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ABSTRACT
The interest in Domain-Specific Languages (DSLs) has been
increasing as a way of improving the productivity and read-
ability of software. Some modern extensible languages offer
facilities for building modular specifications for extensions,
so they may be considered an interesting option for imple-
menting domain specific languages. But there are at least
two disadvantages that currently affect most extensible lan-
guages. First, their syntax is usually defined informally, be-
cause there is a lack of formal tools for the definition of ex-
tensible languages. Second, extensible languages are usually
implemented in an ad-hoc and inefficient way.

In this paper, we show how the syntax of extensible lan-
guages like Fortress and SugarJ can be formally defined us-
ing a novel model designated Adaptable Parsing Expression
Grammars (APEG). The formal definitions of the languages
help clarifying many aspects of their syntax. We also use an
interpreter of the APEG model to parse programs of the
languages, showing that the model can be used in practice
to implement parsers for extensible languages.

Categories and Subject Descriptors
D.3.2 [Programming Language]: Language Classifica-
tions—design languages, extensible languages

General Terms
Languages

Keywords
extensible languages, APEG, PEG

1. INTRODUCTION
The use of Domain-Specific Languages (DSLs) has been

considered a good way to improve readability of software,
bridging the gap between domain concepts and their imple-
mentation, while improving productivity and maintainabil-
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ity [8, 10, 12]. However, the main weakness of DSLs is the
cost of implementing and maintaining them [10, 12].

There are various methods for implementing DSLs, how-
ever, extensible languages seem to have several advantages
when compared to the other approaches. One of the advan-
tages is the possibility of implementing DSLs in a modular
way. For example, Erdweg et alii show how DSLs can be
implemented using the extensible language SugarJ [8], by
means of syntax units designated as sugar libraries, which
specify a new syntax for a domain concept. In [8], there is
a careful discussion on the methods for implementing DSLs
and why extensible languages with sugar libraries are a bet-
ter choice. Tobin-Hochstadt et alii [18] also discuss the ad-
vantages of implementing DSLs by means of libraries.

As extensible languages arise as a good method for im-
plementing DSLs, we have to answer the following question:
how are extensible languages formally defined and imple-
mented? Analysing extensible languages which have the
properties required for defining DSLs in a modular way,
such as the languages SugarJ [8], Fortress [2, 3, 16] and
XAJ [15], we have noted a lack of formal tools for their
definition, leading to ad-hoc implementations. The parsers
available for these languages use a mix of a handwriting
approach and automatic generation, first collecting all def-
initions of new syntax and, next, generating a new parser
table at compile-time for parsing the code that uses the new
syntax. Therefore, a new question arises: is there any ad-
vantage in formally defining extensible languages?

Adams [1] argues that a lack of standard formalization
increases the complexity of writing parsers, and the parsers
built often have different structure from the specification,
which makes it difficult to determine if the implementation
reflects the specification. These claims were made to mo-
tivate a grammar formalism to specify indentation rules of
languages such as Haskell and Python, but they are also
valid to motivate a formalism for extensible languages.

In this paper, we address the question if there is any ad-
vantage in formally defining extensible languages. We spec-
ify the extensible languages SugarJ and Fortress in Adapt-
able Parsing Expression Grammars (APEG) [14], an adapt-
able formalism which is based on Parsing Expression Gram-
mars (PEG) [9] designed for formally defining extensible
languages. We show that a formal definition has at least
two advantages: it avoids doubts about the concrete syntax
of the language; and it allows the automatic generation of a
parser for the language, making it easier to construct compil-
ers for them. As another result, we show how some features
of the formalism chosen for specifying the languages, APEG,
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facilitate the definition of these languages.
The remaining of this paper starts discussing related work

and the APEG model in Section 2. In Sections 3 and 4,
we discuss the specification of the languages SugarJ and
Fortress in APEG, respectively. Finally, Section 5 presents
the conclusions.

