
Asymptus - A Tool for Automatic Inference of Loop
Complexity

Junio Cezar, Francisco Demontîe, Mariza Bigonha and Fernando Pereira

UFMG – Avenida Antônio Carlos, 6627, 31.270-010, Belo Horizonte

{juniocezar,demontie,mariza,fernando}@dcc.ufmg.br

Abstract. Complexity analysis is an important activity for software engineers.
Such an analysis can be specially useful in the identification o f performance
bugs. Although the research community has made significant p rogress i n this
field, e xisting t echniques s till s how l i mitations. P urely s tatic m ethods m ay be
imprecise due to their inability to capture the dynamic behavior of programs. On
the other hand, dynamic approaches usually need user intervention and/or are
not effective to relate complexity bounds with the symbols in the program code.
In this paper, we present a tool which uses a hybrid technique to solve these
shortcomings. Statically, our tool determines: (i) the inputs of a loop, i.e., the
variables that control its iterations; and (ii) an algebraic equation relating the
loops within a function. We then instrument the program to output pairs relating
input values and number of operations executed. By running the program over
different inputs, we generate sufficient p oints f or a p olynomial i nterpolator in
order to precisely determine a complexity function for loops. In the end, the
complexity function for each loop is combined using an algebra of our own craft.
We have implemented this tool using the LLVM compilation infrastructure. We
correctly analyzed 99.7% of all loops available in the Polybench benchmark
suite. These results indicate that our technique is an effective and useful way to
find the complexity of loops in high-performance applications.

Demo URL: https://youtu.be/pzfrIDfoCEc

1. Introduction
Complexity analyses show how algorithms scale as a function of their inputs. The im-
portance of complexity analysis stems from the fact that such a technique helps program
developers to uncover performance bugs which would otherwise be hard to find. In
addition to this, complexity analysis supports the decision of offloading or not
computation to the cloud or GPU. Finally, this kind of technique has implications to
the theoretical computer science community, as it provides data that corroborate the
formal asymptotic analysis of algorithms. Given this importance, it comes as no
surprise that, since the 70s [Wegbreit 1975], large amounts of effort have been spent in
the design and improvement of empirical methodologies to infer the complexity of code.

Over the time, different static approaches were proposed to analyze programs
in functional [Wegbreit 1975, Le Métayer 1988, Rosendahl 1989, Debray and Lin 1993]
and imperative [Gulavani and Gulwani 2008, Gulwani et al. 2009b,
Gulwani et al. 2009a] languages. Although the static approaches have the benefit
of running fast and may give correct upper bounds, this methodology has shortcomings.

Static analyses may yield imprecise – or even incorrect – results. This imprecision
happens due to the inherently inability of purely static approaches to capture the dynamic
behavior of programs. In order to circumvent this limitation of static approaches,
the programming language community has resorted to profiling-based methodolo-
gies [Goldsmith et al. 2007, Zaparanuks and Hauswirth 2012, Coppa et al. 2012].
However, even these dynamic techniques are not free of limitations.

The main drawback of a profiling-based complexity analysis is the fact that it is
usually ineffective to relate the symbols in the program text to the result that it delivers.
For instance, the state-of-the-art tool in this field is aprof [Coppa et al. 2012]. Aprof
furnishes programmers with a table that relates input sizes with the number of operations
performed. This modus operandi has two problems, in our opinion. First, the input is
provided as a number of memory cells read during the execution of a function. This num-
ber may not be meaningful to the programmer, as we will clarify in Section 2. Second,
it works at the granularity of functions. However, developers are often more interested
in knowing the computational complexity of small regions within a function. Such re-
gions can be, for instance, performance-intensive loops. This paper addresses these two
limitations of input sensitive profiling.

