
An Attribute Language Definition for Adaptable Parsing
Expression Grammars

ELTON M. CARDOSO
RODRIGO G. RIBEIRO

Universidade Federal de Ouro Preto

LEONARDO V. S. REIS
Universidade Federal de Juiz de Fora

lvsreis@ice.ufjf.br

MARIZA A. S. BIGONHA
ROBERTO S. BIGONHA

Universidade Federal de Minas Gerais

VLADIMIR O. DI IORIO
Universidade Federal de Viçosa

ABSTRACT

Adaptable Parsing Expression Grammars (APEG) are a for-
mal model whose main purpose is to formally describe the
syntax of extensible languages and their extension mecha-
nisms. APEG extends Parsing Expression Grammar model
with the notion of syntactic attributes, which are values passed
through parse tree nodes and used during the parsing process.
A grammar is a first-class value passed to every nonterminal,
and the rules used during the parsing are fetched from this
grammar. The ability to change and pass different grammars
is the key to dynamically extend the original language gram-
mar. The reported implementation of APEG attributes uses
strings and ad hoc Java code to manipulate and build gram-
mars during parsing time. This approach has at least three
disadvantages: a grammar specification becomes dependent
on the language in which the functions to manipulate and
build new grammars were implemented; we may not assure
that the grammars built are always syntactically correct; and
it is virtually impossible to prove that the generated parser
does not lead to a infinite loop. In this work, we formally
define an attribute language for APEG containing operators
to manipulate grammars. As a result, new rules and gram-
mars built during parsing time are syntactically correct. In
addition, we define a restriction on APEG rules that assures
that any generated parser will terminate on all inputs.

CCS CONCEPTS

• Theory of computation → Grammars and context-
free languages.

KEYWORDS

APEG, PEG, parsing, attributes, extensible languages

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SAC ’19, April 8–12, 2019, Limassol, Cyprus

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3299738

ACM Reference Format:

ELTON M. CARDOSO, RODRIGO G. RIBEIRO, LEONARDO V.
S. REIS, MARIZA A. S. BIGONHA, ROBERTO S. BIGONHA,
and VLADIMIR O. DI IORIO. 2019. An Attribute Language
Definition for Adaptable Parsing Expression Grammars. In The
34th ACM/SIGAPP Symposium on Applied Computing (SAC

’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3297280.3299738

1 INTRODUCTION

The term extensible language is used to refer to a language
that has constructions to extend its own syntax, as well as
to associate semantics to it. This idea of offering facilities to
add syntactic constructions to a language is not new and it
remotes to the Lisp language and its dialects, such as Scheme
and Racket [21]. Recently, the interest in languages using
such philosophy instead of S-expression format has increased.
The main motivations are related to the use of embedded
DSLs without syntax restrictions as libraries [6, 7] and to
extend proof assistant notations [1].

As an example, Fig. 1 describes the syntax of the toy
extensible language 𝜇Sugar. A program in this language is
a sequence of new syntax declarations followed by a list of,
possibly extended, statements. A regular statement, repre-
sented by stmt, may be an assignment, an I/O command, a
conditional statement, or a repeat statement. An extended
statement block (extBlock) begins with a list of one or more
syntax names, followed by a block.

Fig. 2 shows a program written in 𝜇Sugar. In lines 1 to 4
two new rules are declared and named as sfor. The second
rule, line 3, defines the syntax of for statements and the first
one, line 2, defines that it may be used as 𝜇Sugar statement.
In that declaration, terminal symbols are denoted between
primes. This part of code only declares a new set of rules
and it does not effectively extend the language grammar.
The code of lines 5 to 9 is an extended block statement.
Its semantics is to activate the parsing process according to
the specified syntactic extension, in this case sfor, so that
it may be used in its block, therefore effectively extending
the language. It also defines the scope of a new syntax. After
line 9, the for statement is not available anymore. This scope
mechanism allows to define several new syntaxes and use
each one, combined or not, in different pieces of the program.

