
Adaptable Parsing Expression Grammars

Leonardo V. S. Reis1, Roberto S. Bigonha1,
Vladimir O. Di Iorio2, and Luis Eduardo S. Amorim2

1 Departamento de Ciência da Computação, Universidade Federal de Minas Gerais
leo@dcc.ufmg.br, bigonha@dcc.ufmg.br,

2 Departamento de Informática, Universidade Federal de Viçosa
vladimir@dpi.ufv.br, luis.amorim@ufv.br

Abstract. The term “extensible language” is especially used when a
language allows the extension of its own concrete syntax and the defini-
tion of the semantics of new constructs. Most popular tools designed for
automatic generation of syntactic analyzers do not offer any desirable
resources for the specification of extensible languages. When used in the
implementation of features like syntax macro definitions, these tools usu-
ally impose severe restrictions. We claim that one of the main reasons
for these limitations is the lack of formal models that are appropriate for
the definition of the syntax of extensible languages.
This paper presents the design and formal definition for Adaptable Pars-
ing Expression Grammars (APEG), an extension to the PEG model that
allows the manipulation of its own production rules during the analysis of
an input string. It is shown that the proposed model may compare favor-
ably with similar approaches for the definition of the syntax of extensible
languages.

Keywords: extensible languages, adaptable grammars, PEG

1 Introduction

In recent years, we have witnessed important advances in parsing theory. For
example, Ford created Parsing Expression Grammars (PEG) [13], an alterna-
tive formal foundation for describing syntax, and packrat parsers [12], top-down
parsers with backtracking that guarantee unlimited lookahead and a linear pars-
ing time. Parr has devised a new parsing strategy called LL(*) for the ANTLR
tool, that allows arbitrary lookahead and recognizes some context-sensitive lan-
guages [20]. The parser generator YAKKER presents new facilities for applica-
tions that operate over binary data [16]. These advances do not include important
features for the definition of extensible languages, although the importance of
extensible languages and the motivation for using it have been vastly discussed
in recent literature [1, 10, 11, 25].

As a simple example of desirable features for the implementation of extensible
languages, Figure 1 shows an excerpt from a program written in the Fortress
language [1]. Initially, a new syntax for loops is defined, and then the new syntax
is used in the same program. Standard tools for the definition of the syntax of

2

programming languages are not well suited for this type of extension, because
the syntax of the language is modified while the program is processed. A Fortress
interpreter, written with the tool Rats! [14], uses the following method: it collects
only the macro (extension) definitions in a first pass, processes the necessary
modifications to the grammar, and then parses the rest of the program in a
second pass [21]. Another solution for similar problems, used in a compiler for
the extensible language OCamL [19], is to require that macro definitions and
their usage always reside in different files [15].

grammar ForLoop extends {Expression, Identifier}
Expr | :=

for {i:Id ← e:Expr, ?Space}* do block:Expr end ⇒
// ... define translation to pure Fortress code

end
...
// Using the new construct
g1 = < 1, 2, 3, 4, 5 >
g2 = < 6, 7, 8, 9, 10 >
for i← g1, j ← g2 do println “(” i “,” j “)” end

Fig. 1. A Fortress program with a syntax macro.

A tool that is able to parse the program in Figure 1 in one pass must be
based in a model that allows syntax extensions. We propose Adaptable Parsing
Expression Grammars (APEG), a model that combines the ideas of Extended
Attribute Grammars, Adaptable Grammars and Parsing Expression Grammars.
The main goals that the model has to achieve are: legibility and simplicity for
syntactic extension, otherwise it would be restricted to a very small set of users;
and it must be suitable for automatic generation of syntactic analyzers.

1.1 From Context-Free to Adaptable Grammars

Context Free Grammars (CFGs) are a formalism widely used for the description
of the syntax of programming languages. However, it is not powerful enough to
describe context dependent aspects of any interesting programming language, let
alone languages with extensible syntax. In order to deal with context dependency,
several augmentations to the CFG model have been proposed, and the most
commonly used is Attribute Grammars (AGs) [17]. In AGs, evaluation rules
define the values for attributes associated to symbols on production rules, and
constraints are predicates that must be satisfied by the attributes.

Authors like Christiansen [7] and Shutt [22] argue that, in AG and other
extensions for CFGs, the clarity of the original base CFG model is undermined
by the power of the extending facilities. Christiansen gives as an example an
attribute grammar for ADA, in which a single rule representing function calls
has two and a half pages associated to it, to describe the context conditions. He

3

proposes an approach called Adaptable Grammars [8], explicitly providing mech-
anisms within the formalism to allow the production rules to be manipulated.

In an adaptable grammar, the task of checking whether a variable used in
an expression has been previously defined may be performed as follows. Instead
of having a general rule like variable -> identifier, each variable declaration
may add a new rule to the grammar. For example, the declaration of a variable
with name x adds the following production rule: variable -> "x". The nonter-
minal variable will then generate only the declared variables, and not a general
identifier. There is no need to use an auxiliary symbol table and additional code
to manipulate it.

