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Abstract—Software architecture conformance is a key software
quality control activity that aims to reveal the progressive
gap normally observed between concrete and planned software
architectures. In this paper, we present ArchLint, a lightweight
approach for architecture conformance based on a combination
of static and historical source code analysis. For this purpose,
ArchLint relies on four heuristics for detecting both absences
and divergences in source code based architectures. We applied
ArchLint in an industrial-strength system and as a result we
detected 119 architectural violations, with an overall precision
of 46.7% and a recall of 96.2%, for divergences. We also
evaluated ArchLint with four open-source systems, used in an
independent study on reflexion models. In this second study,
ArchLint achieved precision results ranging from 57.1% to
89.4%.

Index Terms—Software architecture conformance; Static anal-
ysis; Mining software repositories.

I. INTRODUCTION

Software architecture conformance is a key software qual-
ity control activity that aims to reveal the progressive gap
normally observed between concrete and planned software
architectures [1], [2]. More specifically, this activity aims to
expose statements, expressions or declarations in the source
code that do not match the constraints imposed by the planned
architecture. The ultimate goal is to prevent the accumulation of
such incorrect implementation decisions and therefore to avoid
the phenomena known as architectural drift or erosion [3].

There are two main techniques for architecture conformance:
reflexion models and domain-specific languages [4]. Reflexion
models compare a high-level model manually created by
the architect with a concrete model, extracted automatically
from the source code [5]. As a result, reflexion models can
reveal two kinds of architectural anomalies: absences (relations
prescribed by the high-level model that are not present in
the concrete model) and divergences (relations not prescribed
by the high-level model, but that are present in the concrete
model). Alternatively, domain-specific languages with focus
on architecture conformance provide means for architects to
express in a customized syntax the constraints defined by the
planned architecture [6]–[8].

However, the application of the current techniques for
architecture conformance may require a considerable effort. For
example, reflexion models may require successive refinements
in the high-level model to reveal the whole spectrum of
absences and divergences that can be present in the source
code of large and extensively maintained systems [9], [10].

On the other hand, domain-specific languages may require the
extensive and detailed definition of constraints.

This paper presents ArchLint, an approach that combines
static and historical source code analysis techniques in order to
provide a lightweight alternative for architecture conformance.
ArchLint requires two inputs on the system under analysis: a
high-level component specification and the history of revisions.
Without requiring further refinements in this model, ArchLint
supports four heuristics to discover suspicious dependencies
in the source code, i.e., dependencies that may denote di-
vergences or absences. The common assumption behind the
proposed heuristics is that dependencies denoting architectural
violations—at least in systems not facing a massive erosion
process—are rare events in the space-time domain, i.e., they
appear in a small number of classes and they are frequently
removed during the evolution of the systems.

We report two case studies with ArchLint. In a first study,
we applied the solution in an industrial-strength information
system. Our goal was to conduct a sensitivity study, in order
to discover the best combination of values for the thresholds
required by the proposed heuristics. As a result, we detected
119 violations in the first evaluated system, with a precision of
46.7% and a recall of 96.2%, for divergences. In a second study,
we evaluated four open-source systems used in an independent
study on reflexion models. For the systems with architectural
violations, ArchLint achieved precision results ranging from
57.1% to 89.4% and recall ranging from 16.2% to 93.1%. Such
results are similar to the ones produced by general-purpose
and widely used static analysis tools, such as FindBugs [11]
and PMD [12]. In fact, ArchLint can be seen as an attempt to
elevate to an architectural level the warnings raised by popular
static analysis tools.

The remainder of this paper is divided into eight sections. In
Section II, we present an overview of the proposed approach
for architecture conformance. Sections III and IV present the
heuristics for absences and divergences, respectively. Section
V describes the internal architecture of a prototype tool
supporting our approach. Sections VI describe an analysis
of sensitivity, considering a real-world information systems.
Section VII reports an evaluation with four open-source systems.
Section VIII presents related work. Section IX concludes with
ArchLint’s contributions and limitations. It also outlines future
research lines and improvements.
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II. PROPOSED APPROACH

Figure 1 illustrates our approach for detecting architectural
violations. Basically, it relies on two types of input information
on the target system: (a) history of versions; (b) high-level
component specification. We consider that the classes of
a system are statically organized in modules (or packages,
in Java terms) and that modules are logically grouped in
coarse-grained structures, called components. The component
model includes information on the names of the components
and a mapping from modules to components, using regular
expressions (a complete example is provided in Section VI-A).
From this, ArchLint identifies suspicious dependencies (or
lack of) in source code by relying on frequency hypotheses
and past corrections made on these dependencies. ArchLint
considers all static dependencies possibly established between
classes, including dependencies due to method calls, variable
declarations, inheritance, exceptions, etc.

