementary form reduces by 8%
the number of copies that IRC leaves uncoalesced.

Categories and Subject Descriptors
H.4 [Programming Language Applications]: Register
Allocation—complexity measures, performance measures

General Terms
Algorithms, Experimentations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCOPES ’11, Jun 27-28 2011, St. Goar, Germany Copyright 2011 ACM
978-1-4503-0763-5/11/06...$10.00.

1. INTRODUCTION
Register allocation is the problem of finding storage loca-
tions to the values manipulated by a program. Traditional
computer architectures provide two storage alternatives: mem-
ory and registers. Registers are much faster, yet, they come
in very small number. For instance, the ARM processor
contains only twelve general purpose registers. Therefore,
compilers should use registers judiciously. If the allocator is
unable to find a register for a variable, then this variable is
stored in memory – an event normally called spilling.

Many recent register allocation algorithms follow a decoupled
approach that separates spilling from register assignment [1,
12, 13, 19, 20, 23, 24, 27]. This model has important ad-
vantages. First, the separation between these two phases
yields simpler and more modular implementations: differ-
ent spilling heuristics can easily be combined with different
register assignment and coalescing methods. Second, the
fact that the local register pressure is easy to infer in decou-
pled designs, simplifies compiler optimizations that might
change register pressure leading to further spilling, such as
redundancy elimination, code motion and pre-pass schedul-
ing. The local register pressure is the number of registers
necessary to allocate the variables alive at some program
point. Key to decoupled models is the concept of live range
splitting, which allows allocating a variable to different reg-
isters along distinct parts of its live range. This very notion
of live range splitting makes it difficult to extend decoupled
algorithms to architectures with aliased register banks.

Quoting Smith et al. [26], “two register names alias when
an assignment to one register name can affect the value of
the other”. Aliasing is present in four general purpose x86
registers: AX, BX, CX and DX. Each of these registers has
two aliases, e.g., the 16-bit register AX is divided into two
eight-bit registers: AH and AL. Aliasing is also found in
floating point registers of many architectures typical of the
embedded world, such as ARM, where single precision reg-
isters combine to make double precision ones. Architectures
like ARM Neon go further, allowing the combination of two
doubles into a quad-precision register. There exist also more
irregular architectures, such as the Carmel model, used in
digital signal processors, showing overlapping registers of 16,
32 and 40 bits [25].

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

1

In order to apply decoupled register allocation onto archi-
tectures with aliasing, it is necessary to perform live range
splitting. Previous solution would split live ranges between
each pair of consecutive instructions [20], creating a pro-
gram representation called Elementary Form. However, this
level of live range splitting makes traditional register allo-
cators, like those based on PBQP [25], ILP [15] or graph
coloring [8], impractical, because the number of program
variables increases too much.

In this paper we solve this problem introducing a program
representation that we call Semi-Elementary Form. Pro-
grams in this format provide the essential property required
by a decoupled register allocator: if the local register pres-
sure is lower than the number of available registers at every
program point, then spill-free register allocation is possi-
ble for the whole program without requiring any additional
live-range splitting. Because the semi-elementary form does
much less live range splitting than the original elementary
form, it fosters decoupled allocators that are faster, require a
smaller memory footprint and, as a side effect, yield better
register coalescing when submitted to traditional coalesc-
ing heuristics. We also introduce a way to merge the live
ranges of variables – the local merging test – which reduces
even more the size of the program’s interference graphs, and
speeds-up allocation time considerably. Finally, we provide
as a bonus an improved spilling test, that might produce less
spilling than the simplification heuristics traditionally used
in graph-coloring based register allocation.

The semi-elementary form speeds up register allocation; how-
ever, it is not a new register allocation algorithm. Hence,
it is not meant to increase the performance of the assem-
bly code produced in any substantial way. Although it has
the side effect of reducing the number of copies in the final
assembly code, this reduction is too small to provide perfor-
mance gains. Nevertheless, it considerably simplifies register
allocation, and we believe that this is the best way to handle
register aliasing in decoupled allocators. To substantiate this
claim, we have adapted two different graph coloring-based
register allocators to run in a decoupled fashion: George and
Appel’s Iterated Register Coalescer [11] and Bouchez et al.’s
Brute Force Coalescer [6]. We show, via experiments, that
building semi-elementary form programs is fast. Further-
more, allocators working on semi-elementary form programs
consume much less memory than elementary-form based ap-
proaches, and are much faster. In our experiments we com-
pile the SPEC CPU 2000 benchmarks to miniIR assembly,
using 8, 16 and 32 aliased registers.

The rest of this paper is organized as follows: Section 2
explains in more details decoupled register allocation. Sec-
tion 3 introduces our contributions, and Section 4 provides
experimental data supporting our techniques. Finally, Sec-
tion 5 concludes this paper.

