
The Register Allocation and Instruction Scheduling Challenge
João F. N. Carvalho

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Belo Horizonte, M.G., Brasil
joaofnc@dcc.ufmg.br

Bruno L. Sousa
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, M.G., Brasil

bruno.luan.sousa@dcc.ufmg.br

Marcus R. Araújo
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, M.G., Brasil

maroar@dcc.ufmg.br

Mariza A. S. Bigonha
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, M.G., Brasil

mariza@dcc.ufmg.br

ABSTRACT
Both register allocation and instruction scheduling are old and
open issues in Computer Science, despite the e�orts already made
to address them separate or jointly. Register allocation may be seen
as having two parts: allocation, which decides which values should
be in registers, and assignment, which assigns a speci�c register to
each value. Instruction scheduling aims at identifying and moving
the instructions in the code, changing their original execution se-
quence, so that they may run in parallel. Register allocation and
instruction scheduling a�empt to minimize the execution time of
the program, however, they are interdependent and are involved in
a prioritization problem. �is paper presents a Systematic Literature
Review (SLR) related to this problem. From a total of 542 primary
studies initially obtained on six databases, 25 studies closely re-
lated to this research theme were identi�ed, 12 of them published
between 2000 and October 2016. �ese studies were analyzed to
answer the research questions proposed in this SLR, producing use-
ful informations about this theme and about the approaches that,
traditionally, have been used to solving this problem. An important
�nding of this research is the con�rmation that this problem still
has no de�nitive solution, and continues to be a relevant challenge
for developers, since its solution is closely linked to the quality of
the code generated by the compilers in general.

CCS CONCEPTS
•So�ware and its engineering→ Compilers;

KEYWORDS
register allocation, instruction scheduling, code optimization
ACM Reference format:
João F. N. Carvalho, Bruno L. Sousa, Marcus R. Araújo, and Mariza A. S.
Bigonha. 2017. �e Register Allocation and Instruction Scheduling Chal-
lenge. In Proceedings of SBLP 2017, Fortaleza, CE, Brazil, September 21–22,
2017, 9 pages.
DOI: 10.1145/3125374.3125380

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or a�liate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
SBLP 2017, Fortaleza, CE, Brazil
© 2017 ACM. 978-1-4503-5389-2/17/09. . . $15.00
DOI: 10.1145/3125374.3125380

1 INTRODUCTION
�e performance of a program may be improved if the interdepen-
dence between register allocation and instruction scheduling is
properly administrated. �e register allocation and the instruction
scheduling problems have been extensively studied, both individu-
ally and jointly [1, 3, 4, 6, 8–10, 13, 14, 16–20, 26, 29–35, 37, 39, 41].

�e purpose of register allocation is to map each temporary vari-
able of the intermediate code to a physical register of the target
machine. Register allocation may be seen as accomplished in two
phases: allocation, which decides which values should be in regis-
ters, and assignment, which assigns a speci�c register to each value.
In this paper, the term register allocation will indicates both phases.
�e most widespread method to solve the register allocation prob-
lem is the graph coloring [5]. Like the graph coloring, the register
allocation is NP-Complete [10, 11].

Instruction scheduling aims at increasing the rate of instructions
executed per machine cycle. To achieve it, the scheduler reorders
intermediate code instructions as long as it satis�es data depen-
dencies, control dependencies, and structural dependencies. Loop
Scheduling orders instructions inside a loop body. Local Sched-
uling orders instructions inside basic blocks. Modulo Scheduling
[38] and List Scheduling [12, 19] are the most used techniques for
loop scheduling and local scheduling, respectively. �e problem of
optimal instruction scheduling is NP-Hard [26, 27].

Register allocation and instruction scheduling tasks are interde-
pendent, that is, they interfere with each other, being involved in a
prioritization problem: if the allocation is done before scheduling,
postpass method, false dependencies between statements may be in-
troduced, limiting the opportunities for reordering instructions and
therefore the possibility to execute them in parallel. On the other
hand, if scheduling is performed prior to allocation, prepass method,
the pressure on the registers may rise, increasing the amount of
values spills into memory. Examples are given in [2, 37].

�is paper presents a Systematic Literature Review (SLR) on the
interdependence between register allocation (RA) and instruction
scheduling (IS). �is SLR has as main objectives: (i) to evaluate
the e�ect of the interdependence between register allocation and
instruction scheduling regarding code optimization; (ii) to present
how the literature has dealt with the execution of these two tasks
together; (iii) to provide a large-scale study to be�er understand

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil João F. N. Carvalho, Bruno L. Sousa, Marcus R. Araújo, and Mariza A. S. Bigonha

this problem. To achieve these gols, three research questions were
proposed and will be answered in Section 2.3.2.

2 SISTEMATIC LITERATURE REVIEW
For Kitchenham and Charters [24], a Systematic Literature Review
is “a means of identifying, assessing and interpreting all available
evidence relevant to a speci�c issue, thematic area, or phenomenon
of interest”. �e studies identi�ed by a SLR may be classi�ed as
primary studies while the SLR itself is a form of secondary study,
since it reviews all the primary studies to gather and synthesize
evidence of a particular research subject. For the authors, the ob-
jectives of an SLR are: (i) to summarize the technology or area
studied, in order to know its limitations and bene�ts; (ii) discover
gaps in the studies of some technology or research areas that have
not yet been completed and suggest them for future research; (iii)
provide new structures, directing new areas of research; (iv) study-
ing technologies and theories in order to con�rm theses or raise
new hypotheses for studies.