Fig. 1. Proposed approach

We do not make efforts in inferring the high-level compo-
nents automatically because it is usually straightforward for
architects to provide this representation. When the architects are
not available (e.g., in the case of open-source systems), a high-
level decomposition in major subsystems is often included in
the developer’s documentation or can be retrieved by inspecting
the package structure. In fact, as described in Section VII, we
applied ArchLint to four open-source systems, reusing high-
level models independently defined by other researchers from
information available in the system’s documentation.

In the following sections, we motivate and describe the
heuristics followed by ArchLint to detect evidences of absences
(Section III) and divergences (Section IV). The heuristics were
proposed after our experience on discovering architectural
violations in a real-world information system [6], different
from the system we evaluate on Section VI.

III. DETECTING ABSENCES

An absence is a violation due to a dependency defined by
the planned architecture, but that does not exist in the source
code [1], [5]. For example, suppose an architecture that requires
that classes located in a V iew component must extend a class
called V iewFrame. In this case, an absence is counted for
each class in the V iew not following this rule.

To detect absences, we initially search for classes denoting
minorities at the level of components, regarding a given depen-
dency. Assuming that absences are an exceptional property in

classes, minorities have more chances to represent architectural
violations. Moreover, we rely on the history of versions to
mine for dependencies dep introduced in classes originally
created without dep. The underlying assumption in this case
is that absences are usually detected and fixed. Moreover, the
goal is to reinforce the evidences collected in the previous step
by checking whether the classes originally created with the
architecture violation under analysis (i.e., absence of dep) have
later fixed this violation (i.e., have introduced dep).

Figure 2 illustrates the proposed heuristic. In this figure,
class C2 has an absence regarding TargetClass because: (a)
C2 is the only class in the component cp that does not depend
on TargetClass; (b) a typical evolution pattern among the
classes in cp is to introduce a dependency with TargetClass,
as observed in classes C1, C4, and C5.

Fig. 2. Example of absence (C2 does not depend on TargetClass)

Formal Definition: Our heuristic for detecting absences, relies
on two definitions. First, the Dependency Scattering Rate—
denoted by DepScaRate(c, cp)—is the number of classes in
the component cp that depend on a target class c divided by the
total number of classes in cp. Second, the Dependency Insertion
Rate—denoted by DepInsRate(c, cp)—is the number of
classes in the component cp originally created without a
dependency with a target class c but that have this dependency
in the last version of the system under analysis divided by
the total number of classes in cp originally created without a
dependency with c.

The candidates for absences in a given component cp are
defined as follows:

Absences(cp) = { (x, c) | comp(x) = cp ∧
¬depends(x, c) ∧ DepScaRate(c, cp) ≥ Asca ∧
DepInsRate(c, cp) ≥ Ains}

According to this definition, an absence is a pair (x, c) where
x is a class located in cp that does not depend on the target
class c, when most of the classes in cp have this dependency.
Moreover, several classes in cp created without this dependency
evolved to depend on c. The parameters Asca and Ains define
the thresholds for dependency scattering and insertion.

IV. DETECTING DIVERGENCES

A divergence is a violation due to a dependency that is
not allowed by the planned architecture, but that exists in the
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source code [1], [5]. Our approach includes three heuristics
for detecting divergences, as described next.

A. Heuristic #1

Essentially, this heuristic targets a common pattern of
divergences: the use of frameworks and APIs by unauthorized
components [6], [13]. For example, enterprise software ar-
chitectures commonly define that object-relational mapping
frameworks must only be accessed by components in the
persistence layer. Therefore, this constraint explicitly authorizes
the use of an external framework, but only in well-defined
components.

The heuristic initially prescribes that the search for diver-
gences must be restricted to dependencies present in a small
number of the classes of a given component (according to
a given threshold, described next). However, although this
is a necessary condition for divergences, it is not sufficient
to characterize such violations. For this reason, the heuristic
includes two extra conditions. First, it establishes that the
dependency must have been removed several times from
the high-level component under analysis (i.e., along the
component’s evolution, it has been detected as a violation and
the system has been refactored to fix the violation; but it has
been introduced again, possibly by another developer in another
package or class that is part of the component). Second, the
heuristic also searches for components where the dependency
under analysis is extensively found (i.e., components that
behave as “heavy-users” of the target module). The assumption
is that it is common to have coarse-grained and lexically related
groups of classes that according to the architecture must only
be accessed by classes in well-delimited components.

