
A Systematic Literature Mapping on the Relationship Between
Design Patterns and Bad Smells

Bruno L. Sousa
Computer Science Department

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

bruno.luan.sousa@dcc.ufmg.br

Mariza A. S. Bigonha
Computer Science Department

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

mariza@dcc.ufm.br

Kecia A. M. Ferreira
Department of Computing

Federal Center for Technological
Education of Minas Gerais

Belo Horizonte, Minas Gerais, Brazil
kecia@decom.cefetmg.br

ABSTRACT
Bad Smells are symptoms that appear in the source code of a soft-
ware system and may indicate a structural problem that requires
code refactoring. Design patterns are solutions known as good
practices that help building software systems with high quality and
flexibility. Intuitively, it is possible to assume that the use of design
patterns might avoid bad smells. Intriguingly, some recent stud-
ies have pointed out that this assumption is not true. This paper
presents a systematic literature mapping of studies that investi-
gate the relationship between design patterns and bad smells. We
identified 16 papers which were categorized into three different ap-
proaches: impact on software quality, refactoring and co-occurrence.
Amongst these three approaches, the co-occurrence relationship
is the less explored in the literature. In addition, we identified that
studies focusing on co-occurrence between design patterns and bad
smells have generally analyzed the relationship between the GOF
design patterns and bad smells described by Fowler and Beck. In
this context, the Command design pattern was identified as the one
with greater relationship with bad smells.

CCS CONCEPTS
•General and reference→ Empirical studies; • Software and
its engineering→Design patterns; • Social and professional
topics→ Quality assurance;

KEYWORDS
Design Pattern; Bad Smell; Systematic Literature Mapping
ACM Reference Format:
Bruno L. Sousa, Mariza A. S. Bigonha, and Kecia A. M. Ferreira. 2018. A
Systematic LiteratureMapping on the Relationship BetweenDesign Patterns
and Bad Smells. In Proceedings of SAC 2018: Symposium onApplied Computing
, Pau, France, April 9–13, 2018 (SAC 2018), 8 pages.
https://doi.org/10.1145/3167132.3167295

1 INTRODUCTION
ADesign pattern is a general solution applied to recurring problems
in the context of software development [11], aiming to achieve a

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167295

high reusability and extensibility. These solutions encourage the
use of structures composed by inheritance, composition and poly-
morphism, in order to turn the communication between objects
flexible, as well as to reduce the coupling between modules. In ad-
dition, design patterns establish a kind of communication between
developers, facilitating the software architectural organization and
comprehension. The Gang of Four’s (GOF) book [11] describes 23
design patterns that are widely known and used by researchers and
developers.

Bad smells are symptoms that exist in the structure or source
code of a system and may indicate the presence of a more serious
problem [10]. Code fragments with the presence of these symptoms
are not considered errors, but, these structures may increase the
complexity of the internal components of a software and negatively
impact its architecture and comprehension. When these cases are
identified, it is recommended to refactor the software system to
eliminate potential problematic regions of the source code.

As design patterns and bad smells have opposite concepts, most
literature studies have dealt with these two topics separately. How-
ever, other studies [6, 13, 14, 29] have identified the occurrence
of structural relationships between them. Given the relevance of
these concepts, the identification and analysis of studies that con-
sider these two structures together is necessary in order to build a
knowledge about the relationship between design patterns and bad
smells.

This paper presents a Systematic Literature Mapping (SLM) re-
garding the relationship between design patterns and bad smells.
This SLM has as main goals: (i) to provide an overview of the state
of the art regarding to the relation between design patterns and
bad smells; and (ii) to investigate if the co-occurrence relationship
have been addressed by the literature. In the case papers addressing
the co-occurrence relationship, we investigate: (i) which design
patterns and bad smells are used to identify the co-occurrences; (ii)
which co-occurrences were identified; and (iii) the methods used to
identify co-occurrence in software. In an recent study, Cardoso and
Figueiredo [5] mapped the relationships between design patterns
and bad smells in two ways: structural and refactoring. The present
study goes farther. Besides investigating both structural and refac-
toring relationship between design patterns and bad smells, we
identified other relationships and detailed each of them.

The remainder of this paper is organized as follows. Section 2
describes the planning and execution of this systematic literature
mapping, as well as discusses in details the process of searching
and filtering the identified studies. Section 3 answers the research

https://doi.org/10.1145/3167132.3167295
https://doi.org/10.1145/3167132.3167295

SAC 2018, April 9–13, 2018, Pau, France B. Sousa et al.

questions of this study. Section 4 presents the main threats to va-
lidity of this systematic mapping. Section 5 concludes this study
highlighting the main findings in this systematic mapping.

2 SYSTEMATIC LITERATURE MAPPING
PROTOCOL

Systematic Literature Mapping (SLM) and Systematic Literature
Review (SLR) are two important ways to aggregate and build knowl-
edge in a specific area. For Kitchenham and Charters [16], system-
atic literature mapping is “a broad review of primary studies on a
specific subject that seeks to identify the available evidence on a
particular topic”, while systematic literature review is defined as
“a means of identifying, evaluating, and interpreting all available
evidence relevant to a specific issue, thematic area, or phenomenon
of interest”. This paper presents a SLM, since we carry out a broad
review on the topic of co-occurrence between design patterns and
bad smells. The goals of an SLM are: (i) to provide a wide overview
of a research area; (ii) to establish if research evidence exists on a
topic; and (iii) to provide an indication of the quantity of evidence
[16].