�e SLR presented in this paper addresses studies about the inter-
dependence between register allocation and instruction scheduling
problem. It was performed in three phases: planning, execution
and analysis. Section 2.1 presents the planning phase. Section 2.2
describes the execution, presenting the steps and the results of the
selection process of the primary studies. Section 2.3 performs the
analysis, it shows the most relevant points of some selected papers
and answers the research questions.

2.1 Planning Phase
In the planning phase, all the necessary elements for the elaboration
of the SLR were de�ned: the research questions to be investigated,
the search string to be used, the databases to be searched and the
inclusion and exclusion criteria of the primary studies.

2.1.1 Research �estions (RQ). We propose the following re-
search questions to support this study:

RQ1: What are the main approaches available in the literature to
deal with the interdependence between register allocation
and instruction scheduling?

RQ2: Does a joint approach of register allocation and instruction
scheduling tasks really improve code optimization?

RQ3: For what kinds of architectures has the register allocation
and instruction scheduling been performed together?

2.1.2 Search String. �e search string is used to search the se-
lected databases for the primary studies. �e �rst step to de�ne the
search string is to identify the most relevant keywords related to
the research questions, as well as the synonyms of these keywords.
In this SLR, the keywords and synonyms chosen were as follows:

• interdependence: interdependence, interconnection, inter-
relationship, linkage, association, connection, correlation,
relationship , combining.

• instruction scheduling: instruction scheduling, scheduling.
• register allocation: register allocation, variable spilling, reg-

ister packing, register pressure, register tiling.
• register allocation and instruction scheduling: register al-

location and instruction scheduling.

Next, the logical operators AND and OR were used to connect
these words. �e OR operator was used to connect all the synonyms
of each keyword, forming groups of connected words. �e AND
operator was used to connect these groups of words. In this way,
the following search string had been de�ned:

((“interdependence” OR “interconnection” OR “interrelation-
ship” OR “linkage” OR “association” OR “connection” OR “cor-
relation” OR “relationship” OR “combining”) AND (“instruction
scheduling” OR “scheduling”) AND (“register allocation” OR
“variable spilling” OR “register packing” OR “register pressure”
OR “register tiling”)) OR (“register allocation and instruction
scheduling”)

2.1.3 Databases. �e databases chosen for the collection of the
primary studies are listed in Table 1. �ey were chosen because
they are electronic databases that have a large collection of full
papers and technical reports published at conferences and journals
relevants to the academic community.

Database Address
ACM Digital Library h�p://dl.acm.org/
IEEE h�p://ieeexplore.ieee.org/
Science Direct h�p://www.sciencedirect.com/
Scopus h�p://scopus.com/
Springer h�p://link.springer.com/
Web of Science h�p://webo�nowledge.com/

Table 1: Selected electronic databases.

2.1.4 Inclusion and Exclusion Criteria. �e inclusion and exclu-
sion criteria allow to classify each paper found in the surveys as
a candidate to be included or excluded from the SLR, so that the
papers may be restricted to the topic explored. Table 2 presents the
de�ned inclusion and exclusion criteria used in this work.

Inclusion Criteria Exclusion Criteria
Papers published in
Computer Science. Duplicate papers.

Papers wri�en in English.

Studies classi�ed as tutorials,
posters, panels, lectures, round
tables, workshops, theses and
dissertations.

Papers available in
electronic format.

Papers that could not be
located.

Papers published in
conferences or magazines.
Papers related to the terms
of the search string.

Table 2: Inclusion and exclusion criteria.

2.2 Execution Phase
�e execution phase, obeying the planning described in Section 2.1,
consists in the application of the search string in order to search
the chosen databases for the primary studies. Besides that, the
inclusion and exclusion criteria of the primary studies are applied.

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://scopus.com/
http://link.springer.com/
http://webofknowledge.com/

The Register Allocation and Instruction Scheduling Challenge SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil

2.2.1 Search Process. In the selected electronic bases, the search
process is automated by an existing search engine in the base itself.
In each of them, the search was performed using the search string
exhibited in Section 2.1.2 and the results obtained were exported.
�e entire search process was conducted from October 19-21, 2016.

Table 3 shows, for each electronic base searched, the number of
the primary studies found. �e search process obtained 542 studies.

Database Total of Studies
ACM Digital Library 134
IEEE Xplore 0
Science Direct 313
Scopus 27
Springer 34
Web of Science 34
Total of Studies Obtained 542

Table 3: Primary studies obtained.

�e IEEE Xplore database did not return any document in the
search performed with the de�ned search string. Unsatis�ed with
this result, new searches were made keeping the keywords de�ned,
but changing the positions of the logical connectors AND and OR of
the search string. In some cases, the search with the modi�ed string
produced results. However, they were all contained in the results
of the searches made on the other bases, except for a single article.
Due to this non-conformity of the process and, mainly, due to the
low contribution that this modi�cation brought to the SLR results,
the original search result at the IEEE Xplore base was accepted.

2.2.2 Selection Process. A�er the completion of the search pro-
cess, the selection of the primary studies started. To perform the
evaluation of the studies, the inclusion and exclusion criteria de-
�ned in the planning phase were used, and the evaluation was
done according to the four steps described as follows. In each step,
exclusion criteria were applied, with the objective of eliminating
studies that were not useful for the SLR. All studies related to the
proposed research theme were maintained.

Step 1. All study were compared to each other. Studies with same
title and authors were discarded. �is step eliminated 53
repeated studies.

Step 2. �e titles of all studies were checked. Studies with titles not
related to the research theme were disregarded. In cases
where the simple reading of the title was not enlightening,
the abstract was read. �is step eliminated 434 studies.