2. RELATED WORK

Parsing of Extensible Languages
The idea of offering facilities to add syntactic constructions
to a language remotes to the Lisp language and its dialects,
such as Scheme and Racket [18]. These languages use the
same format for data and program, S-expressions, thus they
allow the implementation of a flexible and poweful macro
system. Racket implements macros by functions from syn-
tax to syntax that are executed at compile time when a
macro use is reached by the macro expander. However, S-
expressions impose restrictions on macro syntax and Racket
lacks support for a high-level syntax formalism.

The implementation of parsers for extensible languages
which do not use the same format for data and program
is similar. In general, it uses a stepwise approach, which
collects the grammar definitions and generates a parse table
from the new rules collected. Then, the parser analyses the
program using the table generated.

For example, the SugarJ compiler [8] uses a stepwise ap-
proach for parsing its syntax: parsing, desugaring, splitting
and adaptation; and the compiler uses an incremental com-
pilation process, in which every top-level entry is parsed at
a time. A top-level entry in SugarJ is either a package dec-
laration, an import statement, a Java type declaration, a
declaration of syntactic sugar or a user-defined top-level en-
try introduced with a sugar library. Every top-level entry
passes through the four stages before parsing other top-level
entries.

In the parsing phase, a top-level entry is parsed with the
current grammar, which reflects all sugar libraries currently
in scope, and the other entries are parsed as a string. As a re-
sult of this stage, an abstract syntax tree is constructed with
nodes of SugarJ and user-defined extension nodes. In the
desugaring stage, user-defined extension nodes are desug-
ared in nodes of SugarJ. The desugaring is done by the Strat-
ego tool [4] (a language for program transformation) with
the rules defined in a sugar library. In the splitting stage,
the compiler splits every top-level entry into fragments of
Java code, SDF [11] grammar (a syntax formalism whose
parse algorithm allows ambiguous grammars) and Stratego
rules. SDF grammar and Stratego rules produced in the
splitting stage are used in the adaptation stage for modify-
ing the current grammar of the parsing stage and the desugar
rules in the desugaring stage. In the adaptation stage of the
SugarJ compiler, the SDF grammar needs to be compiled to
generate a parsing table at compile time, which will be used
for changing the current grammar to parse the other top-
level entries. This approach only works because the current
grammar in SugarJ is only changed after parsing top-level
entries, which are disposed according to the structure of a
file. For example, a file starts with a package declaration,
next is the import statements, then classes declaration and
so forth. This allows parsing, for example, an import state-
ment, changing the current grammar and parsing the next
top-level entry, that could be a new syntax defined by the

user.
Fortress is also an extensible language which does not use

the same format for data and program. To parse the Fortress
language, a two-phase approach is taken [3]: in the first
step, all the grammars except the action part (a rule that
describes how to desugar the extension in terms of Fortress
core syntax) and the main expression are parsed. In this
step, the action part and the main expression are parsed as
Unicode Strings. Next, the parser computes the set of ex-
tensions that are available and generates another parser that
is used for parsing the action part and the main expression,
which may use the new syntax. This strategy only works
because all the grammar definitions must come before the
main expression, so they can be processed first. Similary, the
parser of the XAJ language [15] collects the new syntactic
constructions defined by syntax classes and generates a new
parser using the PPG tool [5]. The generated parser is used
for parsing the program, which may use the new syntax.

The approach described for parsing SugarJ, Fortress and
XAJ has some problems: the lack of a formalism for defining
the extensibility aspects of the language makes it impossible
to automatically generate the parser, increasing the com-
plexity of writing the parser, and it makes it difficult to
understand the language; the parser implementation may
not conform with the language specification; and the gener-
ation of the entire parser table every time the language is
extended with few rules may be inefficient.

