
Measuring the Structural Similarity
between Source Code Entities

Ricardo Terra∗, João Brunet†, Luis Miranda∗, Marco Túlio Valente∗,
Dalton Serey†, Douglas Castilho∗, and Roberto Bigonha∗

∗Universidade Federal de Minas Gerais, Brazil
Email: {terra,luisfmiranda,mtov,douglas.castilho,bigonha}@dcc.ufmg.br

†Universidade Federal de Campina Grande, Brazil
Email: {jarthur,dalton}@dsc.ufcg.edu.br

Abstract—Similarity coefficients are widely used in software
engineering for several purposes, such as identification of refac-
toring opportunities and system remodularizations. Although the
literature provides several similarity coefficients that vary on the
computing strategy, there is a tendency among researchers to
make habitual use of certain coefficients that others in their
field are using. Consequently, some approaches might be using
an inadequate coefficient for their purpose. In this paper, we
conduct a quantitative study that compares 18 coefficients to
identify which one is the most appropriate in determining where
a class should be located. Our evaluation contemplates 111 open
source systems from Qualitas Corpus, which totalizes more than
70,000 classes. As a result, we observed that Jaccard—one of the
most used coefficients in our area—has not presented the best
results. While Jaccard correctly indicated the suitable module to
22% of the classes, other coefficients were able to indicate 60%.

I. INTRODUCTION

Similarity coefficient measures the degree of correspon-
dence between two entities according to an established cri-
terion. This concept is widely used in software engineering
area for several different purposes, such as identification of
refactoring opportunities [1]–[3] and system remodulariza-
tions [4], [5]. For example, Fokaefs et al. employ a well-
known similarity coefficient—named Jaccard [6]—to measure
similarity between methods of a given class in order to
recommend a Extract Class refactoring for those methods with
low similarity. As another example, Simon et al. also employed
Jaccard coefficient to propose a set of cohesion metrics that
help developers to identify refactoring opportunities, such as
Move Method and Move Attribute [3].

The literature is prolific and provides several similarity co-
efficients that vary on their computing strategy. Nevertheless,
there are few works comparing similarity coefficients using
structural dependencies as source of information [4]. This lack
of knowledge may lead researchers to choose an inadequate
coefficient to this purpose, once there is a tendency among
researchers to make habitual use of certain coefficients that
others in their field are using, even without sound scientific or
empirical reasons [7].

In this paper, we conduct a quantitative study that compares
18 coefficients to identify which one is the most appropriate

in determining where a class should be located. We computed
the similarity between classes and packages of 111 open
source systems from Qualitas Corpus [8]. From our results,
we can point out three main findings:

1) Structural dependencies are indeed precise enough to
determine where a class should be located. In our
evaluation, we achieved an overall precision of 80% in
indicating the correct package of a class up to rank 3.

2) Considering the dependency type or the multiplicity of
dependencies does not improve the overall precision.
Our results show that simply relying on the existence
of dependencies between two entities—i.e., without
considering the dependency type and multiplicity—
achieves the best precision results.

3) Jaccard—one of the most used coefficients in our
area— has not presented the best results. While Jaccard
indicated the correct package to only 22% of the
classes, other coefficients—such as Relative Matching,
Kulczynski, and Russell and Rao—were able to indicate
to slightly over 60%.

A usual problem that developers face during software
refactoring or remodularization is to indicate the suitable
package in which a particular class should be located. In
this context, our findings might improve software engineering
approaches that need to determine the suitable package of
a class. As aforementioned, Jaccard is not the most precise
coefficient in the context of measuring the similarity between
classes and packages using structural dependencies as source
of information.

The remainder of this paper is structured as follows.
Section II provides a description of similarity coefficients.
Section III describes strategies for extracting structural de-
pendencies from a class. Section IV presents and discusses
results on comparing our strategies and coefficients in 111 real-
world systems. Finally, Section V presents related work and
Section VI concludes the paper.

II. SIMILARITY COEFFICIENTS

Table I shows 18 similarity coefficients that we have
evaluated to determine the most appropriated one in the
context of measuring similarity among classes [7], [9]. To
calculate these coefficients, we assume that a given source
code entity (method, class, or package) is represented by the
dependencies it establishes with other types. Therefore, the
measure of the structural similarity between two source code
entities i and j (i.e., Sij) considers the following variables:

a = the number of dependencies on both entities,
b = the number of dependencies on entity i only,
c = the number of dependencies on entity j only, and
d = the number of dependencies on neither of the entities.

