
Controlling the scope of instances in Haskell

Marco Gontijo Carlos Camarão

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

marcot@ufmg.br camarao@dcc.ufmg.br

Abstract. The Haskell module system aims for simplicity and has a
notable advantage of being easy to learn and use. However, type class
instances in Haskell are always exported and imported between modules.
This breaches uniformity and simplicity of the module system and intro-
duces practical problems. Firstly, it is not possible to define two distinct
instances of the same type class for the same type in a program. Sec-
ondly, instances created in different modules can conflict with each other,
and can make it impossible to import two modules that contain instance
definitions even if the instances are not used in the importing module. In
this paper we present and discuss a solution to these problems, that sim-
ply allows importation and exportation of instances between modules.
We also show how a formal specification of the module system must be
adapted to handle instances and to include our proposal.

1 Introduction

Modern programming languages promote code reuse by supporting polymor-
phism, which allows the same code to be used with distinct data types. There
are different approaches to polymorphism, one of them being ad-hoc, or con-
strained, polymorphism [12], which support code that use overloaded names (or
symbols) and reuse of such code for all data types for which a definition of
the overloaded names have been given. Type classes are a language mechanism
that was introduced in the programming language Haskell for supporting ad-hoc
polymorphism [4]. A type class specifies a set of overloaded names together with
type annotations for them. An implementation of a type class for a data type,
called an instance of the type class, provides definitions for all overloaded names
of that type class. In this paper we propose a change to the module system
of Haskell, a language that is nowadays used in academic research, specially to
study and experiment with topics related to type systems and type inference,
and is also being used in commercial applications1. Our proposal is related to
the way instance definitions are handled in Haskell’s module system.

A module system of a programming language is intended to provide support
for modular construction of software systems. In some languages the module
system provides a type-safe abstraction mechanism, where module definitions

1 http://industry.haskell.org/

can be parameterized so that modules can be instantiated by means of different
kinds of entities. This is the case for example of Standard ML [8] and Scala
[9]. A module system can also merely allow a program to be divided into parts
that can be compiled separately. In some other languages, the module system
provides a mechanism to control the visibility of globally defined names, either
to hide implementation-specific details or to access parts that would otherwise
be out of scope. This is the case for example of Haskell [7, chapter 5].

The Haskell module system aims for simplicity2 and has a notable advantage
of being easy to learn and use. However, this simplicity is partly hindered by
the special treatment given to the scope of instances. As defined in the Mod-
ules chapter of the Haskell 2010 Report [7, section 5.4], a type class “instance
declaration is in scope if and only if a chain of import declarations leads to the
module containing the instance declaration”.

Because of this, it is not possible to define two instances of the same type
class for the same type in a set of modules that are related by an import or
export chain. The modules that compose a Haskell program are always in the
same import or export chain, because the main module imports all the modules
used in the program, directly or indirectly. So, it is not possible to define two
instances of the same type class for the same type in the same program. This is
a serious restriction. The aim is, as in all type system restrictions, to prevent the
programmer from making mistakes. However, even though this design decision
protects the programmer from incurring in some mistakes, it can also disallow
reasonable and correct code. Furthermore, a lot of instances generally become
part of the scope of modules without ever being used. This puts a burden on
compiler writers, which have to consider smart ways of controlling the size of
the scope of modules.

In this paper we propose an extension to the Haskell language, which allows
programmers to control when to export and import instances. This makes it
possible to create instances local to a module or visible only in a subset of mod-
ules of a program, and removes problems brought by importation of modules
that contain definitions of instances for the same type, as described in detail
in section 2 (subsection 2.2). This section also illustrates how the abscence of
control of the visibility of instances makes it hard or impossible to use instances
for a certain type with a special purpose (subsection 2.1). In the third section we
present our proposal, with two possible alternatives, also discussing its imple-
mentation, and a complementary proposal for giving names to instances. This
section includes a discussion about problems that can occur by the adoption of
our proposal, and possible solutions to them. The fourth section describes one
way of extending a published formalization of Haskell’s module system [1] in
order to handle instances, both with and without our proposal. The fifth section
describes related work and the final section concludes the paper.