Models for Defining Extensible Languages
As extensible languages may change their own set of rules
during the derivation process, the formalisms more appropri-
ate to specify their syntax may be the ones which also allow
modifying the own set of grammar rules. Christiansen [7]
proposes a formalism with these features, called Adaptable
Grammars, which is essentially an Extended Attribute Gram-
mar [19] where the first attribute of every nonterminal sym-
bol is inherited and represents the language attribute. The
language attribute contains the set of rules allowed in each
derivation. The initial grammar works as the language at-
tribute for the root node of the parse tree, and new language
attributes may be built and used in different nodes. Each
grammar adaptation is restricted to a specific branch of the
parse tree. One advantage of this approach is that it is
easy to define statically scoped dependent relations, such
as the block structure declarations of several programming
languages.

Shutt [17] observes that Christiansen’s Adaptable Gram-
mars inherit the lack of orthogonality of attribute gram-
mars, with two different models competing. The CFG ker-
nel is simple, generative, but computationally weak. The
augmenting facility is obscure and computationally strong.
He proposes Recursive Adaptable Grammars (RAGs) [17],
where a single domain combines the syntactic elements (ter-
minals), meta-syntactic (nonterminals and the language at-
tribute) and semantic values (all other attributes). One
problem of RAG is the difficulty to check for forward ref-
erences, which is important for defining the syntax of the
Fortress language, for example. Modelling forward refer-
ences is also difficult with Christiansen’s Adaptable Gram-
mars.

Carmi [6] argues that existing adaptable formalisms do
not handle well forward references, such as goto statements
that precede label declarations, and extensible languages
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Sum[Grammar g]:
Num<g,g1> (Add Num<g1>)*;

Add Num[Grammar g]:
'+' Num<g,g1>;

Num[Grammar g] returns[Grammar g1]:
[0-9]+ {g1 = g;}

/ 'adapt' {g1 = adapt(g,
'Add Num[Grammar g]: \'-\' Num<g,g1>;');};

Figure 1: An example of grammar using APEG

with features like macro syntax and its expansion. Thus,
he proposes a new model, called AMG. AMG is driven by
the parsing algorithm and the derivation must be rightmost.
Nonterminal symbols of AMGs may have annotations and a
special type of rule, a multi-pass rule. A multi-pass rule is
similar to a simple rule, however, when the parser reduces
using this type of rule, the annotation of the rule is put
as a prefix of the input to be parsed. The multi-pass rules
together with nonterminal annotations allow parsing a pre-
fix of the input string and then reparse it using the same
grammar rules or a different set of rules, allowing to handle
forward references, macro definitions and expansion.

Adaptable Parsing Expression Grammar
Adaptable Parsing Expression Grammars or APEG [14] is
an extension of PEG [9], which allows to change the set of
rules during parsing. APEG adds attributes to the nonter-
minal symbols and achieves adaptability through a special
inherited attribute, called language attribute. The language
attribute is the first attribute of every nonterminal and it
represents the current grammar, containing all set of rules.
This is the same idea of the attribute grammar used for
Christiansen’s Adaptable Grammars [14], thus it has the
same advantages. For illustrating APEG, Figure 1 shows
a toy example of a grammar for parsing a sum expression,
which may extend itself with a rule for minus expression
during parsing. The concrete syntax of all APEG examples
presented in this paper is the one adopted by the current
version of the available APEG interpreter1. It is slightly
different from the original syntax proposed [14].

The inherited attributes immediately follow the nonter-
minal name. The nonterminal Sum has only the language
attribute, specified following the nonterminal name between
the symbols [ and ]. The definition of this nonterminal be-
gins with a number followed by a sequence of zero or more
Add Num. The nonterminal Num has two attributes. One
inherited, which is the language attribute, and a synthesized
attribute, which is a possibly modifiable grammar (the syn-
thesized attributes are defined in the returns clause). In the
definition of the nonterminal Sum, the grammar returned
by Num is passed to the nonterminal Add Num, which may
have a new rule for this nonterminal. The attributes of a
nonterminal in a right hand side of a rule are specified be-
tween the symbols < and >, beginning with the inherited
attributes following by the synthesized ones, as the use of
the nonterminal Num in the definition of the nonterminal
Sum.