For instance, Jaccard—one of the simplest and most used
coefficient in our field—is defined by:

Sij =
a

a+ b+ c
(1)

Basically, Jaccard indicates maximum similarity when two
entities have identical dependencies, i.e., when b = c = 0
and thus Sij = 1.0. On the other hand, it indicates minimum
similarity when there are no dependencies in common, i.e.,
when a = 0 and thus Sij = 0.0.

class Bar extends X { class Foo extends X {
A a; B b;
B b; G g;

exampleBar(D d){ exampleFoo(E e){
a.f(); e.j();
d.g(); new A().f()

} }
} }

Code 1. Hypothetical classes to explain the measurement of similarity

As an illustrative example, Code 1 presents two hypothetical
classes. In order to measure the similarity between Bar and
Foo, we first determine the value of the variables a, b, c, and d.
In this example: a = 3 since both classes rely on A, B, and X;
b = 1 since only Bar relies on D; c = 2 since only Foo relies
on E and G; and d = 3 since none establishes dependencies
with three other classes of the system (namely C, F, and Y).
Next, we choose a similarity coefficient and solve the formula.
For example, the similarity between Bar and Foo using
Jaccard results in 0.5, whereas using Phi decreases to 0.35
or using Kulczynski increases to 0.675.

Each coefficient has a unique property that differs it from
others. For example, while Jaccard does not consider what the
both entities do not have in order to compute their similarity
(variable d), Simple matching and 10 other coefficients con-
template it. The Yule and Hamann coefficients are mathemat-
ically related. Although both have the same variables in their
numerators and denominators, Hamann relates the variable by
addition whereas Yule relates them by multiplication.

As another example, Sorenson1 gives twice the weight
to what the entities have in common (variable a), while

1Sorenson is also referred on the literature as Czekanowski or Dice.

TABLE I
GENERAL PURPOSE SIMILARITY COEFFICIENTS

Coefficient Definition Sij Range
1. Jaccard a/(a + b + c) 0–1*

2. Simple matching (a + d)/(a + b + c + d) 0–1*

3. Yule (ad − bc)/(ad + bc) -1–1*

4. Hamann [(a + d) − (b + c)]/[(a + d) + (b + c)] -1–1*

5. Sorenson 2a/(2a + b + c) 0–1*

6. Rogers and Tanimoto (a + d)/[a + 2(b + c) + d] 0–1*

7. Sokal and Sneath 2(a + d)/[2(a + d) + b + c] 0–1*

8. Russell and Rao a/(a + b + c + d) 0–1*

9. Baroni-Urbani and Buser [a + (ad)
1
2]/[a + b + c + (ad)

1
2] 0–1*

10. Sokal binary distance [(b + c)/(a + b + c + d)]
1
2 0*–1

11. Ochiai a/[(a + b)(a + c)]
1
2 0–1*

12. Phi (ad − bc)/[(a + b)(a + c)(b + d)(c + d)]
1
2 -1–1*

13. PSC a2/[(b + a)(c + a)] 0–1*

14. Dot-product a/(b + c + 2a) 0–1*

15. Kulczynski 1
2
[a/(a + b) + a/(a + c)] 0–1*

16. Sokal and Sneath 2 a/[a + 2(b + c)] 0–1*

17. Sokal and Sneath 4 1
4
[a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)] 0–1*

18. Relative Matching [a + (ad)
1
2]/[a + b + c + d + (ad)

1
2] 0–1*

The symbol “∗” denotes the maximum similarity.

the Rogers and Tanimoto coefficient gives twice the weight
to what each entity has independently (variables b and c).
Except for the d variable in the denominator, Russell and
Rao resembles Jaccard. On the other hand, the Sokal and
Sneath coefficient, which is quite similar to Simple matching,
reduces the importance of what each entity has independently
(variables b and c) by half.

Kulczynski and Sokal and Sneath 4 are based on conditional
probability. Kulczynski assumes that a characteristic is present
in one item, given that it is present in the other, whereas the
Sokal and Sneath 4 coefficient assumes that a characteristic
in one item matches the value in the other. Finally, Relative
Matching considers a set of similarity properties such as no
mismatch, minimum match, no match, complete match, and
maximum match.