1518

https://doi.org/10.1145/3297280.3299738
https://doi.org/10.1145/3297280.3299738

Fig. 1 Syntax of the extensible language 𝜇Sugar.
⟨Prog⟩ ::= ⟨newSyn⟩* ⟨extStmt⟩+
⟨newSyn⟩ ::= ‘define’ ⟨sName⟩ ‘{’ ⟨rule⟩+ ‘}’
⟨rule⟩ ::= ⟨ntName⟩ ‘->’ ⟨pattern⟩ ‘;’
⟨pattern⟩ ::= ⟨pseq⟩ (‘/’ ⟨pseq⟩)*
⟨pseq⟩ ::= ⟨prefix⟩ ⟨prefix⟩*
⟨prefix⟩ ::= ‘!’ ⟨pterm⟩ | ⟨pterm⟩
⟨pterm⟩ ::= ⟨pfactor⟩ ‘*’ | ⟨pfactor⟩
⟨pfactor⟩ ::= ‘(’ ⟨pattern⟩ ‘)’ | ⟨ntName⟩ | LITERAL

⟨extStmt⟩ ::= ⟨extBlock⟩ | ⟨stmt⟩
⟨extBlock⟩ ::= ‘syntax’ ⟨sName⟩ (‘,’ ⟨sName⟩)* ⟨block⟩
⟨block⟩ ::= ‘{’ ⟨stmt⟩+ ‘}’

⟨stmt⟩ ::= ⟨attr⟩ ‘;’ | ‘print’ ‘(’ ⟨expr⟩ ‘)’ ‘;’ | ‘read’ ‘(’ ⟨var⟩ ‘)’ ‘;’
| ‘if’ ‘(’ ⟨expr⟩ ‘)’ ⟨block⟩ | ‘loop’ ‘(’ ⟨expr⟩ ‘)’ ⟨block⟩

⟨attr⟩ ::= ⟨var⟩ ‘:=’ ⟨expr⟩
⟨expr⟩ ::= ⟨cexpr⟩ ((‘+’ | ‘-’) ⟨cexpr⟩)*
⟨cexpr⟩ ::= ⟨factor⟩ ((‘<’ | ‘=’) ⟨factor⟩)*
⟨factor⟩ ::= ‘(’ ⟨expr⟩ ‘)’ | ⟨var⟩ | ‘true’ | ‘false’ | INT

⟨var⟩ ::= ID

⟨sName⟩ ::= ID

⟨ntName⟩ ::= ID

Fig. 2 An example of a 𝜇Sugar program

1 define s f o r {
2 stmt −> nfor ;

3 n fo r −> ‘ fo r ’ ‘ (’ a t t r ‘ ; ’ expr ‘ ; ’ a t t r ‘) ’ b lock ;

4 }
5 syntax s f o r {
6 f o r (i := 1 ; i < 10 ; i := i + 1) {
7 pr in t i ;

8 }
9 }

10 i := 1 ;

11 loop (i < 10) {
12 pr in t (i) ;

13 i := i + 1 ;

14 }

Although 𝜇Sugar is a toy language, it mimics all extensible
features provided by SugarJ language [7].

Considering the standard theory of context-free grammars
(CFG), the grammar in Fig. 1 does not generate the program
of Fig. 2, because the syntax of the new for command was
not defined by the original production rules. In fact, the CFG
model offers no support to handle dynamic changes in the
grammar produced while an input is processed. Adaptable
Parsing Expression Grammars (APEG) [15, 16] are an alter-
native to formally describe such on-the-fly grammar exten-
sions. APEG extends Parsing Expression Grammar (PEG) [8]
model with the notion of syntactic attributes, which are val-
ues passed through nonterminals and used during the parsing
process. A grammar is a first-class value passed as attribute
to every nonterminal, and the syntactic rules used during the
parsing are fetched from this grammar. The ability to pass
modified versions of the grammar as attributes is the key to
dynamically extend the original grammar. Although it has
been showed that syntactic attributes represent a possible
solution for describing grammar extensibility, previous APEG
works do not formally define the attribute language [15, 16].