Adaptable grammars are powerful enough even for the definition of advanced
extensibility mechanisms of programming languages, like the one presented in
Figure 1. However, as the model is based on CFG, undesirable ambiguities may
arise when the set of production rules is modified. There are also problems when
using the model for defining some context sensitive dependencies. For example, it
is hard to build context free rules that define that an identifier cannot be declared
twice in a same environment [22], although this task can be easily accomplished
using attribute grammars and a symbol table.

1.2 From Adaptable Grammars to Adaptable PEGs

We propose an adaptable model that is based on Parsing Expression Grammars
(PEGs) [13]. Similarly to Extended Attribute Grammars (EAGs) [26], attributes
are associated to the symbols of production rules. And similarly to Adaptable
Grammars [8], the first attribute of every nonterminal symbol represents the
current valid grammar. Every time a nonterminal is rewritten, the production
rule is fetched from the grammar in its own attribute, and not from a global
static grammar, as in a standard CFG. Different grammars may be built and
passed to other nonterminal symbols.

A fundamental difference between CFGs and PEGs is that the choice opera-
tor in PEG is ordered, giving more control of which alternative will be used and
eliminating ambiguity. PEG also defines operators that can check an arbitrarily
long prefix of the input, without consuming it. We will show that this feature
may allow for a simple solution for specifying the constraint that an identifier
cannot be defined twice in a same environment.

The main contributions of this paper are: 1) the design of an adaptable model
based on PEG for definition of the syntax of extensible languages; 2) a careful
formalization for the model; 3) a comparation with adaptable models based on
CFG, that exhibits the advantages of the proposal.

The rest of the paper is organized as follows. In Section 2, we present works
related to ours. Section 3 contains the formalization of Adaptable PEG. Ex-
amples of usage are presented in Section 4. Conclusions and future works are
discussed in Section 5.

4

2 Related Work

It seems that Wegbreit was the first to formalize the idea of grammars that
allow for the manipulation of their own set of rules [27], so the idea has been
around for at least 40 years. Wegbreit proposed Extensible Context Free Gram-
mars (ECFGs), consisting of a context free grammar together with a finite state
transducer. The instructions for the transducer allow the insertion of a new
production rule on the grammar or the removal of an existing rule.

In his survey of approaches for extensible or adaptable grammar formalisms,
Christiansen proposes the term Adaptable Grammar [8]. In previous works, he
had used the term Generative Grammar [7]. Although Shutt has designated his
own model as Recursive Adaptable Grammar [22], he has later used the term
Adaptive Grammar [23]. The lack of uniformity of the terms may be one of the
reasons for some authors to publish works that are completely unaware of impor-
tant previous contributions. A recent example is [24], where the authors propose
a new term Reflective Grammar and a new formalism that has no reference to
the works of Christiansen, Shutt and other important similar models.

In [22], Shutt classifies adaptable models as imperative or declarative, depend-
ing on the way the set of rules is manipulated. Imperative models are inherently
dependent on the parsing algorithm. The set of rules is treated as a global entity
that is modified while derivations are processed. So the grammar designer must
know exactly the order of decisions made by the parser. One example is the
ECFG model mentioned above.

The following works may also be classified as imperative approaches. Bur-
shteyn proposes Modifiable Grammars [4], using the model in the tool USSA
[5]. A Modifiable Grammar consists of a CFG and a Turing transducer, with in-
structions that may define a list of rules to be added, and another to be deleted.
Because of the dependency on the parser algorithm, Burshteyn presents two
different formalisms, one for bottom-up and another one for top-down parsing.
Cabasino and Todesco [6] propose Dynamic Parsers and Evolving Grammars.
Instead of a transducer, as works mentioned above, each production of a CFG
may have an associated rule that creates new nonterminals and productions. The
derivations must be rightmost and the associated parser must be bottom-up.
Boullier’s Dynamic Grammars [2] is another example that forces the grammar
designer to be aware that derivations are rightmost and the associated parser is
bottom-up.

One advantage of declarative adaptable models is the relative independency
from the parsing algorithm. Christiansen’s Adaptable Grammars, mentioned
above, is an example of a declarative model. Here we refer to the first formaliza-
tion presented by Christiansen – later, he proposed an equivalent approach, using
definite clause grammars [9]. It is essentially an Extended Attribute Grammar
where the first attribute of every non terminal symbol is inherited and repre-
sents the language attribute, which contains the set of production rules allowed
in each derivation. The initial grammar works as the language attribute for the
root node of the parse tree, and new language attributes may be built and used
in different nodes. Each grammar adaptation is restricted to a specific branch

5

of the parse tree. One advantage of this approach is that it is easy to define
statically scope dependent relations, such as the block structure declarations of
several programming languages.

Shutt observes that Christiansen’s Adaptable Grammars inherits the non or-
thogonality of attribute grammars, with two different models competing. The
CFG kernel is simple, generative, but computationally weak. The augmenting
facility is obscure and computationally strong. He proposes Recursive Adaptable
Grammars [22], where a single domain combines the syntactic elements (termi-
nals), meta-syntactic (nonterminals and the language attribute) and semantic
values (all other attributes).