Figure 3 illustrates the proposed heuristic. In this figure,
class C2 presents a divergence regarding TargetModule
because: (a) C2 is the only class in component cp1 that
depends on TargetModule; (b) many classes in cp1 (like
C1, C4, and C5) have in the past established and then
removed a dependency with TargetModule; (c) most of
the dependencies with TargetModule come from another
component cp2 (i.e., cp2 is a “heavy-user” of TargetModule).

Formal Definition: This heuristic relies on two new definitions.
First, the Dependency Deletion Rate of a component cp regard-
ing a target module m—denoted by DepDelRate(m, cp)—is
the number of classes in cp that have established a dependency
in the past with a class in m but do not have this dependency
anymore in the current version divided by the total number of
classes in cp that have established a dependency with module
m. Second, the predicate heavyUser(cp,m) checks whether
most classes in component cp depend on classes located in the
module m (as defined by a threshold Dhvy).

The candidates for divergences in a component cp1 are
defined as follows:

Div1(cp1) = { (x, c) | comp(x) = cp1 ∧ mod(c) = m ∧
depends(x, c) ∧ DepScaRate(c, cp1) ≤ Dsca ∧
DepDelRate(m, cp1) ≥ Ddel ∧

Fig. 3. Example of divergence (C2 depends on TargetModule)

heavyUser(cp2,m) ∧ cp1 6= cp2}

According to this definition, a divergence is a pair (x, c),
where x is a class located in the component cp1 that depends
on a target class c, located in a module m, when most of the
classes in cp1 do not have this dependency (as defined by the
scattering rate inferior to a minimal threshold Dsca). Moreover,
the definition requires that several classes in the component
under evaluation must have removed the dependencies with
m in the past, as defined by a threshold Ddel. Finally, there
is another component cp2 with a heavy-user behavior with
respect to module m.

B. Heuristic #2

As in the previous case, this second heuristic restricts the
analysis to dependencies originating from a small number of
the classes of a given component and to dependencies that
have been removed in the past. However, it has two important
differences regarding the first heuristic: (a) it is based on fine-
grained dependencies, i.e., dependencies to a specific target
class and not to whole modules; (b) it does not require the
existence of a heavy-user for the dependency under analysis.

Figure 4 illustrates the proposed heuristic. In this figure,
class C2 has a divergence regarding TargetClass because:
(a) C2 is the only class in the component cp that depends
on TargetClass; (b) a common evolution pattern among the
classes in cp is to remove a dependency with TargetClass,
as observed in the history of the classes C1, C4, and C5.

This heuristic has been proposed to detect two possible
sources of divergences: (a) the occasional use of frameworks
not authorized by the planned architecture (e.g., a system
that in particular locations relies directly on SQL statements
instead of using the object-relational mapping framework
prescribed by the architecture) [6]; (b) the use of incorrect
abstractions provided by an authorized framework (e.g., a
system that in particular locations relies on inheritance instead
of annotations when accessing a framework that provides both
forms of reuse, although the architecture authorizes only the
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Fig. 4. Example of divergence (C2 depends on TargetClass)

later).

Formal Definition: This heuristic relies on the Dependency
Deletion Rate, defined when formalizing the first heuristic.
However, for this second heuristic we count deletions regarding
a target class c (and not a module m). The heuristic is
formalized as follows:

Div2(cp) = { (x, c) | comp(x) = cp ∧
depends(x, c) ∧ DepScaRate(c, cp) ≤ Dsca ∧
DepDelRate(c, cp2) ≥ Ddel }

According to this definition, a divergence is a pair (x, c),
where x is a class located in the component cp that depends
on a target class c, when most of the classes in cp do not have
this dependency (as defined by the threshold Dsca). Moreover,
several classes in the component under evaluation removed the
dependencies with c in the past.

C. Heuristic #3

This heuristic is based on the assumption that a common
consequence of divergences is the creation of asymmetrical
cycles between components. More specifically, as illustrated in
Figure 5, our goal with this heuristic is to search for pairs of
components cp1 and cp2 where most references are from cp2
to cp1, but there is also a representative number of references
in the reverse direction. The underlying assumption is that in
the original architecture such components have been designed
to communicate unidirectionally and the dependencies in the
“wrong direction” are in fact architectural violations (and not
exceptions authorized by the architecture for example for
performance reasons). This heuristic is particularly useful
to detect back-call violations, a typical violation in layered
architectures that happens when a lower layer relies on
services implemented by upper layers.