Step 3. All abstracts from the remaining studies were read. Ar-
ticles whose abstracts indicated lack of relevance to the
research topic were disregarded. In some cases, the lack of
pertinence was only partial, that is, the study dealt with
only register allocation, or only with instruction schedul-
ing, without considering the two tasks together and the
interdependence between them. In these cases, the paper
was not considered. �is step discarded 22 studies.

Step 4. Each study was checked considering the exclusion criteria,
see Section 2.1.4. Studies that �t into one of these criteria
were disregarded. In addition, was veri�ed the availability

of each stydy, in order to read it. At this step, eight studies
were disregarded, �ve were PhD theses and the other three
were not located, despite all e�orts in this direction.

5
4

2

1
3

4

3
1

3

27 34 34

48
9

11
3

3
1

1

14

3
2

1
9

5
5

2
9

1
3

6 0 7

33 2
3

5 3 0 2

2
5

1
6

5 2 0 2

0

100

200

300

400

500

600

Totals ACM SCIENCE SCOPUS SPRINGER WEB

Obtained

After Step 1

After Step 2

After Step 3

After Step 4

Figure 1: Results of the steps in the analysis process.

Figure 1 presents the results of the selection process, showing
the total number of studies at the end of each step for the bases
considered in this work, except for the IEEE base. IEEE base does
not appear in this �gure, because it did not return results in the
search process. At the end of the process, remained 25 studies,
whose subjects were considered pertinent to the research topic. It
is interesting to note that none of the selection step considered the
year of publication of the studies, so that no study was excluded or
included depending on its date of publication.

2.2.3 Final Result. �is section presents the �nal result of the
execution phase. Among the 542 primary studies initially obtained,
25 studies were closely related to the research theme of this SLR, that
is, they dealt with the tasks of register allocation and instruction
scheduling, as well as the interference that they exert between each
other. �ese 25 studies were selected to analysis phase.

Figures 2 and 3 display the totals of primary studies selected by
base, and by decade of publication, respectively. It is interesting to
note that between the years 2010 and 2016, a total of nine papers
were published, an approximate average of one paper per year.

16

5

2 2

0

2

4

6

8

10

12

14

16

18

ACM SCIENCE SCOPUS WEB

Figure 2: Primary studies by database.

Table 4 lists the 25 papers selected in the execution phase. For
each of them, the table shows the number and the title, the basis
on which it was found, the publication year and the number of
citations in google scholar. �ese papers were listed in ascending
order of their publication year.

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil João F. N. Carvalho, Bruno L. Sousa, Marcus R. Araújo, and Mariza A. S. Bigonha

1

12

3

9

0

2

4

6

8

10

12

14

1980-1989 1990-1999 2000-2009 2010-2016

Figure 3: Primary studies per decade of publication.

2.3 Analysis Phase
In this phase, with the data extrated from the 25 papers selected in
the execution phase, shown in Table 4, we answer and analyze the
results of the proposed research questions de�ned in Section 2.1.1.

2.3.1 Data Extraction. To perform the data extraction, all the
selected papers were read and summarized. Due to lack of space,
not all summaries were included here, but they are available at
h�ps://goo.gl/DzeAXn. Here, we highlight brie�y only the most
relevant points of the papers published from 2010 to October 2016.

Prior the presentation of the summaries, it is important high-
light that: (1) two main approaches have been used to solving the
problem of the interdependence between RA and IS: the cooperative
and the integrated approaches. In the integrated approach, register
allocation and instruction scheduling are done simultaneously. In
the cooperative approach, the allocation and scheduling are done
separately, but there is an exchange of information between them,
so that one can take into account the needs of the other. (2) Most
of the selected studies consider local optimizations, that is, within
basic blocks, and few of them consider global optimizations.

As an example of an integrated approach, we have the Unison
tool presented in [29], which solves allocation and scheduling prob-
lems using combinatorial optimization. Pinter [37] shows an exam-
ple of a cooperative approach, using the parallelizable interference
graph, which is the only data structure used by register allocator
and instruction scheduler. �ese two approaches are widely cited.

Out-of-order processors were the focus of the work of Govin-
darajan et al. [14]. �ey propose an integrated approach, based
on a data dependency graph, which uses heuristics to perform the
scheduling having the number of registers as reference. �e authors
did not report any test realized with this approach.

Kri and Feeley [26], use genetic algorithms to propose an inte-
grated approach of register allocation and instruction scheduling.
�e �tness function chosen was the code execution time. �e model
aims at minimizing this function. Due to this choice, the modeling
required li�le information about the target architecture, so that
the real e�ects of the optimization could be considered, including
indirect e�ects, making the results more homogeneous.

Cutcutache and Wong [8] proposed an integrated approach to
reduce the compilation time of the programs. An algorithm is used
to divide the lifetime of the variables according to the regions of the
program in which it is located. �e tests measured the compilation

Number. Title Base Year Citations
1. Code Scheduling and Register Allocation in
Large Basic Blocks ACM 1988 295
2. Integrating Register Allocation and
Instruction Scheduling for RISCs ACM 1991 208
3. A Novel Framework of Register Allocation
for So�ware Pipelining ACM 1993 121
4. Resource Spackling - A Framework for
Integrating Register Allocation in Local and
Global Schedulers

WEB 1994 48

5. Scheduling with Register Constraints for
DSP Architectures SCIENCE 1994 6
6. Combining Register Allocation and
Instruction Scheduling ACM 1995 85
7. CRAIG: A Practical Framework for
Combining Instruction Scheduling and
Register Assignment