This SLM was performed in three phases: planning, execution
and analysis. Section 2.1 presents the planning phase. Section 2.2
describes the execution, presenting the steps and the results of the
selection process of the primary studies. Section 2.2.3 shows a list
of papers obtained after the filtering steps that were analyzed in
this SLM.

2.1 Planning
In the planning phase we defined: (i) the research to be investigated;
(ii) the databases to search papers; (iii) the search string to be used;
and (iv) the inclusion and exclusion criteria of the primary studies.

2.1.1 Research Questions. The research questions (RQn) aim
to investigate and to understand how the literature has dealt with
the relationship between design patterns and bad smells, more
specifically the relation of co-occurrences between them.

Initially, we define two general purpose research questions.
RQ1: How has the literature addressed the relationship be-

tween design patterns and bad smells?
RQ2: Has the literature explored co-occurrence between de-

sign patterns and bad smells?
During the execution of the systematic mapping, we found stud-

ies that address co-occurrence between design patterns and bad
smells. Thus, the RQ2 research question was subdivided into three
other specific research questions, as follows.

RQ2.1: Which bad smells and design patterns are addressed
by the literature for identifying co-occurrences?

RQ2.2: What co-occurrences have been identified by the stud-
ies?

RQ2.3: Which techniques have been used in the literature to
find/establish the co-occurrence?

2.1.2 Electronic Databases. The electronic databases chosen for
the collection of the primary studies are listed in Table 1. They were
chosen because they are virtual libraries with a large collection
of full works and metadata, recorded in BibTex, from published

researches at conferences and journals of great importance to the
academic community.

Table 1: Electronic databases.

Database Address

ACM Digital Library http://dl.acm.org/
Engineering Village https://www.engineeringvillage.com
IEEE http://ieeexplore.ieee.org/
Science Direct http://www.sciencedirect.com/
Scopus http://scopus.com/
Springer http://link.springer.com/
Web of Science http://webofknowledge.com/

2.1.3 Search String. To identify the relevant papers about design
patterns and bad smells, we formulate a search string to find primary
studies related to this mapping. Initially, the key words “design
pattern” and “bad smell” were defined as the main terms of the
expression. Next, a synonym search of these terms was carried
out in order to refine this expression and to identify relevant and
coherent studies with the proposed research questions. We defined
the following search string.

(“code smell” OR “code smells” OR “bad smell” OR “bad smells”
OR “anti pattern” OR “antipatterns” OR “anti-pattern”) AND
(“design patterns” OR “design pattern”)

2.1.4 Inclusion and Exclusion Criteria. The inclusion and ex-
clusion criteria allow to classify each study in the mapping as a
candidate to be included or excluded from the SLM, so that the
papers may be restricted to the topic explored. As a systematic lit-
erature mapping may involve a large number of studies, we limited
the scope of this SLM to select only complete papers, thus, we did
not select studies classified as theses or dissertations. Table 2 shows
the inclusion and exclusion criteria defined for this study.

Table 2: Inclusion and Exclusion Criteria.

Inclusion Criteria
Papers published in English.
Complete papers.
Papers published in Computer Science.
Papers available in electronic format.
Papers published in conferences and journals.
Papers related to the search string terms.

Exclusion Criteria
Documents classified as tutorials, posters, panels, lectures,
round tables, theses, dissertations, book chapters and technical
report.
Duplicate papers.
Papers that can not be located.

http://dl.acm.org/
https://www.engineeringvillage.com
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://scopus.com/
http://link.springer.com/
http://webofknowledge.com/

A Systematic Literature Mapping on Design Patterns and Bad Smells SAC 2018, April 9–13, 2018, Pau, France

2.2 Execution
The execution phase, following the planning described in Sec-
tion 2.1, consists in applying the search string in the databases
to search primary studies. Next, the inclusion and exclusion criteria
are applied for the studies selection.

2.2.1 Search Process. The electronic databases selected in this
SLM have a kind of search engine that automates the search of
papers. Thus, during the search of the primary studies, the search
string was provided to each of these bases through a web graphic
interface. The search process was carried out from January 15 to 20,
2017. During the search process, primary studies were not screened
per year. We consider all studies returned by non-filter databases
per publication year.

The final result of the first survey is shown in Table 3. We ob-
tained 795 papers after the completion of this process.

Table 3: Studies obtained after the search process.

Data Base Studies Returned

ACM Digital Library 12
Compendex (Engineering Village) 57
IEEE Xplore 0
Science Direct 176
Scopus 86
Springer 433
Web of Science 31
Total 795

The IEEE Xplore database did not return results. For this reason,
studies referring to this database were not included.

2.2.2 Study Selection Process. After completing the step of search-
ing for primary studies, we started a step of filtering these docu-
ments.

As there were a large number of papers identified in the search
phase, the filtering process consisted of five steps. Each step pro-
posed focus on the inclusion and exclusion criteria and relevance
of the study according to its content. These steps are described
following.