Reported implementations [16, 17] use strings and ad hoc
Java code to manipulate and build grammars during parsing
time. This approach has at least three disadvantages. First, a
grammar specification becomes dependent of the language in
which the functions to manipulate and build new grammars
were implemented. Second, it is not possible to assure that
the grammars built are always syntactically correct. Third,
it is virtually impossible to prove that the generated parser
does not lead to an infinite loop.

In this work, after presenting a brief introduction to APEG
in Section 2, we formally define an attribute language for
APEG containing operators to manipulate grammars in Sec-
tion 3, and a type system for it in Section 4. As a result,
new rules and grammars built during parsing time are syn-
tactically correct. It is known that some PEG grammars may
lead to an infinite loop, and this problem affects APEG as
well. To overcome that, in Section 5 we define a restriction
on APEG rules which assures that any generated parser will
terminate for all inputs. Section 6 discusses related works
and Section 7 concludes this paper.

2 ADAPTABLE PARSING
EXPRESSION GRAMMARS

The grammar presented in Fig. 1 is not able to generate
the program of Fig. 2 because CFGs do not handle dynamic
changes in their own set of production rules. Grammar exten-
sions are achieved in APEG with a special syntactic attribute,
called language attribute. It represents possibly modified ver-
sions of the grammar used during the parsing process. This
mechanism may be used to formally define the syntax of
extensible languages [17]. In the sequel, we use 𝜇Sugar as an
example to introduce the main ideas of APEG.

APEG draws a distinction between two kinds of attributes:
inherited and synthesized . Inherited attributes are those
whose values are defined outside of the nonterminal rule defi-
nition, acting such as function parameters. On the other hand,
synthesized attribute values are defined by the evaluation of a
nonterminal on the right-hand side of a rule definition. There-
fore, synthesized attributes play a similar role of function
return values. We use the notation ⟨𝐴↓𝜗1↓ . . . ↓𝜗𝑝↑𝑒1↑ . . . ↑𝑒𝑞⟩
to denote a nonterminal 𝐴 and its syntactic attributes. A
downside arrow indicates an inherited attribute and an upside
arrow, a synthesized attribute. For simplicity and without
loss of generality, we assume that all inherited attributes are
represented in a nonterminal before its synthesized attributes.

Fig. 3 presents an APEG specification for the 𝜇Sugar
syntax1. The first step to obtain an APEG grammar for the
𝜇Sugar language is to include the inherited language attribute
to each nonterminal. As mentioned before, this attribute
represents the current grammar available during the parsing
process. Exemplifying, the rule for the nonterminal Prog turns
to ⟨𝑃𝑟𝑜𝑔↓𝑔⟩ ::= ⟨𝑛𝑒𝑤𝑆𝑦𝑛↓𝑔↕𝜎⟩* ⟨𝑒𝑥𝑡𝑆𝑡𝑚𝑡↓𝑔↓𝜎⟩+. Note that
the only difference to the Prog rule of Fig. 1 are the attributes.
In this rule definition, the same grammar value, named as

1For being consistent with EBNF style of Fig. 1, we use the symbol |
as the prioritized choice instead of /.

1519

Fig. 3 APEG specification of the 𝜇Sugar syntax.

