
Uncovering Causal Relationships between Software Metrics and Bugs

Cesar Couto, Christofer Silva

Department of Computing
CEFET-MG, Brazil

{cesar,christofer}@decom.cefetmg.br

Marco Tulio Valente, Roberto Bigonha

Department of Computer Science
UFMG, Brazil

{mtov,bigonha}@dcc.ufmg.br

Nicolas Anquetil

RMoD Team
INRIA, Lille, France

nicolas.anquetil@inria.fr

Abstract—Bug prediction is an important challenge for
software engineering research. It consist in looking for
possible early indicators of the presence of bugs in a software.
However, despite the relevance of the issue, most experiments
designed to evaluate bug prediction only investigate whether
there is a linear relation between the predictor and the
presence of bugs. However, it is well known that standard
regression models cannot filter out spurious relations. There-
fore, in this paper we describe an experiment to discover
more robust evidences towards causality between software
metrics (as predictors) and the occurrence of bugs. For
this purpose, we have relied on Granger Causality Test to
evaluate whether past changes in a given time series are
useful to forecast changes in another series. As its name
suggests, Granger Test is a better indication of causality
between two variables. We present and discuss the results
of experiments on four real world systems evaluated over a
time frame of almost four years. Particularly, we have been
able to discover in the history of metrics the causes – in the
terms of the Granger Test – for 64% to 93% of the defects
reported for the systems considered in our experiment.

Keywords-Bug Prediction; Causality; Software Metrics;
Granger Test

I. INTRODUCTION

Bug prediction is an important challenge for software

engineering research [3], [9], [25]. The goal is to build

reliable predictors that can indicate in advance those com-

ponents of a software system that are more likely to fail.

The availability of this information is of central value to

most software quality assurance procedures. For example,

it allows quality managers to allocate more time and

resources to test — or even to redesign and reimplement

— those components predicted as defect-prone.

Due to its relevance to software quality, various bug

prediction techniques have already been proposed. Es-

sentially, such techniques rely on different predictors,

including source code metrics (e.g. coupling, cohesion,

size) [3], [22], [24], change metrics [14], static analysis

tools [2], [6], [21], and code smells [7]. However, the typ-

ical experiments designed to evaluate bug prediction tech-

niques usually do not investigate whether the discovered

relationships indicate cause-effect relations or whether

they are mere statistical coincidences. More specifically, it

is well known that regression models – the most common

statistical technique used by bug predictors – cannot filter

out spurious relations [11]. In other words, events that

represent mere coincidences can undermine the predictions

performed by standard regression models, especially when

the proposed models are applied to systems maintained

during years or decades.

Therefore, in this paper we describe an experiment to

discover more robust evidences towards causality between

software metrics (as predictors) and the occurrence of

bugs. For this purpose, we have relied on a statistical

hypothesis test proposed by Clive Granger to evaluate

whether past changes in a given time series are useful to

forecast changes in another series. Granger Test has been

originally proposed to evaluate causality between time

series of economic data (e.g. to show whether changes

in oil prices cause recession) [12], [13]. Although ex-

tensively used by econometricians, the test has already

been applied in bioinformatics (to identify gene regulatory

relationships [20]) and recently in software maintenance

(to detect change couplings that are spread over an interval

of time [4]).

The experiment described in this paper relies on a

public dataset constructed by D’Ambros et al. to evaluate

bug prediction techniques [8], [9]. This dataset provides

bi-weekly time series for seventeen object-oriented met-

rics, over a period of almost four years, for four real-

world Java systems. The contributions of our work are:

(a) an extension of D’Ambros dataset with a new time

series including the mapping of 5,028 bugs reported for

the considered systems to their respective classes; (b) a

methodology to systematically mine for Granger-causality

relationships between software quality metrics and defects

at the class-level; and (c) a report on the results and

lessons learned after using this methodology to mine

for causalities between D’Ambros time series (software

metrics) and our new time series (defects). Particularly,

we have been able to discover in the history of metrics

the causes – in the terms of the Granger Test – for 64%

to 93% of the defects reported for the systems considered

in our experiment. Moreover, for each defective class we

have been able to identify the particular metrics that have

Granger-caused the reported defects.

The paper is organized as follows. We start with an

overview of Granger Causality (Section II). Next, we

describe the datasets and the methodology followed in the

experiments reported in the paper (Section III). Section IV

reports the results and lessons learned after the experi-

ments described in the previous section. Section V and VI

discuss threats to validity and related work, respectively.

Section VII presents our contributions and briefly outlines

future work.

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.31

217

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.31

217

2012 16th European Conference on Software Maintenance and Reengineering

1534-5351/12 $26.00 © 2012 IEEE

DOI 10.1109/CSMR.2012.31

223

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

II. GRANGER CAUSALITY

In this subsection, we first describe a precondition that

Granger requires the time series to follow (Section II-A).

Next, we discuss the test (Section II-B).

A. Stationary Time Series

An usual pre-condition when applying forecasting tech-

niques – including the Granger Test described in the

next subsection – is to require a stationary behavior from

the time series [11]. In stationary time series, proper-

ties such as mean and variance are constant over time.

Stated otherwise, a stationary behavior does not mean

the values are constant, but that they fluctuate around a

constant long run mean and variance. However, most time

series of software metrics and defects when expressed in

their original units of measurements are not stationary.

The reason is intuitively explained by Lehman’s Law of

software evolution, which states that software measures of

complexity and size tend to grow continuously [19]. This

behavior is also common in the original domain of Granger

application, because time series of prices, inflation, gross

domestic product, etc also tend to grow along time [13].

