
Separation of Concerns in Denotational Semantics
Descriptions

Roberto S. Bigonha
Universidade Federal de

Minas Gerais
bigonha@dcc.ufmg.br

Fabio Tirelo
Google Inc

ftirelo@google.com

Guilherme H.S. Santos
Universidade Federal de

Minas Gerais
guisousa@dcc.ufmg.br

ABSTRACT
Denotational semantics is a powerful and elegant formalism
for describing the meaning of programming language con-
structs, but it is used less than it should. Apparently, the
difficulty of reading formal semantic definitions is inherent
to the way they are organized. This paper presents a seman-
tics definition style based on the concept of components in
order to provide legibility to descriptions in this formalism.
The idea is to remove context dependence from the seman-
tic equations. Consequently, the equations in this style only
specify the direct mapping from language constructs to their
denotations by means of denotational components in an easy
and readable way, and the details, such as context handling,
are encapsulated away.

Keywords
Denotational Semantics, Legibility, Modularity, Semantic
Components

1. THE ROOTS OF ILLEGIBILITY
In the industry, programming languages are described by

means of a formal presentation of their syntax based on con-
text free grammars together with an informal description of
their semantics. Even when a formal definition of the lan-
guage is publicly available, it is rarely read by programmers
and computer scientists.

According to P. Mosses[7], one of the reasons for this lim-
ited use of formal semantics in the industry is the difficulty
most programmers and computer scientists have in dealing
with the mathematical apparatus of formal definitions.

If Backus-Naur form has been established as a universal
notation for defining programming languages syntax, for-
mal semantics methods have never achieved similar success.
Probably this is due to the fact that no formal semantics
method has the simplicity of the syntactic formalisms, and
also that, in denotational semantics, although the semantics
of a language construct should depend only on the seman-
tics of its immediate constituents, there are always, in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

semantic equations, explicit dependences on other elements,
such as the construct’s context.

Tirelo et alii[11] have identified that the context in which
the meaning of a construct is defined can split in: (i) an-
tecedents (ii) destination (iii) locality as shown in Fig. 1.

The antecedents of a construct’s context comprises the
effects of what has been executed priorly in the program.
In general these effects are propagated to the construct by
entities like store and enviroment. For example, the values
previously assigned to variables are part of the context in
which an expression is evaluated.

The destination of a construct provides the context to
which the effects of its execution are to be sent. This is
usually modelled by the notion of continuations. For exam-
ple, in a statement sequence, the destination of the results
produced by the execution of the first statement are the
commands that follow it.

And the locality is the context given by the construct’s en-
closing structure in the abstract syntax tree. The semantics
of the C break statement, for instance, depends on whether
it occurs inside a loop or in a switch statement.

enclosing structure

antecedents construction

constituent 1 ... constituent n

destination

Figure 1: Context Dependence Model

In order to cope with all these facets of the context, the se-
mantic equation of a construct must be provided with apro-
priate parameters, in addition to those that specify its con-
stituents. The semantics specification requires that these
context parameters be transmitted to the denotations of the
construct’s constituents and also to its destination. The
need to explicitly deal with context produces an undesirable
dependence relation among equations and the related do-
main apparatus in which they are defined, impairing their
legibility.

Moreover, the abstraction mechanisms of λ-calculus, con-
sidered insufficient to properly encapsulate definition details

of semantic domains, aggravate even more the legibility issue
[3, 6, 7, 12].

In summary, context dependence, the lack of appropriate
modularization mechanisms and the need to always provide
complete semantics definitions make them very intricate,
and, thus, the legibility of formal descriptions of real size
programming languages like C++ and Java become com-
pletely undermined.

The purpose of the work is to provide a method for or-
ganizing denotational semantics descriptions in order to en-
hance legibility. The method is based on removing the con-
text dependence from all semantic equations and construct-
ing a separate module of denotational components to en-
capsulate context details. This style of organizing defini-
tions rescues the idea that the semantics of a construct only
depends on that of its immediate constituents.

2. THE CLASSICAL STYLE
The formal description of the toy programming language

Small, defined by M. Gordon [2], will be used to demonstrate
the use of components and to highlight the improvement in
legibility that can be achieved. The abstract syntax of Small
is presented in Fig. 2. The equations and definitions in Fig.
3, 4 e 5 are an adaptation from Gordon’s original definition.

