An Approach for Extracting Modules from
Monolithic Software Architectures

Ricardo Terra, Marco Tulio Valente, Roberto S. Bigonha

Universidade Federal de Minas Gerais, Brazil

{terra,mtov,bigonha}l@dcc.ufmg.br

Abstract. Software architectures commonly evolve into unmanageable mono-
liths, leading to systems that are difficult to understand, maintain, and evolve.
In such common scenarios, developers usually have to invest considerable time
in re-architecting the entire application, in order to restore its modular structure.
However, re-architecting process are usually conducted in ad hoc way, without
following any set of principled guidelines and methods. In order to tackle this
problem, this paper describes an approach to segregate the code of a given sys-
tem concern into modules with well-defined interfaces. We also present the first
results of applying the proposed approach in an illustrative application.

1. Introduction

Software architectures commonly evolve into unmanageable monoliths, leading to sys-
tems that are difficult to understand, maintain, and evolve. In such common scenarios,
developers usually have to invest considerable time in re-architecting the entire applica-
tion, in order to restore its modular structure [9, 10]. However, re-architecting processes
are usually conducted in ad hoc ways, without following any set of principled guidelines
and methods.

In order to tackle this problem, we propose in this paper an approach to extract
modules from monolithic architectures. The proposed approach is based on a series of
refactorings and aims to modularize concerns through the isolation of their code frag-
ments. Figure 1a illustrates the approach goal. In this figure, letters yyy and zzz denote
code related to a given concern. In the monolithic version of the system, the code suf-
fers from tangling and scattering. Afterwards, such code is extracted and moved to new
classes leaving only invocations (represented by the arrows) in the original class.

The remainder of this paper is organized as follows. Section 2 outlines the main
phases of the remodularization approach we are currently investigating. Section 3 presents
the first results of applying the proposed approach in an illustrative application. Section 4
presents related work. Finally, Section 5 discusses further and ongoing work.

2. Remodularization Approach

The proposed remodularization approach is summarized in Figure 1b. It is important to
mention that the approach is able to extract modules from code fragments related to the
manipulation of a well defined group of classes, such as classes provided by frameworks,
abstract data types, etc.

To illustrate the process, we will first rely on a simple example based in the isola-
tion of a hypothetical framework called Zeta that contains the classes X, Y, and Z. Basi-

(a) (b)

yyy yYy Monolithic
yyy ... | Architecture

zzz
222
zzz

Modular
Architecture

[one-to-one move strategy]

Annotate concern
code fragments

Extract concern
code fragments to
new methods

Move extracted
methods

[many-to-one move strategy]

Method Fusion

Class Fusion

Method Fusion
Class Splitting

Insert Interfaces

Figure 1. (a) Proposed approach goal and (b) their phases

cally, code associated to this framework is our target concern. The following subsections

explain each phase of the approach.

2.1. Code Annotation

First, we must annotate the code fragments that implement the concern we intend to mod-
ularize. It is necessary to identify which code fragments are related to the concern. For
instance, using the Zeta concern example, the code fragments that manipulate Zeta types
to annotate an entire class, an entire

are related to the concern. Hence, it is possible
method, part of a method, or an attribute.

We use simple comments to annotate the code. These comments have the prefix
“c:” followed by the concern name as can be observed in Listing 1. It shows a method
called exampleMethod from the ExampleClass class whose main responsibility is not
directly related to the Zeta framework. Meanwhile, this method uses objects from Zeta

(lines 6-9).
public class ExampleClass {

2 private String via;

4 public void exampleMethod (String param) {
int number = Integer.parselnt (param);

6 X x = new X(number); //c:zeta
Object o = x.fx2(this.via); //c:zeta

8 Y v = new Y (); //c:zeta

y.fy2(o.toString()); //c:zeta

Listing 1. Annotation of Zeta code fragments

2.2. Method Extraction

This phase is responsible to extract the concern code fragments to new methods of the
same class. For this purpose, we simply rely on the well-known Extract Method refactor-
ing [3]. As can be observed in Listing 2, Zeta code fragments have been extracted to a

new private method called £1 (lines 11-16).

public class ExampleClass {

2 private String via; ...
4 public void exampleMethod (String param) { ...
int number = Integer.parselnt (param);

6 this. fl (number);

8 }

private void fl1 (int number) {

12 X x = new X (number);

Object o = x.fx2(this.via);
14 Yy = new Y();

yv.fy2(o.toString());

Listing 2. Zeta code fragments extracted to new methods

2.3. Method Moving

It is the most crucial phase of the proposed approach. In this phase, architects should
decide how to move the extracted methods to new modules. As illustrated in Figure 2, we
propose the two following strategies for moving the extracted methods:

1) One-to-one move strategy: This strategy is indicated when the extracted methods ref-
erence attributes or call other extracted methods. As illustrated in Figure 2, suppose that
class A has two extracted methods £1 and £2 and class B has an extracted method g1. This
strategy moves methods f1 and £2 and the fields only used by such methods to a new
class A’ and similarly method g1 to a new class B’. Furthermore, class A will have one at-
tribute of the type A’ and class B will have one attribute of the type B'. Finally, the original
invocations of moved methods must be adjusted to invoke them by this new attribute.

a) one-to-one b) many-to-one

A strategy A' A strategy
L W pfL() 0
f1() | #f2() f1() .
f2() f2() ()
" N e p2(
m N gl()
gl g1

Figure 2. Move method strategies

Listing 3 illustrates the application of this strategy in the Zeta example. We have
created the class Zetal (new target class, lines 16-33) and an attribute of its type has been
inserted in the origin class ExampleClass (line 2). Because the attribute via is used only
by the extracted methods, it has also been moved to the target class (line 17) and construc-
tor (line 20) and accessor methods (lines 22-24) have been created. Finally, we updated
the constructor from the origin class (lines 4-7) and the invocations accordingly (line 11).

public class ExampleClass {

2 Zetal zetal; ...
4 public ExampleClass(... , String via) {
6 this.zetal = new Zetal (via);

}

public void exampleMethod (String param) { ...
10 int number = Integer.parselnt (param);
this.zetal.fl (number);

16 public class Zetal {
private String via;
18 e

20 public Zetal (String via) { this.via = via; }
22 public String getVia () { return this.via; }
24 public void setVia (String via) { this.via = via; }
26
public void f1(int number) {

28 X x = new X (number);

Object o = x.fx2(this.via);
30 Y vy = new Y ();

y.fy2(o.toString());

32

Listing 3. Application of one-to-one move strategy in Zeta example
2) Many-to-one move strategy

This strategy is indicated when the extracted methods rarely use attributes. Ba-
sically, the strategy prescribes moving all extracted methods—despite of their origin
class—to a single new class. As illustrated in Figure 2b, suppose again that class A has
two extracted methods £1 and £2 and class B has an extracted method g1. This strategy
moves methods 1, £2, and g1 as static methods of a single new class S. Thus, classes A
and B will access—in a static way—the moved methods.

Listing 4 illustrates the application of this strategy in the Zeta example. As can
be observed, we have created the class Zeta (target class, lines 11-20) and moved all
extracted methods to this class with public visibility and a static modifier (line 13). It is
important to highlight that because the attribute via is used by method f1, it is passed
as formal parameter (line 13). Finally, we have adjusted the invocations of the moved
method £1 (line 6).

public class ExampleClass {

2 private String via; ...
4 public void exampleMethod (String param) { ...
int number = Integer.parselnt (param);

6 Zeta.fl (number, this.via);

8 }
}

public class Zeta {

public static void fl (int number, String via) {

14 X x = new X (number);
Object o = x.£fx2(via);
16 Yy = new Y();
y.fy2(o.toString());
18
20 }

Listing 4. Application of many-to-one move strategy in Zeta example

2.4. Method Fusion

The classes created in the previous phase may have duplicated or similar methods. To
determine these methods, we are currently investigating the following fusion criteria:
i. By Equality: identifies equal methods (i.e., methods that have exactly the same
sequence of statements).

ii. By Generalization: identifies similar methods whose formal parameter types can
be generalized in order to produce a single method. For example, suppose that
method f receives a Set and method g receives a List parameter. Suppose also
these methods are almost equivalent and they do not use specific methods from Set

or List, therefore it is possible to create a single method having as parameter the
supertype Collection.

iii. By Parameterization: identifies similar methods that could be merged into a single
method containing an expanded list of formal parameters. For example, suppose that
methods £ and g have almost the same body except by the fact that g has an extra
behavior. Therefore, it is possible to create a single method including a new formal
parameter to enable or disable this extra behavior.

2.5. Class Regrouping

Towards a better grouping of the moved methods, we are currently investigating means
to fusion or split the created classes. When using the many-to-one strategy, the single
created class may have several non-related methods, then it is reasonable to split such
class into smaller and more cohesive classes—Class Splitting. On the other hand, when
using the one-to-one strategy, some created classes may have no attributes, then it may
also be reasonable to fusion them into more cohesive classes—Class Fusion. For this
purpose, we are working in the following regrouping heuristics:

i. By Signature: regroups the extracted methods by their signature, i.e., based on their
formal parameters and return types. For example, suppose method f1 receives a Y
parameter, method f£2 returns a list of Y’s, method £3 receives a Z. Then, using this
heuristic, £1 and £2 will become part of a group and £3 of another.