Step 1. It involves the elimination of duplicate studies. So, studies
with same title and authors were discarded. This step eliminated
138 papers, resulting in an amount of 657 papers to be analyzed in
Step 2.

Step 2. It consists in removing documents that are not papers.
Thus, documents classified as tutorials, posters, panels, lectures,
round tables, theses, dissertations, book chapters and technical
report were removed at this step. This step eliminated 384 papers,
resulting in an total of 273 paper to be analyzed in Step 3.

Step 3. The 273 titles and abstracts of the papers selected in the
Step 2 were checked. Although these two structures aim to provide
the reader with an idea about the content addressed, in some works
it is not possible to understand, through them, if they are relevant
or not for this SLM. For this reason, when analyzing some studies,
there was some doubt about the selection or exclusion of them.
Therefore, as a way to avoid hasty decisions, studies that presented

this feature were classified as “doubtful” and passed on to Step 4 for
further reading. This step identified 6 papers with relevance and 17
papers “doubtful”. The “doubtful” papers were submitted to Step 4
for futher analysis.

Step 4. The 17 papers classified with “doubtful” in Step 3 were
analyzed again. They passed for a diagonal reading. Diagonal read-
ing is a reading of the introduction, topics and conclusion of a paper
to find more details about it. At the end of this step, 5 out of 17
papers were identified relevant.

Step 5. At this point, we found 11 relevant papers for the SLM.
However, searching in electronic databases does not guarantee that
all main relevant studies on a particular topic will be retrieved.
In order to minimize this limitation, a snowballing process was
performed in this step. Snowballing is a search approach that uses
citations in the papers from a systematic literature mapping as a
reference list to identify other papers that have not yet been found
[31]. There are two kind of snowballing that may be used to iden-
tify new studies: backward and forward. Backward snowballing
means using the reference list of papers by the inclusion and ex-
clusion criteria in order to identify new papers to include in the
systematic mapping. Forward snowballing refers to identifying new
papers based citing paper being examined. In this step, we adopted
the backward snowballing strategy. Applying the backward snow-
balling approach, we analyzed 380 citations, referring to the 11
selected papers after Step 4, and five were choose to be part of the
studies already selected.

In summary, Steps 1, 2, 3, 4 received as input, in this order, 795,
657, 273 and 17 primary studies; and Step 5 received 380 citations
from the 11 studies already selected after Step 4. Figure 1 presents
the results of each step, considering the primary studies received
as input to each one. At the end we considered 16 papers in this
SLM. They were analyzed and summarized in order to answer the
research questions.

Figure 1: Filtering process conducted for selection of studies.

2.2.3 Results Summarization. We found 16 studies addressing
the relationship between design patterns and bad smells. It is worth-
while to note that all selected papers are between the 2001 and 2017
years, and the most of them are concentrated from 2012 to 2017.
This shows the topic has been discussed in literature recently.

The selected papers were read and summarized to extract the
main information to answer the proposed research questions. We
provided a summary of them in an attachment format. It is available
on the research website1.
1http://llp.dcc.ufmg.br/Publications/indexPublication.html

http://llp.dcc.ufmg.br/Publications/indexPublication.html

SAC 2018, April 9–13, 2018, Pau, France B. Sousa et al.

Table 4 lists the 16 primary studies selected and presents the
main extracted data of them. They are sorted by year.

3 DISCUSSION OF RESULTS
This section presents the main results found in this SLM.

Analyzing the 16 studies of this SLM from Table 4, we identified
three different categories of the relationship between design pat-
tern and bad smell: co-occurrence, impact on software quality and
refactoring.

The co-occurrence category consists in studies that investigated
if design patterns and bad smells may occur together. The impact
on software quality category consists in studies that evaluate in
general the impact that the design patterns application exert on
software quality. The refactoring category corresponds to studies
that use design patterns as refactoring solutions for certain types
of bad smells.

3.1 Relationship between Design Patterns and
Bad Smells

This section answers the RQ1 research question.
RQ1: How has the literature addressed the relationship be-

tween design patterns and bad smells?
The co-occurrence category consists in studies that investigate

if the design pattern components may present occurrence of bad
smells or have static relationship with components with bad smells.
From the data shown in Table 4, we identified that there are little
studies that address this relationship. However, these studies are
recent, being the first study published in 2013. In addition, to iden-
tify the co-occurrences, these studies have carried out case study
with small to large open source systems software. The authors
chose to evaluate co-occurrences through a case study because this
method allowed the authors to carry out an exploratory study in
order to identify the situations that impact on the emergence of the
co-occurrences found.