2 As stated by Simon Peyton-Jones in his interview entitled “The A-Z of Pro-
gramming Languages: Haskell”, available at http://www.computerworld.com.au/

article/261007/a-z_programming_languages_haskell/?fp=16\&fpid=1 .

Fig. 1. Example of the usage of newtype to create a new instance.

import Data.List

newtype IChar = IChar Char

unbox :: IChar -> Char

unbox (IChar c) = c

instance Eq IChar where

(IChar c1) == (IChar c2) = iEq c1 c2

instance Ord IChar where

compare (IChar c1) (IChar c2) = iCmp c1 c2

iSort :: [String] -> [String]

iSort = map (map unbox) . sort . map (map IChar)

2 Background

2.1 Defining special purpose instances

Since it is impossible to define more than one instance for a given type, the
programmer can not, for example, sort the same type of data by using two
different techniques and by applying a function sort. As a more specific example,
a programmer can not use case-sensitive ordering to sort a list of strings in a
part of the program and case-insensitive ordering in another.

A general way to work around this problem is to create a new data type
encapsulation, using newtype, and define a different instance for it. The exam-
ple in Figure 1 illustrates this solution. This works, but it is verbose and not
efficient. In other words, it is “too clunky”3. It is a simple solution that can be
considered good enough for this problem, but it does not address the problem
of the pollution of the global scope.

A less verbose solution exists, with the definition and use of functions that
include additional parameters instead of methods of type classes. For exam-
ple, module Data.List defines function sortBy :: (a -> a -> Ordering) ->

[a] -> [a], which sorts the list passed as the second parameter using the com-
parison function given by the first parameter. This is a simple and useful solution
to this specific problem, but it does not scale well. To apply the same idea gen-
erally, for all functions that use a type class method a similar function having an
additional parameter used instead of the type class method would be necessary.
This is not a reasonable idea because it would add parameters in a lot of cases,
making the code more complicated. Also, it goes against the idea of making code
simpler and more reusable by means of overloading.

2.2 Orphan instances

The global visibility of type class instances create so-called orphan instances.
Orphan instances are instances defined in a module that contain neither the

3 In Lennart Augustsson’s words. http://lukepalmer.wordpress.com/2009/01/25/
a-world-without-orphans/#comment-609 .

Fig. 2. Module T.

module T where

class T a where

t :: a

Fig. 3. Module D.

module D where

data D = D

Fig. 4. Module I1.

module I1 where

import T

import D

instance T D where

t = undefined

i1 :: a

i1 = undefined

Fig. 5. Module I2.

module I2 where

import T

import D

instance T D where

t = undefined

i2 :: a

i2 = undefined

Fig. 6. Main module of
the example of orphan
instances.
import I1

import I2

f :: a -> a -> a

f = undefined

g :: a

g = f i1 i2

definition of the data type nor the definition of the type class. When an instance
is defined in a module where the data type or the type class is defined, it is
guaranteed that there will not exist more than one instance for each type class
and data type. Orphan instances are, thus, important because, considering the
module system, they are the mechanism that enable the creation of distinct
instances of a type class for the same data type.

They are specially troublesome when a module defines other functions that
are not related with the instance. For example, if we have a module T (Figure
2) that defines a type class T, a module D (Figure 3) that defines a data type D,
and two modules I1 (Figure 4) and I2 (Figure 5) that define instances of T for
D, we would not be able to import both I1 and I2 in the same module.

In the example we are more interested in types and visibility control by the
module system than in the body of the presented functions. Therefore, we are
using function undefined, but the problem remains the same if there was a
relevant function body.

Instances defined in I1 and I2 are orphan instances. The problem gets worse
when there is a need to use, in the same module, functions that are not related
to instances, like i1 and i2. It is not possible to use i1 and i2 on the same
program without modifying I1 or I2. Even if i1 and i2 are used in different
modules, the main module will have to import both of them or a module which
imports them. Modifying I1 or I2 is not always possible in practice because they
may be part of a third-party library.