2. REGISTER ALLOCATION VIA GRAPH
COLORING

Register allocation is a problem with many different solu-
tions; however, the most popular approach seen in the liter-
ature is based on graph coloring. This model was first intro-
duced by Gregory Chaitin in the early eighties [8]. In order
to do register allocation we color the interference graph of

 a = •
p1
 B,f = •

 c = •
p3
 d = B
p4
 E = c

• = a,d,E

 E = B
p6
 d = a,f

L1

L2
L3

L4

a

B

c d

E

 a0 = •
 st a0
p1
 B,f = •

 c = •
p3
 d = B
p4
 E = c

 ld a1
• = a1,d,E

 E = B
p6
 d = a0,f

L1

L2
L3

L4

B

c d

E

a0

a1

(a) (b)

(c) (d)

f

f

p7 p8

p5
p2

p2

p7
p8

p5

Figure 1: Traditional graph-coloring-based register
allocation. (a) Example program. (b) Program’s in-
terference graph; square nodes plus upper case let-
ters denote double precision values. (c) Program
after spilling variable a. (d) New interference graph.

the source program. The interference graph contains a ver-
tex for each variable in the source program, and two vertices
are adjacent if, and only if, their corresponding variables are
alive at the same program point. Here, a program point is
the region between two consecutive instructions. A variable
v is alive at a program point p if the control flow graph of
the program contains a path from p to an instruction that
uses v, which does not cross a place where v is redefined.
Figure 1(a) shows an example program, and Figure 1(b)
outlines its interference graph. In this example, we assume
that lower-case names denote 32-bit floating-point variables,
while upper-case names denote 64-bit doubles. If we assume
an architecture with two 64-bit registers, each having two
32-bit aliases, then the graph in Figure 1(b) is not colorable.
That is, no register assignment keeps all the variables simul-
taneously alive in registers. The register allocator normally
solves this problem via spilling. In Figure 1(c) we have sent
variable a to memory; thus, creating two new variables, a0,
at the definition point of a, and a1 at its use point. The new
interference graph, given in Figure 1(d) is now colorable.

Graph coloring-based register allocators tend to be iterative.
In case a variable is spilled, parts of its live-range are bound
to new variables, the interference graph is rebuilt, and the
allocation process re-starts. As an example, Figure 2 depicts
the Iterated Register Coalescing algorithm [11]. The itera-
tive approach has two negative effects: first, it complicates

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

2

build

simplify

coalesce freeze potential
spill select

actual
spill

rebuild graph if there were actual spills

Figure 2: Iterated register coalescing, as taken from
Appel and Palsberg [2].

the design of the algorithm, as Figure 2 clearly illustrates.
Second, it decreases the speed of the algorithms, which must
re-construct, or at least update, the interference graph, and
re-do allocation steps that are, in many cases, redundant.

2.1 Decoupled Register Allocation
A decoupled register allocator separates the spilling and the
register assignment phases. Hence, once we are done with
the spilling phase, the existence of a register assignment that
keeps all the live variables in registers is guaranteed. In order
to provide this guarantee, a decoupled algorithm relies on
the following property:

Property 1. The maximum local register pressure at any
program point equals the global register pressure.

Property 1 is not present in every program; however, some
intermediate representations, such as SSA-form [9] provide
it in the absence of aliasing. Due to this property, spilling
- the lowering of register pressure - can be done directly on
the code, without the need of a data structure that gives a
global program view, such as an interference graph. Even
more, provided that all the registers have the same size,
the local register pressure at a given point is the number of
variables alive at that point; hence, the spill test is reduced
to counting the number of variables simultaneously alive. A
decoupled algorithm in general follows these four steps:

1. lower the register pressure at each program point, us-
ing any heuristics for variable spilling, i.e [1], until the
variables alive at each point can be colored;

2. use live range splitting to guarantee Property 1. In
general copies with a parallel semantic are used to split
live-ranges [3, 13]. For an example, see Figure 3(a);

3. assign variables to registers [3, 12]. The register allo-
cator must be able to find a way to assign registers to
variables without causing further spills;

4. get rid of φ-functions and parallel copies [4, 21].

Notice that, during the spilling phase it is not necessary to
do live range splitting. Instead, for each instruction, we try
to color the interference graph formed by the variables alive
in, out and through that instruction, spilling variables until
this coloring becomes possible.

The advantages of decoupled register allocation: The
first advantage is simplicity. Register allocators tend to be

very complicated. As an example, about 20% of the lines
of code of LLVM’s [16] machine independent code generator
are exclusively related to register allocation. Thus, from an
engineering point of view, it is interesting to design register
allocators that are modular. The decoupled approach fills
the role very well, because it separates spilling from regis-
ter assignment; hence, different heuristics and implementa-
tions can be easily combined and independently maintained.
From an algorithmic point of view, decoupling simplifies and
makes more effective both spilling and coalescing, because
these steps have impact on the register pressure, and natu-
rally benefit from an easier way to infer this quantity.

The second advantage is a better integration with other com-
piler optimizations, due to Property 1. Many compiler op-
timizations, such as pre-pass scheduling, if-conversion, code
motion, loop-unroll and jam and partial redundancy elimi-
nation, may change the program’s register pressure. Thus,
these optimizations have a simpler and faster implementa-
tion if its possible to determine changes in register pres-
sure accurately via local tests. Traditionally, the calculation
of the register pressure at a certain program point needs
a global view of the program; however, live range splitting
allows it to be computed locally.

Decoupled register allocation and aliasing Lee et al.
[17] have proved that register allocation with two-level alias-
ing is NP-complete even for SSA form programs made of a
single basic block. Thus, in face of aliasing, the SSA form
conversion is not extensive enough to guarantee Property 1;
instead, elementary form can be used. We convert a pro-
gram to elementary form via the insertion of parallel copies
between each pair of consecutive instructions. Figure 3(a)
shows our running example in elementary form. The inter-
ference graph of the new program, conveniently called an
elementary graph, is given in Figure 3(b). The dotted lines
denote affinity edges: it is interesting to assign nodes linked
by such edges to the same color, because every time we fail
to do it, a copy instruction will make its way into the final
assembly program. Elementary programs have very simple
structure: their interference graphs are a collection of many
graphs that consist of two cliques only. Many problems that
are NP-complete in general have polynomial time solution
for such graphs. Thus, determining the local register pres-
sure has a polynomial time solution, even when registers are
allowed to have single, double or quad precision. The vari-
ables in the program given in Figure 3(a) can be allocated
into our register bank made of two 64-bit registers and four
aliased 32-bit registers; an improvement on the original pro-
gram seen in Figure 1(a). This result is not a coincidence:
any program can be transformed into the elementary form,
and the elementary form program never requires more reg-
isters than the original code.