SCOPUS 1995 36

8. Register Allocation Sensitive Region
Scheduling SCOPUS 1995 16
9. Register Allocation with Instruction
Scheduling: A New Approach WEB 1996 166
10. Using Integer Linear Programming for
Instruction Scheduling and Register Allocation
in Multi-issue Processors

SCIENCE 1997 43

11. Experiences with Cooperating Register
Allocation and Instruction Scheduling ACM 1998 9
12. Scheduling Expression DAGs for Minimal
Register Need SCIENCE 1998 36
13. Evaluating Register Allocation and
Instruction Scheduling Techniques in
Out-Of-Order Issue Processors

ACM 1999 12

14. Minimum Register Instruction Scheduling:
A New Approach for Dynamic Instruction
Issue Processors

ACM 2000 5

15. Genetic Instruction Scheduling and
Register Allocation ACM 2004 12
16. Fast, Frequency-based, Integrated Register
Allocation and Instruction Scheduling ACM 2008 9
17. Fine-Grain Register Allocation and
Instruction Scheduling in a Reference Flow ACM 2010 3
18. On Minimizing Register Usage of Linearly
Scheduled Algorithms with Uniform
Dependencies

ACM 2010 2

19. Register Allocation with Instruction
Scheduling for VLIW-Architectures ACM 2010 4
20. Minimizing Schedule Length via
Cooperative Register Allocation and Loop
Scheduling for Embedded Systems

ACM 2011 1

21. Variable Assignment and Instruction
Scheduling for Processor with Multi-module
Memory

SCIENCE 2011 4

22. Constraint-Based Register Allocation and
Instruction Scheduling ACM 2012 25
23. Register Allocation for Fine Grain �reads
on Multicore Processor SCIENCE 2015 0
24. Register Allocation and Instruction
Scheduling in Unison ACM 2016 1
25. Register Allocation and Promotion
�rough Combined Instruction Scheduling
and Loop Unrolling

ACM 2016 7

Table 4: Final result of the execution phase.

time and the performance of the scheduling and allocation tasks
on the OpenIMPACT compiler. �e results indicated a reduction of
50% in the execution time of these tasks.

Kim and Lee [19] proposed a new allocation technique combin-
ing the advantages of the coloring graphs [5] and �ne-grain1 [25].
In addition, they present a new technique, Integrated Register Allo-
cation and Instruction Scheduling (IRIS), to integrate the allocation

1Technique in which the allocation for a value is made each time the value is referenced.

https://goo.gl/DzeAXn

The Register Allocation and Instruction Scheduling Challenge SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil

and the scheduling tasks. �e tests, comparing IRIS with the con-
ventional postpass technique, showed that the compilation time
was improved on average 38%.

Philippidis and Shang [35] presented an approach to minimize
the register pressure in nested loops using linear scheduling and loop
unrolling. �e linear scheduling is used to move instructions inside
the loop, so it functions as a speci�c form of instruction scheduling.
�e results show that the technique has a great potential and may
be useful for applications of di�erent areas.

Ivanov [17] tries to combine allocation and scheduling taking
into account the characteristics of static scheduling for VLIW archi-
tectures. �e term web is used to denote a set of nodes and edges
of the control �ow graph of a procedure, whose execution requires
that intermediate values are stored. Allocation and scheduling are
carried out using the identi�ed webs. �e tests carried out indicate
a good performance of this approach in relation to the allocation
strategy in scheduled codes.

To minimize the time spent of loop scheduling, Huang et al. [16]
propose the Cooperative Re-scheduling Register Allocation (CRRA),
which uses rotation scheduling [7] as a technique to manipulate the
loops. �e register allocator itself balances the stages of scheduling
and allocation. �e results show that this technique may, on average,
reduce by 12% the time spent by scheduling in relation to other
approaches, such as Register Constrained Rotation Scheduling [40].

Zhang et al. [41] propose Performance and Energy Optimal
Scheduling (PEOS) framework, an integer linear programming
model, to optimize the performance and energy consumption of
multi-module memory. Addressing the IS and RA simultaneously,
it aims at generating a schedule with a minimum length and mini-
mum energy consumption. �e tests performed showed that the
technique is promising, it presented be�er results in all compar-
isons carried out and has showed to be able to achieve a good
compromise between performance and consumption power.

Lozano et al. [30] treat the global allocation and the local schedul-
ing as constraint programming. �e problem is modeled considering
the program instructions, the characteristics of the target archi-
tecture and the speci�c constraints for allocation and scheduling.
A new form of representing the intermediate code, Linear Static
Single Assigment (LSSA), was used. �e results indicate that the
quality of the generated code is similar to that of the LLVM code.

Kiran et al. [20] proposed two heuristics for register allocation
in multicore architectures. From the identi�cation and extraction
of the regions with parallelism, or �ne grained threads [22], the
dependency graph between these regions is constructed and the
scheduling for each processor core is done [21, 23]. �e allocation
is done by applying the coloring technique [5] in the created de-
pendency graph. �e proposed heuristics were more e�cient than
the methods developed for unicore processors.

Lozano et al. [29] propose a tool, Unison, based on combinatorial
models, as an integrated approach of solution. �e tests performed
indicated that, for simple architectures, the generated code has
similar quality to the code generated by LLVM. For complex archi-
tectures, the quality is higher than that generated by LLVM.

Domagala et al. [10] focus their research on the optimization of
RA for the loops of the program. �ey presented and implemented
in the Open64 compiler an approach to register allocation and
register promotion [28] that considers the impacts of IS and loop

unrolling. �e tests indicated a substantial improvement in the
number of spills for many loops with high register pressure.