III. STRATEGIES

In order to measure the similarity between two source
code entities, we assume that a given source code entity
(a class or a package, in this paper) is represented by the
structural dependencies it establishes with other types. We
also distinguish the type of the dependency, i.e., whether
a given dependency was established by accessing methods
and fields (access), declaring variables (declare), creating
objects (create), extending classes (extend), implementing
interfaces (implement), throwing exceptions (throw), or us-
ing annotations (useannotation). Structural dependencies
are extracted from the source code using a function named
Deps(E,S). Basically, this function returns E’s dependencies
according to a strategy S. A strategy is a pair [C, D] that defines
the collection2 and the data information to be employed in the
extraction. The collection C can assume one of the following
values:

2We use the generic term “collection” when we do not need to be specific
about the kind of structure (set or multiset) under consideration.

1) set: a collection that contains no duplicated elements.
In other words, if a class establishes more than one
dependency to java.sql.Statement, it considers only
one.

2) multiset: a generalization of the notion of set in which
elements are allowed to appear more than once. For
instance, if a class establishes three dependencies to
java.sql.Statement, we actually consider all of them.

The data information D can assume one of the following
values:

1) target type (tt): in this case the extraction function
returns a collection of target types that the entity
establishes dependencies with. Thus, an element is
a single [T], denoting the existence of at least one
dependency between the entity under analysis and T.

2) target and dependency type (dtt): in this case the
extraction function returns a collection whose elements
are pairs [dt, T], denoting the existence of a dependency
of type dt between the class under analysis and T.

public class Bar {
public void foo (Date d){

if (d == null){
d = new Date();

} else {
new Date()

}
}

}

Code 2. An example class that explains our strategies

As an illustrative example, consider the class presented in
Code 2. The collection returned by function Deps(Bar, S)
differs according to the strategy S employed. More specifically,
the following calls (and respective results) are possible:

Deps(Bar, [set, tt]) = {Date}
Deps(Bar, [set, dtt]) = {[declare, Date], [create, Date]}
Deps(Bar, [mset, tt]) = {Date, Date, Date}
Deps(Bar, [mset, dtt]) = {[declare, Date], [create, Date],

[create, Date]}

Strategies that rely on target and dependency type may
be particularly important when the classes of the system
rely on types differently according to their location. For
example, a factory method that creates a DTO (Data Transfer
Object) and a logic presentation method that handles a DTO

may not be similar. As another example, a class that imple-
ments java.io.Serializable and a method that declares
java.io.Serializable may also not be similar. Although
this strategy clearly performs better in particular cases, our
evaluation is concerned with the overall precision.

Last but not least, the set of dependencies of a package Pkg

is calculated by the union of the set of the dependencies of its
classes as follows:

Deps(Pkg, S) =
⋃

Ci ∈ Pkg

Deps(Ci, S)

IV. EVALUATION

A. Research Questions

We designed a study to address the following overarching
research questions:

RQ #1 – Are structural dependencies precise enough to
indicate whether a class is located in the correct package?

RQ #2 – Considering the multiplicity of dependencies—i.e.,
a multiset rather than a set—improves the overall precision?

RQ #3 – Considering the dependency type—i.e., representing
a target dependency as a pair [dt, T] rather than only a single
type [T]—improves the overall precision?

RQ #4 – Which coefficient is the most suitable to measure
the similarity among classes of object oriented systems?

B. Target Systems

Our evaluation relies on the Qualitas Corpus3, which is
a collection of software systems intended to be used for
empirical studies of code artifacts [8]. In its current version,
the corpus includes the source code of many popular systems,
such as JRE, Eclipse, NetBeans, and Apache Tomcat. Table II
summarizes information about our data set.

TABLE II
QUALITAS CORPUS

systems 111
total of packages 6,841
total of analyzed classes 71,823

It is worth noting that our data set is large and heteroge-
neous, ranging from text processors and small frameworks to
complete IDEs and virtual machines.

C. Major Assumption

We made the following assumption due to the infeasibility
in obtaining a 100% accurate oracle for thousands of classes.

“In order to conduct our experiment, we assume that every
class under analysis is in its right package.”

Therefore, similarity coefficients should indicate the current
package of the class as its most suitable one.

D. Methodology

To provide answers to our research questions, we performed
the following tasks:

1) Setup: First, we have set all system up, i.e., we imported
and compiled the 111 projects from Qualitas Corpus.

2) Data Extraction: Second, we extracted the structural
dependencies of classes using the four possible
strategies described in Section III, i.e., [set, tt],
[set, dtt], [mset, tt], and [mset, dtt].

