
Type Inference for GADTs and Anti-unification

Adelaine Gelain1, Cristiano Vasconcellos1(B),
Carlos Camarão2, and Rodrigo Ribeiro3

1 DCC, Universidade do Estado de Santa Catarina (UDESC), Joinville, Brazil
adelainegelain@gmail.com, cristiano.vasconcellos@udesc.br

2 DCC, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
camarao@dcc.ufmg.br

3 DECSI, Universidade Federal de Ouro Preto (UFOP), João Monlevade, Brazil
rodrigo@decsi.ufop.br

Abstract. Nowadays the support of generalized algebraic data types
(GADTs) in extensions of Haskell allows functions defined over GADTs
to be written without the need for type annotations in some cases and
requires type annotations in other cases. In this paper we present a type
inference algorithm for GADTs that is based on a closed-world approach
to overloading and uses anti-unification and constraint-set satisfiability
to infer the relationship between the types of function arguments and
result. Through some examples, we show how the proposed algorithm
allows more functions defined over GADTs to be written without the
need for type annotations.

1 Introduction

Generalized Algebraic Data Types (GADTs) constitute a powerful extension to
algebraic data types of functional languages like Haskell and ML, and are nowa-
days widely used. A GADT is defined by giving an explicit type signature for
each of its constructors. This allows functions to be defined by specifying equa-
tions that return expressions of distinct types, all instances of the GADT type.
For example, the function eval, presented in e.g. [7,12], evaluates an expression
and returns a value of a type that varies according to the argument type (due
to space reasons the Term constructor is presented in a shortened form):

data Term a where

Lit :: Int → Term Int
Inc :: Term Int → Term Int
IsZ :: Term Int → Term Bool
If :: Term Bool → Term a → Term a → Term a
Pair :: Term a → Term b → Term (a,b)

c© Springer International Publishing Switzerland 2015
A. Pardo and S.D. Swierstra (Eds.): SBLP 2015, LNCS 9325, pp. 16–30, 2015.
DOI: 10.1007/978-3-319-24012-1 2

Type Inference for GADTs and Anti-unification 17

eval :: Term a → a
eval (Lit i) = i
eval (Inc t) = 1 + eval t
eval (IsZ i) = 0 == eval i
eval (If l e1 e2) = if eval l then eval e1 else eval e2
eval (Pair a b) = (eval a, eval b)

The use of an algebraic data type would destroy the simplicity of the eval-
uator, by requiring a declaration of another algebraic data type with a distinct
constructor (tag) for each possible distinct type of the result, with undesirable
constructor tagging and untagging.

Type inference with GADTs is complex, mainly because of problems in iden-
tifying a principal type in many cases. Consider the following example, taken
from [15]:

data T a where

T 1 :: Int → T Bool
T 2 :: T a

test (T 1 n) = n > 0
test T 2 r = r

In the first alternative of test, the result type inferred for the expression
n > 0, Bool , is associated with the type of constructor T1, and (T1 n) can
be determined to have type T Bool , with n of type Int . In the second alternative
of test, there is no explicit association between type T a, constructed by the use
of T2, and the return type (the type of r), and thus in this case the type of
the result should be unified with that of the first alternative (Bool). A relation
between the GADT type and the type of the result could exist, and be explicitly
annotated: the following type signatures are both accepted for the function test,
but none is an instance of the other:

test :: ∀a.T a → Bool → Bool
test :: ∀a.T a → a → a

Several approaches have been proposed to deal with type inference for
GADTs, most of them imposing several restrictions. GADTs are supported in
GHC 7.10.1 [20] as described in [6], where type checking is based on type signa-
tures explicitly given by the programmer. Recent work [15,22] describes a type
inference algorithm that can avoid type signatures in a restricted number of
cases.

In this article we present another type inferencing algorithm that accepts the
declaration of functions based on GADTs without the need for type signatures
(Sect. 3). Examples where types can and cannot be inferred, and issues related
to the existence or not of principal types, are also discussed in Sect. 3.