When the time series are not stationary, a common

workaround is to consider not the absolute values of

the series, but their differences from one period to the

next. For example, suppose a time series x(t). Its first
difference x′(t) is defined as x′(t) = x(t)− x(t− 1).

Example #1: To illustrate the notion of stationarity behav-

ior, we will rely on a time series that measures the number

of methods (NOM), extracted for the Eclipse JDT Core

system, in intervals of bi-weeks, from 2005 to 2008 [9].

Figure 1 illustrates the behavior of this series. As we can

observe, the series is not stationary, since it has a clear

growth trend, with some disruptions along the way.

bi-weeks

N
O
M

0 20 40 60 80

1
1
0
0
0

1
1
5
0
0

1
2
0
0
0

1
2
5
0
0

1
3
0
0
0

1
3
5
0
0

Figure 1. Original NOM series (non-stationary behavior)

Figure 2 shows the first difference of NOM. We can

observe that most values are delimited by a constant mean

and variance. Therefore, NOM in first difference has a

stationary behavior.

bi-weeks

N
O
M

0 20 40 60 80

-2
0
0

-1
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

μ

σ

σ

Figure 2. NOM series in first difference (stationary behavior)

B. Granger Test

Testing causality between two stationary time series x
and y, according to Granger, involves using a statistical

test – usually the F-Test – to check whether x helps

to predict y at some stage in the future [12]. If this

happens, we can conclude that x Granger-causes y. The

most common implementation of Granger’s Causality Test

uses bivariate and univariate auto-regressive models. A

bivariate auto-regressive model includes values both from

the independent variable x and from the dependent vari-

able y. On the other hand, a univariate auto-regressive

model considers only lagged values of the variable y.

To apply the Granger test, we must first calculate the

following bivariate auto-regressive model [4]:

yt = c1 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p

+β1xt−1 + β2xt−2 + · · ·+ βpxt−p + ut
(1)

where p is the auto-regressive lag length (an input parame-

ter of the test). Essentially, this value defines the number of

past values – from both x and y – that will be considered

in the regressive models. Furthermore, Equation 1 defines

a bivariate model because it uses values of x and y, limited

by the lag p.

To test whether x Granger-cause y, the following null

hypothesis must be rejected:

H0 : β1 = β2 = · · · = βp = 0

This hypothesis assumes that the lagged values of x do not

add predictive power to the regression. In other words, by

testing whether the β coefficients can be equal to zero, the

goal is to discard the possibility that the lagged values of

x can contribute to the prediction.

To reject the null hypothesis, we must first estimate

the following auto-regressive univariate model (i.e., an

equation similar to 1 but excluding the values of x):

218218224

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

yt = c1 + γ1yt−1 + γ2yt−2 + · · ·+ γpyt−p + et (2)

Finally, to evaluate the precision of both models, we must

calculate their residual sum of squares (RSS):

RSS1 =

T∑
t=1

û2
t RSS0 =

T∑
t=1

ê2t

If the following test

S1 =
(RSS0 −RSS1)/p

RSS1/(T − 2p− 1)
∼ Fp, T − 2p− 1

exceeds the critical value of F with a significance level

of 5% for the distribution F (p, T − 2p− 1), the bivariate

auto-regressive model is better (in terms of residuals)

than the univariate model. In case the null hypothesis is

rejected we can conclude that x causes y, in the terms of

the Granger test.

Example #2: For our previous Eclipse JDT Core

example, we have applied Granger to evaluate whether

the number of public methods (NOPM), in the Granger

sense, causes NOM. Although the common intuition

suggests this relation truly denotes causality, it is not

captured by Granger’s test. Particularly, assuming p = 1
(the lag parameter), the F-test has returned a p-value of

0.15, which is superior to the defined threshold of 5%. To

explain the lack of Granger-causality, we have to consider

that variations in the number of public methods cause

an immediate impact on the total number of methods

(public, private etc) of the system. Therefore, Granger’s

application is recommended in scenarios where variations

in the independent variable are reflected in the dependent

variable only after a certain delay (or lag).

Example #3: To explain the sense of causality captured by

Granger in a simple and comprehensive manner, suppose

a new time series defined as:

NOM ′(t) =
{

NOM(t) if t ≤ 5
NOM(t− 5) if t > 5

Basically, NOM’ reflects with a lag of five bi-weeks the

values of NOM. We have reapplied Granger to evaluate

whether NOPM, in the Granger sense, causes NOM’ and

the result has been positive, assuming p = 5. Therefore,

knowing the NOPM values at a given bi-week helps to

predict the value of NOM’.

Figure 3 illustrates the behavior of both series. For

example, we can observe that just before bi-week 30 a

significant increase has occurred in the number of public

methods. By knowing this information, one could predict

an important increase in NOM’ in the following bi-weeks.

In fact, the figure shows that the mentioned increase in

NOPM has been propagated to NOM’ in few bi-weeks

(we have circulated these events in the presented series).

-2
0
0

0
2
0
0

4
0
0

N
O
M
'

-2
0
0
-1
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

0 20 40 60 80

N
O
P
M

bi-weeks

Figure 3. NOPM and NOM’ time series. The increase in NOPM values
just before bi-week 30 has been propagated to NOM’ few weeks later

III. STUDY SETUP

This sections starts by describing the original dataset

used in the experiment (Section III-A) and move to

describe our extension of this dataset with a temporal

series of defects (Section III-B). The section concludes

by describing the methodology followed in the proposed

experiment (Section III-C).