Primitive Syntactic Domains:

Ide = domain of identifiers I

Bas = domain of basic constants B

Opr = domain of binary operations O

Bool = {true,false}

Compound Syntactic Domains:

Pro = domain of programs P

Exp = domain of expressions E

Com = domain of commands C

Dec = domain of declarations D

Syntactic Clauses:

Pro → program C

D → const I = E | var I = E | proc I(I1);C

| fun I(I1);E | D1;D2
C → E1 := E2 |output E

| if E then C1 else C2 | while E do C

| begin D;C end | C1;C2
E → B | true | false | read | I | E1 O E2

| E1(E2) | if E then E1 else E2

Figure 2: Abstract Syntax of Small

The domains defined in Fig. 3 intend to model impera-
tive language whose expressions may have collateral effects
and several types of errors may be flagged during program
execution. Procedure and functions are limited to have just
one parameter to simplify the presentation. Likewise, the
definitions of binary operation (O and of integer constants
(B) are left unspecified.

Important domains are those modelling expression, com-
mand and declaration continuations (Ec, Cc, Dc), machine
states (Store) and environments (Env). The continuation
domains model the destination of the effects of executing a
construct, the state represents an abstract structure to store
values and the environment defines the meaning of names in
the program. Environment and machine state model the

antecedents of a construct.

Primitive Semantic Domains:
Num = {0, 1, 2, · · · } - numbers n

Boolean = {true,false} - booleans b

Loc = Num - locations l
Bv = Num + Bool - basic values e

Id = domain of identifier - identifiers I

Compound Semantic Domains:
Ans = {error,stop}+Rv×Ans - answers a

Rv = Bool + Bv - r-values v

File = Rv* - files i

Dv = Loc + Rv + Proc + Fun - denotable d

Ev = Dv - expressible e

Sv = Rv + File - storable x

Env = Id →[Dv+{unbound}] - environments r

Store = Loc→[Sv+{unused}] - stores s

Dc = Env→Store→Ans - continuation u

Ec = Ev→Store→Ans - continuation k

Cc = Store→Ans - continuation c

Fun = Ec→Ev→Store→Ans - fun values f

Proc = Cc→Ev→Store→Ans - proc values p

Denotation Domains:
Pd = File → Ans - programs

Dd = Env→ Dc→ Store→ Ans - declarations

Ed = Env→ Ec→ Store→ Ans - expressions

Cd = Env→ Cc→ Store→ Ans - commands

Semantic Functions:
P:Pro → Pd - programs

D:Dec → Dd - declarations

R:Exp → Ed - expressions

E :Exp → Ed - expressions

C :Com → Cd - commands

Figure 3: Semantic Domains (adapted from [2])

Domain Dv is the domain of denotable values, with which
Small identifiers can be associated in the environment. To
keep the formulation simple, identifiers used in Small pro-
grams and their respective denotations are considered the
same, i.e, I denotes elements of Ide and of Id. The context
of its use should be sufficient to resolve this overloading.

Domain Sv is that of storable values which can be associ-
ated with locations in the machine states. The values passed
to expression continuations belong to the domain Ev of ex-
pressible values. The basic values Bv represent booleans and
numbers. The domain of program denotations Pd represents
functions that model Small programs as a whole. Functions
in this domain must deal with the program’s input file, its
initial context and produce the final answer of its execution.

The propagation of the semantic effects of Small construc-
tions are modeled by the domains Dc, Ec and Cc of declara-
tion, expression and command continuations, respectively.

Expression denotations are elements of domain Ed, com-
mand denotations are in Cd, and Dd is the domain of the
declaration denotations.

The auxiliary functions in Fig. 4 implement a set of funda-
mental operations over members of semantic domains. Most
of these functions follow the continuation style in order to
be adhrent to the adopted model.