In relation to the impact on software quality category some stud-
ies try to identify improvements in the design patterns application
as well as to define new approaches which help the user to use cor-
rectly design pattern and prevent the bad smells emergence. In this
category, as well as in the co-occurrences one, the studies indicate
that the misuse of design patterns generate negative impacts on
software quality. For instance, Izurieta and Bieman [12], McNatt
and Bieman [19], and Wendorff [30] discuss some situations that
may negatively impact software quality. According to them, de-
sign patterns application that do not fit the requirements and the
design patterns coupling become the projects structure more com-
plex, impairing some quality attributes such as: modularity, testa-
bility, and adaptability. Khomh and Gueheneuce [15] evaluated the
quality of GOF design patterns via survey. This survey was based
on the attributes: expansion capacity, simplicity, reuse, learning,
comprehension, modularity, generalization, real-time modularity,
scalability and robustness. Khomh and Gueheneuce [15] identified
that design patterns do not always improve the software quality.
They highlighted Flyweight as one of the design patterns that nega-
tively affects software quality, decreasing the quality of all external
software attributes except scalability. Vokac [27] investigated the
GOF design patterns in order to identify possible defects which are

ignored due to the good acceptance of these solutions. Vokac [27]
analyzed a proprietary software and identified that Observer and
Singleton design patterns were being used in complex areas with
more code and a higher defect rate. In contrast, Factory Method
design pattern presented the lowest defect rate. On the other hand
Speicher [24] proposed an approach that considers decisions have
taken by developers at the implementation time, and used them to
identify bad smells and to improve software quality. Wagey et al.
[28] proposed a quality model based on the use of design pattern to
evaluate the external maintainability of a software. Via this model,
the authors evaluated six open-source Java systems by a case study
and came to the conclusion that the higher the pattern density
in a software, the better its internal structure and the greater its
maintainability, thus reducing part of the costs in the software
maintenance phase.

In the refactoring category, the studies consider the premise that
most of the time the choice of the design patterns is carried out man-
ually, from the programmer’s own knowledge. Due to this, a wrong
choice may cause bad smells or generate a high complexity software
structure. But if this choice is made and applied in an automated
way, the design pattern may be applied correctly and provide the
expected positive impacts. For instance, Christopoulou et al. [7] and
Liu et al. [18] explored refactoring cases for the bad smell Complex
Conditional Statements [10] using the Strategy design pattern as a
refactoring solution. Liu et al. [18] also used the Abstract Factory
pattern as another type of refactoring solution for this bad smell.
Zafeiris et al. [33] considered the refactoring of Call Super [9], and
used the Template Method design pattern as a solution. Nahar and
Sakib [21, 22] have created a tool that analyzes UML class diagram
and recommends refactoring with creational design patterns to the
bad smells identified in the diagrams. Analyzing Table 4, we identi-
fied that in general, the authors validate the proposed approach via
experiments. These studies have addressed only creational design
patterns and two behavioral design patterns, Strategy and Tem-
plate Method, for recommend refactoring solutions that remove bad
smells of the source code. We did not identify refactoring propos-
als based on the others behavioral design patterns and structural
design patterns. Thus, we can conclude regarding the refactoring
category that besides the studies to support on the removal bad
smell and improve the internal quality, it is a topic in which new
studies may be extracted, such as proposals of refactoring strategies
applying behavioral and structural design patterns, and creation of
tools that suggest refactoring with design patterns for the removal
of bad smells in a software.

Summary of RQ1.We conclude, in response to RQ1, that the
literature has addressed the relationships between design patterns
and bad smells in three different ways: co-occurrences, impact on
software quality and refactoring. A great part of the studies have
focused on the impact on software quality category, seven in to-
tal, and assessed the consequences and impacts of applying design
patterns to software. The refactoring category presented the sec-
ond largest number of studies, five in the total, and has proposed
approaches and tools that apply design patterns to eliminate bad
smells. The category of co-occurrences was the one that presented
the smallest number of studies, four in total, and investigate re-
lations of co-occurrence between design patterns, as well as the
reasons that generated these relationships.

A Systematic Literature Mapping on Design Patterns and Bad Smells SAC 2018, April 9–13, 2018, Pau, France

Table 4: Final result of the implementation phase of the Systematic Mapping.

Title Author Year Relationship #Systems Type of System System(s) Size Method
1. Assessment of Design
Patterns During Software
Reengineering: Lessons
Learned from a Large
Commercial Project

Wendorff [30] 2001 Impact on software
quality

1 Proprietary 1000 KLOC Case Study

2. Coupling of Design Pat-
terns: Common Practices and
Their Benefits

McNatt and Bieman
[19]

2001 Impact on software
quality

- - - Literature Review

3. Defect frequency and de-
sign patterns: An empirical
study of industrial code

Vokac [27] 2004 Impact on software
quality

1 Proprietary 24-32 KLOC Case Study

4. Do Design Patterns Impact
Software Quality Positively?

Khomh and Gue-
heneuce [15]

2008 Impact on software
quality

- - - Survey

5. Automated refactoring to
the Strategy design pattern

Christopoulou et al.
[7]

2012 Refactoring 8 Open and Proprietary 5-106 KLOC Experiment

6. Analysing Anti-patterns
Static Relationships with De-
sign Patterns

Jaafar et al. [13] 2013 Co-occurrence 3 Open 182-241 KLOC Case Study

7. A multiple case study of
design pattern decay, grime,
and rot in evolving software
systems

Izurieta and Bieman
[12]

2013 Impact on software
quality

3 Open 43-119 KLOC Case Study

8. Code Quality Cultivation Speicher [24] 2013 Impact on software
quality

1 Open Not Mentioned Case Study

9. Automated pattern-
directed refactoring for
complex conditional state-
ments

Liu et al. [18] 2014 Refactoring 4 Open Not Mentioned Experiment

10. Automatic recommenda-
tion of software design pat-
terns using anti-patterns in
the design phase: A case
study on abstract factory