3Qualitas Corpus v20120401. Available at: http://qualitascorpus.com.

http://qualitascorpus.com/

3) Comparative Analysis: Third, we have measured the
similarity using all coefficients described in Section II.
The coefficients were applied to measure the similarity
between pairs [class, package] from our corpus.

4) Qualitative Analysis: Last, we have conducted a qualita-
tive analysis in order to answer our research questions.

E. Experimental Setup

In order to conduct this experiment, the following policies
have been proposed:

1) We have disregarded the class under analysis while
searching for its right location. For example, when
measuring the similarity between a class A and its
package Pkg, we actually consider its own package Pkg

as being Pkg− {A}.
Thereupon, we have not sought the suitable location
of classes whose package contains only such class.
For example, assume that package Pkg contains only
class A. The measure of similarity will be unfair because
Deps(Pkg− {A}, S) = φ.

2) We have disregarded a particular class Ci when
|Deps(Ci, S)| < 5, i.e., we have not evaluated classes
that establish less than five dependencies. These classes
contain too little information to make any inference
based on their structural dependencies.

3) We have not evaluated test classes, since most of
the systems organize their test classes on a single
package. Consequently, the test package contains
classes related to different parts of the system—i.e.,
they are not structurally related—which certainly
reduces the precision of any approach based on
structural dependencies.

4) We have filtered trivial dependencies, such as those
established with primitive and wrappers types (e.g., int
and java.lang.Integer), java.lang.String, and
java.lang.Object. Since virtually all classes establish
dependencies with these types, they do not actually
contribute for the measure of similarity. This decision
is quite similar to text retrieval systems that exclude
stop words because they are rarely helpful in describing
the content of a document.

F. Results

Figure 1 illustrates the overall precision for each coefficient
regarding the four analyzed strategies. The overall precision is
defined by the ratio between the number of classes that have
their location (package) correctly predicted by the similarity
coefficient and the total number of analyzed classes. We have
also provided the Top 1, 2, and 3 ranking, which stands for
the position of the correct package of a class. As an example,
considering strategy [set, tt], the Relative Matching precision
has reached 60% on Top 1, 72% on Top 2, and 78% on Top 3.

In other words, it means that Relative Matching located the
correct package of a class 60% on the first position of its
ranking, 12% on the second position, and 6% on the third
position.

Before we provide answers to our research questions, it
is worth noting that many similarity coefficients presented
very similar (mostly identical) results. In fact, the Spearman
correlation among these coefficients was very close to 1,
which allowed us to group them. The multiple correlation
among Simple Matching, Hamann, Rogers and Tanimoto,
Sokal and Sneath, and Sokal Binary Distance presented lowest
correlation value of 0.999994. Similarly, Jaccard, Sorenson,
Dot-product, and Sokal and Sneath 2 presented lowest corre-
lation value of 0.999999. Finally, Ochiai and PSC presented
correlation equal to 0.998251. These results explain why there
is no variance in the ranks within the same group.

Next, we answer our research questions based mainly
on Figure 1. In all answers, our data interpretation always
considers the Top 3 ranking—when not stated differently.

RQ #1: Are structural dependencies precise enough to
indicate whether a class is located in the correct package?

Yes. As can be observed in Figure 1, there are coefficients
that achieved a high precision to determine the package where
a class should be located. In particular, Relative Matching,
Kulczynski, Russell and Rao, and Sokal and Sneath 4 indicate,
in the worst scenario, over than 70% of precision.

RQ #2: Considering the multiplicity of dependencies—i.e., a
multiset rather than a set—improves the overall precision?

No. Figure 1 shows that strategies that use the traditional set
([set, tt] and [set, dtt]) perform better than an equivalent
multiset-based strategy for all coefficients. The only exception
is the Russell And Rao coefficient, which presented results
slightly better for the [mset, tt] strategy. More important,
if we consider only Top 1, a traditional set-based strategy
performs better than multiset-based one for all coefficients.

RQ #3 – Considering the dependency type—i.e., representing
a target dependency as a pair [dt, T] rather than only a
single type [T]—improves the overall precision?

No. On one hand, Figure 1 shows that multiset-based data
(i.e., [mset, tt] and [mset, dtt]) presents very similar results
for all coefficients. It is expected since the extracted collection
is very similar. For instance, assume a collection A extracted
using strategy [mset, dtt] and a collection B extracted using
strategy [mset, tt]. If A(i) = [access, Foo] for an index i,
then B(i) = [Foo].