⟨Prog↓g⟩ ::= ⟨𝑛𝑒𝑤𝑆𝑦𝑛↓𝑔↕𝜎⟩* ⟨𝑒𝑥𝑡𝑆𝑡𝑚𝑡↓𝑔↓𝜎⟩+
⟨newSyn↓g↓𝜎↑𝜎[n / rs]⟩ ::= ‘define’ ⟨𝑠𝑁𝑎𝑚𝑒↓𝑔↑𝑛⟩ ‘{’

(⟨𝑟𝑢𝑙𝑒↓𝑔↑𝑟⟩ [rs←rs ▷ r;])+ ‘}’

⟨rule↓g↑def nt p⟩ ::= ⟨𝑛𝑡𝑁𝑎𝑚𝑒↓𝑔↑𝑛𝑡⟩ ‘->’⟨𝑝𝑎𝑡𝑡𝑒𝑟𝑛↓𝑔↑𝑝⟩‘;’
⟨pattern↓g↑p⟩ ::= ⟨pseq↑𝑝⟩ (‘/’ ⟨pseq↑𝑝1⟩ [p←𝑝⊘ 𝑝1;])*
⟨pseq↓g↑p⟩ ::= ⟨prefix↓𝑔↑𝑝⟩ (⟨prefix↓𝑔↑𝑝1⟩ [p←𝑝⊙ 𝑝1;])*
⟨prefix↓g↑p⟩ ::= ‘!’ ⟨pterm↓𝑔↑𝑝1⟩ [p←̊!𝑝1;] | ⟨pterm↓𝑔↑𝑝⟩
⟨pterm↓g↑p⟩ ::= ⟨pfactor↓𝑔↑𝑝1⟩ ‘*’ [p←𝑝1⊛;] | ⟨pfactor↓𝑔↑𝑝⟩
⟨pfactor↓g↑p⟩ ::= ‘(’ ⟨pattern↓𝑔↑𝑝⟩ ‘)’ | ⟨𝑛𝑡𝑁𝑎𝑚𝑒↓𝑔↑𝑝⟩
| p=LITERAL

⟨extStmt↓g↓𝜎⟩ ::= ⟨𝑒𝑥𝑡𝐵𝑙𝑜𝑐𝑘↓𝑔↓𝜎⟩ | ⟨𝑠𝑡𝑚𝑡↓𝑔⟩
⟨extBlock↓g↓𝜎⟩ ::= ‘syntax’ ⟨𝑠𝑁𝑎𝑚𝑒↓𝑔↑𝑛⟩ [𝑔1←g ▷ 𝜎[[𝑛]];]

(‘,’⟨𝑠𝑁𝑎𝑚𝑒↓𝑔↑𝑛⟩[𝑔1←𝑔1 ▷ 𝜎[[𝑛]];])* ⟨𝑏𝑙𝑜𝑐𝑘↓𝑔1⟩+
⟨ntName↓g↑n⟩ ::= n=ID

𝑔, inherited by nonterminal Prog is passed to nonterminals
newSyn and extStmt, therefore there are not changes in the
grammar. Changing happens only in the extBlock nonterminal
using a map from name to syntax definition that is passed to
it through its inherited attribute 𝜎. The value of this map is
calculated during the evaluation of the nonterminal newSyn.
We use a syntactic sugar notation ↕ to denote an inherited and
a synthesized attribute with the same expression. Therefore,
⟨𝑛𝑒𝑤𝑆𝑦𝑛↓𝑔↕𝜎⟩ is equivalent to ⟨𝑛𝑒𝑤𝑆𝑦𝑛↓𝑔↓𝜎↑𝜎⟩ and means
that the 𝜎 value is passed as the second inherited attribute
to newSyn and the value of its synthesized attribute is set to
𝜎 after the nonterminal evaluation. Nonterminal newSyn has
an inherited attribute named 𝜎 which is a map from name to
rules and synthesizes a new map, using the expression 𝜎[𝑛/𝑟𝑠].
The evaluation of this expression returns a map that is equal
to 𝜎, except that the name 𝑛 binds to the value of 𝑟𝑠. The
𝑛 comes from the synthesized value of nonterminal sName,
which parses the name of the syntax being defined. The set of
rules, 𝑟𝑠, is built from each evaluation of the nonterminal rule
by extending the grammar value of the previous grammar,
using ▷ operation, with the grammar value of its synthesized
attribute 𝑟. Then, the name rs is bound to the new set of
rules.