A. Original Dataset

The study reported on this paper has been based on

a dataset made public by D’Ambros et al. to evaluate

bug prediction techniques [8], [9]. Basically, the provided

dataset includes temporal series for seventeen source code

metrics, collected at the class-level for the Java-based

systems described in Table I1. In this table, column Period

informs the time interval in which the metrics were

collected. On total, the dataset has 4,298 classes, each

of them with at least 90 bi-weekly versions (which is

equivalent to around three and a half years of the lifetime

of the considered systems).

Table I
SYSTEMS IN THE ORIGINAL DATASET

System Period Classes Versions
Eclipse JDT Core 1-1-2005 - 5-31-2008 1041 90
Eclipse PDE UI 1-1-2005 - 9-6-2008 1924 97
Equinox 1-1-2005 - 6-14-2008 444 91
Lucene 1-1-2005 - 10-4-2008 889 99

Table II shows the metrics included in the original

dataset. It considers six metrics proposed by Chidamber

and Kemerer [5] and other eleven metrics, such as lines of

code, number of public methods, fan-in, fan-out etc. For

each class of the mentioned systems, the dataset provides

the values of these metrics in intervals of bi-weeks.

1The original dataset includes a fifth system (Mylyn). However, we
have not considered this system because the dataset includes information
for only 47 bi-weeks of its evolution.

219219225

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

Table II
METRICS INCLUDED IN THE ORIGINAL DATASET

Metrics Description
1 WMC Weighted methods per class
2 DIT Depth of inheritance tree
3 RFC Request for class
4 NOC Number of children
5 CBO Coupling between object class
6 LCOM Lack of cohesion in methods
7 FANIN Number of classes that reference the class
8 FANOUT Number of classes referenced by the class
9 NOA Number of attributes

10 NOPA Number of public attributes
11 NOPRA Number of private attributes
12 NOAI Number of attributes inherited
13 LOC Number of lines of code
14 NOM Number of methods
15 NOPM Number of public methods
16 NOPRM Number of private methods
17 NOMI Number of methods inherited

B. Time Series of Defects

In our terminology, a bug is a failure in the observable

behavior of the system. Bugs are caused by one or more

errors in the source code, called defects. Particularly, we

counted defects at the class level (since all the metrics

considered in the paper are related to classes). Therefore,

each class changed to fix a bug is counted as one defect.

The original dataset only provides information on the

total number of defects reported for each class. Thus, to

apply Granger it was necessary to distribute this number

along the bi-weeks considered in the study. To create a

time series of defects, we have initially collected the bugs

– or more precisely, the maintenance requests – reported

in the bug-tracking platforms of the considered systems.

Table III, column B, shows the number of bugs opened

via Bugzilla or Jira for each of the systems, at the time

interval considered in the study. As can be seen in this

table, we have collected a total of 5,028 bugs.

To create the time series of defects, we first linked

each bug b – reported in the bug-tracking platforms – to

the classes changed to fix b, using the following strategy:

1) Suppose that Bugs is the set with the IDs of all bugs

reported during the time frame of the experiment.

2) Suppose that Commits is the set with the IDs of all

commits in the version control platforms. Suppose

also that Cmts [c] and Chg [c] are, respectively, the

developer’s comments and the classes changed in

each commit c ∈ Commits .

3) The classes changed to fix bug b ∈ Bugs are defined

as:

⋃
∀c∈Commits

{ Chg [c] | substr(b,Cmts [c]) }

The set returned by this expression is the union of

the classes changed in each commit c for which

the textual comments provided by the developer

includes a reference to the bug with ID b. The

predicate substr(s1, s2) tests whether substring s1
is a substring of s2.

Finally, suppose we have discovered that in order to fix

bug b changes have been applied to the class C. In this

case, a defect associated to b was counted for class C at

bi-week t when the following conditions held: (a) b has

been opened before the ending date of the bi-week t; (b)

b has been fixed after the starting date of the bi-week t.
Table III summarizes the main properties of the ex-

tracted time series of defects. The table shows three

information: the number of bugs we have initially collected

in the study (column B), the number of defects that

caused such bugs (column D), and the average number

of defects per bugs (column D/B). As can be observed,

on average each bug required changes in 2.87 defective

classes. Therefore, at least in our experiment, changes to

fix bugs have not presented a scattered behavior.

Table III
NUMBER OF BUGS (B), DEFECTS (D), AND DEFECTS PER BUGS (D/B)

System B D D/B
Eclipse JDT Core 2398 7313 3.05
Eclipse PDE UI 1821 5547 3.05
Equinox 545 991 1.82
Lucene 264 564 2.14
Total 5028 14415 2.87

C. Methodology

To apply Granger we have relied on the following

procedure:

1: foreach c in Classes
2: s1= D[c];
3: if d_check(s1)
4: for i= 1 to 17 do
5: s2= M[i][c];
6: if m_check(s2) and
7: granger(s2,s1);
8: endif
9: endfor
10: endif
11: endforeach

In this algorithm, Classes is the set of all 4,298

classes considered in the study (line 1) and D[c] is

the time series with the number of defects in each of

these classes (line 2). The algorithm relies on function

d_check (line 3) to check whether the defects in the

time series s1 attends the following preconditions:

• P1: The time series must have at least 30 values

(around 30% of the time series size). Therefore, we

have eliminated time series related to classes that

only existed for a small proportion of the time frame

considered in the experiment – usually called dayfly

classes [18]. The motivation for this precondition

is that probably such classes do not have a long

history of defects that qualify their use in predictions.