A heavy price incurred by the conversion into elementary
form is the growth in the program size. For instance, the
interference graph in Figure 1(b) has six nodes, but the cor-
responding elementary graph seen in Figure 3(b) has 26.
This explosion is observed in actual benchmarks. Figure 4
compares the size of program functions taken from SPEC
CPU 2000 before and after the conversion into elementary
form. This transformation tends to increase quadratically
the number of variables in the intermediate representation.

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

3

 a0 = •
p1 :a1 = a0

 B1,f1 = •

 c2 = •
p3:a3,B3,c3=a2,B2,c2

 d3 = B3

p4:a4,d4,c4=a3,d3,c3

 E4 = c4

• = ax,dx,Ex

 E6 = B6

p7:a7,E7,f7=a6,E6,f6

 d7 = a7,f7

L1

L2

L3

L4

(a)

p2:a2,B2 = a1,B1 p6:a6,B6,f6 = a1,B1,f1

p8:ax,dx,Ex=a7,d7,E7p5:ax,dx,Ex=a4,d4,E4

a0

a1

B1

a2 B2

c2

a3 B3

c3d3

a4c4

d4 E4

a6

B6

E6

a7E7

d7

axEx

dx

(b)
f1 f6

f7

Figure 3: (a) The program from Figure 1 in ele-
mentary form. (b) The interference graph of the
elementary program.

0

5000

15000

25000

0 100 200 300 400 500
Number of variables in the original trace

N
um

be
r o

f v
ar

ia
bl

es
 in

 e
le

m
en

ta
ry

 fo
rm

 tr
ac

e

Data extracted from 4054
program traces taken from
SPEC CPU 2000.

Figure 4: The growth in the number of program
variables due to the conversion to elementary-form.

3. OUR CONTRIBUTIONS
In order to explain our ideas, we have adapted two different
graph coloring based register allocators to run in a decou-
pled fashion in face of register aliasing. The first is the
Iterated Register Coalescer of George and Appel [11], and
the other is the Brute Force Coalescer of Bouchez et al [6].
Figure 5 shows our version of these algorithms. Comparing
Figure 5(a) and Figure 2 it is easy to notice that the de-
coupled version has less iterations between its phases. Both
these algorithms use the extensions of Smith, Ramsey and
Holloway [26] to deal with aliasing, which we re-introduce
later. Most of the phases that constitute each algorithm,
i.e, simplify, coalesce, freeze and select have been thoroughly

split simplify

coalesce

freeze select patch

spill

split

simplify patchspill

briggs

george

brute

select

(a)

(b) coalesce

Figure 5: (a) A decoupled re-implementation of the
Iterated Register Coalescer. (b) A decoupled re-
implementation of Bouchez’s Brute Force coalescer
that handles aliasing.

described in previous works [11, 6]. Decoupled register allo-
cators in general also use a phase called patch, related to the
implementation of parallel copies. After register allocation,
the compiler must implement these parallel copies, using the
instructions present in the target architecture. Parallel copy
patching has been thoroughly described before [4, 21].

The brute-force algorithm (BF), outlined in Figure 5(b),
has a more modular design than the iterated register co-
alescer. After spilling is performed, BF orders the copies in
the source program according to their profitability, and try
to coalesce them following this ordering. The profitability
of a copy is a measure of how much improvement its elim-
ination can bring to the target code. Copies inside deeply
nested loops tend to be more profitable than copies outside
loops. We say that the coalescing of vertices a and b is
conservative if the interference graph that we obtain after
collapsing these nodes into a single node ab can still be al-
located with the available registers. Brute Force uses one
of the following three tests, in order, to guarantee that the
coalescing of copy a = b is conservative:

1. Briggs(a, b) [7]: the merging of a and b will create
a node ab with fewer than K neighbors with squeeze
greater than K.

2. George(a, b) [11]: assuming that a is a pre-allocated
variable, then every neighbor of a already interferes
with b, or has squeeze less than K. Notice that we
must also try George(b, a), as this rule is asymmetric.

3. Brute(a, b) [6]: if we merge a and b, the new graph can
be colored with K colors. We can perform this check
in polynomial time via the simplification heuristics.

3.1 Decoupling Spilling from Register Assign-
ment in Face of Aliasing

Decoupled register allocation is interesting as long as it does
not cause more spilling than traditional graph-based regis-
ter allocators do. The elementary form is an easy way to
provide this guarantee. Given that the conversion to ele-
mentary form divides the source program in regions that

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

4

are very small and simple, the problem of determining the
local register pressure for each region has polynomial time
solution, at least for architectures with quad, double and sin-
gle registers, such as x86, ARM, PowerPC and SPARC. The
polynomial time solution still holds in face of pre-allocation,
a phenomenon caused by architectural constraints that force
variables to be assigned to particular registers [20].