• apply:Opr×Rv×Rv → Ec → Store → Ans

apply(o,v1,v2) k s = k (v1 o v2) s

• bool:Boo → Bool

bool = λb.b = true → true, false
• Bool?:Ec → Ev → Store → Ans

Bool? = λk e s.isBool e → k e s, error
• cond:D × D → Bool → D

cond = λ(d1,d2) b.b → d1, d2
• contents:Ec → Ev → Store → Ans

contents = λk e s.isLoc e →
(s e = unused→error, k(s e)s) , error

• deref: Ec → Ev → Store → Ans

deref = λk e s.isLoc e→contents k e s , k e s

• fix:[D → D] → D

fix = λf.compute the fixpoint of f

• hd:D∗ → D

hd = λ(d1,d2,· · · ,dn).d1
• Loc?:Ec → Ev → Store → Ans

Loc? = λk e s.isLoc e → k e s, error
• new = Store → [Loc + {error}]
new = λs.∃ free location l in s→ l, error

• number:Bas → Num

number = λn.convert n to Num

• null:D∗ → Bool

null = λd*.d*=() → true, false
• ref:Ec → Ev → Store → Ans

ref = λk e s.new s = error → error,
update (new s)(k(new s)) e s

• tl:D∗ → D∗

tl = λ(d1,d2,· · · ,dn).(d2,· · · ,dn)
• update:Loc → Cc → Ev → Store → Ans

update = λl c e s.isSv e → c(s[e/l]),error

Figure 4: Auxiliary Functions (adapted from [2])

3. THE UNDERLYING IDEA
The proposed style of organizing denotational descriptions

is inspired in Peter Mosses’ concepts of components [8, 9, 10]
that he has used to improve reusability of action semantics
and structured operational semantics descriptions.

The proposed method basic idea is illustrated with the
description of the if-then-else statement of Small, which is
defined by the folowing equation extracted from Fig. 5:

C〚if E then C1 else C2〛r c s =

R〚E〛 r (λv s.Bool?(λv s.

cond(C〚C1〛 r c s, C〚C2〛 r c s)v)v s)s

(1)

This construct’s context is defined by the enviroment r ∈
Env, the command continuations c ∈ Cc and by the machine
state s ∈ Store.

The use of this context is fundamental to convey the de-
sired meaning to the command, but it certainly impairs read-
ability. Note that the context, represented by r, c and s is
mentioned 18 times in the equation (1), and it would be nice
to be able to cross it out.

This can be achieved by means of a Turner-like combina-
tor[1], which produces equation (2):

C〚if E then C1 else C2〛r c s =

choice(E〚E〛,C〚C1〛,C〚C2〛) r c s
(2)

...... Programs

P〚program C〛 i = C〚C〛 r0 c0 s0
where r0 = λI.unbound

c0 = λs.stop
s0 = λl.unused)[i/input]

N.B.: input∈ Loc is a reserved location

..................Declarations..................

D〚const I = E〛r u s = R〚E〛r(λv s.u[v/I]s)s

D〚var I = E〛r u s =

R〚E〛 r(λv s.ref (λl s.u [l/I]s)v s)s

D〚proc I(I1;C)〛r u s =

u((λc e s.C〚C〛r[e/I1]c s)/I)s

D〚fun I(I1;E)〛r u s =

u((λk e s.E〚E〛r[e/I1]k s)/I)s

D〚D1 ; D2〛r u s =

D〚D1〛r(λr1 s.D〚D2〛r[r1] (λr2 s.u(r1[r2])s)s)s

..................Expressions

E〚true〛r k s = k true s

E〚false〛r k s = k false s

E〚B〛r k s = k number(B) s

E〚I〛r k s = (r I = unbound) → error, k (r I) s

E〚read〛r k s = null (s input) → error,
k (hd (s input)) s[tl (s input)/input]

E〚E1 O E2〛r k s =

R〚E1〛 r(λv1s.R〚E2〛 r(λv2s.apply(O,v1,v2)k s)s)s

E〚E1(E2)〛r k s = E〚E1〛r(Fun?(λf s.E〚E2〛r(f k)s))s

E〚if E then E1 else E2〛r k s =

R〚E〛r (λv s.Bool?(λv s.

cond(E〚E1〛r k s,E〚E2〛r k s)v)v s)s

R〚E〛 r k s =

E〚E〛 r (λe s.deref(λv s.Rv? k e s)e s)s

...... Commands

C〚E1 := E2〛r c s = E〚E1〛r(Loc?λl s.R〚E2〛r
(λv s.update l c v s)s))s

C〚output E〛r c s = R〚E〛 r(λe s.(e,c s))s

C〚if E then C1 else C2〛r c s =

R〚E〛 r (λv s.Bool?(λv s.