220220226

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

• P2: Some values in the time series must be

different of zero. Basically, the goal is to discard

classes that have never presented a defect in

their lifetime (probably, because they implement

a simple and stable requirement). The motivation

for this precondition is that it is straightforward to

predict defects for such classes: probably, most of

them they will remain with zero defects in the future.

• P3: The time series must be stationary, which is a

required precondition to apply Granger, as described

in Section II-A. To identify stationary time series

we relied on function adf.test() from the R statistical

system (package tseries). This function implements

the Augmented Dickey-Fuller test for stationary

behavior [11].

Suppose that a given class c has passed the previous

preconditions. For such classes, suppose also that

M[i][c] (line 5) is the time series with the bi-weekly

variations in the values of the i-th metric considered

in the experiment, 1 ≤ i ≤ 17. The algorithm relies

on function m_check (line 6) to test whether the time

series s2 – with the series of metrics values – attends

the following preconditions:

• P4: The time series must not be constant. We have

discovered that for some classes the values of the

metrics have never changed during the whole time

frame considered in the experiment. Therefore, we

decided to discard such series, since variations in the

independent variables are the key event to observe

when evaluating Granger causality.

• P5: The time series must be stationary, i.e. as defined

for the time series of defects, we have discarded

the series where the values of the metrics do not

fluctuate around a long run mean.

Finally, for series s2 (metrics) and s1 (defects)

that passed preconditions P1 to P5, function

granger(s2,s1) calls the Granger test to check

whether s2 Granger-causes s1 (line 7). In practice,

to apply the test we have used function granger.test()
provided by the msbvar package of the R system. The

tests were calculated using a significance level of 95%

(α = 0.05) and the lag ranging from 1 to 4. We counted

as causality the calls where the variable p-value obtained

by applying the F-test is less than or equal to α, i.e.,

when p-value ≤ 0.05.

IV. STUDY RESULTS

This section reports and discusses the results and lessons

learned after the experiment described in Section III.

A. How many time series of defects have passed the
defined preconditions?

For each system, Table IV shows three pairs of values,

representing respectively the percentage of classes that

survived the preconditions P1, P2, and P3 (defined in

Section III-C).

Table IV
PERCENTAGE OF CLASSES CONFORMING SUCCESSIVELY TO

PRECONDITIONS P1, P2, AND P3

System P1 P2 P3
Eclipse JDT Core 92 71 68
Eclipse PDE UI 73 55 47
Equinox 60 38 36
Lucene 73 20 19
Total 77 50 46

We have observed that 77% of the classes have survived

preconditions P1 (more than 30 values) and that 50% of

the classes have survived both P1 and P2 (at least one

defect in their lifetime). In other words, half of the classes

have either a short lifetime (which affects their power to

provide reliable predictions) or have never been changed

to fix bugs. Finally, our sample has been reduced to 46%

of the classes after applying the last precondition (test

for stationary behavior). Therefore, even considering the

series in first differences, some of them have presented a

non-stationary behavior.

Lesson Learned #1: To mine the causes of bugs, it is

fundamental to remove classes with a short lifetime

(that may not provide reliable predictions), classes with

zero defects (that make the predictions trivial), and

classes with a non-stationary time series of defects

(that may statistically invalidate the findings). In the

described experiment, our sample has been reduced to

46% of its original size after applying these preconditions.

B. How many defects still exist in the classes that have
passed the defined preconditions?

For each system, Table V shows three information:

the number of bugs we initially collected in the study

(column B), the number of defects at the class level that

caused such bugs (column D), and the number of defects

detected in the classes that passed the preconditions P1 to

P3 (column DVC). The table also shows the percentage of

valid defects, i.e. the percentage of defects after removing

the series that have not survived preconditions P1, P2, and

P3 (column DVC/D).

Table V
NUMBER OF BUGS (B), DEFECTS (D), AND DEFECTS IN VALID

CLASSES (DVC)

System B D DVC DVC/D
Eclipse JDT Core 2398 7313 7057 0.96
Eclipse PDE UI 1821 5547 4323 0.78
Equinox 545 991 853 0.86
Lucene 264 564 460 0.82
Total 5028 14415 12693 0.88

The results show that 88% of the defects have been

reported in classes that survived preconditions P1, P2, and

P3. In other words, by successively applying preconditions

P1, P2, and P3 we have eliminated 54% of the classes (as

221221227

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

showed in Table IV), but those classes account for only

12% of the total number of defects considered in the study.

Lesson Learned #2: Other studies in the literature have

already showed that most defects are concentrated in

few classes [1], [10], [16]. Our experiment reinforces

this finding. A more original lesson is the observation

that these defects are the most interesting to investigate

for the purpose of bug prediction, since they come from

classes with long lifetimes and from time series with

non-stationary behavior.

C. How many time series of metrics have passed the
defined preconditions?

For each system and metric, Table VI shows the per-

centage of time series that have passed preconditions P4

and P5.