18 A. Gelain et al.

Our type inference algorithm uses anti-unification (defined in Sect. 2.1) to
capture the relation between the types of the alternatives. Type variables that
are not related to GADTs are unified as usual. Cases involving recursive calls can
be polymorphic recursive, and are handled as if each alternative is an overloaded
definition. In this case, a constraint is added to the type of the recursive call.
Constraint-set satisfiability of these constraints is used to construct a substitu-
tion that is used for instantiating the type of the alternative, in a process similar
to the handling of overloading in System CT [2]. A brief review of System CT
is given in Sect. 2.

2 Preliminaries

In this section we introduce some basic definitions and notations. We consider
that meta-variables defined can appear primed or subscripted.

Meta-variable usage is defined in the paper as follows: x, y denote term vari-
ables, C,D data constructors, α, β (a, b, ... in examples) type variables, T a type
constructor, e a term, τ, ρ simple types, κ a constraint set, x : τ a constraint,
σ a type, Γ a typing context, that is, a set of pairs written as x : σ, and S a
substitution.

The notation an, or simply a, denotes the sequence a1, . . . , an, where n ≥ 0.
When used in a context of a set, it denotes the corresponding set of elements in
the sequence {a1, . . . , an}.

A substitution is a function from type variables to simple type expres-
sions (cf. Sect. 3.2). The identity substitution denoted by id . Sσ represents the
capture-free operation of substituting S(α) for each free occurrence of α in σ.

We overload the substitution application on constraints, constraint sets and
sets of types. Definition of application on these elements is straightforward. The
symbol ◦ denotes function composition and dom(S) = {α | S(α) �= α}.

The notation S[α �→ τ] denotes the updating of S such that α maps to τ , that
is, the substitution S′ such that S′(β) = τi if β = αi, for i = 1, ..., n, otherwise
S(β). Also, [α �→ τ] = id [α �→ τ].

2.1 Anti-unification

A type τ is a generalization — also called (first-order) anti-unification [3] —
of simple types τ n if there exist substitutions S

n
such that Si(τ) = τi, for

i = 1, . . . , n.
We call a function that gives the least generalization of a finite set of simple

types the least common generalization (lcg).
An algorithm for computing the lcg of a finite set of types in presented

in Fig. 1. The concept of least common generalization was studied by Gordon
Plotkin [10,11], that defined a function for constructing a generalization of two
symbolic expressions.

Type Inference for GADTs and Anti-unification 19

lcg(T) = τ where (τ, S) = lcg ′(T, ∅), for some S

lcg ′({τ}, S) = (τ, S)

lcg ′({τ1, τ2} ∪ T, S) = lcg ′′(τ, τ ′, S′) where (τ, S0) = lcg′′(τ1, τ2, S)
(τ ′, S′) = lcg′(T, S0)

lcg ′′(C τ n, D ρm, S) =
if S(α) = (C τ n, D ρm) for some α then (α, S)
else

if n �= m then (β, S[β �→ (C τ n, D ρm)])
where β is a fresh type variable

else (ψ τ ′ n, Sn)

where (ψ, S0) =

{
(C, S) if C = D
(α, S [α �→ (C, D)]) otherwise, α is fresh

(τ ′
i , Si) = lcg′′(τi, ρi, Si−1), for i = 1, . . . , n

Fig. 1. Least common generalization

2.2 System CT

System CT is an extension of the Damas-Milner type system for dealing with
overloading [1,2,13,14]. Our initial view for the definition of system CT was to
consider a simple extension where a name (or symbol) could have more than
one type assumption in a typing context. This led to the adoption of a closed
world approach for overloading [1,2,21]. However for efficiency reasons, we have
changed our initial idea about the support of only a closed world approach to
overloading, due to the need (in a closed world) of checking constraint-set sat-
isfiability for each function application. Nowadays, our view, highly influenced
by Haskell’s open world approach, is that an open world is the preferred app-
roach for supporting overloading. We leave discussion of an optional, instead
of mandatory, use of type classes, as well as a related motivation for changing
Haskell’s ambiguity rule, to future work.