A grammar is a set of rules, therefore, a new grammar,
with just one rule, is produced as the value of the synthesized
attribute of the nonterminal rule using the expression def
nt p. This expression creates a grammar where the right-
hand side of the nonterminal, whose name is defined by 𝑛𝑡,
is the parsing expression that comes from 𝑝2. The 𝑛𝑡 value
is obtained from the synthesized attribute of nonterminal
ntName, which uses a bind APEG parsing expression (n=ID)
to map n to the string parsed by ID. ID parses an identifier
and its rule is omitted. The rules of nonterminals var and
sName are similar to ntName rule and were omitted as well.

Nonterminal pattern produces on its synthesized attribute
𝑝 a parsing expression representation, which is built using

2For clarity, we simplify that definition. Sections 3 and 4 show that a
nonterminal definition also includes information of its attributes.

operators, which is discussed on Section 3, to construct the
correct representation for each parsing expression type.

We highlight that, during the evaluation of nonterminal
newSyn, no changes were made in the language attribute
and it produces only a map with new syntaxes definitions.
Therefore the initial grammar remains the same at this point.
On-the-fly grammar modification happens only during the
evaluation of nonterminal extBlock when parsing an extended
statement. It creates a new grammar, 𝑔1, that is an extension
of the language attribute grammar containing the rules from
the new syntax, which comes from the evaluation of the 𝜎[[𝑛]]
map expression. Afterwards, the grammar 𝑔1 is passed as the
language attribute of nonterminal block making available the
new syntax rules only in this parsing branch. Rules for the
other nonterminals are the same except for the addition of
the language attribute, so we omitted them in Fig. 3.

It is important to mention that, different from Attribute
Grammars (AGs), APEG syntactic attributes are used and
evaluated during parsing time, making it possible to change
the set of rules used to parse the remained input, thus APEG
semantics imposes a left to right evaluation order [16]. As
a result, some issues common in AGs, such as circularities
attributes and evaluation order, are not relevant in the APEG
context.

3 APEG ATTRIBUTE LANGUAGE

The key of APEG on-the-fly grammar modification resides
on the ability to build and use grammars during the parsing
process and to treat them as first-class values, which are
manipulated by syntactic attributes. Previous works [15, 16]
did not approach an important aspect of APEG attributes,
the formal definition of the attribute language.

Before presenting a formal definition of APEG attributes,
we introduce some notations. We let 𝑥 denote a finite sequence
of elements and we allow ourselves a bit of informality by
using set operations on sequences and their meaning as usual.
Notation 𝑥𝑛, 𝑛 ≥ 0, denotes a sequence with 𝑛 elements.
Finite mappings are represented as a sequence of key-value

pairs denoted by 𝑘 / 𝑣. We use meta-variable 𝜎 to denote an
arbitrary finite mapping. A map may be constructed based on
another one 𝜎, denoted by 𝜎[𝑘/𝑣]. It means a map equals to
𝜎, except on the key-entry 𝑘/𝑣. Finally, notation 𝜎[[𝑘]] denote
the value 𝑣 associated with key 𝑘 in map 𝜎, i.e. 𝜎[[𝑘]] = 𝑣, if
𝑘/𝑣 ∈ 𝜎. When there is no entry for a key 𝑘 in 𝜎, 𝜎[[𝑘]] = ⊥,
where ⊥ denotes an undefined value.