ii. By Known Types: regroups the extracted methods according to types handled by
them. For example, suppose that methods £1 and f4 handle the type Y, and that
methods £2 and £3 handle the type Z. Then, using this heuristic, 1 and £4 will
become part of a group, and £2 and £3 of another group.

iii. By Name: regroups the extracted methods taking into consideration their names. For
example, suppose there are methods saveY, saveZ, deleteY, and deleteZ. Thus,
using this heuristic, methods with the prefix save will become part of a group and
those with the prefix delete of another group.

iv. By Origin Class: regroups the extracted methods based in the class from where they
have been moved. For example, suppose methods £1, £2 and £4 have been extracted
from class A and method £3 from class B. Then, using this heuristic, £1, £2 and f4
will become part of a group and £3 of another group.

2.6. Interface Insertion

Once the code fragments related to the concern are modularized, such modules need well-
defined interfaces. Programming to interfaces is a design principle that advocates that
developers should separate the interface of a component from its implementation. Essen-
tially, it creates an abstract layer between client and server components [4].

Listing 5 illustrates the interface insertion in the Zeta example using one-to-one
move strategy. As can be observed, we have created the interface IZetal (lines 16-20)
and made the Zetal class implement it (line 22). We have also created the class
FactoryZeta (lines 26-30) with respective factory method (lines 27-29). We have ad-
justed the attribute zetal in the origin class to have the interface type (line 2). Finally, the
constructor gets a reference to the concrete object by calling its factory method (line 6).

public class ExampleClass {

2 1Zetal zetal;
4 public ExampleClass(... , String via) {
6 ﬁfxis.zetal = FactoryZeta.getZetal (via);

}

public void exampleMethod (String param) {
10 int number = Integer.parselnt(param);
this.zetal.fl(number);

8

}
14}

16 public interface IZetal {
public String getVia ();

18 public void setVia (String via);
public void f1l(int number);

20 }

22 public class Zetal implements IZetal {
24}
26 public class FactoryZeta {

public static IZetal getZetal (String via) {
28 return new Zetal (via);

Listing 5. Interface insertion on Zeta after one-to-one move strategy

3. An Illustrative Application

To illustrate the approach, we have modularized some concerns of MyWebMarket, which
is an illustrative web application we have developed'. This system handles common activ-
ities found in a simple e-commerce system, including managing customers and products,
purchasing orders, generating reports, etc.

As illustrated in Figure 3, the system has been developed using Java EE and re-
lies on the following frameworks: (a) Struts, responsible to handle HTTP requests and
responses; (b) Hibernate, responsible for object/relational persistence; (c) DWR, respon-
sible to provide Ajax communication; (d) Log4J for logging; (e) Quartz to schedule jobs;
(f) JavaMail to send emails; (g) JasperReport to generate reports. More important, we
have deliberately implemented the system as a monolithic block. Particularly, its classes
are coupled in an anti-modular way to the aforementioned frameworks.

=l = -l
JavaMail MyWebMarket JasperReport
1

/‘\ classes ™
| '

7 |

| e S i 5 Ca

Struts DWR Quartz Hibernate Log4)

Figure 3. MyWebMarket and its frameworks

The next subsections describe the modularization of MyWebMarket’s concerns.
We will assume that the system developers have annotated the code fragments related
to each concern. To demonstrate the improvements on system quality achieved by the
remodularization approach described in this paper, we will rely on conventional metrics

I All Java projects are publicly available at http:/www.dcc.ufmg.br/~terra/wmswm2012.

http://www.dcc.ufmg.br/~terra/wmswm2012

for cohesion and coupling [2]. We will use LCOM (Lack of COhesion of Methods) for
cohesion and CBO (Coupling Between Object classes) for coupling.

1) Modularization of Persistence Concern: Once the code fragments related to Hibernate
have been annotated, they have been extracted to 22 new methods in 7 distinct classes.
In the Method Moving phase, we used one-to-one strategy because the extracted methods
have presented a high degree of similarity at the class level. No attribute could be moved
to the new class because they were used by other methods. Therefore, 13 methods had to
incorporate attributes as their formal parameters. With respect to Interface Insertion, we
have created interfaces for each class and respective abstract factory methods.

2) Modularization of Scheduling Concern: Only one class in the system uses Quartz.
Thus, we easily extracted two methods that did not use class attributes and therefore
we used many-to-one move strategy. Finally, we have applied the Interface Insertion
refactoring to a single class.

3) Modularization of Reporting Concern: Only one class in the system uses JasperReport.
Thus, we have extracted two methods that also did not use class attributes and again
we used the many-to-one move strategy. Last, we have applied the Interface Insertion
refactoring and created the factory method.