The principal type of overloaded symbols is defined in system CT by comput-
ing the anti-unification of the types of the available definitions of these symbols
in the typing context, instead of requiring them to be explicitly annotated in a
class declaration.

The least common generalization of the finite set of types of the definitions
of an overloaded symbol in a given context is taken as the (principal) type of
the overloaded symbol. In system CT a type is denoted by ∀ᾱ. κ. τ , where κ is a
possibly empty constraint set and τ is a simple type (i.e. an unconstrained and
unquantified type). A constraint in system CT is a pair x : τ , where x is an
overloaded symbol and τ is a simple type. For example, a typing context, Γ==, in

20 A. Gelain et al.

which the equality symbol is overloaded with types Int and Char contains the
following type assumptions:

(==) : Int → Int → Bool
(==) : Char → Char → Bool

In this case, the principal type of (==) in Γ== is obtained by the least common
generalization of the two types of (==) in this typing context, and is given by:

∀a.{(==):a → a → Bool}. a → a → Bool

Constraint (==) : a → a → Bool on this type is similar to Haskell’s constraint
Eq a, where such type of (==) is annotated, the difference being essentially
the abscence of a constraint on (/=) that is also available in type class Eq .
The purpose of the constraint is the same as in Haskell: in this case, to allow
instantiation of type variable a in Γ== only for types Int and Char . Type inference
in system CT is a process similar to type inference in Haskell. In particular, the
use of overloaded symbols in expressions for which overloading is not resolved
causes a constraint to be included in the inferred type. For example, consider:

insert a [] = [a]
insert a (b:x)

| a == b = b:x
| otherwise = b: insert a x

The type of insert in this typing context is inferred to be:

insert:: ∀a. {(==) : a → a → Bool}. a → [a] → [a]

In general, in a constrained type ∀ an. κ. τ , κ is a set of constraints that
restricts the set of types to which ∀ an.κ. τ may be instantiated: every instance
must be such that the resulting constraint set must be satisfiable in the relevant
typing context. Constraint set satisfiability is in general an undecidable problem
[16,17], but it can be made decidable without significantly affecting the set of
typeable programs [14]. See also [2,4,5,18].

During type inference, the substitution returned by the function — called
sat — that computes a substitution that verifies (proves) satisfiability of a given
constraint set in a given typing context — or, equivalently, that verifies whether
the constraint set is entailed by a set of constraints on the types of definitions
of symbols in the typing context — can be used to “improve” the constrained
type. See e.g. [5,13,14] for definitions of sat and for the problem of constraint-set
satisfiability (CS-SAT).

In a closed world, the substitution returned by sat is needed to improve the
type of recursive functions. For example, consider the inference of the principal
type of overloaded equality for lists, in context Γ(==):

Type Inference for GADTs and Anti-unification 21

[] == [] = True
(a : x) == (b : y) = a == b && x == y

== = False

The (principal) type of (==) is inferred by considering firstly the types of
(==) used in the recursive definition, initially given by:

{(==):a → b → Bool , (==):[a] → [b] → Bool}. [a] → [b] → Bool (1)

The first constraint on the type above comes from a == b, and the second
from x==y. Note that the type of (==) cannot be inferred from the lcg of the
types of (==) in the typing context, because a new definition is being given, and
this in general will modify the lcg . Function sat comes to the rescue, being able
to compute a substitution that is used to improve the type of (==) to:

∀a.{(==) : a → a → Bool}. [a]→[a]→ Bool

despite the existence of an infinite set of substitutions that can be used to instan-
tiate the type (1) above:

{{a �→ Int , b �→ Int}, {a �→ Char , b �→ Char}, {a �→ [Int], b �→ [Int]}, {a �→ [Char],
{b �→ [Char]}, {a �→ [[Int]], b �→ [[Int]]}, {a �→ [[Char]], b �→ [[Char]]}, . . .}

The sat algorithm is defined in [2,14].
Type inference for polymorphic recursion is treated in a similar way.