Nahar and Sakib [21] 2015 Refactoring 6 Open Not Mentioned Case Study &
Experiment

11. A proposal of software
maintainability model using
code smell measurement

Wagey et al. [28] 2015 Impact on software
quality

6 Open 14-81 KLOC Case Study

12. Co-Occurrence of Design
Patterns and Bad Smells in
Software Systems: An Ex-
ploratory Study

Cardoso and
Figueiredo [6]

2015 Co-occurrence 5 Open 10-502 KLOC Case Study

13. ACDPR: A Recommen-
dation System for the Cre-
ational Design Patterns Us-
ing Anti-patterns

Nahar and Sakib [22] 2016 Refactoring 21 Open Not Mentioned Experiment

14. Evaluating the impact
of design pattern and anti-
pattern dependencies on
changes and faults

Jaafar et al. [14] 2016 Co-occurrence 3 Open 182-241 KLOC Case Study

15. The relationship between
design patterns and code
smells: An exploratory study

Walter and Alkhaeir
[29]

2016 Co-occurrence 2 Open 9-162 KLOC Case Study

16. Automated refactoring of
super-class method invoca-
tions to the TemplateMethod
design pattern

Zafeiris et al. [33] 2017 Refactoring 12 Open 18-180 KLOC Experiment

3.2 Co-Occurrences between Design Patterns
and Bad Smells

This section answers the RQ2 to RQ2.3 research questions.
RQ2: Has the literature explored co-occurrence between de-

sign patterns and bad smells?
The answer to this research question is yes. However, the results

obtained in this SLM indicate that just a few studies have explored
co-occurrences between design patterns and bad smells. Most stud-
ies have identified some co-occurrences that negatively impact the
internal quality of software. Those co-occurrences have been attrib-
uted to the misuse of design patterns that increase the complexity of

the software systems, or generate co-change relationships between
classes.

Summary of RQ2. The result of this SLM suggests that co-
occurrence between design patterns and bad smells has been dis-
cussed in the literature.

RQ2.1: Which bad smells and design patterns are addressed
by the literature for identifying co-occurrences?

To answer this research question, Table 5 shows in details the
design patterns and bad smells used in each paper classified in the
co-occurrence category. Through Table 5 it is possible to observe
that all the studies used GOF catalog design patterns. An important

SAC 2018, April 9–13, 2018, Pau, France B. Sousa et al.

factor that contributed for it was the existence of static source code
analysis tools that automate the instances identification of software
design patterns. The use of the tools provides greater agility in
the information extraction process and enables a variety of design
patterns to be detected efficiently and with low time and memory
consumption. The tools used by these studies for detecting design
patterns and bad smells in software are showed in Table 6.

We identified 18 bad smells used by these four papers. Analyz-
ing them, we identified that these bad smells may be classified in
three categories: bad smells proposed by Fowler and Beck [10], bad
smells proposed by Brown et al. [4] and bad smells proposed by
Lanza and Marinescu [17]. In addition, we identified that the bad
smells proposed by Fowler and Beck [10] have been used in greater
quantity followed by the bad smells proposed by Brown et al. [4]
and by Lanza and Marinescu [17]. One explanation for this is the
fact that there are a lot of tools that provide the collection of bad
smells proposed by Fowler and Beck [10], in software systems.

Summary of RQ2.1. The Table 5 answer this research question.
It shows that studies have used the GOF design patterns for co-
occurrence identification in software systems. In addition, these
works also have explored a large quantity of bad smells, a total of
18, that may be classified in three categories: bad smells proposed
by Fowler and Beck [10], bad smells proposed by Brown et al. [4]
and bad smells proposed by Lanza and Marinescu [17].

RQ2.2: What co-occurrences have been identified by the stud-
ies?

In the SLM performed, the Command design pattern was pointed
out as the one presenting more co-occurrence with bad smell. In a
case study performed by Cardoso and Figue-iredo [6], the authors
identified the co-occurrence of Command with the God Class bad
smells. By means of an exploratory analysis, the authors concluded
that the excessive use of a simple receiver class in the application of
the Command design pattern to different concerns caused the emer-
gence of God Class bad smell. In addition, Cardoso and Figueiredo
also found another kind of co-occurrence, Template Method with
Duplicate Code. In this case, the multiple duplication of implemen-
tations of Template Method design pattern were responsible for its
co-occurrence.

Jaafar et al. [13, 14] also identified the Command design pattern
as the one with greater co-occurrence with bad smells among the
design pattern analyzed, more precisely, Command with: Specula-
tive Generality, Class Data Should Be Private, Long Method and
Long Parameter List. Analyzing these relationships, the authors
pointed out the following reason that led to emergence of these
co-occurrence: (i) developers used public instance variables to al-
low the access of commands objects to data of others objects; (ii)
commands object access features provided by others classes that
perform lots of processing; and (iii) commands object may have
relation with classes in the system that was engineered for a future
extension, but they do not use them.