The main contribution of our work is a tool named Asymptus, which uses a novel
hybrid technique to perform complexity analysis on imperative programs. Our technique
is hybrid because it combines static analysis with dynamic profiling. First, we use static
analysis to determine loop inputs and to find algebraic relations between these loops.
Then, we use a dynamic profiler, plus polynomial interpolation, to infer the complexity
of each loop in a function. Our technique is capable of generating symbolic expressions
that denote the complexity of each loop, instead of the whole function. Furthermore,
we combine and simplify these expressions to make them even more meaningful to the
software engineer. We believe that this granularity can help developers to have a deeper
understanding of a function’s behaviour; hence, it provides them with the means to detect
and solve performance bugs more efficiently. We also show that our technique is simpler
than previous work while producing more useful results.

We have designed, tested, and implemented a tool on top of the LLVM compi-
lation infrastructure [Lattner and Adve 2004] to infer, automatically, the complexity of
loops within programs. We ran our tool over the Polybench [Pouchet 2012] and Ro-
dinia [Che et al. 2009] benchmark suites. Our results indicate that we are capable of
correctly inferring the complexity of 99.7% of the Polybench loops and 69.18% of the
Rodinia loops. All the equations that we output, as explained in detail in Section 2, are
written as functions of the symbols, i.e., variable names, present in the program code –
that is an improvement on top of aprof and similar tools. Moreover, we have found that
38% of all functions in the benchmarks that we analyzed have at least two independent
loops. In this case, tools that only report complexity information for entire functions may
miss important details about the asymptotic behaviour of smaller regions of code.

2. Overview

In this section we give an overview of the challenges Asymptus addresses. Figure 1
shows the example we will use to illustrate our technique. Function multiply is a routine
that performs matrix multiplication of two square matrices. For pedagogical purposes,

1 : void m u l t i p l y (i n t ∗∗matA , i n t ∗∗matB , i n t n){
2 : i n t i , j , k , sum ;
3 : i n t ∗∗ r e s u l t = (i n t ∗∗) m a l loc (n ∗ s i z e o f (i n t ∗)) ;
4 : f o r (i = 0 ; i < n ; i ++)
5 : r e s u l t [i] = (i n t ∗) ma l l oc (n ∗ s i z e o f (i n t)) ;
6 :
7 : f o r (i =0 ; i < n ; i ++) {
8 : f o r (j =0 ; j < n ; j ++) {
9 : sum = 0 ;
1 0 : f o r (k =0; k < n ; k ++) {
1 1 : sum += matA [i] [k] ∗ matB [k] [j] ;
1 2 : }
1 3 : r e s u l t [i] [j] = sum ;
1 4 : }
1 5 : }
1 6 :
1 7 : j = 0 ;
1 8 : f o r (i = 0 ; i < n ;) {
1 9 : i f (j >= n) {
2 0 : j = 0 ;
2 1 : i ++;
2 2 : p r i n t f (”\n ”) ;
2 3 : } e l s e {
2 4 : p r i n t f (”%8d ” , r e s u l t [i] [j + +]) ;
2 5 : }
2 6 : }
2 7 : p r i n t f (”\n ”) ;
2 8 : }

Figure 1. Matrix multiplication – the running example that we shall use to explain
our contributions.

our function does not return the resulting matrix; instead, it prints the result. We chose to
implement the function in such a way to show how our technique behaves on functions
with multiple loops.

As developers, we would like to know the computational cost to execute this func-
tion. For instance, knowing the complexity of each part of the target function, we can
find out performance bottlenecks and improve its implementation. Looking at the multi-
ply function we can easily identify the linear behavior of the loop on line 4 and the cubic
behavior of the nested loops beginning at line 7. However, a quick visual inspection on
the loop at line 18 may not capture its quadratic complexity.