It is worth noticing that these are not only potential problems. They happen
in real world uses of the language. For example, the Monad instance of Either
is defined in both packages mtl and transformers4. There are examples where

4 This example is on the wiki page at http://www.haskell.org/haskellwiki/

Orphan_instance .

orphan instances would be desirable, involving pretty printing and JSON5. Also,
a situation has been reported where instances created with Template Haskell
could not be defined in the same module of the data type or type class6.

3 Solution

We propose that instances should be exportable and importable in the module
system. It is a natural, obvious proposal that has already been mentioned7,
but this work provides a detailed description and discussion, including required
changes in the language definition.

The proposal solves the mentioned problem of the existence of orphan in-
stances. The fact that a module defines an instance without defining the related
data type or type class does not cause any bad consequence anymore: the pro-
grammer can choose which instance to use by importing one module instead
of another, and it can still use functions defined in both modules, by hiding
instances in an import clause. The sortBy problem is also solved, because pro-
grammers can change the instance of a type class for a data type in the context
of a module, making it possible to call sort with the semantics of the instance
defined in this module.

We examine two alternative syntaxes for the new language feature: a back-
wards compatible one, referred to as intermediate — but not very uniform —
and a backwards incompatible one, called final, which is more uniform.

Before being adopted in the language, these language extensions should
preferably be enabled by compilers by the use of a compilation flag. There should
exist then a different flag for each of the different syntaxes.

In both cases, the export and import terms used in The Haskell 2010 Report
[7, sections 5.2 and 5.3] are changed to have a new syntax element, which is equal
to the header of an instance declaration [7, section 4.3.2]: instance [scontext

=>] qtycls. This identifies wether an instance should be exported, imported or
hidden. The new declarations are given in Figures 7 and 8.

3.1 The final alternative

In the final alternative, instances are imported and exported in the same way
as other definitions in Haskell. There are five distinct cases of import clauses af-
fected by the proposal, presented below by considering canonical cases of import
clauses applied to module I1 presented previously, as done in [7, section 5.3.4]:

1. import I1 imports everything in module I1, including instances, as occurs
in Haskell currently;

5 This example was presented by Lennart Augustsson in http://lukepalmer.

wordpress.com/2009/01/25/a-world-without-orphans/#comment-601 .
6 Johan Tibell gives a detailed description of the situation in an e-mail at http://www.
haskell.org/pipermail/glasgow-haskell-users/2010-August/019052.html .

7 By Yitzchak Gale on Stack Overflow http://stackoverflow.com/questions/

3079537/orphaned-instances-in-haskell/3079748#3079748 .

Fig. 7. New syntax for the export clause.
export → qvar
| qtycons [(..)|(cname1, ..., cnamen)]

(n ≥ 0)
| qtycls [(..)|(var1, ..., varn)]

(n ≥ 0)
| module modid
| instance [scontext =>] qtycls

Fig. 8. New syntax for the import clause.
import → var
| tycon [(..)|(cname1, ..., cnamen)]

(n ≥ 0)
| tycls [(..)|(var1, ..., varn)]

(n ≥ 0)
| instance [scontext =>] qtycls

2. import I1 () imports nothing, as occurs as if this line was commented or
not present in the source code;

3. import I1 (instance T D) imports only the instance, which would be the
same as import I1 () in Haskell 2010;

4. import I1 hiding (instance T D) imports everything but the instance;
5. import I1 (i1) imports only i1, and not the instance.

The only instance defined in I1 is instance T D. If there were other instances
to be imported, they should be also included where instance T D is listed.

Similarly, there are four cases of export clauses affected by the proposal:

6. module I1 where exports everything in I1, including the instance, as occurs
in Haskell currently;

7. module I1 () where exports nothing, not even the instance;
8. module I1 (instance T D) where exports only the instance, such as module

I1 () where in Haskell 2010;
9. module I1 (i1) where exports only i1, and not the instance.

This syntax is not backwards compatible because the behavior of a program
that contains a line like (2), (5), (7) or (9) is correct in Haskell 2010, but has a
different meaning than the one we are proposing. In Haskell 2010, the instance
is imported/exported in all cases, and in our proposal, the instance is not im-
ported/exported in all cases. We propose that this language extension should be
incorporated in the language in a second step, with an intermediate step that is
the adoption of the intermediate alternative.