Fig. 4 shows the abstract syntax of APEG language. The
first two rules, r and p, denote APEG productions and parsing
expressions, respectively. An APEG production is represented
by the nonterminal name, denoted by the capital letter 𝐴, a
list of inherited attributes and its respective type, 𝜗 :: 𝜏

𝑛
, a

list of attribute expressions for its synthesized attributes an-
notated with their type and its right-hand parsing expression.
For distinguishing between nonterminal name and attribute
variable, we use the meta-variable 𝜗 to denote an attribute
variable name and capital letters for nonterminal names. An

1520

Fig. 4 APEG abstract syntax.
1

r ::= ⟨𝐴 𝜗 :: 𝜏
𝑛
𝑒 :: 𝜏𝑚⟩ → p2

p ::= p . p | p / p | ! p | p∗ | A 𝑒 𝜗3

| 𝜗 = p | 𝜗 ← e | ?e | s | 𝜆4

e ::= l | 𝜗 | {𝑒 / 𝑒} | e [𝑒 / 𝑒] | e[[𝑒]]5

| e ⊕ e | e ▷ e | m6

m ::= 𝑚𝑝 | 𝑚𝑒7

𝑚𝑝 ::= 𝑒 ⊙ 𝑒 | 𝑒 ⊘ 𝑒 | !̊ 𝑒 | 𝑒 ⊛8

| ⟨𝑒 𝑒 𝑒⟩ | e =̊ 𝑚𝑝 | e ←̊ 𝑚𝑒 | ?̊ 𝑚𝑒9

| s | #e | �̊� | de f e 𝜗 :: 𝜏
𝑛
𝑒 :: 𝜏𝑚 𝑒10

𝑚𝑒 ::= #{e}11

APEG parsing expression3 may be a sequence, 𝑝.𝑝; a pri-
oritized choice, 𝑝/𝑝; a not-predicate, !𝑝; a repetition, 𝑝*; a
nonterminal reference, 𝐴 𝑒 𝜗; a bind, 𝜗 = p; an update, 𝜗←
e; a constraint, ?e; a string literal, 𝑠; or an empty, 𝜆, parsing
expression [15].

The interesting rules are the ones for attribute expressions,
denoted by 𝑒, which we defined as a simply typed language.
The attribute language includes literals as primitive attribute
expressions, variables and maps. We use the meta-variable
𝑙 to denote an arbitrary literal.Following the common prac-
tice, all (meta-)variables may appear primed or subscripted.
The syntax 𝑒 ⊕ 𝑒 represents all binary operator of the lan-
guage, which includes usual operators for arithmetical, logical,
relational expressions and concatenation of strings. We dis-
tinguish the operator ▷ used to extend grammars, whose
semantics is as defined in [16]. As grammars are first-class
values, the attribute language must provide operators to build
grammar values, which are meta-language constructors. All
meta-language constructors are denoted by 𝑚. We separate
these constructors in two categories: operators for building
parsing expressions, 𝑚𝑝, and operators for building attribute
expressions itself, 𝑚𝑒, except the meta-language expressions.

The operator symbols ⊙, ⊘, !̊ and ⊛ are used to build
sequence, prioritized choice, not-predicate and zero-or-more
repetitions parsing expressions. Nonterminal parsing expres-
sions are built using the operator pair ⟨ and ⟩ which means
a reference to nonterminal with its respectively attribute ex-
pressions. Note that a nonterminal name is also determined,

on parsing time, by the evaluation of an expression. The �̊�
symbol builds a representation of an empty parsing expres-
sion and the operator # a literal parsing expression based on
the value of an expression. Also, a string is used to build a lit-
eral parsing expression, representing a sequence of terminals.
These operators build common parsing expressions defined
by Ford [8], with the addition of attribute expressions on

nonterminals. In addition, the unary operator ?̊ builds a con-
straint parsing expression, which succeeds without consuming
input symbols when the correspondent attribute expression
is evaluated to true. The operators =̊ and ←̊ are used to
build a bind or an update parsing expression, depending on
type of the second operand. The meaning of both parsing
expressions is to create a new environment by changing the

3For now, we will use parsing expressions as a synonymous for APEG
parsing expressions.