We can use profilers to find out where the program is spending most of its
resources. However, traditional tools lack the ability to show how the program
scales as a function of its inputs. For instance, Figure 2 shows the output that
Gprof [Graham et al. 1982] – the most well-known profiler in the Unix systems – pro-
duces for our example. This profiler does not give us any information regarding the
asymptotic complexity of the program in Figure 1. Instead, it produces a table describing

index % time self children name
[1] 100.0 0.00 0.03 main [1]

 0.03 0.00 multiply(int**, int**, int) [2]
 0.00 0.00 initArray(int**, int, int) [9]
 0.00 0.00 free_all(int**, int**, int) [10]

 0.03 0.00 main [1]
[2] 100.0 0.03 0.00 multiply(int**, int**, int) [2]

Figure 2. Gprof output for a simple program containing our example function.

Input size Average Cost
138 1111

174 3324

286 12007

367 18576

463 26694

575 36394

701 47749

846 60781

1007 75587

Figure 3. The output produced by the aprof input sensitive profiler.

where the program spends more time during its execution.

There exist profilers t hat h ave b een d esigned s pecifically to pro-
vide developers with an idea about the asymptotic complexity of pro-
grams [Goldsmith et al. 2007, Zaparanuks and Hauswirth 2012, Coppa et al. 2012].
Nevertheless, aprof [Coppa et al. 2012], the state-of-the-art approach in this field,
is also not very useful in this example. For instance, only looking at Figure 3, which
shows aprof’s results for the function multiply, the user may not fully understand
the function behaviour: this table shows numbers, but do not relate these numbers with
symbols in the program text. Moreover, the complexity curve seems to be linear,
since aprof considers the whole matrices as inputs (n2) – usually, developers describe
asymptotic complexity in terms of the matrices dimentions (n). Finally, the result
generated by aprof describes the whole function. We believe that this granularity is too
coarse, because it makes it very difficult for the user to verify the behavior of particular
parts of the function.

We can do better: the technique that we describe in this paper produces one poly-
nomial for each loop in the function. These polynomials range on symbols defined in the
program text, e.g., the names of variables. Therefore, we claim that our output is clearer
to the developer. For instance, considering the loop in line 7, we will state – automatically
– that its complexity is:

n + 1

Furthermore, considering the loop nest starting in line 18, we produce the following equa-

Figure 4. The Asymptus architecture. The arrows represent data flow. This dia-
gram shows how the components of the tool work together.

tion to denote its complexity:
n2 + n+ 1

Our result is on a finer granularity, so we can combine them to generate an equa-
tion that expresses the asymptotic behavior of the whole target function. For the function
in the Listing 1, our approach generates the following simplified equation, in big O:

O(n3)

We claim that this notation, which uses the names of variables present in the program,
is more meaningful to the application developer than the output produced by traditional
profilers, such as gprof or aprof.

3. The Asymptus Tool
Asymptus, the tool that we describe in this paper, consists of four main steps: (1) static
analysis, (2) code instrumentation, (3) dynamic information extraction and (4) polynomial
interpolation. In this section we describe each one of these steps. Figure 4 shows a simple
architecture of Asymptus.

3.1. Input Analysis

We start the process of inferring the complexity of code with a static analysis phase. The
static analysis determines the inputs of each loop in the function. We qualify as loop input
any data that: (i) influences the stop condition of the loop; and, (ii) is not defined within
the loop. For instance, the loop at line 7 in Figure 1 is controlled by i < n. Variable i has
two definitions: one outside the loop, which we shall call i0, and another inside, which
we shall call i1. The former is initialized with the constant zero, which is thus considered
a loop input. Variable n is a parameter of the function; hence, it is considered a symbolic

input. Therefore, the two inputs of the loop that exists at line 7 are {0, n}. Concretely, we
detect inputs through a backward analysis, that starts at the variables used in the loop’s
stop condition, and ends at the definitions of variables that lay outside the loop body.