cond(C〚C1〛 r c s, C〚C2〛r c s)v)v s)s

C〚while E do C〛r c s = fix λf.R〚E〛r(Bool?
(λv s.cond(C〚C〛r(λs.f r c s)s,c s)v))s

C〚E1(E2)〛r c s = E〚E1〛r(Proc?(λp s.E〚E2〛r(p c)s))s

C〚C1 ; C2〛r c s = C〚C1〛 r(C〚C2〛r c)s

C〚begin D ; C end〛r c s =

D〚D〛r (λr1 s.C〚C〛r[r1] c s) s

Figure 5: Classical Semantics of Small (adapted from [2])

where the combinator choice is defined as:

choice(E, C1, C2) r c s =

E r (λ v s.Bool?(λ v s.

cond(C1 r c s, C2 r c s)v)v s)s

(3)

Note that the combinator parameters are solely denotations
of the command’s immediate constituents and the context.
For clarity purpose, it is important to keep it that simple.

The next step is to abstract away the combinator defi-
nition from the description reader’s eyes, placing it in a li-
brary of denotational components, and applying η reduction
to equation (2) that becomes:

C〚if E then C1 else C2〛 = choice(E〚E〛,C〚C1〛,C〚C2〛)

This equation reveals that the semantics of Small if-then-
else command is such that the value of E is to be evaluated

first, and if its value is true, the execution proceeds with
command C1, otherwise command C2 is to be executed.

Hopefully, to have this level of understanding of the mean-
ing of the defined construction it is enough to know the
choice’s interface, and there is no need to know details of
the definition of this combinator.

To generalize this structuring process, consider the seman-
tics h of a generic construct A defined in a context z:

A→ r0B1r1B2 . . . Bnrn

h : A→ Context→ Ans

h〚r0B1r1B2 . . . Bnrn〛 z = g(h1〚B1〛, h2〚B2〛, . . . , hn〚Bn〛, z)

The functions hi, for 0 ≤ i ≤ n, give the semantics of A’s
constituents.

This semantics modelling follows the mapping structure
displayed in Fig. 6, in which function g combines the se-
mantics of the immediate constituents of A to produce its
meaning. The function g does not show any dependency
on the terminal symbols that occur on the right hand side
of the production defining A. Only the nonterminals take
part in the formulation. This means that each right hand
side must imply in a new g, i.e., the dependence on termi-
nal symbols are forged into the structure of g. This is so
because although passing denotations of terminal symbols
directly to g could hinder legibility, there are situations in
which it may contribute to component reuse.

Figure 6: The Semantic Model

To encapsulate the flow of context information, consider
the generic combinator K, defined as:

K (d1, d2, . . . , dn) z = g(d1, d2, . . . , dn, z)

Observe that K only operates over the denotations of the
immediate constituents of A, preserving the meaning pro-
vided by g. Using K to rewrite the definition of h produces:

h〚r0B1r1B2 . . . Bnrn〛z = K(h1〚B1〛, h2〚B2〛, . . . , hn〚Bn〛)z

which may be simplified to:

h〚r0B1r1B2 . . . Bnrn〛 = K(h1〚B1〛, h2〚B2〛, . . . , hn〚Bn〛)

It is recommended that each equation use just one com-
binator, avoiding enticing combinator compositions so as to
rescue the central idea of the denotational semantics for-
malism that the meaning of a construct only depends on
the meanings of its immediate constituents.

To achieve legibility, discipline and standardization are
mandatory. So it seems reasonable to require that all com-
binators like K must have the standard type:
K: D1 × D2 · · · × Dn → Context → Ans, for n ≥ 0

where Di, for 0 ≤ i ≤ n, are domains of denotations or of
special values associated with the production.

Typically, the parameters of a combinator should be only
denotations. However, in order to favour reuse of compo-
nents and yet preserving legibility, sometimes it is convenient
to pass to the combinator especial values to determine some
specific behavior, instead of writing several similar functions.
The need for this arises when more than one production have
the same nonterminals on their right hand sides, being dis-
tinguished only by the terminal symbols involved.

This process of encapsulating context should be applied
to the semantic equations of all constructs in the language,
producing a clean set of mapping, such as that of Fig. 10,
which is much more legible than its counterpart in Fig. 5.

The claim is that to understand the component-based de-
notational semantics description of a given programming
language all that is required is to know the interface of the
used components, without any concern regarding details of
their definitions.

Due to the continuous evolution of programming languages,
it would be interesting to have a library of generic compo-
nents that allows easy incorporation of new constructs to the
languages. The more generic are the components the better
will be the library, because the same components could be
used to define many languages.