2.3.2 Answers to Research �estions. A�er organizing the data
extracted from the selected papers, and gather all the information
needed, the research questions were answered.
RQ1. What are the main approaches available in the literature to

deal with the interdependence between register allocation
and instruction scheduling?

�e primary studies analyzed pointed out that the main ap-
proaches to dealing with the interdependence between RA and IS
are the cooperative and the integrated approaches.

Figures 4 and 5 present two graphs related to the classi�cation
of the approaches used in the papers that make up the result of this
SLR. �e most used approach is the cooperative, appearing in 56% of
the articles. �e integrated approach was used in 40% of the papers.
Valluri and Govindarajan [39] only evaluated existing solutions and
does not seek to solve the problem with a speci�c approach. For
this reason, it appears as Not Applicable in the graphics.

14

10

1

0

2

4

6

8

10

12

14

16

Cooperative Integrated Not Applicable

Figure 4: Studies by type of approach.

1

9

4

2

3

5

1

0

1

2

3

4

5

6

7

8

9

10

1980-1989 1990-1999 2000-2009 2010-2016

Cooperative

Integrated

Not Applicable

Figure 5: Types of approach per decade of publication.

In Bradlee et al. [3], the IPS and RASE methods, which handle
the register allocation and instruction scheduling in joint approach2,
have proved to be be�er to solve the problem of interference be-
tween these two tasks than the postpass method3, which treats
these taks separately. However, the RASE method, which addresses
the problem in an integrated way, did not bring gains that would
justify its use instead of the IPS method, which uses a cooperative
2An integrated or cooperative approach.
3Described in [12, 15].

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil João F. N. Carvalho, Bruno L. Sousa, Marcus R. Araújo, and Mariza A. S. Bigonha

approach. �e authors, themselves, indicate the IPS method. �us,
we compute this paper as a cooperative approach.
Summary: the primary studies analyzed suggest that the main
approaches to dealing with the interdependence between reg-
ister allocation and instruction scheduling are: cooperative and
integrated. �e �rst one is the most used.

RQ2. Does a joint approach of register allocation and instruction
scheduling tasks really improve code optimization?

In the SLR performed, a joint approach improved the code opti-
mization in 80% of the papers studied. Figure 6 displays the graph
with the totals for each of the answer options to this research search.
We consider that only three articles did not present be�er optimized
code using some type of joint approach. �is research question is
not applicable for two articles.

20

3
2

0

5

10

15

20

25

Yes No Not Applicable

Figure 6: Answers to RQ2.

�e works of Chang et al. [6] and Zhang et al. [41] are two cases
where a integrated approach was used to solve the problem with-
out improvement in code optimization. �ey describe integrated
approaches solutions using integer linear programming. In both
cases, the time to obtain the solutions was very high, making the
practical use of the proposed techniques unfeasible.

Valluri and Govindarajan [39] tested four solution approaches4

in an out-of-order processor and report that the cooperative ap-
proaches tested did not improve code optimization. In the tests, a
simulator was used instead of a real machine. According to the au-
thors, for out-of-order processors, the code generation process must
avoid pressure on the registers and spills into memory, without
worrying about the instruction scheduling task. In addition, they
found that the cooperation between the register allocation and the
instruction scheduling showed insigni�cant improvements in per-
formance, when compared with prepass and postpass techniques,
without any kind of integration. For benchmarking with high pres-
sure on the registers, the evaluated postpass and postpass-like5

techniques generated be�er performance codes, as they prioritized
the register allocation. For the authors, these results are due to
the characteristics of the out-of-order processor that are able to
dynamically schedule instructions.

�is RQ2 is not applicable to papers of Govindarajan et al. [14]
and Depuydt et al. [9]. In the �rst, the authors proposed an in-
tegrated approach for out-of-order processors. However, such
4Presented in [12, 13, 36].
5Method described in [36].

approach was not evaluated and was listed as a future work in
their paper. In the second article, comparative results between the
method created and other methods were not presented.

Among the types of joint approaches, the cooperative approach
was the one that produced the greatest number of cases in which
improvement of code optimization was observed. In 93% of cases
using this approach, more e�cient code was produced, whereas in
cases where the integrated approach was used, code improvement
occurred in 78% of cases. Figure 7 presents the totalizations of the
answers to this research question by the type of approach used.

13

7

1

2

1 1

0

2

4

6

8

10

12

14

Cooperative Integrated

Yes

No

Not Applicable

Figure 7: Answers to RQ2 by type of approach.

Finally, it is important to highlight that some of the joint ap-
proaches considered in the statistics of this research question have
certain restrictions. In the work of Norris and Pollock [33], the
cooperative strategy RASER produces good results only for archi-
tectures with few registers. For machines with a high number of
processors, many scheduling opportunities are lost and the gener-
ated code does not perform well. �e algorithm created by Kessler
[18] handles instruction scheduling locally and works only with
small and medium basic blocks, with a maximum of 50 instructions.
For larger basic blocks, the algorithm should not be used.
Summary: the answer to RQ2 is a�rmative, since in most of
the studies returned in this SLR a joint approach improves code
optimization.
RQ3. For what kinds of architectures has the register allocation

and instruction scheduling been performed together?
Every object program is generated for a particular architecture.

�us, when talking about the code generation, one must consider
the characteristics of the architecture for which the code is being
generated. In this sense, considering the machine architectures,
studies show that the problem of mutual interference between
register allocation and instruction scheduling tasks is especially
important for the Reduced Instruction Set Computer (RISC), super-
scalar and all the new architectures.