3.2 The intermediate alternative

The intermediate alternative is mostly similar to the final alternative, but ex-
ceptions are made to make it backwards compatible. In (2), (5), (7) and (9) the
instances are imported/exported, and the only way to avoid the instance from
being imported is by using the keyword hiding in the import list. There is no
way to avoid it from being exported. In the intermediate alternative, (8) is valid
and has the same effect as (7).

The semantics of the intermediate alternative can be expressed using the
syntax of the final alternative. The interpretation of the examples that have their
meanings changed are rewritten on Figure 9. As the intermediate alternative has

Fig. 9. The semantics translation from the intermediate syntax to the final.
Intermediate (or Haskell 2010) Final

2 import I1 () import I1 (instance T D)

5 import I1 (i1) import I1 (i1, instance T D)

7 module I1 () where module I1 (instance T D) where

9 module I1 (i1) where module I1 (i1, instance T D) where

a syntax that is backwards compatible with Haskell 2010, Figure 9 also shows
how Haskell 2010 constructs are mapped to the syntax of the final alternative.

The intermediate alternative has the same advantages of the final alternative,
but it is less uniform and should be used temporarily while programs are adapted
to use the syntax of the final alternative. During this period, using constructions
(2), (5), (7) and (9) should be considered as a bad programming practice. These
should be gradually replaced by their final version, as shown in Figure 9. The
final version is also a valid intermediate syntax program, with the same meaning.

After this period, when the syntax of the final alternative becomes used, the
use of these constructions — that is, (2), (5), (7) and (9) — should be acceptable,
but they will have the semantics defined here, and not the old semantics.

New languages claims to justify their existence fall under three categories
[6, p. 1]: “novel features, incremental improvement on existing features, and
desirable language properties”. This paper presents a language extension, which
also needs a justification. Our proposal as a whole can be seen as incremental
improvement on existing features, because it is not creating something new, but
it is improving the use of something that already exists. The difference between
the intermediate and the final variations brings desirable language properties,
which is uniform behavior for similar constructs.

3.3 Instance names

A complementary syntax that could be added as an extension, and enabled by
a compiler using yet another compilation flag, is the attribution of names to
instances. The motivation for this is that sometimes instance contexts and types
that identify instances can be quite long and complex. For example, instance
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k,

Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l,

m, n, o) is defined in the Haskell Prelude. It would be better to create a name
for this instance, like EqTuple15, and use this name in import and export lists.

This, as the rest of the proposal, would syntactically affect only the module
system. The programmer will be able to create a synonym to refer to the instance
in export and export lists. The idea of creating a synonym is similar to the type

construction in Haskell.
Naming of instances can be done using a top-level declaration like in, for

example, inst Inst1 = instance T D. After an instance synonym is declared,
it would be possible to use the introduced name on import and export lists. For
instance: import I1 hiding (Inst1).

Fig. 10. Second version of module I1, us-
ing the proposed extension.

module I1 where

import T

import D

inst Inst1 = instance T D

instance T D where

t = undefined

-- i1 :: D

i1 = t

Fig. 11. Second version of the main
module, using the proposed extension.

import I1 hiding (Inst1)

import I2

f :: D -> b -> b

f = undefined

g :: a

g = f i1 i2

Although it has a similar name, the Named Instances proposal [5] is very
different from ours, because it requires more significant changes to the language.
More details about how our work is related to others is present on Section 5.

3.4 Instance scope

Although the control of the visibility of instances allows control of which entities
are necessary and should actually be in the scope of modules, there are subtle
and somewhat unfortunate consequences of such control. The most notable one
is that a type annotation may cause the semantics of the annotated construct
to be changed.

To see this, consider the example in Figure 10, and two cases. In the first,
there is no type annotation of the type of function i1, or there is an annotation,
like i1 :: T a => a, that does not instantiate the constraint on T. In the other
case, the type of i1 is annotated so as to instantiate the constraint on T, as for
example i1 :: D.