Our work is inspired on Adaptable Grammars. The main difference is that,
instead of a CFG as the base model, we use PEG. Defining a special inherited
attribute as the language attribute, our model keeps the advantage of easy defi-
nitions for block structured scope. The use of PEG brings additional advantages,
such as coping with ambiguities when modifying the set of rules and more pow-
erful operators that provide arbitrary lookahead. With these operators is easy,
for example, to define constraints that prevent multiple declarations, a problem
that is difficult to solve in other adaptable models.

Our model has some similarities also with the imperative approaches. PEG
may be viewed as a formal description of a top-down parser, so the order the pro-
ductions are used is important to determine the adaptations our model performs.
But we believe that it is not a disadvantage as it is for imperative adaptable
models based on CFG. Even for standard PEG (non adaptable), designers must
be aware of the top-down nature of model, so adaptability is not a significant
increase on the complexity of the model.

We believe that problems regarding efficient implementation are one of the
reasons that adaptable models are not used yet in important tools for automatic
parser generation. Evidence comes from recent works like Sugar Libraries [11],
that provide developers with tools for importing syntax extensions and their
desugaring as libraries. The authors use SDF and Stratego [3] for the imple-
mentation. They mention that adaptable grammars could be an alternative that
would simplify the parsing procedures, but indicate that their efficiency is ques-
tionable. One goal of our work is to develop an implementation for our model
that will cope with the efficiency demands of parser generators.

3 Definition of the Model

The adaptability of Adaptable PEGs is achieved by means of an attribute as-
sociated with every nonterminal to represent the current grammar. In order to
understand the formal definition of the model, it is necessary to know how at-
tributes are evaluated and how constraints over them can be defined. In this
section, we discuss our design decisions on how to combine PEG and attributes
(Attribute PEGs), and then present a formal definition for Adaptable PEG . Basic
knowledge about Extended Attribute Grammars and Parsing Expression Gram-
mars is desirable – we recommend [26] and [13].

6

3.1 PEG with Attributes

Extended Attribute Grammar (EAG) is a model for formalizing context sensitive
features of programming languages, proposed by Watt and Madsen [26]. Com-
pared to Attribute Grammar (AG) [17] and Affix Grammar [18], EAG is more
readable and generative in nature [26].

Figure 2 shows an example of a EAG that generates a binary numeral and
calculates its value. Inherited attributes are represented by a down arrow symbol,
and synthesized attributes are represented by an up arrow symbol. Inherited
attributes on the left side and synthesized attributes on the right side of a rule
are called defining positions. Synthesized attributes on the left side and inherited
attributes on the right side of a rule are called applying positions.

〈S ↑ x1〉 → 〈T ↓ 0 ↑ x1〉
〈T ↓ x0 ↑ x2〉 → 〈B ↑ x1〉 〈T ↓ 2 ∗ x0 + x1 ↑ x2〉
〈T ↓ x0 ↑ 2 ∗ x0 + x1〉 → 〈B ↑ x1〉
〈B ↑ 0〉 → 0
〈B ↑ 1〉 → 1

Fig. 2. An example of an EAG that generates binary numerals.

A reader not familiar with the EAG notation can use the following associa-
tion with procedure calls of an imperative programming language, at least for
the examples presented in this paper. The left side of a rule may be compared to
a procedure signature, with the inherited attributes representing the names of
the formal parameters and the synthesized attributes representing expressions
that define the values returned (it is possible to return more than one value).
For example, 〈T ↓ x0 ↑ 2 ∗ x0 + x1〉 (third line of Figure 2) would represent
the signature of a procedure with name T having x0 as formal parameter, and
returning the value 2 ∗ x0 + x1, an expression that involves another variable x1
defined in the right side of the rule. The right side of a rule may be compared
to the body of a procedure, with every symbol being a new procedure call. Now
inherited attributes represent expressions that define the values for the argu-
ments, and synthesized attributes are variables that store the resulting values.
For example, 〈T ↓ 2 ∗ x0 + x1 ↑ x2〉 (second line of Figure 2) would represent a
call to procedure T having the value of 2 ∗ x0 + x1 as argument, and storing the
result in variable x2.

One of the improvements introduced by EAG is the use of attribute expres-
sions in applying positions, allowing a more concise specification of AG evalua-
tion rules. For example, the rules with B as left side indicate that the synthesized
attribute is evaluated as either 0 or 1. Without the improvement proposed by
EAG, it would be necessary to choose a name for an attribute variable and to
add an explicit evaluation rule defining the value for this variable.

We define Attribute PEGs as an extension to PEGs, including attribute ma-
nipulation. Attribute expressions are not powerful enough to replace all uses of
explicit evaluation rules in PEGs, so we propose that Attribute PEGs combine

7

attribute expressions and explicit evaluation rules. In PEGs, the use of recursion
is frequently replaced by the use of the repetition operator “*”, giving defini-
tions more related to an imperative model. So we propose that evaluation rules
in Attribute PEGs may update the values of the attribute variables, treating
them as variables of an imperative language.