Table VI
PERCENTAGE OF TIME SERIES CONFORMING SUCCESSIVELY TO

PRECONDITIONS P4 AND P5

JDT PDE Equinox Lucene Total
P4 P5 P4 P5 P4 P5 P4 P5 P4 P5

CBO 76 65 94 66 93 76 95 63 88 67
DIT 40 27 66 6 59 6 44 8 54 14
LCOM 58 47 85 50 82 51 78 43 75 49
NOC 10 8 15 6 8 5 27 17 14 8
RFC 80 72 94 69 90 71 90 62 89 70
WMC 76 67 91 62 91 69 87 55 86 64
FANIN 51 39 74 35 77 49 72 53 66 40
FANOUT 63 52 88 58 87 70 80 52 79 57
NOA 45 36 71 40 84 49 59 39 63 40
NOPA 28 22 2 1 29 18 20 14 15 12
NOPRA 25 18 63 36 51 31 50 30 48 29
NOAI 65 60 40 22 28 16 33 13 48 35
LOC 80 72 95 77 92 75 90 62 89 74
NOM 58 47 87 51 84 52 79 48 76 50
NOPM 47 38 80 37 80 44 71 41 68 39
NOPRM 23 17 50 29 70 40 30 20 41 25
NOMI 98 74 78 59 98 80 99 82 89 69

As defined in Section III-C, precondition P4 states that

the time series must not be constant. By observing the

values in Table VI, we can conclude that constant time

series are fairly common for some metrics. For example,

for NOC, NOPA, NOPRA, NOAI, and NOPRM more than

50% of the considered classes have presented a constant

behavior (column Total). Therefore, the most constant

properties of the evaluated classes have been the number

of children, the number of attributes (including public,

private, and inherited), and the number of private methods.

At the other extreme, the number of constant series has

been inferior to 15% for CBO, RFC, WMC, LOC, and

NOMI.

Table VI also presents the percentage of series that

survived precondition P5, which states the series must

be stationary. As can be observed, the number of series

with non-stationary behavior – even when considering

the first differences – is not negligible. For example,

for LOC, 89% of the series have survived P4, but only

74% survived P5. Figure 4 presents a non-stationary time

series for a Eclipse JDT class. As can be observed, the

series has experienced at least four major increases in

size, which undermined the role of the mean and variance

as representative measurements for its behavior in the

long run.

org::eclipse::jdt::internal::core::builder::IncrementalImageBuilder

bi−weeks

LO
C

0 20 40 60 80

0
10

20
30

μ

σ

σ

Figure 4. Example of non-stationary time series

Lesson Learned #3: To uncover causal relationships

between bugs and software metrics, it is also important

to filter out the time series of metrics, removing series

with a constant behavior (that do not contribute with

valuable predictive power) and with a non-stationary

behavior (that statistically invalidates any attempt to

perform predictions).

D. How many defects have been anticipated by Granger?

To start answering this question, Table VII shows for

each valid class c the number of Granger tests with

a positive result considering all the series M[i][c]
(1 ≤ i ≤ 17) and D[c], where M[i][c] is one of the

seventeen series of metrics for a given class c and D[c]
is the series of defects for this class. For example, for

the Eclipse JDT Core in 12% of the classes we have not

been able to detect a single causal relation between one of

the seventeen series of metrics and the series of defects; in

around 13% of the classes Granger has returned a positive

result for a single series of metrics, and so on. For the

remaining three systems – Eclipse PDE UI, Equinox, and

Lucene – the percentage of classes where Granger has not

been able to establish a causal connection between metrics

and defects has been, respectively, 36%, 47%, and 30%.

The fundamental question is then how many defects

have been “predicted” by Granger, i.e. how many

defects have been found in the classes where Granger

has indicated at least one positive result between the

considered metrics and defects. Table VIII shows the

results. As can be observed in this table, 84% of the

defects have been antecipated by relevant changes in at

least one of the series of metrics, according to Granger.

The best result has been achieved for the Eclipse JDT

222222228

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

Table VII
PERCENTAGE OF VALID CLASSES WITH n POSITIVE RESULTS FOR

GRANGER CAUSALITY

n JDT Core PDE UI Equinox Lucene
0 12 36 47 30
1 13 14 13 21
2 15 11 13 12
3 9 8 6 7
4 9 5 4 3
5 9 5 3 4
6 8 4 2 5
7 6 4 2 5
8 6 4 2 4
9 4 2 1 3
10 4 3 2 2
11 3 1 1 2
12 1 1 2 2
13 0 0 0 1
14 1 0 1 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0

Total 100 100 100 100

Core, where 93% of the defects are related to past

changes in the metrics calculated for the changed classes.

The worst result was obtained for the Equinox system

(64% of coverage by Granger).

Table VIII
NUMBER OF DEFECTS (D), DEFECTS IN VALID CLASSES (DVC), AND

DEFECTS PREDICTED BY GRANGER (DPG)

System D DVC DPG DPG/D
Eclipse JDT Core 7313 7057 6818 0.93
Eclipse PDE UI 5547 4323 4182 0.75
Equinox 991 853 634 0.64
Lucene 564 460 453 0.80
Total 14415 12693 12087 0.84

Lesson Learned #4: By applying the Granger Test, we

have been able to discover in the history of metrics the

causes for 64% to 93% of the defects reported for the

systems considered in our experiment.

E. What are the metrics that have most contributed to
predict defects?

For each valid time series of metrics, Table IX shows the

percentage of Granger tests that have returned a positive

result. For example, the percentage of CBO time series

with a Granger-causality with defects was respectively

48%, 38%, 24%, and 39% for Eclipse JDT Core, Eclipse

PDE UI, Eclipse Equinox, and Lucene.

As can be observed in this table, the most useful

metrics to predict defects in the considered systems have

been: RFC (Eclipse JDT Core), NOPA (Eclipse PDE UI),

NOPRM (Equinox), and NOPM (Lucene). Conversely,

the less useful metrics to predict defects have been: DIT

(Eclipse JDT Core, Lucene and Eclipse PDE UI – with

other metrics), and NOC (Equinox).