If the main module (Figure 11) did not import module I2, it would not be
able to instantiate function i1 to D. In the example presented, it will instantiate
the function to D, but using the instance defined in I2. Therefore, the writer of
module I1 should notice that the instance defined there will not necessarily be
visible in the imported module and, when there is an instance visible, it will not
necessarily be the one defined in module I1.

Also, the programmer should be aware that if the type annotation is included,
by uncommenting the line in module I1, the instance defined in module I1 will
be used, even though it is not visible in module main. As already stated, if the
line is commented, the instance defined in I2 will be used.

3.5 Implementation

Usually, a compiler keeps a list of available instances while building a module.
This list is used to check if an instance is available when inferring and checking
types, and to choose which instance to use when generating code. Currently,
instance visibility can not be controlled, so instances are only included in this
list, and there is no need for compilers to remove any element of this list. The

Fig. 12. Module Definition, used in the
example of unexpected behavior that
arises from misuse of local instances.
module Definition where

import Data.Set

s :: Set Char

s = insert ’a’ $ insert ’B’

$ empty

Fig. 13. Main module of the example
of unexpected behavior that arises from
misuse of local instances.
import Definition hiding

(instance Ord Char)

import Prelude hiding

(instance Ord Char)

instance Ord Char where

compare = iCmp

m :: Bool

m = member ’a’ s

implementation of our proposal will require removing elements from this list
while importing and exporting definitions from a module.

Our proposal aims to be simple and require as few changes to the language
as possible. This is noticed when the implementation details are made clear: it
is only a matter of filtering imported or exported instances when requested.

3.6 Problems and Solutions

Like most changes to an established language, this proposal has its pros and
cons. Considering that “a new language feature is only justifiable if it results
in a simplification or unification of the original language design, or if the extra
expressiveness is truly useful in practice” [10, p. 1], we judge that this language
feature is justifiable because the extra expressiveness added to Haskell is truly
useful in practice. The main force that pushes research in this field is the desire
to have more well typed programs [11, p. 3], and this is our motivation.

On the other hand, there are reasons why this proposal was not included in
the language in the first place. It may be argued that changing the definition of
an instance of a class to a type in a program makes it harder to understand what
the code means. This is only a problem if the changes made to the definitions are
not intuitive in the program context, and this is not a problem of the language
extension per se, but of a possible use of it. In Haskell, it is already possible to
break intuitivity with expressions like let 1 + 1 = 3 in 1 + 1, which over-
loads a function in local scope, without properly changing the related type class
or its instances. So, this is not going to be the only case in the language where
basic constructions can have their meaning changed.

Changes to instance definitions can cause potentially unexpected things to
happen. Consider the following example. Suppose that a value of type Set is
internally represented by an ordered structure of its elements, and that is why
common operations, like insert, requires the type to be an instance of Ord. If a
value of type Set Char is defined in a module where the visible instance of Ord
Char is the default, and then used in a module where a case-insensitive instance
is visible, the search operation can give perhaps unexpected results.

In module Definition (Figure 12) ’a’ will be inserted after ’B’, since in
case-sensitive order it comes later. Suppose iCmp is the comparison function for
case-insensitive Char. The call of member on the main module (Figure 13) will
search for ’a’ before ’B’, because that is the case-insensitive order, and it will
not find it, returning False. This is arguably not a good thing, but it is caused
by a misuse of a feature. Dealing with it requires programmers to be careful
when using different instances of a type class for the same type in programs.

Another issue is related to the fact that the semantics of a function may
change because of the inclusion or not of a type signature.8 Although this is in
general undesirable, in this case, when a type is annotated with a less general
type, an instance is being chosen. The instance to be used should be the one
available in the module where it was chosen, and not in the module where the
exported function is used. In the example with the module I1, if the type of i1
is annotated as D, the choice of which function is used is made in module I1,
and thus the instance defined in I1 must surely be the instance used.

A Haskell module exports functions with defined types, and a type annotation
can change a defined type. If a module exports a function with a type such as, for
example, Num a => a -> a, the insertion of a type annotation can change this
type, for example to Int -> Int. A module that imports this function, and uses
it with type Integer -> Integer will not compile, even if the function definition
remains the same. Thus, a type annotation included in a top level declaration
can change the interface of a module, and it is reasonable that some programs
will then stop working. When the interface of a module changes, because of a
change in the type of an exported function, it is reasonable that the semantics
of the exported function can change.