3.2. Loop Dependence Analysis

Our profiler outputs the complexity of all the loops within a program. We must com-
bine this information to have a snapshot of the program’s complexity. For doing this,
we statically analyze control dependency relations between the loops within a func-
tion. We use these relations to determine an equation based on the big-O notation.
For example, if two loops are in the same level and they are control equivalent, we
can sum their complexities. As if we have a loop nest, the complexities can proba-
bly be multiplied. After we fill this equation with the loop complexities, the equation
is simplified using an operators algebra based on the big-O semantics. For instance,
for the function in Figure 1 our tool generates the following equation: C(multiply) =
C(L4−5) + C(L7−15) × C(L8−14) × C(L10−12) + C(L18−26). After the profiling phase,
this equation is replaced by O(n+ n ∗ n ∗ n+ n2). It is easy to see that we can simplify
this equation and have O(n3) as the resulting complexity.

3.3. Code Instrumentation

We infer the complexity of code by analyzing profiling data. We produce this data through
code instrumentation. To be able to extract dynamic information, we instrument the target
program to output: (i) the values of the loop inputs immediately before the loop execution
and (ii) the number of operations performed by each loop. Loop inputs are determined
by the analysis seen in Section 3.1. The execution cost is measured in terms of instruc-
tions executed. We have implemented this instrumentation framework within the LLVM
compiler infrastructure. Care must be taken with regard to loops with multiple paths.
Different paths may yield different costs, a fact that could hinder our interpolator from
finding a perfect polynomial fit. To avoid this problem, we consider that the cost of a
loop is determined by its path of highest cost, which we estimate statically. To obtain a
conservative estimate of this path, we resort to a modified version of Dijkstra’s algorithm,
to solve the single-source largest path problem for an acyclic graph with non-negative
weights assigned to edges [Dijkstra 1959]. Once we have instrumented the program, we
execute it. As mentioned before, each execution of an instrumented program outputs the
values of each loop input, together with the number of operations executed within that
loop.

3.4. Polynomial Interpolation

We log the output of our profiler and parse it to extract pairs: input value × execution
cost. With these points, we execute a polynomial interpolation method to find the curve
that best fits into this set. For example, the program seen in Figure 1 has two blocks of
loops; thus, we produce two polynomials. Let us take a deeper look into the polynomial
that we produce for the loop that exists at lines 18-25 of Figure 1. In this example, we
have obtained, after profiling the program with eight different inputs, the following pairs
of size × cost: (13, 183), (50, 2,551), (72, 5,257), (80, 6,481), (98, 9,704), (115, 13,341),
(139, 19,461). Our interpolator produces the polynomial n2 + n+ 0.8 The complexity of
the loop is then O(n2), where n is the only symbolic input of the loop under analysis, as

we have explained in Section 3.1. We perform similar process to discover the polynomial
that characterizes the loop nest at lines 7-15 of Figure 1.

3.5. Usage
Since Asymptus was implemented using the LLVM compilation infrastructure, it runs
over, either C/C++ source files, or LLVM b ytecodes. We give the user the possibility to
specify the inputs for the target program in three ways: (i) providing real data as inputs
for the program, (ii) letting Asymptus generate random values or (iii) a mix of real data
and random values. To let Asymptus to generate random values, the user have to use the
option --args specifying the type of each command line argument of the program. The
types may be one of the following: int, long, float, double, num (a numeric value without
specifying the specific t ype), char or s tring. To mix concrete and random values, there
is the option --mix. In this case, the types for the random values have to be specified
within ’{}’. For example, --mix concrete1 {int} concrete2 {string}. To
execute the program with only concrete data, the user has to use the option --man. When
using this option, Asymptus asks the user for the input values for each execution. An
empty line marks the end of the inputs. By default, Asymptus shows results in the function
level. To show the results for each loop within the program, the user has to specify
the option -v. Figure 5 shows an output example. The function multiply is the one of
Figure 1. Function init creates an array with dimensions of size passed as argument.