3 Type Inference

Let’s say that a GADT function is a function such that the type of a parameter
or of the result is a GADT type. Type inference of a GADT function involves, in
our approach, the generalization of the types used in the defining alternatives.
The substitution returned by sat is used to improve the inferred type, using a
process of type inference that has the following phases:

1. The type of each defining alternative is inferred, with a constraint (included
in the constraint set) for each recursive use of the GADT function.

2. The type of each equation j is improved by the substitution given by
sat(κj , Γ), where κj is the constraint set on the type inferred for equation
j and Γ contains the type assumptions of used overloaded symbols together
with the set {x : σi | i = 1, . . . , n}, where x is the name being defined and σi

is the type of the i-th equation in the definition of x that is not recursively
defined.

3. Compute the lcg of the simple type of the alternatives.
4. Compute the substitution that is the most general unifier of the types of

alternatives of the GADT function which do not involve a GADT constructor
and apply this substitution to obtain the type of each alternative.

We present next some examples that illustrate the type inference process.

22 A. Gelain et al.

3.1 Examples

Example 1. Type Inference of function test

The types inferred for each alternative of the function test , presented in Sect. 1,
are:

test :: T Bool → a → Bool
test :: T b → c → c

In cases such as this, where recursive calls do not occur, no restriction is
generated, making the call to sat unnecessary. The lcg is then computed, tak-
ing the set of types of the alternatives as a parameter. The type obtained by
lcg allows observation of the dependency that exists between the types of each
alternative with those of the generalized type: types for which there is no asso-
ciation with the type of a GADT are unified. The generalization of the types of
the alternatives in the definition of the function test yields:

test :: T b′ → c′ → d′

Now, b′ is associated with a GADT, and c′, d′ are not. Thus, phase (4) above
specifies that a and c should be unified, as well as Bool and c, resulting in:

test :: ∀a.T a → Bool → Bool

As discussed in Sect. 1, type ∀a.T a → a → a could also serve as the type of
test , and in that case expression (test T2 ‘a’) would be type-correct.

In Haskell, type inference for the function testgenerates implication con-
straints [15,22], given by (where ∼ is a type equality constraint and ⊃ denotes
an implication constraint):

(a ∼ T b) ∧ (b ∼ Bool ⊃ c ∼ Bool) ∧ (a ∼ T d) ∧ (c ∼ e)

Type equality constraint (b ∼ Bool) is generated from T1 n, type equality
constraint (c ∼ Bool) is generated from the first alternative in the definition
of test , type equality constraint (c ∼ e) from the second alternative in the
definition of test , where e is the type of r, which is in this case free to be
unified ({e �→ c}). The meaning of an implication constraint can be understood
by considering that, in this example, (b ∼ Bool ⊃ c ∼ Bool) indicates that if
type variable b is instantiated to Bool then so must c. These constraints have
substitution {c �→ Bool} as a solution. Application of this substitution on the
type of test yields type T b → Bool → Bool , which is the same type inferred
by our algorithm. However, type variable c is considered untouchable in the
implication constraint, and then type inference fails. Type variables which occur

Type Inference for GADTs and Anti-unification 23

in implication constraints are considered untouchable within these constraints,
and can only be substituted as a result of applying substitutions obtained as
a result of solving other constraints. In GHC 7.6.x type inference proceeds as
outlined, but from version 7.8.1 a more restricted set of GADT functions for
non-annotated types was adopted.

Example 2. Type Inference of function eval

In the definition of eval , presented in Sect. 1, recursive calls involving poly-
morphic recursion occur in some alternatives, while the type of eval has not
been inferred yet. To handle such cases, constraints are generated from the type
required for each recursive call. These constraints are subsequently used in the
type improvement process.