1The interpreter and all code developed is found in github
repository at http://github.com/leovieira/APEG.git

The definition of the nonterminal Num has two choices.
The first one specifies a sequence of at least one number
followed by an update expression, which sets the value of the
synthesized attribute g1 to the same value of g . An update
expression is defined between braces. The second choice
of Num is a string literal, adapt, representing a mark to
extend the grammar, in this example. The function adapt,
used in the update expression, receives a grammar and a
string representing the rules to be added to the grammar
and returns a new grammar, which includes the new rules.
It is only possible to modify the grammar creating new rules
or adding new alternatives at the end of existing rules. In
this case, a new alternative is added at the end of the rule
for the nonterminal Add Num.

Then, if we have the string

adapt + 2− 3− 4 + 5

as input, the parser will work as following: it begins pars-
ing with the nonterminal Sum with the initial grammar,
containing only the rules of Figure 1. After this, it tries
to match the nonterminal Num, which receives the initial
grammar. The second choice of the nonterminal Num will
be used, consuming the prefix adapt of the input and re-
turns a new grammar which has a new rule for Add Num.
The nonterminal Sum passes this grammar to the nonter-
minal Add Num. Now, the new grammar has a rule for mi-
nus expression, then the remaining of the input is correctly
parsed.

This toy example shows some important features that
APEG adds to the PEG model. The update expression is a
new feature added by APEG, which is used, in the example,
for changing the grammar and to return its value as a syn-
thesized attribute. However, the adaptability is effectively
done only when this attribute is passed to the nonterminal
Add Num as its language attribute. APEG has two other
features that help to understand the examples in this paper.
APEG has constraint expressions, which allow to check if
an expression is evaluated to the true value. Also, APEG
has bind expressions, which capture the expression matched
and bind it to a variable name. For example, the rule

ch1 = [A− Z] ch2 = [A− Z] {? ch1 != ch2 }

binds the first symbol of the input to the variable ch1 and the
second symbol of the input to the variable ch2. At the end,
this rule checks if the value of these variables are different.
Additionally, we may omit the language attribute if it is only
passed on without modifications.

A formal definition of the semantics of APEG and more
details of the formalism is presented in [14].

3. DEFINING THE SYNTAX OF SUGARJ
SugarJ [8] is a language recently developed by Erdweg et

alii to experiment and validate their idea of sugar libraries.
The main aim of sugar libraries is to encapsulate the defi-
nition of extensions for the Java language in units that may
be imported or composed for creating other extensions, in
a modular way. Figure 2 shows an example of a definition
of a sugar library for a new syntax for pairs, creating two
new rules: a rule for the definition of pair types in line 5,
type→ ‘(’ type ‘, ’ type; ‘)’, and a rule for using pair expres-
sions in line 6, expr → ‘(’ expr ‘, ’ expr; ‘)’. Note that the
definition of a rule in SugarJ is in an order that is reverse
to the one commonly used in context-free grammars.
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1 package s y n t a c t i c ;
2
3 public sugar Pair {
4 context−free syntax
5 '( ' type ' , ' type ') ' −> type ;
6 '( ' expr ' , ' expr ') ' −> expr ;
7 }

Figure 2: A definition of sugar library for Pairs in
SugarJ.

1 import s y n t a c t i c . Pair ;
2
3 public class Test {
4
5 private ( Str ing , In t e g e r ) p = ( ''12'' , 3 4 ) ;
6
7 }

Figure 3: Use of the pair syntax.

A definition of a sugar library does not extend imme-
diately the language, an extension is created only when a
module or file imports a sugar library. As an example, Fig-
ure 3 shows a program that imports the sugar library Pair
in line 1. After this import statement, the parser effectively
extends the language, adding the two rules defined by the
sugar library. The rules added are used for correctly parsing
the attribute p of the class Test in line 5.