The challenge is to find a set of generic components capa-
ble of modelling the semantics of the most important con-
structs of popular languages, thus reducing the need to de-
fine new components whenever defining new programming
languages. However, for space reasons, this problem is not
addressed in this paper.

4. COMPONENT-BASED SEMANTICS
The information regarding context, i.e., environment, store

and continuations, only appears on the definition of the main
equation of the description, the definition of P〚Program C〛,
which gives the meaning of Small programs. This is the mo-
ment the context should be properly and explicitly initial-
ized, and from this point on, it flows implicitly throughout
the description.

Thus, the equation for P〚Program C〛 in Fig. 5 should not
be object of componentization and, without modification, it
becomes part of the component-based description of Fig. 10

The componentization process consists in creating new
components to replace the right hand side of the Small se-
mantic equations. In case of Small declarations, these com-
ponents are cbinding, fbinding, pbinding, vbinding e elab-
oration, which show how the denotations of the constituents
of each declaration are to be combined to build the semantics
of the respective construct. The resulting semantic equa-
tions from the componentization of Small declarations are
presented in Fig. 7, and transported to Fig. 10.

In the componentization process, the type of the compo-
nents must keep conformity to the structure defined in sec-
tion 3: either the components parameters are denotations
of constructs, e.g. operation and pcall or they are basic
values, such as in value, association and read in Fig. 8.

The resulting component-based definition of Small is in
Figura 10, which is the reference text for the semantics of
the language Small.

The other equations, whose details can be abstracted by
the reader, are presented in Fig. 2, 3, 4, 7, 8 and 9.

D〚const I = E〛r u s = cbinding(I,R〚E〛)r u s

where

cbinding:Ide×Ed→Env→Dc→Store→Ans

cbinding(I,d)r u s = d r(λv s.u[v/I]s)s

D〚var I = E〛r u s = vbinding(I,R〚E〛)r u s

where

vbinding:Ide×Ed→Env→Dc→Store→Ans

vbinding(I,d) r u s =

d r(λv s.ref(λl s.u[l/I]s)v s)s

D〚proc I(I1;C)〛r u s = pbinding(I,I1,C〚C〛)r u s

where

pbinding:Ide×Ide×Cd→Env→Cd→Store→Ans

pbinding(I,I1,d) r u s =

u((λc e s.C〚C〛r[e/I1]c s)/I)s

D〚fun I(I1;E)〛r u s = fbinding(I,I1,E〚E〛)r u s

where

fbinding:Ide×Ide×Cd→Env→Ed→Store→Ans

fbinding(I,I1,d) r u s =

u((λk e s.E〚E〛r[e/I1]k s)/I)s

D〚D1 ; D2〛 r u s = elaboration(D〚D1〛,D〚D2〛) r u s

where

elaboration:Dd×Dd→Env→Dc→Store→Ans

elaboration(d1,d2)r u s =

d1 r(λr1 s.d2 r[r1] (λr2 s.u(r1[r2])s)s)s

Figure 7: Declaration Componentization

5. RELATED WORK
The component-based style for denotational semantics is

a complementary approach to other proposed solution to the
legibility problem. For instance, the incremental definition
style of Tirelo at alli[11], which is based on the linguist con-
cept of vagueness can benefit from the use of components.
In the incremental approach details are added stepwisely to
a simpler definition by means of a mechanism named de-
notation transformation. The use of components may help
separating concerns, which is very important to facilitate
the integration of new elements to the definition.

Another important attempt to solve the legibility problem
is the monadic semantics proposed by Moggi[4, 5]. This pro-
posal also removes the context information from the equa-
tions and, consequently, reaches high level of modularity.
However, monad semantics requires complex and intricate
monad transformation operations. Component-based seman-
tics are much simpler, they can encapsulate fundamental
concepts in a way easy to use.

Apparently P. Mosses [8] has avoided the use of denota-
tional semantics as the basis for a technique based on com-
ponents due to the low legibility caused by the explicit use of
context information. The present proposal overcomes these
difficulties.

A comparison with other approaches to formal semantics,
such as action semantics and structured operational seman-
tics, is not addressed at this moment because the focus of
this work is the improvement of the legibility of denotational
semantics, not to make it supersede other models. Each for-
mal method has its proper niche, in which it produces bet-
ter results. Component-based denotational semantics just
brings value to this formalism.