Formal Definition: To evaluate the third heuristic for
divergences, we assume that rf(cp1, cp2) denotes the number
of references to classes in cp2 originating from classes in cp1.
We also define the Dependency Direction Weight between
components cp1 and cp2 as follows:

Fig. 5. Divergences due to asymmetrical cycles

DepDirWeight(cp1, cp2) =
rf(cp1, cp2)

rf(cp1, cp2)+rf(cp2, cp1)

Using this definition, the heuristic is formalized as follows:

Div3(cp1) = { (c1, c2) | depends(c1, c2) ∧
comp(c1) = cp1 ∧ comp(c2) = cp2 ∧ cp1 6= cp2 ∧
Ddir 6 DepDirWeight(cp1, cp2) < 0.5}

According to this formalization, divergences are pairs of
classes (c1, c2) where c1 is a class in cp1 (the component
under analysis) that depends to a class c2 in cp2 and the
dependencies from cp1 to cp2 meet the following conditions: (a)
they are not exceptions, because they are greater than a minimal
threshold Ddir; (b) they are not dominant, because there are
more dependencies in the reverse direction, as specified by a
dependency direction weight less than 0.5.

V. TOOL SUPPORT

We have implemented a prototype tool that supports the
ArchLint approach for detecting architectural violations. As
represented in Figure 6, ArchLint’s implementation follows a
pipeline architectural pattern with three main components:

• The Code Extractor module is responsible for extracting
the source code of all versions of the system under
evaluation. Currently, our prototype provides access only
to svn repositories.

• The Dependency Extractor is responsible for creating
a dependency model describing the structural relations
available in each source code version considered in
the evaluation. Essentially, this model is a directed
graph, whose nodes are classes and the edges are the
dependencies. To extract the dependencies from the
source code, we use VerveineJ1, a Java parser that
exports dependency relations in the format for modeling
static information defined by the Moose platform for
software analysis2. We modified VerveineJ to store this
information in a relational database, in order to facilitate
queries over the collected data.

1https://gforge.inria.fr/projects/verveinej.
2http://www.moosetechnology.org.
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• The Architectural Violations Detector module implements
the heuristics described in Sections III and IV. Basically,
the heuristics are implemented as SQL queries.

Fig. 6. ArchLint architecture

VI. FIRST STUDY - SENSITIVITY ANALYSIS

To start evaluating our approach, we conducted a first study
using a real-world information system. Our goal with this first
study is twofold: (a) to analyze the sensitivity of our approach
to changes in the values of the thresholds used by the proposed
heuristics; (b) to determine a set of thresholds to be used in
the second case study reported in the paper.

A. Methodology

In this first study we use ArchLint to detect violations in
the architecture of an EJB-based information system used by
a major Brazilian university, which for confidentiality reasons
we will just call SGA. The system includes functionalities
for human resource management, finance and accounting
management, and material management, among others. In the
study, we considered 4,923 revisions (all available revisions),
stored in a svn repository, from March, 2009 to September,
2011. After parsing these revisions, ArchLint generated a
dependency model with more than 29 million relations, which
have been stored in a relational database with 4.5 GB.
The first extracted version was considered as the baseline
for calculating the functions DepInsRate and DepDelRate,
described in Sections III and IV. The last revision considered in
the study has 1,852 classes and interfaces, comprising around
127 KLOC.

To apply ArchLint, we initially asked SGA’s senior architect
to define the high-level component model. After a brief
explanation on the purpose and characteristics of this model,
the architect suggested the following components:

• ManagedBean: bridge between user interface and
business-related components.

• IService: facade for the service layer.
• ServiceLayer: core business processes automated by the

system.
• IPersistence: facade for the persistence layer.
• PersistenceLayer: implementation of persistence.

• BusinessEntity: domain types used in the system (such
as Professor, Student, etc).

Table I shows the number of packages and classes in the
high-level components defined by the SGA’s architect. As
can be observed, the proposed components are coarse-grained
structures, ranging from components with 16 packages and 304
classes (ManagedBean) to components with 21 packages and
357 classes (BusinessEntity). The table also shows the regular
expressions proposed by the architect to define the packages
in each component. We can observe that most expressions are
simple, usually selecting packages that have common names
or prefixes.