We have defined the syntax of SugarJ in APEG and used
an experimental version of an interpreter of the model to
automatically parse the language. As APEG is based on
PEG, we adapted an implementation of the Java grammar
for the Mouse project [13], which is also based on PEG, and
extended it to allow the definition of sugar libraries. Fig-
ure 4 shows the syntax definition of sugar libraries. As a
definition of a sugar library does not extend immediately
the grammar, the nonterminal sugar decl only collects the
name of the sugar library and the rules in a single string.
This information is passed through the rules of Figure 4
as synthesized attributes and are used later in an import
statement to extend the grammar. Differently from the im-
plementation of SugarJ, which defines the rules in SDF [11]
syntax, we have decided to use the PEG style for defining
the rules of SugarJ, because of the base model. Otherwise,
we would have to translate the context-free rules to PEG
and this would add complexity that is out of the scope of
the project.

We have also modified the nonterminal that represents
type declarations to allow declarations of sugar libraries.
Therefore, the rule of this nonterminal has a new choice:

type declaration[String pack, Map m] returns[Map m1]:
. . . / sugar decl<s,r> {m1 = add(m,pack,s,r);}

A type declaration has two inherited attributes, the package
name and a map from names to rules, and one synthesized
attribute, a map from sugar names to their corresponding
definition. So, when a sugar library is defined by the user, a
type declaration returns a new map associating the sugar li-
brary to its rules. Figure 5 shows a new syntax definition for

sugar decl returns[String name, String rules]:
'sugar' name=Id '{' defining syntax<rules> '}';

defining syntax returns[String rules]:
'context-free syntax' peg rule<rules>;

peg rule returns[String rule]:
{rule = '';} (peg expr<s> '->' id=Id ';'

{rule += id + ':' + s + ';'; })*;

peg expr returns[String rule]:
peg seq<rule> ('/' peg seq<r>

{ rule += ' / ' + r; })*;

peg seq returns[String s]:
peg predicate<s> (peg predicate<s1>

{ s += ' ' + s1; })*
/ { s = '';};

peg predicate returns[String r]:
'!' peg unary op<s> { r = '!' + s; }

/ '&' peg unary op<s> { r = '&' + s; }
/ peg unary op<r>;

peg unary op returns[String r]:
peg factor<s> '*' { r = s + '*'; }

/ peg factor<s> '+' { r = s + '+'; }
/ peg factor<s> '?' { r = s + '?'; }
/ peg factor<r>;

peg factor returns[String r]:
r=(peg literal / Id / '.')

/ '(' peg expr<s> ')' { r = '(' + s + ')' };

Figure 4: Syntax definition of sugar libraries.

compilation unit[Grammar g, Map m] returns[Map m1]:
package decl<p>? (import decl<g, m, g1> g=g1;)*
(type declaration<g, p,m,m1> m=m1;)*;

import decl[Grammar g, Map m] returns[Grammar g1]:
'import' n=qualified id ';' { g1=adapt(g,m.get(n)); };

Figure 5: Syntax definition of compilation units.

a compilation unit, highlighting the possible changes on the
grammar rules. The nonterminal compilation unit receives
a map of sugar libraries and passes it to the nonterminal
import decl . The nonterminal import decl checks if the file
is importing a sugar library and adapts the grammar, if nec-
essary, using the function adapt . The adaptable grammar is
returned as a synthesized attribute and passed to the non-
terminal type declaration, which may use the new syntax.