Figure 3 shows an Attribute PEG equivalent to the EAG presented in Fig-
ure 2. Expressions in brackets are explicit evaluation rules. In the third line, each
of the options of the ordered choice has its own evaluation rule, defining that the
value of the variable x1 is either 0 (if the input is “0”) or 1 (if the input is “1”).
It is not possible to replace these evaluation rules with attribute expressions be-
cause the options are defined in a single parsing expression. In the second line,
the value of variable x0 is initially defined on the first use of the nonterminal B.
Then it is cumulatively updated by the evaluation rule [x0 := 2 ∗ x0 + x1].

〈S ↑ x0〉 ← 〈T ↑ x0〉
〈T ↑ x0〉 ← 〈B ↑ x0〉 (〈B ↑ x1〉[x0 := 2 ∗ x0 + x1]) ∗
〈B ↑ x1〉 ← (0 [x1 := 0]) / (1 [x1 := 1])

Fig. 3. An example of an attribute PEG.

Besides explicit evaluation rules, AGs augment context-free production rules
with constraints, predicates which must be satisfied by the attributes in each
application of the rules. In Attribute PEGs, we allow also the use of constraints,
as predicates defined in any position on the right side of a rule. If a predicate
fails, the evaluation of the parsing expression also fails. The use of attributes as
variables of an imperative language and predicate evaluation are similar to the
approach adopted for the formal definition of YAKKER in [16].

Another improvement provided by EAG is the possibility of using the same
attribute variable in more than one defining rule position. It defines an implicit
constraint, requiring the variable to have the same value in all instances. In our
proposition for Attribute PEG, we do not adopt this last improvement of EAG,
because it would not be consistent with our design decision of allowing attributes
to be updated as variables of an imperative language.

3.2 Formal Definition of Attribute PEG

We extend the definition of PEG presented in [13] and define Attribute PEG as
a 6-tuple (VN , VT , A, R, S, F), where VN and VT are finite sets of nonterminals
and terminals, respectively. A : VN → P(Z+ × {↑, ↓}) is an attribute function
that maps every nonterminal to a set of attributes. Each attribute is represented
by a pair (n, t), where n is a distinct attribute position number and t is an
element of the set {↑, ↓}. The use of positions instead of names makes definitions
shorter [26]. The symbol ↑ represents an inherited attribute and ↓ represents a
synthesized attribute. R : VN → Pe is a total rule function which maps every
nonterminal to a parsing expression and S ∈ VN is an initial parsing expression.

8

F is a finite set of functions that operate over the domain of attributes, used
in attribute expressions. We assume a simple, untyped language of attribute
expressions that include variables, boolean, integer and string values. If f ∈ F is
a function of arity n and e1, . . . , en are attribute expressions, then f(e1, . . . , en)
is also an attribute expression.

Suppose that e, e1 and e2 are attribute parsing expressions. The set of valid
attribute parsing expressions (Pe) can be recursively defined as:

λ ∈ Pe (empty expression)
a ∈ Pe, for every a ∈ VT (terminal expression)
A ∈ Pe, for every A ∈ VN (nonterminal expression)

e1e2 ∈ Pe (sequence expression)
e1/e2 ∈ Pe (ordered choice expression)

e∗ ∈ Pe (zero-or-more repetition expression)
!e ∈ Pe (not-predicate expression)

[v := exp] ∈ Pe (update expression)
[exp] ∈ Pe (constraint expression)

To the set of standard parsing expressions, we add two new types of expres-
sions. Update expressions have the format [v := exp], where v is a variable name
and exp is an attribute expression, using functions from F . They are used to up-
date the value of variables in an environment. Constraint expresssions with the
format [exp], where exp is an attribute expression that evaluates to a boolean
value, are used to test for predicates over the attributes.

Nonterminal expressions are nonterminals symbols with attribute expres-
sions. Without losing generality, we will assume that all inherited attributes are
represented in a nonterminal before its synthesized attributes. So, suppose that
e ∈ R(A) is the parsing expression associated with nonterminal A, p is its num-
ber of inherited attributes and q the number of synthesized attributes. Then
〈A ↓ a1 ↓ a2 . . . ↓ ap ↑ b1 ↑ . . . ↑ bq〉 ← e represents the rule for A and its at-
tributes. We will also assume that the attribute expressions in defining positions
of nonterminals are always represented by a single variable.

The example of Figure 3 can be expressed formally as G = ({S, T,B}, {0,1},
{(S, {(1, ↑)}), (T, {(1, ↑)}), (B, {(1, ↑)})}, R, S, {+, ∗}), where R represents the
rules described in Figure 3.

3.3 Semantics of Adaptable PEG

An Adaptable PEG is an Attribute PEG whose first attribute of all nontermi-
nals is inherited and represents the language attribute. Figure 4 presents the
semantics of an Adaptable PEG. Almost all the formalization is related to PEG
with attributes. Only the last equation defines adaptability.

An environment maps variables to values, with the following notation: . (a
dot) represents an empty environment, i.e., all variables map to the unbound
value; [x1/v1, . . . , xn/vn] maps xi to vi, 1 ≤ i ≤ n; E[x1/v1, . . . , xn/vn] is an
environment which is equal to E, except for the values of xi that map to vi,

9

1 ≤ i ≤ n. We write E[[e]] to indicate the value of the expression e evaluated in
the environment E.