Fig. 5 Type Language for APEG Attributes
12

𝜏 ::= 𝛼 | �̊� | �̊� | 𝜑 | 𝜓 | 𝜏𝑛 → 𝜏𝑚13

𝛼 ::= 𝜌 | 𝛾 | 𝜎[[𝜏]] | 𝜌→ 𝜌→ 𝜌14

bind of a variable. The main difference is that the former
uses the text matched by a parsing expression and the latter
the value evaluated from an attribute expression as the new
bind value for the variable. A detailed formal description of
APEG parsing expressions semantics is found in [16]. Finally,
the enclosed operator symbols #{ and } build an abstract
representation from an attribute expression.

In order to allow the user to create rules, the def con-
struction provides a way to define a new nonterminal in the
meta-programming level. The new nonterminal is defined
by an identifier, whose value comes from the evaluation of
the expression 𝑒, followed by its inherited and synthesized
attributes definition and by the abstract representation of the
parsing expression that corresponds to its right-hand side.

4 APEG TYPE SYSTEM

Fig. 5 describes the type language for the APEG attributes.
Meta-variable 𝜏 denotes an arbitrary type, and 𝜌, basic types.
We assume that 𝜌 contains, at least, type constructors for
integers, strings, booleans and floating-point numbers. We
also assume the existence of a function that returns the type
of an input literal, 𝜙 : 𝑙→ 𝜌.

We let 𝛾 denote the type of parsing expressions, 𝜎[[𝜏]] the
type for finite mappings with image formed by values of type
𝜏 , 𝜑 the type for the language attribute and 𝜓 the type of
set of rules. Types 𝛼 do not represent the language attribute
neither are meta-level expression types. Notation �̊� denotes
the type for meta expressions. Inhabitants of type �̊� are
ASTs whose structure is an expression of an arbitrary type.
Notation �̊� denotes the types of meta-level parsing expres-
sions. Types of the form 𝜏𝑛 → 𝜏𝑚 (𝑛,𝑚 ≥ 0) are assigned
to non-terminals with 𝑛 inherited attributes and 𝑚 synthe-
sized attributes. Finally, types for basic binary operators
are denoted by 𝜌 → 𝜌 → 𝜌. We distinguish a type for the
language attribute (𝜑), and a type of the rule set 𝜓, to ensure
that grammar modifications are safe. Later, we present a
motivation example that justified this decision.

A typing context Γ is a finite mapping between variable
names and their types. Following common practice, we use
notation Γ(𝑥) to denote the type associated with 𝑥 in Γ, Γ[[𝑥]].

We let notation Γ⃗ denote the subset of key-value pairs of

non-terminal types, i.e. Γ⃗ = {𝑥/𝜏 | 𝜏 = 𝜏1
𝑛 → 𝜏2

𝑚}.
We split the type rules for attributes and meta-expressions

in several figures for a better organization. For the sake of
brevity, we omit the presentation and explanation of trivial
rules. The type judgments have the form Γ ⊢ 𝑥 :: 𝜏 ⇝ Γ′

where 𝑥 is an attribute, 𝑒, or a parsing expression, 𝑝, 𝜏 is a
type and Γ′ is a context possibly produced as side-effect.

Fig. 6 presents typing rules for parsing expressions. Rule
P-Alt states that a well typed choice parsing expressions

1521

must have its sub-expressions well-typed. It is our intention
that the common definitions within both choices reach the
resulting context, then existing after the choice of parsing
the expression. Rule P-Call states that for a nonterminal call
to be considered well-typed the attribute expressions must
match the types with which the nonterminal was defined
and the first attribute must have type 𝜑. Furthermore, all
synthesized attributes variables absent in Γ, referenced by S
in rule P-Call, must be included in Γ.

Rules P-Declare and P-Bind-Declare behave like P-Update and
P-Bind, except that the former requires the right hand side to
have a type in the context while the latter act as a delcaration
of a new identifier.

Fig. 6 Typing rules for parsing expressions.