Every file is parsed by the nonterminal compilation unit .
So, for parsing our examples of Figures 2 and 3, the com-
piler parses the file of Figure 2 with the nonterminal compi-
lation unit , which receives the initial grammar of the SugarJ
language and an empty map without any definition of sugar
libraries. As a result, the nonterminal compilation unit re-
turns a new map that has an entry for the new sugar library
Pair . This new map is used in the import declaration for
parsing the file of Figure 3, which modifies the grammar
with the new rules of the Pair syntax.
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1 import j a v a c l o s u r e . Closure ;
2 import s y n t a c t i c . Pair ;
3
4 public class P a r t i a l {
5 public stat ic <R,X,Y> #R(Y)
6 invoke ( f ina l #R( (X,Y) ) f , f ina l X x ) {
7 return #R(Y y ) {
8 return f . invoke ( ( x , y ) ) ;
9 } ;

10 }
11 }

Figure 6: Composition of more than one sugar li-
brary.

1 package j a v a c l o s u r e ;
2
3 public sugar Closure {
4 context−free syntax
5 '#' type '( ' type ') ' −> type ;
6 '#' type formal param block −> expr ;
7 }

Figure 7: Definition of the closure syntax.

Composing sugar libraries
Sugar libraries are composed by importing more than one
sugar library into the same file. As an example, Figure 6
shows a program that uses the syntax of pairs and closures.
The compiler extends the grammar with the rules of the syn-
tax of closures defined in Figure 7 when parsing the first im-
port statement, in line 1. Next, the grammar is also changed
with the syntax of pairs when parsing the import in line 2.
The modified grammar, which has the rules of pairs and
closures syntax, is used for parsing the class Partial .

The implementation of SugarJ uses SDF [11] and it may
be necessary to write rules for disambiguities when com-
posing various grammars. However, it is impossible to pre-
vent all the possibilities of ambiguities and conflicts, conse-
quentely composing two or more sugar libraries is not always
possible. APEG avoids ambiguities using ordered choice, so
composition is, in principle, always possible using APEG.
On the other hand, if there is some overlapping between the
rules of two or more extensions, the first option on the or-
dered choice clause will prevail. As new options are always
inserted at the end of a rule, a user may change the prior-
ity altering the order of the import declarations. It seems
a simple task, but it is not always easy to understand the
interactions between overlapping rules.

Paradox Syntax × Semantics
In [8], the authors claim that is it not clear how to support
“local” imports, which extend the language. They give an
example of an extension s1 after s2 whose semantics swap
the execution order of the statements s1 and s2. They argue
that the code

(“12”, 34) after import syntactic.Pair

is a paradox, because after swapping the two statements, the
import statement comes before the expression (“12”, 34),

1 grammar ForLoop extends{Express ion , I d e n t i f i e r }
2 Expr | := f o r b : f o r S t a r t => <[ b ]>
3
4 f o r S t a r t : :=
5 i : Id <− e : Expr d : doFront => <[ . . . ]>
6 | e : Expr d : doFront => <[ . . . ]>
7 . . .
8 end

Figure 8: Definition of a for loop in Fortress.

then it is a valid expression. However, they claim that to
parse this statement, the parser should already know how
to parse the pair expression (“12”, 34), before it can even
consider parsing the import.

We claim that this is not a paradox and the doubts arise
because of the lack of formalization of the language and a
confusion between syntax and semantics. Given the defini-
tion of the syntax in APEG, which parses the program from
left to right, it is possible to answer this question. Initially,
the grammar has the rule statement → expr “after” expr,
then the parser tries to use this rule to parse the statement.
Next, the parser tries to parse the first expression with the
current grammar and fails, because the current grammar was
not extended yet and there is not a rule for correctly pars-
ing the pair expression (“12”, 34). Note that the meaning
of the statement (“12”, 34) after import syntactic.Pair was
not considered because the objective of the parser is only to
check if the program conforms with the grammar rules avail-
able at the moment and the semantics of any expression is
considered afterwards only if the program is valid.

4. THE SYNTAX OF FORTRESS
The main goals of the design of the Fortress language were

to emulate mathematical syntax and to be extensible [3].
These two goals imposed additional difficulties to build a
parser for the language. Defining the extensibility system
in a formalism which supports unlimited lookahead would
bring some advantages [3, 16], therefore, the core language
and extensions to it are specified in PEG [9].