TABLE I
HIGH-LEVEL COMPONENTS IN THE SGA SYSTEM

Component Packages Classes Regular Expression
ManagedBean 16 304 br.sga*.managedbeans*
IService 17 308 br.sga*.ejb.facade*
ServiceLayer 17 311 br.sga*.ejb.local*
IPersistence 18 315 br.sga*.dao* <excludes>

br.sga*.dao.jpa*
Persistence 17 309 br.sga*.dao.jpa*
BusinessEntity 21 357 br.sga*.domain*

Using as input the regular expressions specifying the
components, we executed ArchLint to trigger evidences of
architectural violations in the SGA system. In fact, we executed
the tool several times, varying the thresholds required by
the heuristics proposed in Sections III and IV. Basically, the
intention was to check how our results are affected by setting
different values for such thresholds. We asked the architect to
carefully examine the triggered violations and to classify them
as true or false positives. Since the architect has a complete
domain of SGA’s architecture and implementation, he is the
right expert to play an oracle role in our study.

In the case of divergences, to measure recall we asked the
architect to inspect and classify all dependencies established
between the classes in the last version considered in the
evaluation (which was a not simple task, but at least it was
manageable by setting several filters in a spreadsheet with all
existing dependencies).

B. Detecting Absences

Figures 7(a) and 7(b) show the number of true absences
(true positives) and false absences (false negatives) raised
by ArchLint. As reported in Section III, the detection of
absences relies on two thresholds: Asca (percentage of classes
the dependency is scattered on) and Ains (percentage of classes
that inserted the dependency in the past). Figure 7(a) shows
the results when we have set up Asca as 0.90 and ranged Ains

from 0.35 to 0.95 (in intervals of 10%). In Figure 7(b), we
fixed Asca in 0.95 and ranged Ains in the same way.

As presented in the figures, there is a major reduction in the
number of true positives when we vary Ains. In Figure 7(a), for
example, we have achieved 43 true absences for Ains = 0.35
and only two true results for Ains = 0.95. On the other hand,
there is also an important reduction in the number of true
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positives when we compare both figures. For example, after
increasing Asca to 0.95, we achieved only 28 true positives
for Ains = 0.35.

Figure 7(c) shows the precision for each combination of
thresholds. As can be observed, the precision has varied from
15.4% to 57.1%. The best precision was achieved for Asca =
0.95 and Ains = 0.35.

C. Detecting Divergences

Heuristic #1: As reported in Section IV-A, this heuristic
depends on two thresholds: Dsca (percentage of classes the
dependency is scattered on) and Ddel (percentage of classes
that removed the dependency in the past). Figures 8(a), 8(b),
and 8(c) show the results after ranging Dsca from 0.15 to 0.05
and Ddel from 0.55 to 0.95. As can be checked, we counted
exactly nine true positives in each combination of thresholds
we have tested. On the other hand, after setting Dsca = 0.05,
we were able to reduce to zero the number of false negatives.

Figure 9 presents the precision results, which have varied
from 36% (for Dsca = 0.15 and Ddel = 0.55) to 100% (for
Dsca = 0.05 and Ddel > 0.55).

Fig. 9. Precision for the heuristic #1

Heuristic #2: As in the previous heuristic, this second heuristic
relies on Dsca and Ddel thresholds. Figure 10(a) shows the
results achieved when we set up Dsca as 0.10 and ranged
Ddel from 0.55 to 0.95 (in intervals of 10%). In Figure 10(b),
we fixed Dsca in 0.05 and ranged Ddel in the same way. We
observed a major decrease in the number of false positives
when we varied Ddel values (from 132 to 13 false positives,
as presented in Figure 10(a)). On the other hand, changes in
Dsca have not impacted the number of true positive—which
are exactly the same in both figures.

Figure 10(c) presents the precision for each combination
of thresholds we have tested. The precision has varied from
18.4% (for Dsca = 0.10 and Ddel = 0.55) to 63.9% (for
Dsca = 0.10 and Ddel = 0.95).

Heuristic #3: This heuristic relies on the Ddir threshold,
which defines the minimal percentage of dependencies that
characterizes an asymmetrical cycle. Figure 11 shows that the
heuristic started to generate true results for Ddir > 0.05. More

specifically, we have counted exactly the same 50 true positives
and zero false negatives for Ddir equals to 0.05 and 0.15.