Figure 5 illustrates some of the time series where a

Granger-causality has been detected. In this figure, we

Table IX
PERCENTAGE OF METRICS TIME SERIES WITH A POSITIVE RESULT

FOR GRANGER CAUSALITY

JDT Core PDE UI Equinox Lucene Total
CBO 48 38 24 39 41
DIT 27 31 20 13 27
LCOM 61 40 21 43 47
NOC 42 41 11 33 39
RFC 68 41 27 44 51
WMC 67 41 25 39 50
FANIN 36 31 25 37 34
FANOUT 58 38 24 45 44
NOA 59 38 33 34 45
NOPA 52 61 23 25 46
NOPRA 49 39 21 35 40
NOAI 42 51 18 31 44
LOC 67 41 27 44 50
NOM 60 41 20 47 47
NOPM 59 39 22 48 46
NOPRM 50 38 37 47 42
NOMI 40 31 19 40 35

have circulated the events in the time series of metrics

that have probably anticipated similar events in the time

series of defects.

Lesson Learned #5: Our findings reinforce previous

observations in the literature about the absence of a single

universal metric for predicting defects [22]. On the other

hand, we found that metrics related to inheritance are not

good predictors for defects, at least according to Granger.

However, this result is not surprising, since the number

of times that subclasses are added/removed or a class is

moved up/down in the hierarchy is usually low.

F. What are the lag values that most led to positive results
for Granger Causality?

It is well known that the Granger Test is sensitive to the

lag selection. For this reason, as described in Section III-C,

we have not fixed a single lag, but applied the test

successively four times for each pair of series, with the

lags ranging from one to four. In this way, whenever one

of such lags returned a positive result, we have computed

the existence of causality.

Table X shows the lags that have been most successful

in returning positive results. When multiple lags returned

causality, we chose the one with the lowest p-value. As we

can note, the results have been different for each system.

For Eclipse JDT Core, 49% of the causalities have been

established for a lag equals to 1. For Eclipse PDE, the

distribution has been almost uniform among the four lags.

For Equinox and Lucene, the most successful lags have

been equal to 2 and 3, respectively.

We can interpret such results as follows. First, changes

were made in the considered systems (which we will call

event A). Such changes had an impact in the values of

the metrics considered in our study (event B). Frequently,

such changes also introduced defects in the source code

(event C) and some of them became failures (event D).

223223229

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

−
1.
0

0.
0

0.
5

1.
0

1.
5

2.
0

D
ef
ec
ts

−
1.
0

0.
0

0.
5

1.
0

1.
5

2.
0

0 20 40 60 80

LO
C

bi−weeks

org::eclipse::jdt::internal::core::search::matching::AndPattern

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

D
ef
ec
ts

0
20

40
60

80

0 20 40 60 80

LO
C

bi−weeks

org::eclipse::jdt::internal::core::LocalVariable

−
2

−
1

0
1

2

D
ef
ec
ts

0
20
0

40
0

60
0

80
0

10
00

0 20 40 60 80

LO
C

bi−weeks

org::eclipse::jdt::internal::compiler::flow::UnconditionalFlowInfo

Figure 5. Examples of Granger Causality between LOC and defects.

Table X
PERCENTAGE OF LAG VALUES WITH A POSITIVE RESULT FOR

GRANGER CAUSALITY

Lag JDT Core PDE UI Equinox Lucene
1 49 27 15 22
2 23 23 39 19
3 12 25 26 36
4 16 26 21 23

Total 100 100 100 100

In this description, events A, B, and C can be considered

as happening at the same moment and they are succeeded

by event D. Essentially, we have used Granger in this

experiment to show the existence of causality between

events B and D. Following with this interpretation,

Granger’s lag is the distance between such events in the

time. Therefore, the results in Table X suggest that in the

case of the Eclipse JDT Core most bugs were perceived

by the users in one bi-week. In the Lucene system, this

interval has increased to three bi-weeks.

Lesson Learned #6: When applying Granger to uncover

causal relations between software metrics and defects, it

is fundamental to run the tests with various lags. The

reason is that the time elapsed between the inception of a

defect in the source code and its perception by the users

as a failure can vary significantly from system to system

and also among the different types of bugs of a particular

system.

V. THREATS TO VALIDITY

In this section, we discuss potential threats to the

validity of our study. We have arranged possible threats

in three categories: external, internal, and construct

validity [23]:

External Validity: Our study on the causal relationships

between bugs and software metrics involved four systems

publicly provided in the D’Ambros dataset, including

three systems from the Eclipse project and one system

from the Apache Foundation, with a total of 4,298

classes. Therefore, we believe this sample includes a

credible number of classes, representing real-world and

non-trivial applications, with a consolidated number

of users and a relevant history of bugs. Despite this

observation, our findings – as usual in empirical software

engineering – cannot be generalized to other systems,

specifically to systems implemented in other languages

or to systems from different domains, such as real-time

systems, embedded systems or even to non-open source

systems.

Internal Validity: This form of validity concerns the

factors that can influence our observations. A possible

threat concerns the R function we have used to discover

stationary time series. We have used the function adf.test()
that receives as parameters the time series to be checked

and a lag. Particularly, we have relied on the default lag

suggested by the function.