Finally, Walter and Alkhaeir [29] identified by a quantitative
study the co-occurrence of Composite with Data Class and God
Class, but they do not analyzed the reason that impacted on the
emergence of these relationships in the systems analyzed. An inter-
esting point to highlight is that all studies about co-occurrence rela-
tionship performed case study for identification of co-occurrences.

Summary of RQ2.2. The literature have been pointed out the
Command design pattern as the one having more co-occurrence
with bad smell. The studies analyzed in this SLM identified that
it has relation with: God Class, Speculative Generality, Class Data
Should Be Private, Long Method and Long Parameter List. In addi-
tion other three relationships were pointed out: Composite with
God Class, Composite with Data Class and Template Method with
Duplicate Code. These co-occurrences are summarized in Table 7.

RQ2.3: Which techniques have been used in the literature to
find/establish the co-occurrence?

By analyzing available data in the studies, we observed that
the co-occurrences were identified by the studies of two different
ways. While Cardoso and Figueiredo [6] and Walter and Alkhaeir
[29] used association rules [1, 3] to identify and analyze the co-
occurrences, Jaafar et al. [13, 14] chose to use Fisher’s exact test
[23] to investigate these relationships.

Although these both methods may be used to examine associa-
tions between two items, they are applied and analyzed differently.
Association rule is a method proposed in data mining that consists
in combining items from a data set to extract knowledge about it. To
identify the rules, it is necessary to compute some metrics: Support
[1], Confidence [1], Lift [3] and Conviction [3]. Both Cardoso and
Figueiredo [6] and Walter and Alkhaeir [29] used the Conviction
metric as an analysis point of co-occurrences because it combines
Support and Confidence into a single measure, showing how often
an analyzed rule would be incorrect if the analyzed association
could be attributed to a random chance.

Fisher’ exact test is a statistical significance test used in the
analysis of contingency tables that examine the significance of the
associations between two classifications. Jaafar et al. [13, 14] used
this test to check whether there is a significance between anti-
pattern classes having static relationships with design patterns.
To apply this method and analyze the results, the authors used a
statistical environment called R2.

Summary of RQ2.3. The studies have used association rules
and Fisher’ exact test to decide if exist co-occurrence between a
design pattern and a bad smell. In the case of association rules, the
authors have used the Conviction metric result to determine the co-
occurrence existence. In the case of Fisher’ exact test, the authors
have used the R statistical environment to apply the method and
evaluated the results significance to determine the co-occurrence
existence.

4 THREATS TO VALIDITY
This section discusses some threats to the validity of this SLM and
discusses some decisions to minimize them.

The search string of a SLM needs to be very well defined in
order to return studies that are relevant to the search topic. In
this study, several synonyms referring to the main terms of the
SLM goal were searched. Some pilot searches were conducted in
order to find new synonyms for the search string. Therefore, we
believe that the defined search string has returned as many relevant
papers as possible. However, it is not possible to state that all work
concerning relations between design patterns and bad smells has
been returned.
2https://www.r-project.org/

https://www.r-project.org/

A Systematic Literature Mapping on Design Patterns and Bad Smells SAC 2018, April 9–13, 2018, Pau, France

Table 5: List of design patterns and bad smells used by each study that address the co-occurrence relationship.

Design Pattern Bad Smell
Cardoso and
Figueiredo [6]

Adapter, Command, Composite, Decorator, Factory
Method, Observer, Prototype, Proxy, Singleton, Strategy,
State, Template Method, and Visitor

God Class [17] and Duplicate Code [10]

Jaafar et al. [13] Command, Composite, Decorator, Factory Method, Ob-
server, and Prototype

Anti Singleton [4], Blob [4], Class Data Should Be Pri-
vate [4], Complex Class [4], Long Method [10], Long
Parameter List [10], Message Chain [10], Refused Parent
Bequest [10], Spaghetti Code [4], Speculative Generality
[10], and Swiss Army Knife [4]

Jaafar et al. [14] Command, Composite, Decorator, Factory Method, Ob-
server, and Prototype

Anti Singleton [4], Blob [4], Class Data Should Be Pri-
vate [4], Complex Class [4], Long Method [10], Long
Parameter List [10], Message Chain [10], Refused Parent
Bequest [10], Spaghetti Code [4], Speculative Generality
[10], and Swiss Army Knife [4]

Walter and
Alkhaeir [29]

Adapter, Command, Composite, Decorator, Factory
Method, Observer, Prototype, Proxy, Singleton, Strategy,
State, Template Method, and Visitor

Data Class [10], Data Clumps [10], External Duplication
[17], Feature Envy [10], God Class [17], Message Chains
[10], and Schizophrenic Class [17]

Table 6: Tools used by the co-occurrence studies for detect-
ing design patterns and bad smells in software.

Study Design Pattern Bad Smell
Cardoso and
Figueiredo [6]

DPDSS [26] JDeodorant [25] and
PMD [8]

Jaafar et al. [13] DeMIMA [2] DECOR [20]
Jaafar et al. [14] DeMIMA [2] DECOR [20]
Walter and
Alkhaeir [29]

DPDSS [26] inCode [32]

Table 7: Summarization of the co-occurrences identified by
the studies.