Checking colorability via Smith’s simplification test
Graph-based algorithms normally rely on Kempe’s technique
[14] to remove nodes with degree less than K – the number of
registers – until either the graph is empty, or all the nodes
have higher degree. If a graph can be completely simpli-
fied via Kempe’s method, then the graph is called greedy K
colorable [5]. In the case of both the Iterated Register Coa-
lescer, and the Brute Force coalescer, the spilling phase must
guarantee that the program it passes forward to the other
phases of the register allocator has an interference graph
that is greedy K colorable. In the presence of aliasing, the
simple test based on the node degree is not enough to check
for greedy K colorability. A correct test has been devised
by Smith et al. [26], using Fabri’s idea of squeeze factor [10].
In Smith et al.’s framework, the computer architecture pro-
vides a number of register classes, which might alias in sev-
eral ways. Each variable must be assigned to registers in a
specific register class. The squeeze of a variable is the max-
imum number of registers, in its class, that could be denied
to it, given a worst case allocation of its neighbors. Thus,
a node v can be simplified if the worst case allocation of all
neighbors of v is less than v’s squeeze factor. Figure 6 illus-
trates this idea, assuming an architecture with double (R)
and single (r) precision register classes. Figure 6(a) shows
a subgraph of the graph given in Figure 3(b). Each vertex
has been augmented with the squeeze factor of the variable
that it represents, as determined by Smith et al.’s simpli-
fication criterion. For instance, variable B6 needs a double
precision register, and has two neighbors, which could be as-
signed to aliases of different double-precision registers; thus,
its squeeze factor is 2. We use the suffix R in B6’s squeeze
factor to indicate its register class. The squeeze of a vari-
able is bounded by the number of registers in this variable’s
class; hence, the squeeze of a6 or f6 is 4, although the worst
case allocation, assuming an unbounded number of registers
in class r would be 5 for any variable. Notice that the inter-
ference graph of the variables alive between two consecutive
instructions is very simple: it consists of two cliques only.
Thus, we can compute the squeeze factor of each variable
simply counting variables simultaneously alive.

A correct spilling test that handles aliasing and pre-
coloring: A fundamental question that concerns a decou-
pled register allocator is “which spill test should we use to
ensure that after spilling we will be able to color the pro-
gram’s interference graph using the algorithm’s graph color-
ing technique?” To answer this question one must be aware
that after spilling and live range splitting no more spilling
must be necessary. The graph coloring technique of choice is
an important player in this game because a given heuristic
may fail to color a graph that is actually colorable, after all,
graph coloring is a NP-complete problem. Many allocators
use Kempe’s simplification test as the coloring heuristics.
As we have discussed before, we are no exception.

a6

B6

E6

f6 a6

B6

E6

f6

f6

a6E6B6

E6B6

a6 f6

(b)

(c)

(a)

a6 f6

✓
✓
✓
✓

a6

E6/B6f6(d)

2R

2R

4r

4r

(r1)a6

(R1)B6

(R1)E6

(r0)f6

Figure 6: Smith et al. Simplification test. (a) A
connected component of the graph in Figure 3(b).
The nodes are labelled with their squeeze factors,
e.g., the worst case allocation of E6’s neighbors takes
off two registers of class R. (b) Worst case alloca-
tion for each variable. (c) A tight allocation pro-
duced by a puzzle solver [20]. (d) Variable merg-
ing guided by the puzzle solver. Architectural def-
inition: r = {r0, r1, r2, r3}, R = {R0, R1}. Aliases:
{(r0, R0), (r1, R0), (r2, R1), (r3, R1)}.

The notion of greedy K colorability, based on Kempe’s test,
is an over-approximation of colorability; however, this ap-
proximation is tight if we do not have to handle register
aliasing. That is, in the absence of aliasing, if G is an ele-
mentary graph, then G is greedy K colorable if, and only if,
G is K colorable. The proof of this statement follows from
Bouchez’s result for SSA-form programs without aliasing [5].
Therefore, without aliasing, answering the initial question is
very simple: the spilling test is a simple as counting the
number of variables alive at each program point.

In the presence of aliasing, greedy K colorability is different
than colorability, as the example in Figure 6(a) shows. Fur-
thermore, a combination of pre-coloring and aliasing may
lead to situations in which every connected part of an ele-
mentary graph is greedy K colorable, but the global graph
is not, as the example in Figure 7 illustrates. We call the
interference graph formed by the live ranges live in, out and
across an instruction local. Pre-colored nodes bind many lo-
cal graphs together. Thus, the global squeeze factor of pre-
colored nodes may be larger than their squeeze factor taken
into consideration at each local graph. The consequence of
this observation is that for a decoupled approach that per-
forms the coalescing/coloring steps via Smith et al.’s method
to be correct in the presence of aliasing and pre-coloring, we
need to perform the spill test carefully. In other words,
we must start the simplification process from the uncolored
nodes, leaving the pre-colored nodes to the end. Theorem 1
proves the correctness of this procedure.

Theorem 1. If every connected component of an elemen-
tary graph is greedy K colorable starting the simplification
process from the uncolored nodes, then then whole graph is
greedy K colorable.

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

5

4r

4r

3R 3R

8r

3R 3R 3R 3R

8r

B

rx

ry

A

(b)(a)

B

rx

ry

A DC

4r

4r

3R 3R

D

rx

ry

C

Figure 7: (a) Two greedy K colorable elementary
graphs. (b) The whole graph is non-greedy K col-
orable.

Proof. Any non-pre-colored node interferes only with
nodes in its connected component, even taking the whole
graph into consideration. Hence, the squeeze factor of these
nodes is the same in the local and global interference graph.
After these nodes are simplified, we are left with pre-colored
nodes only. These nodes must be simplifiable, because they
represent the registers in the actual architecture.