Our proposal makes it possible for a change in type annotations to cause
semantic changes, but only between modules and not inside a module. Such a
semantic change can occur only when the interface of a module changes, by a
change in the type of an exported function. In the example, function i1 with
type annotation D is not, in any way, related to type class T, and should thus
not be affected by instances declared in the importing module. On the other
hand, if no type is annotated, or a type that has a constraint on T is annotated,
function i1 will be related to the type class, and its use can thus be affected by
the definition or existence of instances of this type class. Notice that there exist
already other examples of cases of type annotations affecting the semantics of
Haskell programs, related to the use of defaulting rules9 and an “a really amazing

8 Simon Peyton-Jones states that type annotations should not change the result of a
function in this e-mail: http://www.haskell.org/pipermail/haskell/2001-May/

007111.html .
9 Described in e-mails http://www.haskell.org/pipermail/haskell/2001-May/

007113.html , http://www.haskell.org/pipermail/haskell/2001-May/007118.

html and http://www.haskell.org/pipermail/haskell/2001-May/007117.html .

Fig. 14. Auxiliary functions for filtering instances in the module system.

isInst :: Entity -> Bool

isInst (Entity { name = n }) = head (words n) == "instance"

isInst _ = False

instances :: (Ord a) => Rel a Entity -> Rel a Entity

instances = restrictRgn isInst

example”10 using polymorphic recursion11. We believe that the advantages of our
proposal outweigh disadvantages related to these issues.

4 Extending Haskell’s Module System Formal
specification

The module system of Haskell 98 has been formally specified [1] without dealing
with type class instances. This section presents an extension of this formalization
for dealing with type class instances, including the changes needed in [1] in order
to cope with both the intermediate and final alternatives of our proposal. The
paper in which the formalization is made does not provide the complete code of
the formalization, but the code is available on the web12.

The code models Name as a wrapper around a String, and it is stated in the
paper that type class instances were not considered because it is not possible to
refer to them by a name [1, section 3.1]. We propose that names of instances be
written as they occur in export and import clauses (as presented in Figures 7
and 8). By doing this, there is no need to change data type Name, nor data type
Entity used for describing exported and imported entities.

For the Instance Names extension, presented in Section 3.3, instance names
can also be used to refer to an instance. In this case, the name mentioned in the
Entity data type must be the real name of the instance, and not the synonym.
Otherwise, it will not be possible to tell if the name refers to an instance or not:
the auxiliary function isInst, defined in Figure 14, is used to distinguish type
class instances from other entities. Funcion isInst is used in the same manner as
function isCon, defined in the paper [1, section 3.1]. Another auxiliary function
that should be defined is a filter for type class instances, called, say, instances
(see Figure 14), to be used for the changes introduced in our extension of the
formalization.

10 As mentioned by Simon Peyton-Jones in http://www.haskell.org/pipermail/

haskell/2001-May/007133.html .
11 Described by Lennart Augustsson in http://www.haskell.org/pipermail/

haskell/2001-May/007122.html .
12 http://yav.purely-functional.net/publications/

modules98-src-21-Nov-2005.tar.gz.

4.1 Haskell and the intermediate alternative

Our proposal can be applied to both Haskell 98 or Haskell 2010, since the lan-
guage changes from Haskell 98 to Haskell 2010 do not affect the proposal. The
changes needed to be done in the formalization of the module system for includ-
ing the way Haskell deals with type class instances and the way our intermediate
proposal deals with it are the same. The difference is that our proposal provides
some syntatic constructs which are not available in Haskell. From the perspective
of the module system specification, this will mean that some possibilities, like
hiding an instance, are not going to happen, but having the code for it available
will not interfere with the result. Because of this, in this subsection we present
the changes needed for both Haskell and our intermediate proposal.

Only two things need to be changed in the specification: the way exported
and imported entities are obtained. In the case of exported entities, function
exports [1, section 5.2] needs to be changed. The old version of the function is
presented in Figure 15 and the new version in Figure 16. The difference between
them is just that, when a export list is available (the Just es case) the instances
are exported with what is on the export list. The instances, then, are always
exported, as defined in Haskell 2010 report [7, section 5.4].