Figure 8 shows an example of the definition of an extension
in Fortress. Line 1 defines a new grammar, called ForLoop,
which may use symbols of two other grammars, Expression
and Identifier . The Fortress language has two types of non-
terminal specifications: the extension of an existing nonter-
minal, using the symbol |:= (line 2) or the definition of a
new one (line 4). The right hand side of a rule has two
parts, a parsing expression and an action part. The pars-
ing expression defines the syntax of the new construct in a
PEG style and the action part specifies how to translate the
syntax into the core language. The action part is everything
after the symbol ⇒. It is possible to use aliases associated
to terminal or nonterminal symbols, creating references for
them, which can be used in the action part. Figure 8 shows
an example in which the nonterminal forStart is referenced
by b in line 2.

Figure 9 shows part of an APEG syntax definition of the
Fortress language. Similarly to the SugarJ definition, the
nonterminal gram def defines the syntax of an extension in
Fortress and returns a map with the new entry for it. How-
ever, differently from the SugarJ definition, a grammar in
Fortress allows self recursion and may use the new syntax

1574



gram def[Grammar g, Map m] returns[Map m1]:
'grammar' n=id gram ext<m,l>? &collect gram<r>
{g1 = adapt(g, r + allRules(l));}
nonterm def<g1>* 'end' {m1 = put(m,n,r);};

gram ext[Map m] returns[List l]:
'extends' qualified names<m,l>;

collect gram returns[String r]:
{r = '';} (non def<n,r> {r += 'n : r;';})*;

non def return[String n, String r]:
n=id '|:=' syn<r> ('/' syn<r1> r += '/' + r1;)*

/ n=id '::=' syn<r> ('/' syn<r1> r += '/' + r1;)*;

syn returns[String r]:
peg seq<r> '=>' '<[' !']>' . ']>';

nonterm def[Grammar g]:
id '|:=' syntax ('/' syntax)*

/ id '::=' syntax ('/' syntax)*;

syntax:
peg seq<r> '=>' '<[' expr ']>';

Figure 9: APEG formalization of Fortress language.

in the action part. Therefore, it is necessary to collect the
grammar rules before parsing the code. We use the and-
predicate operator “&” to specify this, collecting the gram-
mar rules while ignoring the action part. Next, we reparse
the program with the modified grammar. Note that when
collecting the grammar rules using the and-predicate oper-
ator, the action part is parsed as a string, ignoring every
symbol between ‘<[’ and ‘]>’ (nonterminal syn). After col-
lecting the rule definitions, we adapt the grammar and gen-
erate a new grammar g1 . This new grammar is passed to
the nonterminal nonterm def , which passes it to its chil-
dren, allowing to parse the action part (nonterminal syn-
tax). Therefore, the action part may use the new syntax
being defined.

The using of the and-operator, which allows an infinite
lookahead, is very important to handle the self recursion,
a kind of forward reference. This operator is inherited by
APEG from PEG and it is implemented efficiently with the
packrat algorithm, using memoization.

Combining Grammars
Figure 10 shows an example of composition of grammars in
Fortress. Grammar A defines a new nonterminal Nt and
grammar B extends grammar A. Fortress allows the use of
the syntax of A in the action part of B , as in line 6. Gram-
mar C extends B and can use its syntax, however, C cannot
use the syntax of A because it does not explicitly extend
grammar A. In [3], the authors report that they need to re-
solve the set of extensions (for example, in grammar C it
may use syntax defined in C or B , but not in A) to generate
the table for parsing the action part and this is not an easy
task.