Improving Smith’s test with live range merging As-
suming only two double-precision registers, the squeeze-based
simplification test would fail to simplify any node in Fig-
ure 6(a), and some variable would have to be spilled. On the
other hand, there exists a register assignment that accom-
modates all the variables, as Figure 6(c) shows. In order to
improve Smith et al.’s simplification test, we do live range
merging whenever we are unable to simplify any variable.
We use the following algorithm:

• Let P be the set of variables alive in (I), out (O), and
across (A) a given program instruction ι.

• While P 6= ∅

– if ∃v ∈ P : v is simplifiable

∗ simplify(v)

∗ P = P \ {v}
– else if ∃ o ∈ O and i ∈ I: size(o) = size(i)

∗ Let i, o be the largest pieces that fullfilled the
condition

∗ a = merge(i, o)

∗ P = P \ {i, o} ∪ {a}
– else

∗ Let v ∈ A, such that v is not used nor defined
in instruction ι:

∗ spill(v)

∗ P = P \ {v}

When merging variables, we start with pairs of variables in
register classes with the largest size, because this strategy
reduces more drastically the squeeze factor of the other vari-
ables alive in that program point. Another important detail
of our algorithm is the fact that we use live range merging
with discretion. If we are stuck in the simplification pro-
cess, then we choose only one pair of pieces, merge them,

A b

A
b

C e

C
b

A

e

b

byte f(int A, byte b) {
 while (true) {
 int C;
 byte e;
 C, e = div (A, b);
 A = C + e;
 }
 ret b;
}

Figure 8: Example showing the deficiencies of tra-
ditional coalescing techniques.

and re-try the simplification test. We proceed in this care-
ful fashion because merged variables will be assigned the
same register. This restriction might have the undesirable
side effect of constraining too much the register coalescer
that will run after spilling takes place.

We do no apply live range merging at program points that
contain pre-allocated variables. Pre-allocation might pro-
hibit the merging of live ranges, and, in face of this phe-
nomenon we fall back to Smith et al.’s simplification test.

3.2 Semi-Elementary Form
Traditional coalescing tests, such as George’s [11] or Briggs’s
[7] have a number of disadvantages if used on elementary
graphs. The first disadvantage is in terms of runtime. Each
of these tests would have to be invoked once for each affin-
ity edge in the elementary graph. The second disadvantage
concerns the quality of the code produced. In the presence
of aliasing, the traditional coalescing techniques may fail to
eliminate copies, even though they are not necessary. For
instance, Figure 8 shows a program in elementary form, in
which every copy could be completely coalesced away. How-
ever, neither George nor Briggs rules would be able to coa-
lesce the inner copies. This limitations happen because these
rules are applied sequentially. Coalescing would be possible
if all the affinity edges were analyzed in parallel.

The rational behind the elementary form is to reduce the
amount of spilling during register allocation. With such
purpose, the conversion to elementary form splits the live
ranges of the variables at every program point. However,
most of these splits are unnecessary. We have developed
two techniques to reduce the size of the program’s interfer-
ence graph. The first technique, that we call the critical node
test, is based on a criterion that avoids splitting live ranges
whenever possible. We call the program representation that
results from this method semi-elementary form. The second
technique merges variables, whenever it is conservative to do
so. In order to perform this merging we rely on a method
that we call the local merging test. We explain these two
strategies in the rest of this section.

A criterion to avoid live range splitting An elementary
graph if formed by many unconnected components, which
represent the live ranges of variables at some particular pro-

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

6

gram point. Therefore, we expect a lot of redundancies be-
tween graphs formed from consecutive instructions. Given
two instructions, the guider and the follower, all the vertices
that correspond to variables live-in at the follower are con-
nected through affinity edges to the vertices in the guider.
The only vertices in the follower’s graph which have no affini-
ties for vertices in the guider’s are those nodes that represent
variables defined in the follower instruction. We call them
critical nodes. Normally an instruction defines at most one
variable; hence, we expect to find at most one critical node in
the follower, and this test can be performed quickly. There
exist, of course, architectures which contains instructions
that write into more than one register. For instance, in x86
we have mul, div, lodsb, etc. In this case, we must perform
the critical node test once for each variable defined in the
instruction. In light of these observations, our criterion to
avoid live range splitting is as follows:

The critical node test: if every critical vertex
in the follower’s graph has a squeeze factor less
than K, then it is not necessary to insert a par-
allel copy between guider and follower to achieve
Property 1.

Theorem 2. Let Gg and Gf be the interference graph at
the guider and the follower, as previously defined. If Gg is
greedy K colorable, then the graph that results from merging
Gg and Gf via the critical node test is greedy K colorable.

Proof. The proof is straightforward: if the merging is
done, the resulting graph is formed by all the nodes from
Gg plus the critical nodes in the follower. Because of our
criterion we know that every critical node can be simplified.
Once they are simplified, we fall back into Gg, which, by
hypothesis, is greedy K colorable.

Figure 9 illustrates our method when applied to the se-
quence of instructions from program point p1 to p5 in Fig-
ure 3(a). We have augmented the graphs in Figure 9(a) with
the squeeze factor of each node, and we have highlighted
the squeeze factor of each critical node in the next figures.
Considering two double precision registers available, we can
avoid all the parallel copies but the last, because the squeeze
of E4 is 4. On the other hand, if applied on the program in
Figure 8, the critical node test would avoid every live range
splitting. In this case, the semi-elementary form program
equals the original program converted to SSA form.