Fig. 11. Divergences detected by heuristic #3

D. Combining the Heuristics

In the previous subsections, we reported the results achieved
by the heuristics individually, by considering different threshold
values. Based on this sensitivity study, we decided to establish
and to consider in the remaining of this paper the following
combination of thresholds:

• Absences: Asca=0.9 and Ains=0.35.
• Divergences: Dsca=0.05, Ddel=0.65, Ddir=0.05.

To make this selection, we first defined that a given threshold
value must have achieved a minimal precision of 25% to
be considered for selection. Second, considering the values
attending this first condition, we selected the thresholds with
the highest number of true positives. Finally, in the case of
ties we selected the most flexible threshold value.

By assuming the proposed combination of thresholds,
Table II presents the precision and recall achieved by our
approach3. As can be observed, ArchLint achieved a precision
of 39.8% for absences and 51.7% for divergences. These
precision values are similar to the ones generated for example
by FindBugs [11] and PMD [12], which are well-known bug
finding tools based on static analysis. For example, in a previous
study, using as target five stable releases of the Eclipse platform,
we found that precision rates superior to 50% are only possible
by restricting the analysis to a small subset of the warnings
raised by FindBugs (basically, high priority warnings from
the correctness category) [14]. For PMD, the precision was
inferior to 10%. In another study, Kim and Ernst using a strict
definition for false positives achieved a precision of less than
12% for the warnings raised by FindBugs [15]. Clearly, such
tools have different purposes than ArchLint, but our intention
here is to show that developers accept false warnings when
using static analysis tools.

For divergences, ArchLint achieved a recall of 96.2%,
missing only three divergences. We did not measure recall
for absences, because it would require finding the whole set

3The true and false positives achieved by each heuristic individually are
presented in Figures 7 to 10.
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(a) Asca = 0.90 (b) Asca = 0.95 (c) Precision

Fig. 7. Absence violations (FP = false positives; TP = true positives)

(a) Dsca = 0.15 (b) Dsca = 0.1 (c) Dsca = 0.05

Fig. 8. Divergences detected by heuristic #1

(a) Dsca = 0.1 (b) Dsca = 0.05 (c) Precision

Fig. 10. Divergences detected by heuristic #2

TABLE II
OVERALL PRECISION AND RECALL

Absences Divergences Total
Warnings 108 147 255
True Positives 43 76 119
False Positives 65 71 136
False Negatives - 3 -
Precision 39.8% 51.7% 46.7%
Recall - 96.2% -

of missing dependencies, which in practice requires a detailed
and complete inspection in the source code.

Figure 12 factors out the true results achieved by each
heuristic proposed to detect divergences. The heuristic #3 was
the one responsible for detecting more divergences (48 out of
the 76 true results we achieved for divergences). On the other
hand, the heuristic #1 did not contribute to the detection of a
single violation that was also not found by the other heuristics.
Therefore, the factorization suggests that the heuristic #1 is
a particular case of the heuristic #2. However, this result in
fact reflects our particular thresholds settings; for example, for
other thresholds values, the heuristic #1 has found violations
not detected by the remaining heuristics. For this reason, we
decided to preserve this heuristic in ArchLint.
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Fig. 12. Divergences detected by each heuristic

E. Threats to Validity

We relied on an architect to design our initial model and
to classify our warnings. Therefore, as any human-made
artifact, the model and the classification are subjected to errors
and imprecision. However, we interviewed an experienced
architect, with a complete domain of SGA’s architecture and
implementation. Furthermore, one can argue that this architect
might be influenced to design a model favoring ArchLint.
However, we never explained to the architect the heuristics
followed by ArchLint to discover architectural violations.

VII. SECOND STUDY: REFLEXION MODELS DATASET

In this section, we report the application of ArchLint
in four open-source systems: Ant, ArgoUML, Lucene, and
SweetHome3D. These systems—which we collectively call the
RM Dataset—have RM-based high-level models independently
proposed by Bittencourt et al. [16]. Therefore, we reused the
component specifications from the high-level models defined
in this dataset as the input for ArchLint. Basically, our goal
was to evaluate ArchLint in other systems, but using the same
threshold values suggested after our first study.

Table III shows the number of revisions and the time frame
of the historical data we have extracted from the svn repository
of the mentioned systems. The table also presents the number
of components in the high-level models reused from the RM
dataset.