The alternative with pattern on constructor If has recursive calls for all
arguments of the constructor (l, e1 and e1). l has type Term Bool , and e1, e2
have type Term a. Constraints {eval : Term a → b, eval : Term Bool → Bool}
are generated, and the type of the alternative is inferred also as Term a → b.
Type inference for the constructor Pair proceeds in a similar way. The types
inferred for each alternative are as follows:

(Lit i) eval :: Term Int → Int
(Inc t) eval :: Term Int → Int
(IsZ i) eval :: Term Bool → Bool
(If l e1 e2) eval :: {eval : Term Bool → Bool,

eval : Term a → b}.Term a → b
(Pair x y) eval :: {eval : Term c → e,

eval : Term d → f}.Term (c,d) → (e,f)

After this, the types of the alternatives which contain constraints are subject
to type improvement, which consists of the application of the substitution given
by sat(κ, Γ), where κ is the possibly empty constraint set in the type of each
alternative and Γ = {eval : Term Int → Int , eval : Term Bool → Bool}. After
type improvement the following types are inferred for each alternative:

(Lit i) eval :: Term Int → Int
(Inc t) eval :: Term Int → Int
(IsZ i) eval :: Term Bool → Bool
(If l e1 e2) eval :: Term a → a
(Pair x y) eval :: Term (c,d) → (c,d)

The type inferred for eval is the lcg of the types of the alternatives, given by:

eval :: ∀a.Term a → a

In this case, all types are associated with the GADT, what characterizes them
as types that should not be unified, and, as in this case all types are associated
to the GADT, we have that, in this case, the type inferred is the principal type.

24 A. Gelain et al.

Example 3. In some cases anti-unification does not capture the relationship
between types of alternatives. Consider for example the following function, pre-
sented in [18]:

data Erk a b where

I :: Int→ Erk Int b
B :: Bool→ Erk a Bool

f (I a) = a + 1

f (B b) = b && True

The generalization of the types of the alternatives in the definition of f is:
Erk a b → c. Since type variable c is not associated to a GADT, types Int and
Bool are unified, causing the definition of f to be rejected. However, for example
with annotated type Erk a a → a this function can be given a proper type.

3.2 Term and Type Syntax

The context-free syntax of terms and types is presented in Fig. 2. For simplicity
and following common practice, kinds are not considered in type expressions and
type expressions which are not simple types are not explicitly distinguished from
simple types. Type expression variables are called simply type variables. There
is a distinguished type constructor that is written as an infix operator, τ → τ ′,
as usual.

Terms e ::= x | C | λx. e | e e′ | let x = e in e′ | case e of C x → e
Simple types τ ::= α τ | T τ
Type schemes σ ::= ∀ α. κ. τ

Fig. 2. Syntax of terms and types

We use the following operations over typing contexts:

Γ (x) = {σ | x : σ ∈ Γ}
Γ, x : σ = (Γ − {x : σ | σ ∈ Γ (x)}) ∪ {x : σ}

We let: (i) tv(σ) denote the set of free type variables in σ, (ii) gtv(σ) denote
the set of free type variables that occur in the type of a GADT type constructor,
(iii) gtc(τ) represent the set of GADT type constructors occurring in τ and
(iv) rtv(τ) denote the set of free type variables that occur in the type of a
recursive algebraic data type, such as lists and trees (the set rtv(τ) is used to
avoid skolemization of type variables that occur in the type of the result of a
generalized GADT function).

Type Inference for GADTs and Anti-unification 25

We use constraints to express a relationship between the return type of a
function and its parameters, in case the type of parameters have a GADT con-
structor.

We also use the following notation to return the sets of constraints that
contain types that mention GADT constructors:

κ�
x = {x : τ ∈ κ | gtc(τ) �= ∅}

3.3 Algorithm Definition

For simplicity, we consider a language that is essentially core-ML extended with
GADT functions — that is, we do not include inference of types of expressions
with overloaded symbols. Readers interested in type inference for overloading
are referred to [13].