Study Design Pattern Bad Smell
Cardoso and
Figueiredo [6]

Command God Class
Template Method Duplicate Code

Jaafar et al.
[13, 14] Command

Speculative Generality
Class Data Should Be Private
Long Method
Long Parameter List

Walter and
Alkhaeir [29]

Composite Data Class
God Class

The choice of electronic databases is another factor that may
impact the results of a SLM. In this study, the primary studies were
investigated in seven different electronic databases. However, other
databases that were not used in the survey may contain work that
are relevant to this mapping. To mitigate this threat, a step that
consists in a snowballing process [31] was performed during the
filtering phase of the papers. In this step, the citations of the selected
papers were verified through a list of references in order to find
other relevant studies that had not been returned.

This SLM considered only papers written in the English. It is pos-
sible that some relevant studies may be written in other languages.

However, the main means of scientific publication in Software En-
gineering accepts papers in English. Therefore we consider that
using English is sufficient to filter the main studies in the subject.

Finally, the data extraction referring to the selected papers was
carried out only by the main author of this paper. This may be
considered a threat to validity, since such analysis was performed
subjectively and based on the knowledge of only one of the authors.
However, the papers were discussed by the three authors. In addi-
tion, the classification scheme is another point that is considered
a threat to validity, since it was also performed subjectively from
the extraction of the data. However, these categories have been
proposed only as a grouping guide of the studies with common
focus to facilitate the reading and the understanding of the readers.

5 CONCLUSION
This paper presents a SLM in order to provide an overview of the
state of the art with respect to the relation between design patterns
and bad smells, specifically analyzing the relations of co-occurrence
between these two structures.

In this SLM, we analyzed 16 papers. The results of this SLM
show that the literature has investigated relationships between de-
sign patterns and bad smells in three different ways: co-occurrence,
impact on software quality and refactorig. The analysis carried
out in these studies indicate that when the design pattern im-
plementation causes bad smells, consequently it degrades soft-
ware quality, increasing complexity and damaging other impor-
tant external attributes such as modularity, flexibility, testability,
among others. However, when the design pattern application is
well-designed, as described in the studies on refactoring relation-
ships [7, 18, 21, 22, 33], the impacts generated are positive.

In addition, these results indicate that the co-occurrence relation-
ship between design patterns and bad smells is a current topic, and
has been explored since 2013. The bad smells described by Fowler
and Beck [10] are the most used in these investigations. However,
these studies have also addressed some of the bad smells described

SAC 2018, April 9–13, 2018, Pau, France B. Sousa et al.

by Brown et al. [4] and Lanza and Marinescu [17]. Regarding de-
sign patterns, the studies have addressed solutions integrating the
GOF catalog, proposed by Gamma et al. [11]. The use of these de-
sign patterns is justified by the existence of tools that perform the
extraction of the instances automatically.

Finally, the literature have been pointed out the Command design
pattern as the one having more co-occurrence with bad smell. The
studies identified that this design pattern has co-occurrence with:
God Class, Speculative Generality, Class Data Should Be Private,
Long Method and Long Parameter List. In addition, other three re-
lationships were pointed out: Composite with God Class and Data
Class, and Template Method with Duplicate Code. The authors
identified the main situations that contributed for the emergence of
these co-occurrences: the misuse or inappropriate application of cer-
tain design pattern, the misuse planning of a system, and excessive
assignment of functionality to the design patterns internal compo-
nents. With respect to method for identification of co-occurrence,
we identified that the authors have used two ways: association
rules and Fisher’ exact test. In the case of association rules, the
authors have used the Conviction metric as a analysis point to
determine the co-occurrence existence. In the case of Fisher’ exact
test, the authors have used the R statistical environment to apply
the method and evaluated the significance of the test to determine
the co-occurrence existence.

As future work we intend to (i) investigate co-occurrence rela-
tionships with other design patterns and bad smells not explored by
the studies contained in the co-occurrence category; (ii) investigate
the design patterns, bad smells, and software failures relationships;
and (iii) build a refactoring recommendation system that helps to
eliminate bad smells from the source code of a software system.

6 ACKNOWLEDGE
This work was sponsored by CAPES, CNPQ and FAPEMIG.

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association

Rules Between Sets of Items in Large Databases. SIGMOD Rec. 22 (1993), 207–216.
[2] Giuliano Antoniol and Yann-Gaël Guéhéneuc. 2008. DeMIMA: A Multilayered

Approach for Design Pattern Identification. IEEE Transactions on Software Engi-
neering 34 (2008), 667–684.

[3] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. 1997. Dynamic
Itemset Counting and Implication Rules for Market Basket Data. SIGMOD Rec.
26 (1997), 255–264.

[4] WilliamH. Brown, Raphael C.Malveau, HaysW. "Skip"McCormick, and Thomas J.
Mowbray. 1998. AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis (1st ed.). John Wiley & Sons, Inc., New York, USA.

[5] Bruno Cardoso and Eduardo Figueiredo. 2014. Co-Occurrence of Design Pat-
terns and Bad Smells in Software Systems: A Systematic Literature Review. In
Proceedings of the 11th Workshop on Software Modularity. 82–93.

[6] Bruno Cardoso and Eduardo Figueiredo. 2015. Co-Occurrence of Design Patterns
and Bad Smells in Software Systems: An Exploratory Study. In 11st SBSI. 347–354.