In general, post-RISC architectures use simple, �xed-length in-
structions. �ey have a large number of registers and allow the
execution of several instructions per cycle using the pipelining
technique6. �ey have several functional units which allows the
exploration of instruction level parallelism. Memory access is made
exclusively by speci�c instructions, such as load and store. �e
computation instructions may operate only on the registers, being
unable to access the memory directly. Since all these features are
6Allows the simultaneous execution of di�erent parts or stages of instructions.

The Register Allocation and Instruction Scheduling Challenge SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil

available to compilers of these architectures, these compilers need
to use them correctly to generate e�cient execution codes.

Most of the papers studied in this SLR considered architectures
following the general model of RISC, however, some papers use
speci�c architectures, or indicate some particular characteristics.

Berson et al. [1], Brasier et al. [4], Ivanov [17] use Very Long
Instruction Word (VLIW) or Longtext Instruction Word (LIW) ar-
chitectures. �e di�erence between the terms VLIW and LIW is
quite arbitrary and generally they describe the same type of archi-
tecture. It is an architecture that encodes multiple operations into
a single instruction, and each operation runs in parallel on one of
the processor’s execution units. �e guarantee of independence
between these instructions should be given by the compiler.

In the works of Govindarajan et al. [14], Valluri and Govindara-
jan [39], the proposed approaches are for out-of-order processors.
Kiran et al. [20] consider the allocation and scheduling problem fac-
ing multicore processors with �ne grain parallelism7 and perform
tests using dual core and quad core processors. In Kim and Lee
[19], the authors do not mention whether the proposed approach is
focused on a speci�c processor type. However, during the evalua-
tion part, the implementation has used the ARM7TDMI processors.
In Pinter [37], the method is developed using a generic model of a
RISC architecture. �e tests were executed on a Pentium processor
with two nonsymmetric pipelines that share functional units. �e
method presented by Depuydt et al. [9] aimed at ASIP architecture
processors, widely used in embedded systems for real-time Digi-
tal Signal Processing (DSP) applications. In Zhang et al. [41], the
method developed is intended to optimize the performance and
power consumption of multi-module memory used in processors
oriented to DSP applications.

1
2

19

1
2

0

2

4

6

8

10

12

14

16

18

20

ARM DSP General Multicore Out-of-order

Figure 8: Total studies by type of architecture.

Summary: the graph of Figure 8 answers the RQ3. It shows
the total of papers by type of architecture. �e architectures,
cited by the articles, that resemble RISC architecture, such as
the VLIW, LIW, and superscalar architectures, but that were not
associated with a speci�c processor type, are grouped under the
term General. From this graph, it may be seen that 76% of the
articles considered are related to General architecture, while 24%
of them are related to other types of architecture.

7Division of a program into a large number of tasks, each one with few instructions.

3 THREATS TO VALIDITY
�is section discusses the main threats to the validity of this SLR
and presents the decisions taken to mitigate them.

De�nition of the Search String. �e search string must be
de�ned very well in order to return studies relevant to the search
topic. In this SLR, several synonyms refering to the main terms
of the review objective were searched. Some pilot searches were
conducted in order to �nd new synonyms for the search string.
�us, it is expected that the de�ned search string has returned as
many relevant papers as possible. But it is not possible to state that
all the studies concerning relations between the interdependence
between RA and IS has been returned.

Databases. �e choice of electronic databases is another fac-
tor that may impact the results of a SLR. Six di�erent electronic
databases were selected for the search process, but studies relevant
to this review may exist in other databases not used in this survey.
To mitigate this threat, it was selected databases with a large col-
lection of full papers published as articles or technical reports at
conferences or journals relevants to the academic community.

Selection Process. Two steps in the selection process were
based on metadata analysis, that is, on the analysis of the titles
and abstracts of the studies. �us, relevant studies whose metadata
did not show a clear relation with the SLR theme may have been
disregarded. To minimize this threat, the evaluation for inclusion
or exclusion of the studies was divided among the authors of this
paper. Each one of them evaluated a set of primary studies, and the
results obtained were validated by the other authors. It is important
to highlight that the exclusion of theses and dissertations does
not must be a problem, because, normally, one or more papers
are produced from these works. Finally, this SLR considered only
papers wri�en in English. It is possible that some relevant studies
may be wri�en in another idiom.

4 CONCLUSION
�is paper presented a Systematic Literature Review (SLR) on the
problem of the interdependence between register allocation and in-
struction scheduling. �is is a complex and very important problem
related to the generation of good quality compiler code.

Traditionally, two main approaches deal with this problem: the
cooperative and the integrated approaches. In this SLR, the �rst one
appears in 56% of the studies, while the last one is used in 40%. �e
use of some joint approach, whether cooperative or integrated, im-
proved the code optimization in 80% of the papers studied. Looking
at these approaches separately, it was observed that the cooper-
ative one improved the code optimization in 93% of cases, while
the integrated one in 78% of cases. Considering the architectures,
around 76% of studies are related to RISC-like architectures, and
24% are related to other kinds of architectures.

Observing the graph of Figure 5, it is clear that over the last
decades researchers have focused on the integrated approach. Be-
tween 2000 and 2016, eight of 12 studies analyzed used integrated
approach. No cooperative approaches was investigated between
2000 and 2009, but they became again an object of interest and
appear in almost half of the researches performed between 2010
and 2016. �us, while, on the one hand, the integrated approach
was more explored over the two last decades, on the other hand, it

SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil João F. N. Carvalho, Bruno L. Sousa, Marcus R. Araújo, and Mariza A. S. Bigonha

also gave space to the cooperative one in recent years. Besides that,
as shown in the graph of Figure 7, the integrated approach had a
li�le less success than the cooperative ones.