Figure 4 defines the judgement E ` (e, x) ⇒ (n, o) ` E′
, which says that

the interpretation of the parsing expression e, for the input string x, in an en-
vironment E, results in (n, o), and produces a new environment E

′
. In the pair

(n, o), n indicates the number of steps for the interpretation and o ∈ V ∗
T ∪ {f}

indicates the prefix of x that is consumed, if the expression succeeds, or f 6∈ V ∗
T ,

if it fails.
Note that the changes in an environment are discarded when an expression

fails. For example, in a sequence expression, a new environment is computed
when it succeeds, a situation represented by rule Seq. If the first or the second
subexpression of a sequence expression fails, the changes are discarded and the
environment used is the one before the sequence expression. These situations
are represented by rules ¬Seq1 and ¬Seq2. A similar behaviour is defined for
¬Term1 and ¬Term2, when a terminal expression fails, and for ¬Rep, when a
repetition fails.

Rules Neg and ¬Neg show that the environment changes computed inside
a not-predicate expression are not considered in the outer level, allowing arbi-
trary lookahead without colateral effects. Rules Atrib and ¬Atrib define the
behaviour for update expression, and rules True and False represent predicate
evaluation in constraint expressions.

The most interesting rule is Adapt. It defines how nonterminal expressions
are evaluated. Attribute values are associated with variables using an approach
similar to EAG, but in a way more operational; it is also similar to parameterized
nonterminals described in [16], but allowing several return values instead of just
one. When a nonterminal is processed, the values of its inherited attributes
are calculated considering the current environment. The corresponding parsing
expression is fetched from the current set of production rules, defined by the
language attribute, that is always the first attribute of the symbol. It is indeed the
only point in all the rules of Figure 4 associated with the property of adaptability.

Now we can define the language accepted by an Adaptable PEG as follows.
Let G = (VN , VT , A, R, S, F) be an Adaptable PEG. Then

L(G) = {w ∈ V ∗
T | . ` (〈S ↓ G . . .〉, w)⇒ (n,w

′
) ` E

′
}

The derivation process begins using an empty environment, with the starting
parsing expression S matching the input string w. The original grammar G
is used as the value for the inherited language attribute of S. If the process
succeeds, n represents the number of steps for the derivation, w

′
is the prefix of

w matched and E
′

is the resulting environment as in [13]. The language L(G) is
the set of words w that do not produce f (failure).

4 Empirical Results

In this section, we present three examples of usage of Adaptable PEG. The first
example is a definition of context dependent constraints commonly required

10

E ` (e, x)⇒ (n, o) ` E
′

x ∈ V ∗
TEmpty

E ` (λ, x)⇒ (1, λ) ` E
a ∈ VT x ∈ V ∗

T
Term

E ` (a, ax)⇒ (1, a) ` E

a, b ∈ VT a 6= b x ∈ V ∗
T¬Term1

E ` (a, bx)⇒ (1, f) ` E
a ∈ VT¬Term2

E ` (a, λ)⇒ (1, f) ` E

E1 ` (e1, x1x2y)⇒ (n1, x1) ` E2 E2 ` (e2, x2y)⇒ (n2, x2) ` E3
Seq

E1 ` (e1e2, x1x2y)⇒ (n1 + n2 + 1, x1x2) ` E3

E1 ` (e1, x1y)⇒ (n1, x1) ` E2 E2 ` (e2, y)⇒ (n2, f) ` E3¬Seq1
E1 ` (e1e2, x1y)⇒ (n1 + n2 + 1, f) ` E1

E1 ` (e1, x)⇒ (n1, f) ` E2¬Seq2
E1 ` (e1e2, x)⇒ (n1 + 1, f) ` E1

E ` (e1, x1y)⇒ (n1, x1) ` E
′

Choice1

E ` (e1/e2, x1y)⇒ (n1 + 1, x1) ` E
′

E1 ` (e1, x)⇒ (n1, f) ` E2 E1 ` (e2, x)⇒ (n2, o) ` E3
Choice2

E1 ` (e1/e2, x)⇒ (n1 + n2 + 1, o) ` E3

E1 ` (e, x1x2y)⇒ (n1, x1) ` E2 E2 ` (e∗, x2y)⇒ (n2, x2) ` E3
Rep

E1 ` (e∗, x1x2y)⇒ (n1 + n2 + 1, x1x2) ` E3

E1 ` (e, x)⇒ (n1, f) ` E2¬Rep
E1 ` (e∗, x)⇒ (n1 + 1, λ) ` E1

E ` (e, xy)⇒ (n1, x) ` E
′

Neg
E ` (!e, xy)⇒ (n1 + 1, f) ` E

E ` (e, xy)⇒ (n1, f) ` E
′

¬Neg
E ` (!e, x)⇒ (n1 + 1, λ) ` E

v = E[[e]]
Atrib

E ` ([x := e], y)⇒ (1, λ) ` E[x/v]

unbound = E[[e]]
¬Atrib

E ` ([x := e], y)⇒ (1, f) ` E

true = E[[e]]
True

E ` ([e], x)⇒ (1, λ) ` E
false = E[[e]]