[7] Aikaterini Christopoulou, E. A. Giakoumakis, Vassilis E. Zafeiris, and Vasiliki
Soukara. 2012. Automated refactoring to the Strategy design pattern. Information
and Software Technology 54, 11 (2012), 1202–1214.

[8] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä. 2013. Code Smell Detec-
tion: Towards a Machine Learning-Based Approach. In 2013 IEEE International
Conference on Software Maintenance. 396–399.

[9] Martin Fowler. 2015. CallSuper. https://martinfowler.com/bliki/CallSuper.html.
(2015). Accessed March 2017.

[10] M. Fowler and K. Beck. 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing.

[12] Clemente Izurieta and JamesM. Bieman. 2013. A multiple case study of design
pattern decay, grime, and rot in evolving software systems. Software Quality
Journal 21, 2 (2013), 289–323.

[13] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh. 2013.
Analysing Anti-patterns Static Relationships with Design Patterns. Electronic
Communications of the EASST 59 (2013).

[14] Fehmi Jaafar, Yann Gueheneuc, Sylvie Hamel, Foutse Khomh, and Mohammad
Zulkernine. 2016. Evaluating the impact of design pattern and anti-pattern
dependencies on changes and faults. Empirical Software Engineering (2016),
896–931.

[15] Foutse Khomh and Yann-Gael Gueheneuce. 2008. Do Design Patterns Impact
Software Quality Positively?. In Proceedings of the 2008 12th European Conference
on Software Maintenance and Reengineering. 274–278.

[16] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing System-
atic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001.
Keele University and Durham University Joint Report. http://www.dur.ac.uk/
ebse/resources/Systematic-reviews-5-8.pdf

[17] Michele Lanza and Radu Marinescu. 2006. Object-Oriented Metrics in Practice.
Springer-Verlag N. Y.

[18] W.a Liu, Z.-G.a b Hu, H.-T.b Liu, and L.b Yang. 2014. Automated pattern-directed
refactoring for complex conditional statements. Journal of Central South Univer-
sity 21, 5 (2014), 1935–1945.

[19] William B. McNatt and James M. Bieman. 2001. Coupling of Design Patterns:
Common Practices and Their Benefits. In Proceedings of the 25th International
Computer Software and Applications Conference on Invigorating Software Develop-
ment. 574–579.

[20] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. 2010. DECOR: A Method for the Specification and Detection of Code
and Design Smells. IEEE Trans. Softw. Eng. 36, 1 (Jan. 2010), 20–36.

[21] Nadia Nahar and Kazi Sakib. 2015. Automatic recommendation of software design
patterns using anti-patterns in the design phase: A case study on abstract factory.
In CEUR Workshop Proc. 9–16.

[22] Nadia Nahar and Kazi Sakib. 2016. ACDPR: A Recommendation System for the
Creational Design Patterns Using Anti-patterns. In IEEE 23rd SANER. 4–7.

[23] David J. Sheskin. 2007. Handbook of Parametric and Nonparametric Statistical
Procedures (4 ed.). Chapman & Hall/CRC.

[24] D. Speicher. 2013. Code Quality Cultivation. Communications in Computer and
Information Science 348 (2013), 334–349.

[25] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2008.
JDeodorant: Identification and Removal of Type-Checking Bad Smells. In Proc. of
the 12th CSMR. 329–331.

[26] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T
Halkidis. 2006. Design pattern detection using similarity scoring. Software
Engineering, IEEE Transactions on 32, 11 (2006), 896–909.

[27] Marek Vokac. 2004. Defect frequency and design patterns: An empirical study of
industrial code. IEEE Transactions on Software Engineering 30, 12 (2004), 904–917.

[28] B. C. Wagey, B. Hendradjaya, and M. S. Mardiyanto. 2015. A proposal of software
maintainability model using co- de smell measurement. In ICoDSE. 25–30.

[29] Bartosz Walter and Tarek Alkhaeir. 2016. The relationship between design pat-
terns and code smells: An exploratory study. Information and Software Technology
(2016), 127–142.

[30] Peter Wendorff. 2001. Assessment of Design Patterns During Software Reengi-
neering: Lessons Learned from a Large Commercial Project. In 5th CSMR. 77–84.

[31] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering. In 18th EASE. 1–10.

[32] Aiko Yamashita and Leon Moonen. 2013. To What Extent Can Maintenance
Problems Be Predicted by Code Smell Detection? - An Empirical Study. Inf. Softw.
Technol. 55, 12 (Dec. 2013), 2223–2242.

[33] Vassilis E. Zafeiris, Sotiris H. Poulias, N.A. Diamantidis, and E.A. Giakoumakis.
2017. Automated refactoring of super-class method invocations to the Template
Method design pattern. Information and Software Technology (2017), 19–35.

https://martinfowler.com/bliki/CallSuper.html
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf

	Abstract
	1 Introduction
	2 Systematic Literature Mapping Protocol
	2.1 Planning
	2.2 Execution

	3 Discussion of Results
	3.1 Relationship between Design Patterns and Bad Smells
	3.2 Co-Occurrences between Design Patterns and Bad Smells

	4 Threats to Validity
	5 Conclusion
	6 Acknowledge
	References