On the other hand, analyzing set data, we can observe that
[set, tt] provides better results for all coefficients, except for
Russell and Rao and Sokal and Sneath 4 that presented results
slightly better using the dependency type ([set, dtt]).

From now on, our discussion only considers strategy
[set, tt], since we have demonstrated that the use of multiset

Simple Matching
Hamann

Rogers and Tanimoto
Sokal and Sneath

Sokal Binary Distance

Baroni−Urbani Phi

Jaccard
Sorenson

Dot Product
Sokal and Sneath 2

Ochiai
PSC Yule Sokal and Sneath 4 Russell and Rao Kulczynski Relative Matching

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

Strategy

O
ve

ra
ll

P
re

ci
si

on

Ranking

1st

2nd

3rd

Fig. 1. Top 3 ranking of similarity coefficients using all strategies

(mset) and dependency type (dtt) does not actually improve
the overall precision.

RQ #4: Which coefficient is the most suitable to measure the
similarity among classes of object oriented systems?

Relative Matching, Kulczynski, and Russell and Rao.
These coefficients have reached the highest precision values in
our study. As can be observed in Figure 1, Relative Matching
(60.83%) and Russell and Rao (60.27%) achieved the highest
similarity values of the Top 1, and Relative Matching (72.78%
and 78.18%) and Kulczynski (72.15% and 79.23%) of the Top 2 and 3.

As the central finding of our study, these three coefficients
significantly outperform Jaccard—one of the most used simi-
larity coefficients. While Jaccard indicated the correct package
to 22% (Top 1) and 39% (Top 3) of the classes, Relative Match-
ing, Kulczynski and Russell and Rao were able to indicate the
correct package to 60% (Top 1) and 79% (Top 3).

To better explain this behavior, we anecdotally analyzed
some systems to understand the influence of the variables a,
b, c, and d (see Section II) on their precision. We performed
this analysis by plotting each variable against the ranking.4 Our
major finding regards to the fact that large packages negatively
influence Jaccard and other coefficients that presented very
low precision (e.g., Simple Matching). Usually, large packages
imply a large difference between c and d, which negatively
impacts the precision of certain coefficients like Jaccard.
On the other hand, by their nature, this scenario does not
influence Relative Matching, Kulczynski, and Russell and Rao.
It explains why these coefficients have presented the best
results on both small and large packages.

G. Supplementary Results

Figure 2 illustrates the Top N ranking of every coefficient
using strategy [set, tt]. In contrast to Figure 1 that displays
only the Top 3, it displays the full distribution of the ranks

4Due to space constraints, we have not graphically presented this analysis.

Fig. 2. General ranking using strategy [set, tt]

until full coverage (i.e., precision of 1.0). As a second relevant
finding from our study, Figure 2 demonstrates that there is no
coefficient that drastically improves its precision right after the
top 3 ranking (e.g., Top 4 or Top 5). This behavior reinforces
our decision in using Top 3. As can also be observed in
Figure 2, Russell and Rao achieved precision of 1.0 in the
rank 79. It means that the suitable package of a class was
detected, in the worst case, on its 79th position. This result
is quite relevant, since the other coefficients only achieved
precision of 1.0 from the rank 347.

Since our analysis so far has considered the overall pre-
cision, we also analyzed the results of each coefficient per

system. Figure 3 summarizes the number of systems in which
a particular coefficient has presented the best result (i.e.,
better identified the correct package of a class). For instance,
Relative matching has better determined correct modules to
Eclipse classes, whereas the Russell and Rao coefficient has
behaved better to ArgoUML classes. Furthermore, we have not
graphically presented some coefficients (e.g., Simple Matching
and Jaccard) because they have not presented the best result
for any system.

As can be observed in Figure 3, Relative Matching, Kul-
czynski, and Russell and Rao have presented the best results
for most systems, which reinforces our claim that these coef-
ficients are the most suitable ones to measure the similarity
among classes in object-oriented systems.

Phi
PSC/Ochiai

Sokal And Sneath 4
Yule

Russel and Rao
Kulczynski

Relative Matching

1 4 22 40 62
systems

Fig. 3. # systems in which a particular coefficient presented the best result

H. Threats to Validity
We must state at least one major threat to the conclusion

validity of the reported evaluation. Our experiment assumes
that every class is in the right location. Although there might
be misplaced classes, we rely on a stable and trustworthy
collection of systems.