TABLE III
SYSTEMS IN THE RM DATASET

System # Revisions # Months # Components
Ant 6664 151 16
ArgoUML 10938 175 19
Lucene 1959 28 7
SweetHome3D 9146 82 9

Since the RM dataset was carefully designed for architecture
conformance purposes, we consider the reflexion models de-
fined in the dataset as a ground-truth architecture for evaluating
the precision and recall of ArchLint. More specifically, we
classify a warning reported by ArchLint as a true positive when
it is also reported in the reflexion models computed using the
information available in the RM dataset.

A. Results for Divergences
Table IV reports the precision achieved by ArchLint for

divergences. For the first three systems (Ant, ArgoUML,
and Lucene) we achieved a precision greater than 57%. For
SweetHome3D, ArchLint has not reported a single true positive,
but the number of warnings was also small (only seven
warnings).

TABLE IV
PRECISION FOR DIVERGENCES IN THE RM DATASET

System Warnings TP FP Precision
Ant 35 27 8 77.1%
ArgoUML 42 24 18 57.1%
Lucene 160 143 17 89.4%
SweetHome3D 7 0 7 0.0%

Table V reports the results for divergences, but in terms of
recall (considering as false negatives the violations reported
in the reflexion models but that have not been detected by
ArchLint). For the Ant system, we achieved the highest recall
result (93%). On the other hand, for SweetHome3D it was not
possible to calculate a recall because the system does not have
divergences, as reported by the RM technique. Therefore, for
a system without divergences, ArchLint reported only seven
false positives.

TABLE V
RECALL FOR DIVERGENCES IN THE RM DATASET

System RM ArchLint Recall
Ant 29 27 93.1%
ArgoUML 148 24 16.2%
Lucene 312 143 45.8%
SweetHome3D 0 0 -

For the Lucene system, ArchLint missed many divergences
with a high scattering and a low deletion rate, which explains
the relative low recall rate (45.8%). For example, the high-
level model defined in the RM Dataset does not define
a dependency between the components Search and Store.
However, 81 dependencies like that are scattered in 32% of
the classes in Store, which exceeds by a large margin the
threshold for divergences assumed by ArchLint (Dsca= 0.05).
Moreover, only 6% of such dependencies have been removed
along Lucene’s evolution (whereas our Ddel is 0.65). Stated
otherwise, in the Lucene system, it is common to observe
divergences that are not spatially and historically confined in
their source components. A similar observation can be made
for ArgoUML, where the divergences missed by ArchLint
have also a low deletion rate. Therefore, we argue that both
Lucene’s and ArgoUML’s architecture might have evolved
during the time frame considered in our study. As as result,
many dependencies not authorized by the initial high-level
model have turned themselves into a frequent and enduring
property of the systems.

B. Results for Absences
The reflexion models have not indicated absences in the

evaluated systems. On the other hand, ArchLint has detected
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seven absences in the ArgoUML system. In fact, because the
source and target components of these absences are internal
to the same high-level component (Explorer) they were not
detected by the reflexion model. In the remaining systems, as
with reflexion models, ArchLint has not found absences.

C. Threats to Validity

As in the case of the models we used for the SGA system,
it is possible that the high-level models defined in the RM
dataset do not capture some violations. However, we argue
that the chances are reduced, since the models were carefully
designed and then refined to create a benchmark for architecture
conformance. Furthermore, missing divergences would impact
negatively our recall results. Regarding precision, we consider
that the chances of having false positives are also reduced,
since the proposed component relations were carefully defined
by the dataset’s authors.

VIII. RELATED WORK

We divided related work into three groups: static analysis
tools, software repository analysis tools, and architecture
conformance tools. The tools in the first two groups detect
program anomalies, but not at the architectural level. The tools
in the third group target architectural anomalies, but are not
based on static or historical analysis techniques.

A. Static Analysis Tools

Starting with the Lint tool [17] in the late seventies,
several tools have been proposed to detect suspicious program-
ming constructs by means of static analysis, including PRE-
fix/PREfast [18] (for programs in C/C++), and FindBugs [11]
and PMD [12] (for programs in Java). Such tools rely on
static analysis to detect problematic programming constructs
and events, such as uncaught exceptions, null pointer deref-
erences, overflow in arrays, synchronization pitfalls, security
vulnerabilities, etc. Therefore, they are not designed to detect
architectural anomalies, such the ones associated to violations
in the planned architecture of object-oriented systems.