The proposed algorithm is defined as a syntax-directed proof system, using
formulas of the form Δ | Γ e : (κ.τ, S), where Δ is an environment of names of
recursive function definitions that contains constraints to be used in the process
of type improvement for case branches involving GADTs, κ. τ is the type inferred
for e and S is a substitution (used to instantiate type variables for obtaining type
κ. τ). Notation δ(x, τ,Δ) associates, with a symbol x and a type τ , constraint
set {x : τ}, if x is a recursively defined symbol, otherwise an empty constraint
set. It is defined as:

δ(x, τ,Δ) = if x ∈ Δ then {x : τ} else ∅

Type inference rules are standard, with the exception of rules (VAR) and
(CASE). The (VAR) rule generates a constraint for each symbol in Δ, used for

26 A. Gelain et al.

improvement of types of GADT functions. Each variable x that is not in Δ
has a type with an empty constraint set (remember that, for simplicity reasons,
overloading is not treated in this paper). The (CASE) rule is the main part of the
algorithm. First, the type of case scrutinee e is inferred. Then, the type of each
case alternative is inferred (in the textual order, but the order is not relevant).
Finally, if the case expression involves GADT constructors, the type of the case
expression is improved, by using a separate type improvement judgement (since
case alternatives are not expressions). Distinct case alternatives for the same
constructor must be unified, but in this paper we consider for simplicity that
each case alternative has a distinct constructor.

In order to infer the type of a case alternative, we need to unify its constructor
range type with the type inferred for the case scrutinee, producing a substitution
that is used to instantiate the types of the parameters, and add them to the
typing context to infer the type of the right-hand side of the alternative.

The judgement Γ �x (κi. τ ′
i → τi) � (τ ′ → τ, S) denotes the type improve-

ment necessary for the inference of types of functions defined by pattern match-
ing on a GADT function named x. Given a typing context Γ and, for each
alternative i, a set of constrained types κi. τ

′
i → τi, type improvement yields

the improved type τ ′ → τ . Note that only functions that have alternatives with
polymorphic recursion generate constraints. sat(κ, Γ) computes the improve-
ment substitution S for a set of constraints κ, using type assumptions given
by Γ . This judgement uses function specialize which computes a improvement
substitution based on the types of the case alternatives and their generalization.

specialize(τ, ∅) = id
specialize(τ, ({τ ′} ∪ T)) = unify({τ = τ ′}) ◦ specialize(T)

The type improvement judgement is defined as:

Type Inference for GADTs and Anti-unification 27

This judgement works as follows. For each equation i of a GADT function x,
let (κi)�

x be the set of constraints that mention GADT type constructors (in
the constraint set of the type of the i-th equation) and let Si be the satisfiabil-
ity substitution for this constraint set, in a typing context that contains type
assumptions corresponding to all alternatives. Then, let τ1 → τ2 be the lcg of
all Si (τ ′

i → τi)). Now, we “skolemize” α (i.e. treat them as non-unifiable), the
set of type variables introduced by the generalization of types of parameters of
a GADT. Type variables that occur in the return type of a function and also in
the generalization of a parameter of a recursive algebraic type are not skolem-
ized (for example, when the type [a] of the result is obtained from, say, the
generalization of [Int] and [Bool]). The inferred types of case alternatives are
then unified with non-skolemized type variables. The substitutions computed by
satisfiability and unification are applied to the generalized type, which is then
returned.

It is worth mentioning that the improvement judgement is conservative over
non-GADT types, since κ = ∅ when alternative types do not involve GADTs,
and no variable is skolemized, so all types must be unified.

3.4 GADT and Principal Type

In [22] Vytiniotis et al. argue that the principal type property offers fewer benefits
than a guarantee of type safety (i.e. that well-typed programs will not cause an
error at run-time). Consider for example the function eval , presented in Sect. 1,
but now consider that it is declared with only the first alternative:

eval (Lit i) = i

Our algorithm infers type (Term Int → Int) for eval , but in Haskell the
following type annotations would be allowed for eval : ∀a. Term a → a and
∀a.Term a → Int . None of these types is an instance of the other.