Construct Validity: This form of validity concerns the

relationship between theory and observation. A possible

threat concerns the way we have linked bugs to defects

in classes. Particularly, we have discarded bugs without

explicit references in the textual description of the

commits. However, the percentage of such bugs was not

large (around 25% of the bugs considered in the time

frame of the experiment). Moreover, this approach is

commonly used in experiments that need to map bugs to

classes [9].

VI. RELATED WORK

D’Ambros et al. provided the dataset with the historical

values of the object-oriented metrics used in our work.

By making this dataset publicly available, their goal was

to establish a common ground for comparison between

bug prediction approaches [8], [9]. They relied on this

dataset to evaluate a representative set of prediction ap-

proaches reported in the literature, including approaches

based on source code metrics, change metrics, bug fixes,

and entropy of changes. The authors also propose two

224224230

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

new metrics called churn and entropy of source code.

Finally, the authors report a study on the explanative and

predictive power of the mentioned approaches. The results

showed that churn and entropy of source code have had

the best results, achieving a better score in four out of the

five analyzed systems. However, the results presented by

D’Ambros et al. cannot be directly compared with our re-

sults, because they make use of standard regression models

and we used the Granger Test that is based on bivariate

autoregressive models. In a previous work, D’Ambros

et al. have demonstrated the relationship between well-

known design flaws (e.g. Brain Method, Feature Envy,

Shotgun Surgery etc) and post-release defects [7].

Basili et al. have been one of the first to investigate

the use of CK metrics as early predictors for fault-prone

classes [3]. In a study on eight medium-sized systems

they report on a correlation between the CK metrics (with

the exception of the NOC metric) and fault-prone classes.

Subramanyam et al. have later relied on the CK metrics

to predict defect-prone components in an industrial e-

commerce application with subsystems implemented in

C++ and Java. They concluded that the metrics recom-

mended to predict defects may vary across these two

languages. For modules in C++, they report that WMC,

DIT, and CBO with DIT have had the most relevant impact

on the number of defects. For the modules in Java, only

CBO with DIT has had an impact on defects.

Nagappan et al. have conducted a study on five com-

ponents of the Windows operating system in order to

investigate the relationship between complexity metrics

and field defects [22]. They concluded that metrics indeed

correlate with defects. However, they also highlight that

there is no single set of metrics that can predict defects

in all the five Windows components (which we have also

observed in our experiments and summarized as Lesson

Learned #5, Section IV-E). As a consequence of this

finding, they suggest that software quality managers can

never blindly trust on metrics, i.e. in order to use metrics

as early bug predictors we must first validate them from

the history [25]. Particularly, we consider that the method-

ology we have proposed in this paper provides guidance

to apply this last suggestion. Basically, we have showed

that developers can rely on Granger Test to discover in

the history the metrics that are most useful to monitor

the number of defects in each individual component of a

software system.

Later, the study of Nagappan et al. has been replicated

by Holschuch et al. to consider a large ERP system (SAP

R3) [16]. However, both studies rely on linear regression

models and correlation tests, which consider only the “im-

mediate” relation between the independent and dependent

variables. On the other hand, the dependence between

bugs and object-oriented metrics may not be immediate,

i.e. there may exist a delay or lag in this dependency. In

this paper, we presented a new approach for monitoring

bugs that considers this lag.

Hassan and Holt’s Top Ten List is an approach that

highlights to managers the ten most fault-prone subsys-

tems of a given software system, based on the follow-

ing heuristics: Most Frequently/Recently Modified, Most

Frequently/Recently Fixed [15]. The goal is to provide

guidance to quality managers, by suggesting they must

invest their limited resources on the recommended sub-

systems. Similarly, our goal is to provide guidance to

software managers, but by suggesting the top metrics for

each component they must monitor more accurately.

Canfora et al. propose the use of the Granger Test

to detect change couplings, i.e. set of software artifacts

that are frequently modified together [4]. They claim that

conventional techniques to determine change couplings

fail when the changes are not “immediate” but due to

subsequential commits. Therefore, they propose to use

Granger Causality Test to detect whether past changes

in an artifact a can help to predict future changes in

an artifact b. More specifically, they propose the use

of a hybrid change coupling recommender, obtained by

combining Granger and association rules (the conventional

technique to detect change coupling). After an experiment

involving four open-source systems, they concluded that

their hybrid recommender provides a higher recall than

the two techniques alone and a precision in-between the

two.

In previous research, we have showed that usually there

is not a correspondence between the static location of the

warnings raised by FindBugs [17] – a bug finding tool

based on static analysis – and the methods changed by

software maintainers in order to remove field defects [6].

However, warnings seem to be good indicators for the

internal quality of a software system, mainly in terms

of adherence to recommended programming practices and

correct use of standard libraries. In fact, when we lifted

the analysis to the level of projects, we have observed that

those systems with a higher density of warnings have also

presented a higher density of defects.

VII. CONCLUSIONS

To the best of our knowledge, we are the first to

apply well-established techniques in the theory of time

series to bug prediction. Particularly, in the study of time

series, multivariate models – such as the Granger Test –

are considered more robust to spurious regressions than

traditional univariate models. After using Granger to mine

for causalities between time series of metrics (publicly

available in a benchmark specifically designed to compare

bug prediction techniques) and time series of defects

(extracted as part of the work described in this paper),

we have been able to associate to the historical values of

metrics the causes for 64% to 93% of the defects reported

for the systems considered in our experiment. We have

also been able to identify for each defective class the

particular metrics that have Granger-caused the reported

defects. Finally, as described in other studies, we could

not identify a “holy grail” for bug prediction, i.e. a small

set of metrics that are universally responsible for most of

the defects, despite the considered systems. Instead, we

have found that the metrics Granger-causing bugs can vary

225225231

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

significantly from system to system and also among the

different types of bugs of a particular system.