False
E ` ([e], x)⇒ (1, f) ` E

〈A ↓ a1 ↓ . . . ↓ ap ↑ e
′
1 ↑ . . . ↑ e

′
q〉 ← e ∈ E[[e1]], where E[[e1]] ≡ language attribute

vi = E[[ei]], 1 ≤ i ≤ p v
′
j = E1[[e

′
j]], 1 ≤ j ≤ q

[a1/v1, . . . , ap/vp] ` (e, x)⇒ (n, o) ` E1
Adapt

E ` (〈A ↓ e1 ↓ . . . ↓ ep ↑ b1 ↑ . . . ↑ bq〉, x)⇒ (n+ 1, o) ` E[b1/v
′
1, . . . , bq/v

′
q]

Fig. 4. Semantics of Adaptable PEG.

11

in binary data specification. The second illustrates the specifications of static
semantics of programming languages. And the third one shows how syntax ex-
tensibility can be expressed with Adaptable PEG.

4.1 Data Dependent Languages

As a motivating example of a context-sensitive language specification, Jim et alii
[16] present a data format language in which an integer number is used to define
the length of the text that follows it. Figure 5 shows how a similar language
may be defined in an Attribute (non adaptable) PEG. The nonterminal number
has a synthesized attribute, whose value is used in the constraint expression
that controls the length of text to be parsed in the sequel. The terminal CHAR
represents any single character.

〈literal〉 ← 〈number ↑ n〉 〈strN ↓ n〉
〈strN ↓ n〉 ← ([n > 0] CHAR [n := n− 1])∗ [n = 0]
〈number ↑ x2〉 ← 〈digit ↑ x2〉 (〈digit ↑ x1〉[x2 := x2 ∗ 10 + x1])∗

〈digit ↑ x1〉 ← 0 [x1 := 0] / 1 [x1 := 1] / . . . / 9 [x1 := 9]

Fig. 5. An example of a data dependent language.

Using features from Adaptable PEG in the same language, we could replace
the first two rules of Figure 5 by:

〈literal ↓ g〉 ← 〈number ↓ g ↑ n〉
[g1 = g ⊕ rule(“〈strN ↓ g〉 ←” + rep(“CHAR ”, n))]
〈strN ↓ g1〉

In an Adaptable PEG, every nonterminal has the language attribute as its
first inherited attribute. The attribute g of the start symbol is initialized with
the original PEG, but when nonterminal strN is used, a new grammar g1 is
considered. The symbol “⊕” represents an operator for adding rules to a gram-
mar and function rep produces a string repeatedly concatenated, then g1 will
be equal to g together with a new rule that indicates that strN can generate a
string with length n. These two functions are not formalized here for short.

4.2 Static Semantics

Figure 6 presents a PEG definition for a language where a block starts with a list
of declarations of integer variables, followed by a list of update commands. For
simplification, white spaces are not considered. An update command is formed
by a variable on the left side and a variable on the right side.

Suppose that the context dependent constraints are: a variable cannot be used
if it was not declared, and a variable cannot be declared more than once. The
Adaptable PEG in Figure 7 implements these context dependent constraints.

12

block ← { dlist slist } decl ← int id ;
dlist ← decl decl∗ stmt ← id = id ;
slist ← stmt stmt∗ id ← alpha alpha∗

Fig. 6. Syntax of block with declaration and use of variables (simplified).

〈block ↓ g〉 ← { 〈dlist ↓ g ↑ g1〉 〈slist ↓ g1〉 }
〈dlist ↓ g ↑ g1〉 ← 〈decl ↓ g ↑ g1〉 [g := g1] (〈decl ↓ g ↑ g1〉 [g := g1])∗

〈decl ↓ g ↑ g1〉 ← !(int 〈var ↓ g〉) int 〈id ↓ g ↑ n〉 ;
[g1 := g ⊕ rule(“〈var ↓ g〉 ← #n”)]

〈slist ↓ g〉 ← 〈stmt ↓ g〉 〈stmt ↓ g〉∗
〈stmt ↓ g〉 ← 〈var ↓ g〉 = 〈var ↓ g〉 ;
〈id ↓ g ↑ n〉 ← 〈alpha ↓ g ↑ ch1〉[n = ch1](〈alpha ↓ g ↑ ch2〉[n = n+ ch2])∗

Fig. 7. Adaptable PEG for declaration and use of variables.

In the rule that defines dlist, the PEG synthesized by each decl is passed
on to the next one. The rule that defines decl first checks whether the input
matches a declaration generated by the current PEG g. If so, it is an indication
that the variable has already been declared. Using the PEG operator “!”, it is
possible to perform this checking without consuming the input and indicating a
failure, in case of repeated declaration. Next, a new declaration is processed and
the name of the identifier is collected in n. Finally, a new PEG is built, adding
a rule that states that the nonterminal var may derive the name n. The symbol
“#” indicates that the string n must be treated as a variable.