Fig. 15. Function exports as in [1, sec-
tion 5.2].

exports :: Module ->

Rel QName Entity ->

Rel Name Entity

exports mod inscp =

case modExpList mod of

Nothing -> modDefines mod

Just es -> getQualified

‘mapDom‘ unionRels exps

where

exps = mExpListEntry inscp

‘map‘ es

Fig. 16. New function exports.

exports :: Module ->

Rel QName Entity ->

Rel Name Entity

exports mod inscp =

case modExpList mod of

Nothing -> modDefines mod

Just es -> unionRels

[getQualified

‘mapDom‘ unionRels exps,

instances

$ modDefines mod_]

where

exps = mExpListEntry inscp

‘map‘ es

The other change needed, which is related to imported entities, is on function
mImp. The change deals with a function defined in the where clause of function
incoming. The old and new versions of function incoming are presented respec-
tively in Figures 17 and 18. Similarly to the change in the exports function,
this change includes instances in entities that are going to be imported even if
they are not in the import list.

Notice that, in the case of a hiding import such that an instance is on the
hiding list, in the intermediate alternative the instance will not be imported,
as expected, because instances are only being added in the case where they are

not a hiding import. Also, if the instance is not on the hiding list, it will be
imported, because it is included in exps.

4.2 The final alternative

To specify the final alternative, the consideration about how to use the instances
as names is still valid, in order to allow the system to recognize instances, but the
rest of the specification must be kept in the same way as it is, that is, without
the changes proposed in the last subsection. This happens because our proposal
makes instances be treatable in the same fashion as other Haskell entities, so
that the specification that worked for them works also for instances.

5 Related work

The issues that Named instances [5] solves intersect with the issues discussed in
this paper. It creates a new name for each instance, which should be informed
on function call. This implies big changes on the language, including “how much
context reduction should be done before generalization” [10, p. 8]. Our proposal
is simpler, since it requires fewer changes in the language and is, therefore, more
likely to be included and internalized by Haskell programmers.

Named instances provide more expressivity than our proposal, because it
allows any two different instances of the same type class for the same data
type to be used in the same module. In our proposal, two different instances of
the same type class for the same data type can only be used in two different
modules. This can be a problem because our proposal forces the programmer to
split a module in two in this situation, but we do not believe that the need to
write more than one instance per type class and data type will be common. The
burden of creating a new module is, then, not very severe. Thus, while we lose
on expressivity, we gain on simplicity and we think that this is a good trade-off.

Another related work is that on scoped instances [2], which suggests a lan-
guage extension for Haskell that allows instances to be defined inside let clauses.
An example is given in Figure 19. The proposal suggests choosing the instance
that is in the innermost scope, allowing in this scheme also overlapping instances.
The proposal does not deal though with the problems of visibility of instances
across modules, and thus does not solve the problems of orphan instances nor
the problem of pollution of module scopes.

Dreyer, Harper, Chakravarty and Keller have proposed a more radical change
to Haskell that allows “viewing type classes as a particular mode of use of mod-
ules” [3]. Their work also identifies drawbacks of the current state of the Haskell’s
type class mechanism — namely, lack of modularity, with consequent inconve-
niences for the programmer of having always only one instance of a type class for
any type, and lack of separation from definition of instances to their availability
of use. They also identify a problem of coherence, namely that semantics might
differ based on a decision of overloading resolution made by the type inference
algorithm. Their solution is to require that the scope of instances be confined

Fig. 17. The function incoming as it is
on [1, section 5.3], for reference.

incoming

| isHiding = exps

‘minusRel‘ listed

| otherwise = listed

Fig. 18. The new incoming function
that also deals with instances.
incoming

| isHiding = exps

‘minusRel‘ listed

| otherwise = unionRels

[listed, instances exps]

to the global module level, where required type annotations identify whether
overloading has been resolved and, if not, the set of permissible instances. In
our proposal, as in Haskell, instances are always at the global module level (our
proposal simply allows control of which instances are imported and exported).
Overloading resolution is based on the type of the exported instance. If over-
loading is not resolved, the set of permissible instances is the set of available
instances in the importing module.