In the near future, we plan to leverage the experience

and knowledge gained from the described experiment to

design and implement a tool that can alert developers

about future defects, just after changes have been intro-

duced in the repository of versions. For this purpose, for

each component we need to identify the metrics that most

contributed to bugs – task already done in this work – and

to characterize the variation patterns of such metrics that

in the past have led to bugs – our next task.

ACKNOWLEDGMENTS

This research has been supported by grants from

CAPES, FAPEMIG, and CNPq. We thank Marco

D’Ambros for making the dataset with the historical values

of the OO metrics publicly available. We also thank Mauro

Ferreira for the help with the Granger Test.

REFERENCES

[1] Carina Andersson and Per Runeson. A replicated quanti-
tative analysis of fault distributions in complex software
systems. IEEE Transactions on Software Engineering,
33(5):273–286, 2007.

[2] Joao Eduardo Araujo, Silvio Souza, and Marco Tulio
Valente. Study on the relevance of the warnings reported by
Java bug finding tools. IET Software, 5(4):366–374, 2011.

[3] Victor R. Basili, Lionel C. Briand, and Walcelio L. Melo.
A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering,
22(10):751–761, 1996.

[4] Gerardo Canfora, Michele Ceccarelli, Massimiliano Di
Penta, and Luigi Cerulo. Using multivariate time series
and association rules to detect logical change coupling:
an empirical study. In 26th International Conference on
Software Maintenance (ICSM), pages 1–10, 2010.

[5] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite
for object oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493, 1994.

[6] Cesar Couto, Joao Eduardo Araujo, Christofer Silva, and
Marco Tulio Valente. Static correspondence and correlation
between field defects and warnings reported by a bug
finding tool. Software Quality Journal, pages 1–17. To
appear.

[7] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza.
On the impact of design flaws on software defects. In
10th International Conference on Quality Software (QSIC),
pages 23–31, 2010.

[8] Marco D’Ambros, Michele Lanza, and Romain Robbes.
Evaluating defect prediction approaches: a benchmark and
an extensive comparison. Journal of Empirical Software
Engineering. To appear.

[9] Marco D’Ambros, Michele Lanza, and Romain Robbes.
An extensive comparison of bug prediction approaches. In
7th Working Conference on Mining Software Repositories
(MSR), pages 31–41, 2010.

[10] Norman E. Fenton and Niclas Ohlsson. Quantitative anal-
ysis of faults and failures in a complex software system.
IEEE Transactions on Software Engineering, 26(8):797–
814, 2000.

[11] Wayne A. Fuller. Introduction to Statistical Time Series.
John Wiley & Sons, 1994.

[12] Clive Granger. Investigating causal relations by econo-
metric models and cross-spectral methods. Econometrica,
37(3):424–438, 1969.

[13] Clive Granger. Some properties of time series data and
their use in econometric model specification. Journal of
Econometrics, 16(6):121–130, 1981.

[14] Ahmed E. Hassan. Predicting faults using the complexity of
code changes. In 31st International Conference on Software
Engineering (ICSE), pages 78–88, 2009.

[15] Ahmed E. Hassan and Richard C. Holt. The top ten list:
Dynamic fault prediction. In International Conference on
Software Maintenance (ICSM), pages 263–272, 2005.

[16] Tilman Holschuh, Markus Pauser, Kim Herzig, Thomas
Zimmermann, Rahul Premraj, and Andreas Zeller. Predict-
ing defects in SAP Java code: An experience report. In 31st
International Conference on Software Engineering (ICSE),
pages 172–181, 2009.

[17] David Hovemeyer and William Pugh. Finding bugs is easy.
SIGPLAN Notices, 39(12):92–106, 2004.

[18] Michele Lanza. The evolution matrix: recovering software
evolution using software visualization techniques. In 4th
International Workshop on Principles of Software Evolution
(IWPSE), pages 37–42, 2001.

[19] Meir M. Lehman. Programs, life cycles, and laws of
software evolution. Proceedings of the IEEE, 68(9):1060–
1076, 1980.

[20] Nitai D. Mukhopadhyay and Snigdhansu Chatterjee.
Causality and pathway search in microarray time series
experiment. Bioinformatics, 23(4):442–449, 2007.

[21] Nachiappan Nagappan and Thomas Ball. Static analysis
tools as early indicators of pre-release defect density. In
27th International Conference on Software Engineering
(ICSE), pages 580–586, 2005.

[22] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller.
Mining metrics to predict component failures. In 28th
International Conference on Software Engineering (ICSE),
pages 452–461, 2006.

[23] Dewayne E. Perry, Adam A. Porter, and Lawrence G.
Votta. A primer on empirical studies (tutorial). In Tutorial
presented at 19th International Conference on Software
Engineering (ICSE), pages 657–658, 1997.

[24] Ramanath Subramanyam and M. S. Krishnan. Empirical
analysis of CK metrics for object-oriented design complex-
ity: Implications for software defects. IEEE Transaction on
Software Engineering, 29(4):297–310, 2003.

[25] Thomas Zimmermann, Nachiappan Nagappan, and Andreas
Zeller. Predicting Bugs from History, chapter 4, pages 69–
88. Springer, 2008.

226226232

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on January 03,2023 at 19:08:45 UTC from IEEE Xplore. Restrictions apply.