In our view, the type Term Int → Int is a good choice in this case, since
it avoids expressions such as, for example, eval (IsZ(Lit 1)), for which there
exists no alternative in the definition of eval . With the algorithm given in [22]
the following implication constraint is generated during type inference:

(a ∼ Term b) ∧ (b ∼ Int ⊃ c ∼ Int)

Note that substitution {c �→ Int} is a solution to this implication constraint
and application of this substitution leads to the inference of type Term a →
Int . However, in this constraint variable c is considered untouchable, and then
type inference fails in GHC. Again, in GHC version 7.6.x, the function eval
defined with only this alternative would have inferred type ∀a.Term a → Int ;
from version 7.8.1 type inference fails, due to type variable being considered
untouchable.

28 A. Gelain et al.

On the other hand, by adding the alternative of constructor IsZ , where the
type Term Bool is returned by the constructor, the type of eval becomes: ∀a.
Term a → a, which is the same as the type inferred by our algorithm. It is
important to point out that the type Term Int → Int , inferred by the alternative
of constructor Lit , is an instance of this type, in contrast with the case of Term
a → Int .

eval (Lit i) = i
eval (IsZ i) = 0 == eval i

Back to type safety, it would be desirable that in this case the type inference
algorithm restricts instances of a to either Int or Bool ; however, this seems to
need a special way of constraining polymorphic types.

In many cases, such as that of Example 1, a relation between the types of
alternatives is not expressed by the code in these alternatives. In these cases
there is no guarantee that the inferred type is the principal type.

4 Related Work

Peyton Jones et al. present an extension of Haskell’s type system for the support
of GADTs [6,7]. The verification of the types of GADT functions is done using
type annotations. These types, called rigid types, are propagated to inner scopes
by means of some specific rules. Pottier and Régis-Gianas [12] define a two-pass
type inference algorithm, separating traditional Hindley-Milner type inference
from the propagation of explicit type annotations. This separation makes the
mechanism of type propagation more efficient.

The type inference algorithm used in [15,22], called OutsideIn, extracts type
constraints from expressions occurring in inner scopes and solves these con-
straints in the outermost scope, avoiding an ad hoc approach for the propaga-
tion of rigid types. Besides using a more natural mechanism for propagation of
annotated types, this approach enables more helpful error messages and type
inference in a restricted number of function declarations. In these cases a rather
restrictive rule is adopted in the definition of untouchable variables, so that only
the types of functions for which the existence of a principal type can be guaran-
teed are inferred. In [19] Sulzmann and Schrijvers introduce some ideas adopted
in the OutsideIn algorithm.

Lin and Sheard present the Pointwise GADT type system [9], that uses a
modified unification algorithm to support parametric instantiation and type
indexing. In [8] Lin proposes algorithm P, more restrictive than Pointwise, that
does not require type annotations. The algorithm applies generalization only
in patterns of alternatives and supports polymorphic recursion. Differently from
our proposal, which handles polymorphic recursion similarly to overloading, algo-
rithm P uses an approach similar to that used by an iteration limit to guarantee
termination.

Type Inference for GADTs and Anti-unification 29

5 Conclusion

In this paper we have presented a type inference algorithm in the presence of
GADTs. The ideas behind the algorithm are intuitive and easy to understand.

The presented algorithm handles alternative definitions of a defined symbol
x as if they were overloaded definitions of x, in a closed world approach to
overloading, with support for polymorphic recursion. The algorithm makes use of
anti-unification to capture the relation between the types of distinct alternatives
of a function that has a parameter or returns a GADT. Types which must
not be unified are separated, before unifying the types of the alternatives. This
enables type inference for functions that typically require type annotations in
other implementations, such as that of GHC.

Further study in order to provide support for type annotations is necessary.
When there is a relation from the types of arguments to the type of the result
of a GADT function which is not made explicit in the code (e.g. Example 3),
our type inference algorithm can reject expressions that could be considered
type-correct.