The critical node test avoids splitting live ranges unnecessar-
ily. As the experiments from Section 4 show, the interference
graphs of semi-elementary form programs that we found are
about eight times smaller than the corresponding graph of
elementary-form programs; however, the former graphs are
still approximately twice as big as the interference graphs of
the original programs. In order to avoid this growth, we can
go even further, merging live ranges of non-affinity related
variables whenever it is conservative to do so. We call this
type of preprocessing the local merging of live ranges, and
explain it in the rest of this section.

The local merging of live ranges To further reduce

a1/2 B1/2

c2

f1

a1 B1

a2 B2

c2

f1

a3 B3

c3d3

a4 c4

d4 E4

a3 B3

c3d3

a4 c4

d4 E4

f1

a1/2/3 B1/2/3

c2/3d3

a4 c4

d4 E4

3r

2R

3r

3r 2R

3r4r

2r 2R

4r

2r
4r
4r

2R

3r

2r

(a) (b) (c)
✓

✓

Figure 9: Construction of semi-elementary form. (a)
a subgraph of the graph in Figure 3. (b) and (c)
Subgraphs that result from avoiding the insertion of
two parallel copies. We cannot avoid the last parallel
copy, otherwise we would build a graph that is non
greedy K colorable.

the size of the interference graph, we can merge some non-
affinity related variables, using a technique based on punc-
tual coalescing [22]. Punctual coalescing is a strategy used in
conjunction with puzzle-based register allocation to remove
copies in the target code. The punctual coalescer traverses
the dominator tree of the source program, analyzing one in-
struction at a time. The algorithm processes the interference
graph formed by variables alive around this instruction, re-
membering the allocation of the previous instruction. It is a
locally optimal approach; that is, given only the knowledge
of the variables alive across two consecutive instructions, it
finds the largest number of matches between variables that
do not compromise Property 1. We use the results that we
get from the punctual coalescer to design a local live range
merging method. Our live range merging technique based
on punctual coalescing is given below:

• For each pair of consecutive instructions, guider and
follower inside a basic block, let Gg and Gf be the local
interference graphs that denote the register allocation
problem for each instruction.

• We let the punctual coalescer [22] place in the same
registers the vertices that have affinities. The punctual
coalescer tends to maximize the number of matches
between two consecutive instructions.

• For each pair of same-size variables u ∈ Gg, and v ∈
Gf , that have been assigned the same register r:

1. If the vertex uv that results from merging u and
v does not interfere with any vertex w that has
been assigned r or an alias of r by the punctual
coalescer, then replace u and v by uv. This type
of interference might happen if u and v have non-
contiguous live ranges, and w is alive between the
kill site of u and the definition site of v.

• For each s denoting a variable defined in the follower:

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

7

a0d0

f0C0

g1e1

f1C1
b1

a0
C0

C1

f0
d0

f1
g1 e1b1

C0 = d0

b1,e1,g1 = f1,C1

Live in: a0, d0

Live out: b1, e1, g1

(a) (b)

(c) (d)

p1: C1,f1 = C0,f0

a0 C0/1

d0e1

f0f1g1

b1

Figure 10: A constructed example showing punctual
merging. (a) The elementary-form program. (b)
The interference graph. (c) The solution of punctual
coalescing. (d) The solution of punctual merging.

1. If s has a squeeze factor greater than the number
of registers in the register class of s, then undo
every merging of the previous step.

We only merge live ranges inside the same basic block, be-
cause, by merging non-affinity related variables, we may
eliminate coalescing opportunities. As we show in Section 4,
punctual merging decreases the capacity of both, the Iter-
ated Register Coalescer and the Brute Force coalescer to
eliminate copies in the final assembly code. Figure 10 illus-
trates punctual merging. We have used a different example
this time, because our running example from Figure 3 is
not complex enough to exercise the interesting aspects of
punctual merging. Notice that the critical node test, when
applied on Figure 10(b) would only merge the variables C’s
and f’s. However, assuming a solution of punctual coalesc-
ing that places variables f0, f1 and g1 into the same column,
we can also merge these pieces. The same happen with –
non-contiguous – variables d0 and e1. On the other hand,
we cannot merge variables a0 and b1, because C0 and C1
have been allocated to aliased of the registers assigned to a0
and b1. If we merged a0 and b1, then the resulting variable
would interfere with both C0 and C1.

4. EXPERIMENTS
Testing environment: The algorithms were implemented
in Python, producing code to a prototype architecture called
MiniIR 1, which is based on the YAML 2 serialization for-
mat. YAML is used by STMicroelectronics Inc to quickly
prototype hardware. MiniIR provides a minimalist textual
machine level intermediate representation to be used for ex-
perimental tools. We report numbers for the x86 architec-
ture, which we described in miniIR (Figures 13, 14 and 15),

1http://www.assembla.com/wiki/show/bE6Ve4RQir36HF
eJe5cbLr
2http://www.yaml.org/

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Input  Elementary  Semi‐Elementary  Local‐Merging 

8 registers  16 registers  32 registers 

Figure 11: Number of nodes, in millions, of the in-
terference graphs of different program representa-
tions. Input: input graph passed to the original it-
erated register coalescing algorithm – the number
of nodes is the number of variables in the source
program.

and for an artificial architecture with 8, 16 and 32 registers,
also described via miniIR (Figure 12). In this case, each
register has 32 bits, and is divided into two 16-bit aliases.
We have checked the validity of each register allocation us-
ing the type-system of Nandivada et al. [18]. We chose to
run our experiments on SPEC CPU 2000, which we have
compiled into MiniIR using LLVM 2.7 [16].