Using the APEG model, defining the task described above
is simple and clear. We adapt the grammar, adding the
rules of the grammars specified in the extends part. For

1 grammar A
2 Nt : := macroA => . . .
3 end
4
5 grammar B extends A
6 Nt | := macroB => < [ . . . macroA . . . ] >
7 end
8
9 grammar C extends B

10 Nt | := macroC => < [ . . . macroB . . . ] >
11 end
12
13 grammar D extends {B,C}
14 Nt | := macroD => < [ . . . macroB macroC . . . ] >
15 end

Figure 10: Combining grammars.

example, parsing the grammar B , we add only the rules of
A and when parsing the grammar C , we add only the rules
of B . Another difficulty reported in [3] is how to compose
the rules with multiple extensions, as defined in grammar
D . In APEG, to have the same behaviour of the original
Fortress implementation, we must adapt the grammar in
the following order: first, we add the rules of the grammar
which is currently being defined (rules of D in the example),
next the grammars in the extends part in the same order
that is specified (first, it adds rules of B and next of C , for
the example of Figure 10).

The combination of extensions is difficult in the Fortress
implementation because it must generate an entire grammar
which must contain the definitions of all grammars used. As
in the APEG model the grammar is changed locally and only
as needed, combining grammars is easy and clear.

Other Features
When we were defining the Fortress language in APEG, we
have noted that the language is powerful enough for defin-
ing other aspects of itself. For example, an operator name
in Fortress must be defined by a sequence containing only
uppercase letters and underscore. This sequence must not
begin or end with underscore, and must have at least two
different symbols. It is not simple to define this in a CFG for-
malism, leading to a very large grammar. Using the APEG
model, it is possible to define this syntactically, as below

op name:
ch1=[A-Z] (' '* ch2=[A-Z] {? ch1 != ch2}

tail op name / ' '* &[A-Z] op name);

tail op name:
![A-Za-z0-9 ]

/ (' '* [A-Z])+ ![A-Za-z0-9 ];
The nonterminal op name tests if the first two uppercase

letters are different and if so, the nonterminal tail op name
is called. Otherwise, it calls itself ignoring all symbols until
the second uppercase letter. The nonterminal tail op name
recognizes a sequence of uppercase letters and underscore,
in which the last symbol is an uppercase letter.

The parser available for Fortress parses an operator name
as an identifier and calls an external function to check if
it is a valid operator name. This procedure could also be
implemented in Fortress using a definition similar to the
one presented above, but the developers apparently favored
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efficiency at the expense of clarity.
This example is presented only to show the power of APEG,

using it for problems other than adapting grammars.

5. CONCLUSIONS
We introduced the paper inquiring if there are any advan-

tages in using an adaptable model for defining the syntax of
extensible languages. In order to answer this question, we
implemented two relevant extensible languages in the adapt-
able model APEG and used its interpreter for automatically
parsing programs of these languages. Therefore, the main
advantage provided is the possibility of automatic generation
of the parser. It is well-known that automatic generation of
parsers reduces the complexity of building parsers, makes
it easier to correct bugs and to change the concrete syntax
of the language during the development phase. Finally, the
implementation conforms with the specification, so if the
specification is correct, then also the generated parser will
be.

Moreover, our specifications define clearly what rules are
available at a given moment during the parsing. It allows to
resolve the false paradox about the local import raised by
Erdweg et alli [8]. Also, the semantics of the combination
of Fortress grammars is clear in the APEG specification,
showing explicitly what set of rules will be used when a
grammar extends another.

Forward reference is reported as difficult to handle with
adaptable models. The definition of grammars in Fortress
has a kind of forward reference, where the action part may
use syntax that is defined later. Therefore, it is necessary
to use a multi-pass approach. We showed that the pred-
icate operator & of APEG allows simulating a multi-pass
parse, handling the forward reference. APEG is powerful
enough to formalize features that are difficult with CFG, as
the definition of Fortress operator names.

We have provided enough evidence about using an adapt-
able model for specifying and implementing extensible lan-
guages and also showed that the APEG model is a good
choice for it. However, this work does not study how is the
efficiency of the implementation of these languages, com-
paring with the original one. Our experience using APEG
on this work seems that APEG may be efficient enough for
using in practice, but a careful study in this direction is
needed. This is the immediate future work.
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