4) Modularization of Mailing Concern: Only one class in the system uses JavaMail, more
specifically there is one scheduling job responsible to send emails to administrators. Thus,
we have extracted this unique method. Because it uses several class attributes, we used
one-to-one move strategy, resulting in three attributes moved to the new class. Finally, we
have performed the Interface Insertion and created one factory method.

Discussion: This case study, although simple, provides an indicator of the applicability
of the proposed approach and an indicator about the gains that can be achieved by such
approach. As presented in the Table 1, each modularization has contributed to improve
cohesion (LCOM) and coupling (CBO). For instance, comparing the monolithic version
with the last remodularized version, LCOM has decreased from 0.367 to 0.227 (an im-
provement of 38.14%) and CBO has decreased from 15 to 4 (an improvement of 60%).

Table 1. MyWebMarket quality improvement by Remodularization

LCOM CBO
Monolithic version 0.367 15
Version 1 (persistence) 0.282 9.333
Version 2 (scheduling) 0.261 6.2
Version 3 (reporting) 0.243 4.857
Version 4 (mailing) — last 0.227 4

It is important to mention that due to the small size of the application, we have de-
cided to do not perform method fusion or class regrouping. Nevertheless, we are currently
working in case studies of large monolithic applications.

4. Related Work

The concept of refactoring was first coined by Opdyke [7] and has been consolidated by
the catalog proposed by Fowler [3]. Afterwards, Kerievsky [6] has written a catalog de-
scribing how to refactor to design patterns [5] and Bourquin and Keller [1] describe high-
impact refactorings, which are refactorings with a strong impact on the system quality.

(1]

(2]

[3]
[4]
[5]

(6]
[7]
(8]

[91

[10]

[11]

Tsantalis and Chatzigeorgiou [11] argue on the importance of moving state and behav-
ior between classes to reduce coupling and to increase cohesion. They also propose a
methodology to identify move method refactoring opportunities. Rama and Patel [9] have
analyzed several large system modularization projects and identified recurring patterns.
They define, formalize and demonstrate the applicability of six of such patterns (termed
modularization operators), such as module decomposition and module union operators.
Sarkar et al. [10] alert about the architectural erosion and highlight the importance on
remodularizations that tackle such problem. They describe a modularization approach
adopted by an IT company to reengineer a monolithic banking application, which grew
from 2.5 to 25 MLOC. In a previous work we have compared and illustrated the use of
three static architecture conformance techniques, namely reflection models, dependency
structure matrices (DSM), and source-code query languages [8] Therefore, this research
can be seen as a natural continuation of this previous work, but tackling not the detection
but the correction of modular violations.

5. Conclusions and Further Work

This paper has outlined a set of principled guidelines to segregate the code of a given
system concern into modules with well-defined interfaces. Our ultimate goal is to provide
to architects means to extract modules from monolithic architectures through an organized
process which contemplates since the code annotation until interface insertion, thereby
preventing architects to conduct rearchitecturing processes in ad hoc way.

Moreover, we have presented the first results of applying the proposed approach
in an illustrative application called MyWebMarket. After we have extracted four modules
from the monolithic version of this system, cohesion and coupling have improved 38%
and 60%, respectively.

Currently, we are working on: (i) the formalization of the proposed approach;
(i1) new case studies in large monolithic systems to better demonstrate the applicability
and scalability of our approach; (iii) automatization of the approach as an Eclipse plug in.

References

F. Bourquin and R. K. Keller. High-impact refactoring based on architecture violations. In //th European Conference on Software
Maintenance and Reengineering (CSMR), pages 149—158, 2007.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Transactions on Software Engineering, 20:476—
493, June 1994.

M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley, 1999.
M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1994.

J. Kerievsky. Refactoring to Patterns. Pearson, 2004.
W. F. Opdyke. Refactoring object-oriented frameworks. Doctoral thesis, University of Illinois at Urbana-Champaign, June 1992.

L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Mendonca. Static architecture-conformance checking: An illustrative overview.
IEEE Software, 27:82-89, 2010.

G. Rama and N. Patel. Software modularization operators. In 26th International Conference on Software Maintenance (ICSM), pages
1-10, 2010.

S. Sarkar, S. Ramachandran, G. S. Kumar, M. K. Iyengar, K. Rangarajan, and S. Sivagnanam. Modularization of a large-scale business
application: A case study. IEEE Software, 26:28-35, 2009.

N. Tsantalis and A. Chatzigeorgiou. Identification of move method refactoring opportunities. /EEE Transactions on Software Engi-
neering, 99:347-367, 2009.

	Introduction
	Remodularization Approach
	Code Annotation
	Method Extraction
	Method Moving
	Method Fusion
	Class Regrouping
	Interface Insertion

	An Illustrative Application
	Related Work
	Conclusions and Further Work