The spilling approach: All the numbers in this section
refer to greedy K colorable interference graphs. That is,
because we do decoupled register allocation, we perform
spilling before doing register assignment. We are using the
simple “spill everywhere” approach: whenever the register
pressure is too high at some program point, we choose the
variable that has the furthest use in a linearization of the
control flow graph, and spill it to memory. We check the
register pressure via the improved Smith test that we have
described in Section 3.1. To spill we replace the definition
of the variable by a store, and each use by a load. We do
not try to re-use loads.

Size of interference graphs: The chart in Figure 11 illus-
trates the effectiveness of the conversion into semi-elementary
form in order to reduce the size of the interference graphs.
The interference graphs of elementary-form programs, on
average, are 800% larger than the interference graphs of the
original programs. This difference falls down to 200% if
we use semi-elementary form instead. If we do local merg-
ing, then we obtain interference graphs that are even smaller
than the graphs produced for the original program, when we
use eight registers only. The graphs tend to become larger
as more registers are taken into consideration, because the
amount of spilling decreases, but the proportion of variables
having different sizes remains the same. Thus, although we
spill less when more registers are available, we still must
perform live range merging to avoid spilling, as we do in
Figure 1. This fact also explains why the input graphs are
smaller when we have more registers available: in this case,
less spilling will happen, and fewer variables will be created
to hold the source/destination of stores/loads.

Allocation time: The size of the interference graph has

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

8

0 

10 

20 

30 

40 

50 

60 

8 registers  16 registers  32 registers 

Elementary  Semi‐Elementary  Local‐Merging 

Figure 12: Allocation time, in hundreds of seconds,
for different kinds of interference graphs.

a direct impact on the allocation time, as Figure 12 shows.
Considering eight registers only, allocation in semi-elementa-
ry form is 3.1 times faster than in elementary form. This
different increases to 3.3 times if we perform local live range
merging. With 32 registers the difference is even larger.
Semi-elementary form speeds-up register allocation by a fac-
tor of 4.7x, and local merging moves this factor to 5.5x.

To put these results in perspective, let’s consider the largest
function that we found in our benchmark, assuming eight
registers. This function, in SSA-form, has 10,163 variables.
The interference graph of the elementary program contains
99,364 nodes. On this graph, IRC takes 4,544 seconds. This
is 49.40x slower than the punctual coalescer [22], which does
not build an interference graph. The semi-elementary form
program has an interference graph with 19,024 nodes. In
this case, IRC is 5,30 times slower than the punctual coa-
lescer. After local live range merging we have a graph with
13,764 nodes, in which IRC is 1.82x slower than punctual
coalescing. Thus, IRC is 27.2x faster on a graph after local
live range merging than on an elementary graph.

Measuring the effectiveness of live range merging
on the register coalescers The semi-elementary form im-
proves the effectiveness of copy coalescing, as we show in
Figures 13, 14 and 15. Figure 13 shows only the result of
IRC using Smith et al.’s [26] extensions, implemented ac-
cording to Figure 5(a). The algorithm executing over el-
ementary graphs left 3418 copies on the SPEC CPU 2000
programs. On semi-elementary form this number falls down
to 3221 copies. If we perform local live range merging on
the source programs, then IRC leaves 4133 copies on the
assembly code. In these experiments we count only copies
inserted into the program to do live range splitting; that is,
we do not count the copy instructions that were part of the
source program, even though many of them were coalesced
too. In this way, we focus on the ability of the allocators
to handle aliasing. The local live range merging decreases
the coalescing power of IRC, when compared to the results
that we obtain by using semi-elementary form. We spec-
ulate that this fact happens because the punctual merging
constraints too much the interference graph, creating nodes
with larger squeeze factors.

Figure 14 shows the effectiveness of the brute force coa-
lescer implemented using the modifications from Section 3,

0 

400 

800 

1200 

1600 

2000 

gc
c 

bz
ip2
 

ga
p 

cra
0 

mc
f 

vp
r 

gz
ip 

vo
rte
x 

pa
rse
r 

tw
olf
 

Elementary  Semi‐Elementary  Local Merging 

Figure 13: Number of copy instructions left by the
iterated register coalescer (IRC) when running on
different program representations.

0 

300 

600 

900 

1200 

1500 

gc
c 

bz
ip2
 

ga
p 

cra
1 

mc
f 

vp
r 

gz
ip 

vo
rte
x 

pa
rse
r 

tw
olf
 

Elementary  Semi‐Elementary  Local Merging 

Figure 14: Number of copy instructions left by the
brute force coalescer (BF) when running on different
program representations.

following Figure 5(b). Running the algorithm directly on
elementary-form or semi-elementary form programs leaves
2803 copies on the final assembly code produced by the al-
gorithm. Local live range merging degrades the ability of
the coalescer to eliminate copies. In this case, BF leaves
3503 copies on the assembly programs.

Figure 15 compares the three algorithms: brute force (BF),
iterated register coalescing (IRC) and punctual coalescing
[22] in terms of the number of copies that each algorithm
eliminates via coalescing. We have chosen the best configu-
ration for each algorithm: IRC and BF run after simple live
range merging, while punctual coalescing can only run on
elementary-form programs. Confirming previous results [6,
22], the brute force coalescer is the most effective algorithm,
followed by IRC. Confirming previous results [20], the punc-
tual coalescer increases the final assembly programs by 6.8%
on average. This relatively bad result of the punctual coa-
lescer is due to the fact that it is a local approach, which
does not attempt to eliminate copies between basic blocks.