The use of the PEG operator “!” on rule for decl prevents multiple declara-
tions, a problem reported as very difficult to solve when using adaptable models
based on CFG. The new rule added to the current PEG ensures that a variable
may be used only if it was previously declared. The symbol block may be part
of a larger PEG, with the declarations restricted to the static scope defined by
the block.

4.3 Fortress Language

In Figure 8, we show how extensions defined to Fortress could be integrated into
the language base grammar using Adaptable PEG. It is an adapted version of the
original grammar proposed in the open source Fortress project, considering only
the parts related to syntax extension. The rules can derive grammar definitions
as the one presented in Figure 1.

Nonterminal gram defines a grammar which has a name specified by nonter-
minal Id , a list of extended grammars (extends) and a list of definitions. The
grammar declared is located in the synthesized attribute t2, which is a map of
names to grammars. Note that language attribute is not changed, because the
nonterminal gram only declares a new grammar that can be imported when

13

needed. The attribute t1 is also a map, and it is used for looking up available
grammars.

Nonterminal extends defines a list of grammars that can be used in the defi-
nition of the new grammar. Every nonterminal of the imported grammar can be
extended or used in new nonterminals definitions. Nonterminal nonterm defines
a rule for extending the grammar, either extending the definition of a nonter-
minal or declaring a new one, depending whether the symbol used is |:= or ::=.
If the definition of a nonterminal is extended, the function ⊗ is used to put to-
gether the original rule and the new expression defined. Otherwise, a grammar
that has only one rule is created and stored in attribute g1.

The rule of the nonterminal syntax has two parts: one is a parsing expression
of a nonterminal (sequence of part) and the other is a transformation rule. A
transformation rule defines the semantics of an extension, which is specified by
nonterminal sem. Nonterminal part defines the elements that can be used in a
parsing expression with addition that nonterminal can have aliases. Nonterminal
Base generates nonterminal names, terminals and strings.

The rules in Figure 8 do not change the Fortress grammar directly; the ex-
tensions are only accomplished when an import statement is used.

〈gram ↓ g ↓ t1 ↑ t2〉 ← grammar 〈Id ↓ g ↑ id〉 〈extends ↓ g ↑ l〉
(〈nonterm ↓ g ↓ t1 ↓ l ↑ g1〉

[t2 := [id / t2(id)
⋃
g1]])∗ end

〈extends ↓ g ↑ l〉 ← extends { 〈Id ↓ g ↑ id1〉 [l := [id1]]
(, 〈Id ↓ g ↑ id2〉 [l := l : [id2])∗ }

/ λ [l := []]

〈nonterm ↓ g ↓ t1 ↓ l ↑ g1〉 ← 〈Id ↓ g ↑ id1〉 |:= 〈syntax ↓ g ↑ e1〉
[g1 := {id1 ← ⊗(t1, l, id1, e1)}]

/ 〈Id ↓ g ↑ id2〉 ::= 〈syntax ↓ g ↑ e2〉 [g1 := {id2 ← e2}]

〈syntax ↓ g ↑ e〉 ← (〈part ↓ g ↑ e1〉 [e := e e1])∗⇒ 〈sem ↓ g〉
(| (〈part ↓ g ↑ e2〉 [x := x e2])∗

[e := e / x]⇒ 〈sem ↓ g〉)∗

〈part ↓ g ↑ e〉 ← 〈single ↓ g ↑ e1〉? [e← e1 / λ]
/ 〈single ↓ g ↑ e2〉∗ [e := e∗2]
/ 〈single ↓ g ↑ e3〉+ [e := e3 e

∗
3]

/ 〈single ↓ g ↑ e4〉 [e := e4]
/ ¬〈single ↓ g ↑ e5〉∗ [e :=!e5]
/ ∧〈single ↓ g ↑ e6〉 [e :=!(!e6)]
/ { (〈part ↓ g ↑ e7〉[x := x e7])∗ } [e := (x)]

〈single ↓ g ↑ e〉 ← 〈Id ↓ g ↑ id〉 : 〈Base ↓ g ↑ e〉
/ 〈Base ↓ g ↑ e〉

Fig. 8. Fortress syntax grammar

14

5 Conclusion and Future Work

The main goals for the model proposed in this work, as stated in Section 1,
are: legibility and simplicity; and it must be suitable for automatic generation
of syntactic analyzers. We have no proofs that these goals have been attained,
however we believe that we have presented enough evidence for the first goal.
Our model has a syntax as clear as Christiansen’s Adaptable Grammars, since
the same principles are used. In order to explore the full power of the model,
it is enough for a developer to be familiar with Extended Attribute Grammars
and Parsing Expression Grammars.

We keep some of the most important advantages of declarative models, such
as an easy definition of context dependent aspects associated to static scope and
nested blocks. We showed that the use of PEG as the basis for the model allowed
a very simple solution for the problem of checking for multiple declarations of
an identifier. This problem is reported as very difficult to solve with adaptable
models based on CFG.