The dissemination of static analysis tools has motivated the
empirical evaluation of the relevance of the warnings raised
by such tools. For example, in a previous study, using as
target five stable releases of the Eclipse platform, we measured
the precision of the warnings raised by two Java-based bug
finding tools [14]. We defined precision by the following ratio:
(#warnings removed after a given time frame) / (#warnings
issued by the tool). We found that precision rates superior to
50% are only possible by restricting the analysis to a small
subset of the warnings raised by FindBugs (basically, high
priority warnings from the correctness category). For PMD, the
precision was less than 10%. In another study, Kim and Ernst
define precision in a different way: (#warnings on bug-related
lines) / (#warnings issued by the tool) [15]. Using this strict
definition, the precision was less than 12%. Therefore, precision
ranging from 46.7% (SGA System) to 89.4% (Lucene) as the
ones we achieve with ArchLint seems to be greater than the
values typically provided by traditional static analysis tools.

B. Software Repository Analysis Tools

Many tools have been proposed to extract programming
patterns from software repositories. DynaMine is a tool that
analyzes source code check-ins to discover application-specific
coding patterns, like highly correlated method calls [19].
BugMem [20] and FixWizard [21] are tools that mine for
repeated bug fix changes in a project’s revision history (e.g.,
changes where an incorrect condition is replaced by a correct
one). Lamarck is a tool that mines for evolution patterns
(i.e., not only bug fixes) in software repositories by abstracting
object usage into temporal properties [22]. In Lamark, to
evaluate the tool effectiveness in detecting errors, precision is
defined as: (#code smells and defects) / (#warnings issued by
the tool). Using this definition, Lamarck’s success rate ranges
from 33% to 64%. Hora et al. [23] extract system specific rules
from source code history by monitoring how API is evolving
with the goal of providing better rules to developers. They
focus on structural changes done to support API modification
or evolution. Differently from previous approaches they do not
focus on just mining bug-fixes or system releases. In common,
such approaches adopt a vertical approach for discovering
project-specific patterns in software repositories (in contrast
with static analysis tools that assume a horizontal approach
based on a pre-defined set of bug patterns). ArchLint also
relies on a vertical approach, but with focus on architecture
conformance.

C. Architecture Conformance Tools

Besides reflexion models, another common solution for
architecture conformance is centered on domain-specific lan-
guages, such as SCL [24], LogEn [7], DCL [6], Grok [25],
Intensional Views [8], and DesignWizard [26]. Certainly, by
using such languages it is possible to detect the same absences
and divergences than ArchLint. On the other hand, even using
a customized syntax, the definition of architectural constraints
may represent a burden for software architects and maintainers.
For example, in a previous experience with the DCL language,
we had to define 50 constraints to provide a partial specification
for the architecture of a large information system [6].

In a recent work, we used association rules to mine
architectural patterns in versions history [27]. First, our goal
was to investigate the automatic generation of architectural
constraints in the DCL language. Second, we aimed to propose
a theory to explain and support the heuristics used in this
paper. In fact, we found that the heuristic for absences and
the first two heuristics for divergences can be modeled as
a frequent itemset mining problem. On the other hand, the
number of association rules produced by frequent itemset
mining techniques is considerable.

IX. CONCLUDING REMARKS

In this section, we conclude by presenting ArchLint’s
contributions and limitations. We also comment on future
research.
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A. Contributions

To the best of our knowledge, ArchLint is the first architec-
ture conformance tool that relies on a combination of static
and historical source code analysis. As a result, we provide a
lightweight and agile approach for architecture conformance
that does not require successive refinements in high-level
architectural models neither requires the specification of an
extensive list of architectural constraints (as with domain-
specific languages). On the other hand, ArchLint can generate
false positive warnings, as common in most bug finding tools
based on static analysis. We reported the results of applying
ArchLint in five real-world systems, with precision results
ranging from 46.7% to 89.4% and recall ranging from 16.2%
to 93.1% (for divergences).

ArchLint is publicly available at:

http://aserg.labsoft.dcc.ufmg.br/archlint

B. Limitations

One of the limitations of our approach seems to be the
high number of thresholds that need to be fixed. This fact
was not a problem in practice, because the thresholds are
independent which means that they can be fine tuned separately.
In practice, we propose to adopt a conservative attitude starting
with restrictive values for the thresholds that should give good
results (most of the violations reported will be true positives).
In a second step, one can loosen the constraints, discovering
new violations but also more false positives. One can stop
when the level of false positive is deemed too important.

C. Future Work

As future work, we plan to apply ArchLint in other systems
and to extend our approach with new heuristics. We also plan to
make a qualitative analysis including feedback from architects.
We are also working on the integration of ArchLint with
ArchFix [28], which is a recommendation tool that suggests
refactorings for repairing architectural violations.
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