6. CONCLUSIONS
This work proposes an style to organizing denotational se-

E〚true〛 r k s = value(true) r k s

E〚false〛 r k s = value(false) r k s

where

value:Bool →Env→Ec→Store→Ans

value b r k s = k b s

E〚B〛 r k s = value(number(B)) r k s

where

value:Num→Env→Ec→Store→Ans

value n r k s = k n s

E〚I〛r k s = association(I) r k s

where

association:Id→Env→Ec rarrow Store→Ans

association(I) r k s =

(r I = unbound) → error, k (r I) s

E〚read〛 r k s = read r k s

where

read: Env→Ec→Store→Ans

read r k s = null(s input) → error,
k (hd(s input)) s[tl(s input)/input]

E〚E1 O E2〛 r k s = operation(O,R〚E1〛,R〚E2〛)r k s

where

operation:Opr × Ed × Ed→Env→Ec→Store→Ans

operation(o,d1, d2) r k s =

d1 r (λv1s.d2 r (λv2s.apply(o,v1,v2)k s) s) s

E〚E1(E2)〛r k s = fcall(E〚E1〛,E〚E2〛)r k s

where

fcall: Ed × Ed →Env→Cc→Store→Ans

fcall(d1,d2)r k s = d1 r(Fun?(λf s.d2 r(f k)))s

E〚if E then E1 else E2〛r k s =

choice(E〚E〛,E〚E1〛,E〚E2〛)r k s

where

choice: Ed×Ed×Ed →Env→Cc→Store→Ans

choice(d,d1,d2) r k s = d r (λv s.Bool?(λv s.

cond(d1 r k s,d2 r k s)v)v s)s

R〚E〛 r k s = dereference(E〚E〛) r k s

where

dereference:Ed→Env→Store→Ans

dereference(d) r k s =

d r (λe s.deref(λv s.Rv?k e s)e s) s

Figure 8: Expression Componentization

mantics description, inspired in P. Mosses’s work [8, 9, 10]
on action and structured operational semantics, in order to
produce noticeable improvement in formal definition legibil-
ity.

A judicious use of denotational components permits the
removal of context dependence from the presentation of se-
mantic equations, making them more legible. To this pur-
pose, the component signatures are standardized and the
flow of context information is encapsulated within these com-
ponents.

The result is that semantic definitions are reduced to a
mapping from abstract syntax constructs to their denota-
tions expressed as a combination of denotational compo-
nents.

The encapsulation of fundamental and intricate concepts
of programming languages may contribute to make formal
semantics popular and turn the descriptions of the semantics
of sizable programming languages readable by programmers
and computer scientists.

The next step is to standardize the notion of context and
to define a library of generic components that are applica-

C〚E1 := E2〛 r c s = assignment(E〚E1〛,R〚E1〛)r c s

where

assignment:Ed × Ed →Env →Cc →Store →Ans

assignment (d1, d2) r c s =

d1 r(Loc?λl s.d2 r (λv s.update l c v s)s))s

C〚output E〛 r c s = write(R〚E〛) r c s

where

write:Ed →Env →Cc →Store →Ans

write(d) r c s = d r(λe s.(e,c s))s

C〚if E then C1 else C2〛r c s =

choice(R〚E〛,C〚C1〛,C〚C2〛) r c s

where

choice:Ed × Cd × Cd →Env →Cc →Store →Ans

choice(b,d1,d2) r c s = b r (λv s.Bool?

(λv s.cond(d1 r c s, d2 r c s)v)v s)s

C〚while E do C〛 r c s = loop(R〚E〛,C〚C〛)r c s

where

loop:Ed×Cd →Env→Cc→Store→Ans

loop(b,d) r c s = fix λf. b r (Bool?

(λv s.cond(d r(λs.f r c s)s,c s)v))s

C〚E1(E2)〛r c s = pcall(E〚E1〛,E〚E2〛)r c s

where

pcall: Ed × Ed →Env→Cc→Store→Ans

pcall(d1,d2)r c s = d1 r(Proc?(λp s.d2r(p c)))s

C〚C1 ; C2〛 r c s = execution(C〚C1〛,C〚C2〛)r c s

where

execution:Cd × Cd →Env →Store →Ans

execution(d1,d2)r c s = d1 r(d2 r c)s

C〚begin D ; C end〛 r c s = block (D〚D〛, C〚C〛)r c s

where

block:Dd × Cd →Env →Cc →Store →Ans

block(e,d) r c s = e r (λr1 s.d r[r1] c s) s

Figure 9: Command Componentization

ble to any programmig languages so that the construction of
new descriptions could be simply an act of putting together
predefined components from this library, without any con-
cerns to context handling. A collateral effect of the use of
generic denotational components is that formal descriptions
may become scalable.