Function ’multiply(int**, int**, int)’:
Loop at line 6: 1.00 * n + 1.00
Loop at line 9: 1.00 * n + 1.00
Loop at line 10: 1.00 * n + 1.00
Loop at line 12: 1.00 * n + 1.00
Loop at line 20: 1.00 * nˆ2 + 1.00 * n + 1.00

Complexity: O(nˆ3)

Function ’init(int)’:
Loop at line 38: 1.00 * size + 1.00
Loop at line 42: 1.00 * size + 1.00
Loop at line 43: 1.00 * size + 1.00

Complexity: O(sizeˆ2)

Figure 5. Asymptus output example using verbose mode and random inputs.

4. Conclusion
This paper presented Asymptus, a publicly available tool which uses a new technique
based on a combination of profiling and static analysis, to infer the complexity of code.
Static analysis gives us the names of variables that bound the trip count of loops. Profil-
ing lets us associate these variables with the number of operations in the loops that they
control. We believe that our approach, whenever applicable, yields results that are more
meaningful to the application developer than the state-of-the-art tools that are currently
available. Asymptus has three main limitations: (i) it can only analyze functions reached
by the execution flow of the program, (ii) it only generates results for a function if it can
find enough data-points (i.e. if the function is executed with different inputs) and (iii)
only work for loops with polynomial complexities. There are several ways in which such
a tool can be employed. Our immediate goal is to use it to help in the automatic placement
of code in non-uniform memory access architectures. In this scenario, it is worthwhile to

migrate processes of high computational cost closer to the memory banks that contain the
data that said processes use. A totally static solution has been devised to this problem
by Piccoli et al. [Piccoli et al. 2014]. Our intention is to add to this solution a dynamic
component based on this paper’s ideas, in hopes to increase its precision.

References
Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron, K.

(2009). Rodinia: A benchmark suite for heterogeneous computing. In IISWC, pages
44–54. IEEE.

Coppa, E., Demetrescu, C., and Finocchi, I. (2012). Input-sensitive profiling. In PLDI.
ACM.

Debray, S. K. and Lin, N.-W. (1993). Cost analysis of logic programs. ACM Trans.
Program. Lang. Syst., 15(5):826–875.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

Goldsmith, S. F., Aiken, A. S., and Wilkerson, D. S. (2007). Measuring empirical com-
putational complexity. In FSE, pages 395–404. ACM.

Graham, S. L., Kessler, P. B., and McKusick, M. K. (1982). gprof: a call graph execution
profiler (with retrospective). In Best of PLDI, pages 49–57.

Gulavani, B. and Gulwani, S. (2008). A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In CAV, volume 5123
of LNCS, pages 370–384. Springer.

Gulwani, S., Jain, S., and Koskinen, E. (2009a). Control-flow refinement and progress
invariants for bound analysis. In PLDI, pages 375–385. ACM.

Gulwani, S., Mehra, K. K., and Chilimbi, T. (2009b). SPEED: Precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139. ACM.

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75–88. IEEE.

Le Métayer, D. (1988). Ace: An automatic complexity evaluator. ACM Trans. Program.
Lang. Syst., 10(2):248–266.

Piccoli, G., Santos, H., Rodrigues, R., Pousa, C., Borin, E., and Pereira, F. M. Q. (2014).
Compiler support for selective page migration in NUMA architectures. In PACT, pages
369–380. ACM.

Pouchet, L.-N. (2012). Polybench: The polyhedral benchmark suite. URL:
http://www.cs.ucla.edu/ pouchet/software/polybench/. Last access: April, 2015.

Rosendahl, M. (1989). Automatic complexity analysis. In Proceedings of the Fourth
International Conference on Functional Programming Languages and Computer Ar-
chitecture, FPCA ’89, pages 144–156, New York, NY, USA. ACM.

Wegbreit, B. (1975). Mechanical program analysis. Commun. ACM, 18(9):528–539.

Zaparanuks, D. and Hauswirth, M. (2012). Algorithmic profiling. In PLDI, pages 67–76.
ACM.