V. RELATED WORK

There are few research works that compares similarity co-
efficients using structural dependencies as source of informa-
tion [4]. Despite this lack of knowledge, similarity coefficients
have been widely used for several different purposes [1]–[3],
[5]. For example, the Jaccard distance between a method and
a class is employed to support the automated identification
of Feature Envy bad smells [1], [2]. Similarly, Simon et
al. employ Jaccard distance to analyze similarity between
classes and to identify refactoring opportunities [3]. They
have proposed a cohesion metric based on Jaccard distance in
order to suggest refactorings that improve the measurements
of the metric. Our results suggest that the precision of the
aforementioned approaches may be improved by using other
coefficients that outperform Jaccard (e.g., Relative Matching
and Kulczynski).

Fokaefs et al. employed Jaccard coefficient to develop a
clustering method to suggest Extract Class refactorings for
those entities with low level of similarity [5]. However, it
is not clear in their paper how the authors handle structural
dependencies to measure similarity among classes.

VI. CONCLUSION

First, we take the position that the choice of a similarity
coefficient should not continue to be made without well-
founded reasons. To address this shortcoming, we conducted

a quantitative study that compares 18 coefficients to identify
which one is the most appropriate in determining where a
class should be located. As the major result, we observed that
Jaccard—one of the most used coefficients in our area—has
not presented the best results. While Jaccard indicated the cor-
rect package to only 22% of the classes, other coefficients—
such as Relative Matching, Kulczynski, and Russell and Rao—
were able to indicate to slightly over 60%.

Next, we have observed that the simplest strategy to extract
structural dependencies from a class—set with only types
([set, tt])—is indeed the best one. Stated differently, consid-
ering multisets of dependencies (mset) or considering also the
dependency type (dtt) does not improve the overall precision.

Plans for future work include: (i) a sensitivity analysis of
the factors a, b, c, and d in the ranking to statistically explain
the behavior of each coefficient; (ii) an investigation of the
impact on the results when measuring similarity of each pair
[class, class] and hence the similarity between a class C and
a package Pkg will be calculated considering the average of
the resulting similarity between C and Pkg’s classes; (iii) the
extension of our comparative study to determine the most
suitable class for a method; and (iv) the development of a
tool that points out misplaced methods or classes.

Furthermore, we also have plans to use the main findings
of the present study in the implementation of ArchFix [10],
the recommendation system we are currently proposing to
help developers to reverse software architecture erosion.

Acknowledgments: Our research has been supported by
CAPES, FAPEMIG, and CNPq.

REFERENCES

[1] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 99, pp. 347–367, 2009.

[2] ——, “Identification of extract method refactoring opportunities for the
decomposition of methods,” Journal of Systems and Software, vol. 84,
no. 10, pp. 1757–1782, 2011.

[3] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refac-
toring,” in 5th European Conference on Software Maintenance and
Reengineering (CSMR), 2001, pp. 30–38.

[4] R. Naseem, O. Maqbool, and S. Muhammad, “Improved similarity
measures for software clustering,” in 15th European Conference on
Software Maintenance and Reengineering (CSMR), 2011, pp. 45–54.

[5] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in 33rd
International Conference on Software Engineering (ICSE), 2011, pp.
1037–1039.

[6] I. H. Moghadam and M. Ó. Cinnéide, “Automated refactoring using
design differencing,” in 15th European Conference on Software Main-
tenance and Reengineering (CSMR), 2012, pp. 43–52.

[7] H. C. Romesburg, Cluster Analysis for Researchers. Lifetime Learning
Publications, 1981.

[8] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The Qualitas Corpus: A curated collection of Java
code for empirical studies,” in 17th Asia Pacific Software Engineering
Conference (APSEC), 2010, pp. 336–345.

[9] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster Analysis,
5th ed. Wiley, 2011.

[10] R. Terra, M. T. Valente, K. Czarnecki, and R. Bigonha, “Recommending
refactorings to reverse software architecture erosion,” in 16th European
Conference on Software Maintenance and Reengineering (CSMR), Early
Research Achievements Track, 2012, pp. 335–340.

	Introduction
	Similarity Coefficients
	Strategies
	Evaluation
	Research Questions
	Target Systems
	Major Assumption
	Methodology
	Experimental Setup
	Results
	Supplementary Results
	Threats to Validity

	Related Work
	Conclusion
	References