7. REFERENCES
[1] H. B. Curry and R. Feys. Combinatory Logic I.

North-Holland, Amsterdam, 1958.

[2] Michael J. C. Gordon. The denotational description of
programming languages - an introduction.
Springer-Verlag, 1979.

[3] S. Liang, P. Hudak, and M. Jones. Monad transfor-
mers and modular interpreters. In POPL ’95: Proc. of
the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1995.

[4] E. Moggi. Computational lambda-calculus and
monads. In Proceedings of the Fourth Annual
Symposium on Logic in computer science, pages
14–23, Piscataway, NJ, USA, 1989. IEEE Press.

[5] Eugenio Moggi. Notions of computation and monads.
Inf. Comput., 93(1):55–92, 1991.

[6] Peter D. Mosses. The modularity of action semantics.
Internal Report IR–75, Dept. of Computer Science,
Univ. of Aarhus, 1988. Revised version of a paper
presented at a CSLI Workshop on Semantic Issues in

......Programs

P〚program C〛 i = C〚C〛i r0 c0 s0
where r0 = λi.unbound

c0 = λs.(stop,s)
s0 = (λl.unused)[i/input]

N.B.: input ∈ Loc is a reserved location

......Declarations......
D〚const I = E〛 = cbinding(I,R〚E〛)
D〚var I = E〛 = vbinding(I,R〚E〛)
D〚proc I(I1;C)〛 = pbinding(I,I1,C〚C〛)
D〚fun I(I1;E)〛 = fbinding(I,I1,E〚E〛
D〚D1 ; D2〛 = elaboration(D〚D1〛,D〚D2〛)
..................Expressions

E〚true〛 = value(true)
E〚false〛 = value(false)
E〚B〛 = value(number(B))

E〚I〛 = association(I)

E〚read〛 = read

E〚E1 O E2〛 = operation(O,R〚E1〛,R〚E2〛)
E〚E1(E2)〛 = fcall(E〚E1〛,E〚E2〛)
E〚if E then E1 else E2〛 = choice(E〚E〛,E〚E1〛,E〚E2〛)
R〚E〛 = dereference(E〚E〛)
......Commands......
C〚E1 := E2〛 = assignment(E〚E1〛, R〚E2〛)
C〚output E〛 = write(R〚E〛)
C〚if E then C1 else C2〛 = choice(R〚E〛,C〚C1〛,C〚C2〛)
C〚while E do C〛 = loop(R〚E〛,C〚C〛)
C〚C1 ; C2〛 = execution(C〚C1〛,C〚C2〛)
C〚E1(E2)〛 = pcall(E〚E1〛,E〚E2〛)
C〚begin D ; C end〛 = block(D〚D〛,C〚C〛)

Figure 10: Component Semantics of Small

Human and Computer Languages, Half Moon Bay,
California, March 1987 (proceedings unpublished).

[7] Peter D. Mosses. The varieties of programming
language semantics. In Revised Papers from the 4th
International Andrei Ershov Memorial Conference on
Perspectives of System Informatics: Akademgorodok,
Novosibirsk, Russia, volume 2244 of PSI ’02, pages
165–190, London, UK, UK, 2001. Springer-Verlag.

[8] Peter D. Mosses. A constructive approach to language
definition. Journal of Universal Computer Science,
11(7):1117–1134, 2005.

[9] Peter D. Mosses. Component-based description of
programming languages. In BCS International Aca
demic Conference 2008 ? Visions of Computer
Science, pages 275–286, 2008.

[10] Peter D. Mosses. Component-based semantics. In
Proceedings of the 8th international workshop on
Specification and verification of component-based
systems, SAVCBS ’09, pages 3–10, New York, NY,
USA, 2009. ACM.

[11] Fabio Tirelo, Roberto S. Bigonha, and João Saraiva.
Disentangling denotational semantics definitions.
Journal of Universal Computer Science,
14(21):3592–3607, dec 2008.

[12] Yingzhou Zhang and Baowen Xu. A survey of
semantic description frameworks for programming
languages. SIGPLAN Not., 39:14–30, March 2004.