When defining the syntax of extensible languages, the use of PEG has at
least two important advantages. The production rules can be freely manipulated
without the insertion of undesirable ambiguities, since it is not possible to ex-
press ambiguity with PEG. Extending a language specification may require the
extension of the set of its lexemes. PEGs is scannerless, so the extension of the
set of lexemes in a language is performed with the same features used for the
extension of the syntax of the language.

In order to know exactly the adaptations performed by an Adaptable PEG,
a developer must be aware that it works as a top down parser. It could be
considered as a disadvantage when compared to declarative models, but any
PEG developer is already prepared to deal with this feature, since PEG is, by
definition, a description of a top down parser.

We have not developed yet any proof that our model is suitable for automatic
generation of syntactic analyzers. So the immediate next step of our work is to
develop an efficient implementation for Adaptable PEG, considering frequent
modifications on the set of production rules. In this implementation, we must
offer an appropriate set of operations to manipulate the grammar. Grimm pro-
poses an interesting mechanism for the tool Rats! [14], inserting labels in places
that the rules may be modified. We may use a similar approach in our future
implementation.

References

1. Eric Allen, Ryan Culpepper, Janus Dam Nielsen, Jon Rafkind, and Sukyoung Ryu.
Growing a syntax. In Proceedings of FOOL’2009, 2009.

2. Pierre Boullier. Dynamic grammars and semantic analysis. Rapport de recherche
RR-2322, INRIA, 1994. Projet CHLOE.

3. Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strat-
ego/XT 0.17. A language and toolset for program transformation. Sci. Comput.
Program., 72(1-2):52–70, June 2008.

15

4. Boris Burshteyn. Generation and recognition of formal languages by modifiable
grammars. SIGPLAN Not., 25:45–53, December 1990.

5. Boris Burshteyn. Ussa – universal syntax and semantics analyzer. SIGPLAN Not.,
27:42–60, January 1992.

6. S. Cabasino, Pier S. Paolucci, and G. M. Todesco. Dynamic parsers and evolving
grammars. SIGPLAN Not., 27:39–48, November 1992.

7. H. Christiansen. The Syntax and Semantics of Extensible Languages. Roskilde
datalogiske skrifter. Computer Science, Roskilde University Centre, 1987.

8. H. Christiansen. A survey of adaptable grammars. SIGPLAN Not., 25:35–44,
November 1990.

9. Henning Christiansen. Adaptable grammars for non-context-free languages. In
Proceedings of IWANN’09, pages 488–495. Springer-Verlag, 2009.

10. Tom Dinkelaker, Michael Eichberg, and Mira Mezini. Incremental concrete syntax
for embedded languages. In Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC’11, pages 1309–1316, New York, NY, USA, 2011. ACM.

11. Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann.
Sugarj: library-based syntactic language extensibility. In Proceedings of OOP-
SLA’11, pages 391–406, New York, NY, USA, 2011. ACM.

12. Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time, functional pearl.
SIGPLAN Not., 37(9):36–47, September 2002.

13. Bryan Ford. Parsing expression grammars: a recognition-based syntactic founda-
tion. SIGPLAN Not., 39(1):111–122, January 2004.

14. Robert Grimm. Better extensibility through modular syntax. SIGPLAN Not.,
41(6):38–51, June 2006.

15. Martin Jambon. How to customize the syntax of ocaml, using camlp5.
URL: http://mjambon.com/extend-ocaml-syntax.html, 2011.

16. Trevor Jim, Yitzhak Mandelbaum, and David Walker. Semantics and algorithms
for data-dependent grammars. SIGPLAN Not., 45:417–430, January 2010.

17. Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2(2):127–145, 1968.

18. Cornelius H. A. Koster. Affix grammars. In Algol 68 Implementation, pages 95–109.
North-Holland, 1971.

19. Yaron Minsky. Ocaml for the masses. Commun. ACM, 54(11):53–58, November
2011.

20. Terence Parr and Kathleen Fisher. LL(*): the foundation of the ANTLR parser
generator. SIGPLAN Not., 46(6):425–436, June 2011.

21. Sukyoung Ryu. Parsing fortress syntax. In Proceedings of PPPJ’09, pages 76–84,
New York, NY, USA, 2009. ACM.

22. John N. Shutt. Recursive adaptable grammars. Master’s thesis, Worchester Poly-
technic Institute, 1998.

23. John N. Shutt. What is an adaptive grammar?
URL: http://www.cs.wpi.edu/ jshutt/adapt/adapt.html, 2001.

24. Paul Stansifer and Mitchell Wand. Parsing reflective grammars. In Proceedings of
LDTA’11, pages 10:1–10:7, New York, NY, USA, 2011. ACM.

25. Guy L. Steele, Jr. Growing a language. In Addendum to OOPSLA’98, pages
0.01–A1, New York, NY, USA, 1998. ACM.

26. David A. Watt and Ole Lehrmann Madsen. Extended attribute grammars. Com-
put. J., 26(2):142–153, 1983.

27. Ben Wegbreit. Studies in Extensible Programming Languages. Outstanding Dis-
sertations in the Computer Sciences. Garland Publishing, New York, 1970.