References

1. Camarão, C., Figueiredo, L.: Type inference for overloading without restrictions,
declarations or annotations. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999.
LNCS, vol. 1722, pp. 37–52. Springer, Heidelberg (1999)

2. Camarão, C., Figueiredo, L., Vasconcellos, C.: Constraint-set Satisfiability for
Overloading. In: Proceedings of the 6th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pp. 67–77. ACM (2004)

3. Chang, C.C., Keisler, H.J.: Model Theory: Dover Books on Mathematics, 3rd edn.
North-Holland Press, New York (2012)

4. Demoen, B., de la Banda, M.G., Stuckey, P.J.: Type Constraint Solving for Para-
metric and Ad-hoc Polymorphism. In: Proceedings of the 22nd Australasian Com-
puter Science Conference (1999)

5. Jones, M.: Simplifying and Improving Qualified Types. In: Proceedings of ACM
Conference on Functional Programming and Computer Architecture, FPCA 1995,
pp. 160–169 (1995)

6. Jones, S.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based
type inference for GADTs. SIGPLAN Not. 41(9), 50–61 (2006)

7. Jones, S.P., Washburn, G., Weirich, S.: Wobbly types: type inference for generalised
algebraic data types. Technical report MS-CIS-05-26, University of Pennsylva-
nia, Microsoft Research (2004). http://research.microsoft.com/apps/pubs/default.
aspx?id=65143

8. Lin, C.K.: Practical type inference for the GADT type system. Ph.D. thesis, Port-
land State University, Portland, OR, USA (2010)

9. Lin, C.K., Sheard, T.: Pointwise generalized algebraic data types. In: Proceedings
of the 5th ACM SIGPLAN Workshop on Types in Language Design and Imple-
mentation, TLDI 2010, pp. 51–62. ACM, New York (2010)

10. Plotkin, G.D.: A note on inductive generalisation. Mach. intell. 5(1), 153–163
(1970)

http://research.microsoft.com/apps/pubs/default.aspx?id=65143
http://research.microsoft.com/apps/pubs/default.aspx?id=65143

30 A. Gelain et al.

11. Plotkin, G.D.: A further note on inductive generalisation. Mach. Intell. 6, 101–124
(1971)

12. Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic
data types. SIGPLAN Not. 41(1), 232–244 (2006)

13. Ribeiro, R., Camarão, C.: Ambiguity and context-dependent overloading. J. Braz.
Comput. Soc. 19(3), 313–324 (2013)

14. Ribeiro, R., Camarão, C., Figueiredo, L.: Terminating constraint set satisfiability
and simplification algorithms for context-dependent overloading. J. Braz. Comput.
Soc. 19(4), 423–432 (2013)

15. Schrijvers, T., Jones, S.P., Sulzmann, M., Vytiniotis, D.: Complete and decidable
type inference for GADTs. SIGPLAN Not. 44(9), 341–352 (2009)

16. Smith, G.: Polymorphic type inference for languages with overloading and subtyp-
ing. Ph.D. thesis, Cornell University (1991)

17. Smith, G.: Principal type schemes for functional programs with overloading and
subtyping. Sci. Comput. Program. 23(2–3), 197–226 (1994)

18. Stuckey, P., Sulzmann, M.: A Theory of overloading. In: Proceedings of the 7th
ACM International Conference on Functional Programming, pp. 167–178 (2002)

19. Sulzmann, M., Schrijvers, T., Stuckey, P.J.: Type Inference for GADTs via Her-
brand Constraint Abduction (2008)

20. Team, G., et al.: The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 7.10.1 (2015)

21. Vasconcellos, C.: Inferência de tipos com suporte para sobrecarga baseada no sis-
tema CT. Ph.D. thesis, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
(2004)

22. Vytiniotis, D., Jones, S.P., Schrijvers, T., Sulzmann, M.: OutsideIn(X): modular
type inference with local assumptions. J. Funct. Program. 21(4–5), 333–412 (2011)

http://www.springer.com/978-3-319-24011-4

	Type Inference for GADTs and Anti-unification
	1 Introduction
	2 Preliminaries
	2.1 Anti-unification
	2.2 System CT

	3 Type Inference
	3.1 Examples
	3.2 Term and Type Syntax
	3.3 Algorithm Definition
	3.4 GADT and Principal Type

	4 Related Work
	5 Conclusion
	References