To avoid misleading interpretations, it is important to highlight
that each primary study was analyzed individually in this work,
meaning that, the approaches of the di�erent studies were not
compared with each other regarding time or any other aspect. �e
categorization of these approaches was made in a very general
way, as cooperative or integrated, and the statistics associated were
presented. Concluding, this SLR showed tendencies among the
choices made to deal with the interdependence between RA and IS
problem but did not suggest that an approach is be�er then other.

�e main contributions of this work are: (1) it provided a large-
scale study to be�er understand the interdependence problem be-
tween register allocation and instruction scheduling and the main
approaches proposed to solve it until now; (2) our results showed
that, although it is an old problem, there is no consensus on it solu-
tion neither on how to address it; (3) it showed that this research
�eld is still open to new solutions and has been the subject of recent
researches [10, 16, 17, 19, 20, 29, 30, 35, 41].

As future work, some improvements may be done: (1) rede�ni-
tion of the search string by identifying and excluding ine�ective
keywords and including new ones; (2) inclusion of other databases,
for instance google scholar for primary studies; (3) veri�cation in
the selected papers, through a list of references, their citations in
order to �nd other relevant studies that had not been returned; (4)
inclusion of new analysis like optimality, type of problem, model-
ing, execution time, number of so�ware tools implementing the
paper ideas, and so one, in order to facilitate comparations among
di�erent approaches; (5) identi�cation of the circumstances that
has made one approach be be�er than another; (6) quanti�cation
of the impact of each study over the subsequent works in order
to identify the most relevant studies and then re�ne the selection
process considering this impact.

REFERENCES
[1] D. A. Berson, R. Gupta, and M. L. So�a. 1994. Resource Spackling - A Framework

for Integrating Register Allocation in Local and Global Schedulers. In Parallel
Architectures and Compilation Techniques (IFIP Transactions A-Computer Science
and Technology), M Cosnard, GR Gao, and GM Silberman (Eds.), Vol. 50. 135–145.

[2] Mariza A. S. Bigonha. 1992. Geração e otimização de código: Levantamento
dos problemas e restrições impostas pelas arquiteturas RISC e indicativos de
soluções. Série de Monogra�as em Ciência da Computação 10/92 (1992).

[3] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. 1991. Integrating Register
Allocation and Instruction Scheduling for RISCs. SIGARCH Comput. Archit. News
19, 2 (1991), 122–131.

[4] T. S. Brasier, P. H. Sweany, and S. J. Beaty. 1995. CRAIG: A Practical Frame-
work for Combining Instruction Scheduling and Register Assignment. Parallel
Architectures and Compilation Techniques - Conference Proceedings (1995), 11–18.

[5] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke, Martin E
Hopkins, and Peter W Markstein. 1981. Register allocation via coloring. Computer
languages 6, 1 (1981), 47–57.

[6] Chia-Ming Chang, Chien-Ming Chen, and Chung-Ta King. 1997. Using Integer
Linear Programming for Instruction Scheduling and Register Allocation in Multi-
issue Processors. Computers & Mathematics with Applications 34, 9 (1997), 1–14.

[7] Liang-Fang Chao and Andrea LaPaugh. 1993. Rotation Scheduling: A Loop
Pipelining Algorithm. In Proceedings of the 30th International Design Automation
Conference (DAC ’93). 566–572.

[8] Ioana Cutcutache and Weng-Fai Wong. 2008. Fast, Frequency-based, Integrated
Register Allocation and Instruction Scheduling. So�w. Pract. Exper. 38, 11 (2008),
1105–1126.

[9] Francis Depuydt, Gert Goossens, and Hugo De Man. 1994. Scheduling with
Register Constraints for DSP Architectures. Integration, the VLSI Journal 18, 1
(1994), 95–120.

[10] Lukasz Domagala, Duco van Amstel, Fabrice Rastello, and P. Sadayappan. 2016.
Register Allocation and Promotion �rough Combined Instruction Scheduling
and Loop Unrolling. In Proceedings of the 25th International Conference on Com-
piler Construction (CC 2016). 143–151.

[11] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to
the �eory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

[12] Philip B. Gibbons and Steven S. Muchnick. 1986. E�cient Instruction Scheduling
for a Pipelined Architecture. SIGPLAN Not. 21, 7 (1986), 11–16.

[13] James. R. Goodman and Wei-Chung Hsu. 1988. Code Scheduling and Register Al-
location in Large Basic Blocks. In Proceedings of the 2Nd International Conference
on Supercomputing (ICS ’88). 442–452.

[14] Ramaswamy Govindarajan, Chihong Zhang, and Guang R. Gao. 2000. Minimum
Register Instruction Scheduling: A New Approach for Dynamic Instruction Issue
Processors. In Proceedings of the 12th International Workshop on Languages and
Compilers for Parallel Computing (LCPC ’99). 70–84.

[15] John L. Hennessy and �omas Gross. 1983. Postpass Code Optimization of
Pipeline Constraints. ACM Trans. Program. Lang. Syst. 5, 3 (1983), 422–448.

[16] Yazhi Huang, Qingan Li, and Chun Jason Xue. 2011. Minimizing Schedule Length
via Cooperative Register Allocation and Loop Scheduling for Embedded Systems.
In Proceedings of the 2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications (TRUSTCOM ’11). 1038–1044.

[17] D. S. Ivanov. 2010. Register Allocation with Instruction Scheduling for VLIW-
Architectures. Program. Comput. So�w. 36, 6 (2010), 363–367.