6 Conclusion

The Haskell language extension proposed in this paper gives more freedom to
programmers. On the negative side, this can lead to misuses that may cause pro-
grams to become harder to read and to reason about, because assumptions about,
for example, the behavior of functions like sort may not hold if a non-standard
instance of class Ord is used. Also, certain operations rely on the presence of some
instances, and programmers must be aware of that when redefining instances.
Finally, the inclusion of type signatures can change the semantics of a program
if such type signatures cause types of exported functions, and instance selection,
to be modified. Programmers must then be aware of that and be careful when
changing the type of exported entities.

On the positive side, our proposal makes only small changes to the language
syntax and semantics. It gives more control to programmers which may construct
now programs and libraries that are simpler and more readable. The proposal
removes the necessity of the ...By class of functions and well-known and often
discussed problems related with orphan instances. The proposal also makes ex-
portation and importation of instances more homogeneous with other entities,
as shown by the fact that the formalization does not need to be changed to deal
with instances in our final proposal, but it does need to be changed to handle
instances as they are in Haskell nowadays.

6.1 Future work

This paper has presented both syntactic and semantic details of our proposal.
An implementation of both syntax alternatives, specifically in the most used
Haskell compiler GHC, still needs to be done. The inclusion of a good qual-
ity implementation in the main distribution of GHC will allow programmers an

Fig. 19. Example of scoped instance extracted from [2, section 6].

e2 = let instance Eq Int where

x == y = primEqInt (x ‘mod‘ 2) (y ‘mod‘ 2)

in 3 == 5

opportunity to use the extension on production code, enabling a good evalua-
tion of the utility of the extension in the real world. Rafael Alcântara de Paula
is working on implementing this proposal in a Haskell compiler prototype, de-
veloped by Rodrigo Ribeiro. The source code of this compiler is available at
https://github.com/rodrigogribeiro/core.

References

1. Diatchki, I.; Jones, M.; and Hallgren, T.: A formal specification of the Haskell 98
module system. In Proc. of the 2002 Haskell Workshop, 2002.

2. Dijkstra, A. et al: Modelling Scoped Instances with Constraint Handling Rules. Uni-
versiteit Utrecht. https://subversion.cs.uu.nl/repos/project.UHC.pub/trunk/
pdf/20070406-2213-icfp07-chr-locinst.pdf.

3. Dreyer, D. et al: Modular Type Classes. In SIGPLAN Notices, 42(1):63-70, 2007.
4. Hall, C. V. et al: Type classes in Haskell. In ACM Transactions on Programming

Languages and Systems. 18(2):109-138, 1996.
5. Kahl, W.; Scheffczyk, J.: Named Instances for Haskell Type Class. In Preliminary

Proc. of the 2001 ACM SIGPLAN Haskell Workshop. TR UU-CS-2001-62 , Univer-
siteit Utrecht, 2001.

6. Markstrum, S.: Staking Claims: A History of Programming Language Design Claims
and Evidence (A Positional Work in Progress). In Proc. of the Workshop on Eval-
uation and Usability of Programming Languages and Tools, 2010.

7. Marlow, S. (editor): Haskell 2010: Language Report. http://www.haskell.org/

onlinereport/haskell2010/, 2010.
8. Milner, R.; Tofte, M.; Harper, R.: The Definition of Standards ML, version 2. Report

ECS-LFCS-88-62, Edinburgh University, Computer Science Dept., 1988.
9. Odersky, M. et al: An overview of the Scala programming language. TR IC/2004/64.

École Polytechnique Fédérale de Lausanne, 2004.
10. Peyton-Jones, S.; Jones, M.; Meijer, E.: Type classes: An exploration of the design

space. In Haskell Workshop, 1997.
11. Pierce, B. C.: Types and Programming Languages. The MIT Press, 2002.
12. Wadler, P; Blott, S.: How to make ad-hoc polymorphism less ad hoc. In Proc. of

the 16th ACM Symposium on Principles of Programming Languages, pages 60-76,
1989.