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

9

0 

1 

2 

3 

4 

5 

6 

7 

8 

gc
c 

bz
ip2
 

ga
p 

cra
3 

mc
f 

vp
r 

gz
ip 

vo
rte
x 

pa
rse
r 

tw
olf
 

BF  IRC  Punctual 

Figure 15: Number of copy instructions left by three
different register coalescers, in thousands. IRC and
BF run on semi-elementary form, and the punctual
coalescer runs in elementary form programs.

5. CONCLUSION
This paper has introduced a number of techniques that make
graph coloring-based register allocation more practical and
effective in the presence of live range splitting. Live range
splitting helps to decrease the number of variables spilled
during register allocation. However, in order to produce
code to architectures with aliased register banks, previous
register allocators use a very aggressive form of live range
splitting – the elementary format – which would increase
too much the size of the program’s interference graph, in
addition of potentially causing the insertion of extra copies
into the final assembly code. Our new techniques allows the
register allocators to use all the power of the elementary for-
mat, while at the same time avoiding the size explosion, and
decreasing the amount of copies into the assembly program.

Acknowledgments: This project has been made possible
by the cooperation FAPEMIG-INRIA, grant 11/2009.

6. REFERENCES
[1] Andrew W. Appel and Lal George. Optimal spilling

for CISC machines with few registers. In PLDI, pages
243–253. ACM, 2001.

[2] Andrew W. Appel and Jens Palsberg. Modern
Compiler Implementation in Java. Cambridge
University Press, 2nd edition, 2002.

[3] Florent Bouchez. Allocation de registres et vidage en
mémoire. Master’s thesis, ENS Lyon, October 2005.

[4] Florent Bouchez, Quentin Colombet, Alain Darte,
Fabrice Rastello, and Christophe Guillon. Parallel
copy motion. In SCOPES, pages 1–10. ACM, 2010.

[5] Florent Bouchez, Alain Darte, and Fabrice Rastello.
On the complexity of register coalescing. In CGO,
pages 102 – 104. IEEE, 2007.

[6] Florent Bouchez, Alain Darte, and Fabrice Rastello.
Advanced conservative and optimistic register
coalescing. In CASES, pages 147 – 156. ACM, 2008.

[7] Preston Briggs, Keith D. Cooper, and Linda Torczon.
Improvements to graph coloring register allocation.

TOPLAS, 16(3):428–455, 1994.

[8] Gregory J. Chaitin, Mark A. Auslander, Ashok K.
Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. Register allocation via coloring.
Computer Languages, 6:47–57, 1981.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the
control dependence graph. TOPLAS, 13(4):451–490,
1991.

[10] Janet Fabri. Automatic storage optimization. In CC,
pages 83–91. ACM, 1979.

[11] Lal George and Andrew W. Appel. Iterated register
coalescing. TOPLAS, 18(3):300–324, 1996.

[12] Sebastian Hack and Gerhard Goos. Copy coalescing by
graph recoloring. In PLDI, pages 227–237. ACM, 2008.

[13] Sebastian Hack, Daniel Grund, and Gerhard Goos.
Register allocation for programs in SSA-form. In CC,
pages 247–262. Springer-Verlag, 2006.

[14] A. B. Kempe. On the geographical problem of the four
colors. American Journal of Mathematics,
2(1):193–200, 1879.

[15] Timothy Kong and Kent D Wilken. Precise register
allocation for irregular architectures. In MICRO,
pages 297–307. IEEE, 1998.

[16] Chris Lattner and Vikram S. Adve. LLVM: A
compilation framework for lifelong program analysis &
transformation. In CGO, pages 75–88. IEEE, 2004.

[17] Jonathan K. Lee, Jens Palsberg, and Fernando M. Q.
Pereira. Aliased register allocation. In ICALP, 2007.

[18] V. Krishna Nandivada, Fernando Pereira, and Jens
Palsberg. A framework for end-to-end verification and
evaluation of register allocators. In SAS, pages
153–169. Springer, Kongens Lyngby, Denmark, August
2007.

[19] Fernando Magno Quintao Pereira and Jens Palsberg.
Register allocation via coloring of chordal graphs. In
APLAS, pages 315–329. Springer, 2005.

[20] Fernando Magno Quintao Pereira and Jens Palsberg.
Register allocation by puzzle solving. In PLDI, pages
216–226. ACM, 2008.

[21] Fernando Magno Quintao Pereira and Jens Palsberg.
SSA elimination after register allocation. In CC, pages
158 – 173, 2009.

[22] Fernando Magno Quintão Pereira and Jens Palsberg.
Punctual coalescing. In CC, pages 165–184, 2010.

[23] Hongbo Rong. Tree register allocation. In MICRO,
pages 67–77. ACM, 2009.

[24] Vivek Sarkar and Rajkishore Barik. Extended linear
scan: an alternate foundation for global register
allocation. In LCTES/CC, pages 141–155. ACM, 2007.

[25] Bernhard Scholz and Erik Eckstein. Register
allocation for irregular architectures. In
LCTES/SCOPES, pages 139–148. ACM, 2002.

[26] Michael D. Smith, Norman Ramsey, and Glenn
Holloway. A generalized algorithm for graph-coloring
register allocation. In PLDI, pages 277–288. ACM,
2004.

[27] Christian Wimmer and Michael Franz. Linear scan
register allocation on SSA form. In CGO, pages
170–179. ACM, 2010.

14th International Workshop on Software and Compilers for Embedded Systems (SCOPES) 2011

10