[18] Christoph W. Kessler. 1998. Scheduling Expression DAGs for Minimal Register
Need. Computer Languages 24, 1 (1998), 33–53.

[19] Dae-Hwan Kim and Hyuk-Jae Lee. 2010. Fine-Grain Register Allocation and
Instruction Scheduling in a Reference Flow. Comput. J. 53, 6 (2010), 717–740.

[20] D.C. Kiran, S. Gurunarayanan, Janardan P. Misra, and Munish Bhatia. 2015.
Register Allocation for Fine Grain �reads on Multicore Processor. Journal of
King Saud University - Computer and Information Sciences (2015), 1–8.

[21] D. C. Kiran, S. Gurunarayanan, Faizan Khaliq, and Abhijeet Nawal. 2012. Compiler
E�cient and Power Aware Instruction Level Parallelism for Multicore Architecture.
Springer Berlin Heidelberg, Berlin, Heidelberg, 9–17.

[22] D. C. Kiran, S. Gurunarayanan, and J. P. Misra. 2011. Taming Compiler to Work
with Multicore Processors. In 2011 International Conference on Process Automation,
Control and Computing. 1–6.

[23] D. C. Kiran, B. Radheshyam, S. Gurunarayanan, and J. P. Misra. 2011. Compiler
Assisted Dynamic Scheduling for Multicore Processors. In 2011 International
Conference on Process Automation, Control and Computing. 1–6.

[24] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing System-
atic Literature Reviews in So�ware Engineering. Technical Report EBSE 2007-001.
Keele University and Durham University Joint Report.

[25] Priyadarshan Kolte and Mary Jean Harrold. 1993. Load/Store Range Analysis for
Global Register Allocation. SIGPLAN Not. 28, 6 (June 1993), 268–277.

[26] Fernanda Kri and Marc Feeley. 2004. Genetic Instruction Scheduling and Register
Allocation. In Proceedings of the �e �antitative Evaluation of Systems, First
International Conference (QEST ’04). 76–83.

[27] R. Leupers. 2000. Code Optimization Techniques for Embedded Processors: Methods,
Algorithms, and Tools. Kluwer Academic Publishers, Norwell, MA, USA.

[28] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. 1998.
Register Promotion by Sparse Partial Redundancy Elimination of Loads and
Stores. SIGPLAN Not. 33, 5 (May 1998), 26–37.

[29] R. C. Lozano, M. Carlsson, G. H. Blindell, and C. Schulte. 2016. Register Allocation
and Instruction Scheduling in Unison. In Proceedings of the 25th International
Conference on Compiler Construction (CC 2016). 263–264.

[30] R. C. Lozano, M. Carlsson, F. Drejhammar, and C. Schulte. 2012. Constraint-
Based Register Allocation and Instruction Scheduling. In Proceedings of the 18th
International Conference on Principles and Practice of Constraint Programming -
Volume 7514. 750–766.

[31] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen. 1995. Com-
bining Register Allocation and Instruction Scheduling. Courant Institute, New
York University (1995).

[32] Qi Ning and Guang R. Gao. 1993. A Novel Framework of Register Allocation for
So�ware Pipelining. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’93). 29–42.

[33] Cindy Norris and Lori L. Pollock. 1995. Register Allocation Sensitive Region
Scheduling. Parallel Architectures and Compilation Techniques - Conference Pro-
ceedings (1995), 1–10.

[34] Cindy Norris and Lori L Pollock. 1998. Experiences with cooperating register allo-
cation and instruction scheduling. International journal of parallel programming
26, 3 (1998), 241–283.

[35] Cesar J. Philippidis and Weijia Shang. 2010. On Minimizing Register Usage of
Linearly Scheduled Algorithms with Uniform Dependencies. Comput. Lang. Syst.
Struct. 36, 3 (2010), 250–267.

[36] Shlomit S. Pinter. 1993. Register Allocation with Instruction Scheduling. SIGPLAN
Not. 28, 6 (June 1993), 248–257.

[37] Shlomit S. Pinter. 1996. Register Allocation with Instruction Scheduling: A New
Approach. Journal of Programming Languages 4, 1 (1996), 21–38.

The Register Allocation and Instruction Scheduling Challenge SBLP 2017, September 21–22, 2017, Fortaleza, CE, Brazil

[38] B. Ramakrishna Rau. 1994. Iterative Modulo Scheduling: An Algorithm for So�-
ware Pipelining Loops. In Proceedings of the 27th Annual International Symposium
on Microarchitecture (MICRO 27). ACM, New York, NY, USA, 63–74.

[39] Madhavi Gopal Valluri and R. Govindarajan. 1999. Evaluating Register Allocation
and Instruction Scheduling Techniques in Out-Of-Order Issue Processors. In
Proceedings of the 1999 International Conference on Parallel Architectures and
Compilation Techniques (PACT ’99). 78–83.

[40] Kaisheng Wang, Ted Zhihong, Yu Edwin, and H. M. Sha. 1998. RCRS: a framework
for loop scheduling with limited number of registers. In Proceedings of the 8th
Great Lakes Symposium on VLSI (Cat. No.98TB100222). 386–391.

[41] Lei Zhang, Meikang Qiu, Edwin H.-M. Sha, and Qingfeng Zhuge. 2011. Vari-
able Assignment and Instruction Scheduling for Processor with Multi-module
Memory. Microprocessors and Microsystems 35, 3 (2011), 308—317.

	Abstract
	1 Introduction
	2 Sistematic Literature Review
	2.1 Planning Phase
	2.2 Execution Phase
	2.3 Analysis Phase

	3 Threats to Validity
	4 Conclusion
	References