Γ ⊢ 𝑝1 :: 𝛾 ⇝ Γ′ Γ′ ⊢ 𝑝2 :: 𝛾 ⇝ Γ′′
P-Seq

Γ ⊢ 𝑝1.𝑝2 :: 𝛾 ⇝ Γ′′

Γ ⊢ 𝑝1 :: 𝛾 ⇝ Γ′ Γ ⊢ 𝑝2 :: 𝛾 ⇝ Γ′′
P-Alt

Γ ⊢ 𝑝1/𝑝2 :: 𝛾 ⇝ Γ′ ∩ Γ′′

Γ ⊢ 𝑝 :: 𝛾 ⇝ Γ′
P-Star

Γ ⊢ 𝑝* :: 𝛾 ⇝ Γ′
Γ ⊢ 𝑒 :: 𝐵𝑜𝑜𝑙 ⇝ Γ

P-Cond
Γ ⊢ ? 𝑒 :: 𝛾 ⇝ Γ

Γ(𝐴) = 𝜏𝑛 → 𝜏 ′𝑚

Γ ⊢ 𝑒𝑖 :: 𝜏𝑖 ⇝ Γ, 1 < 𝑖 ≤ 𝑛

𝑆 = {𝜗𝑗 :: 𝜏 ′
𝑗 | Γ(𝜗𝑗) = ⊥, 1 ≤ 𝑗 ≤ 𝑚}

∀𝜗𝑘 ̸∈𝑆Γ(𝜗𝑘) = 𝜏 ′
𝑘, 1 ≤ 𝑘 ≤ 𝑚

Γ ⊢ 𝑒1 :: 𝜑 ⇝ Γ
P-Call

Γ ⊢ 𝐴 𝑒 𝜗 :: 𝛾 ⇝ Γ ∪ 𝑆

Γ(𝜗) = 𝜏 Γ ⊢ 𝑒 :: 𝜏 ⇝ Γ 𝜏 ≠ 𝛾
P-Update

Γ ⊢ 𝜗← 𝑒 :: 𝛾 ⇝ Γ

Γ(𝜗) = ⊥ Γ ⊢ 𝑒 :: 𝜏 ⇝ Γ 𝜏 ̸= 𝛾
P-Declare

Γ ⊢ 𝜗← 𝑒 :: 𝛾 ⇝ Γ, {𝜗 :: 𝜏}

Γ(𝜗) = 𝑆𝑡𝑟𝑖𝑛𝑔 Γ ⊢ 𝑝 :: 𝛾 ⇝ Γ
P-Bind

Γ ⊢ 𝜗 = 𝑝 :: 𝛾 ⇝ Γ

Γ(𝜗) = ⊥ Γ ⊢ 𝑝 :: 𝛾 ⇝ Γ
P-Bind-Declare

Γ ⊢ 𝜗 = 𝑝 :: 𝛾 ⇝ Γ, {𝜗 :: 𝑆𝑡𝑟𝑖𝑛𝑔}

Fig. 7 presents the typing rules for map expressions and
grammar extension operator. Rule T-MPA states that the
lookup operation on a map is well-typed only when it is
applied on an expression that has type of a map, 𝜎[[𝜏]], its
argument expression must have type String, and the resulting
type is the inner map type. Rule T-MPE determines that a
map extension 𝑒1[𝑒2/𝑒3] operation is well-typed if 𝑒1 has
type 𝜎[[𝜏]], 𝑒2 has type String and 𝑒3 has a type 𝜏 , matching
the inner type of the map. Rule T-Compose-Rules states that
two rule sets may be concatenated, resulting in a new rule
set. Finally, rule T-Compose ensures that a language value
may only be constructed by composing the current language
attribute with a rule set attribute. This rule is crucial to
certify that the grammar is always being extended and non-
terminal definitions are never removed from it. As an example
of a bad behavior that might arise by the absence of this rule,

consider Fig. 8. In this example, a new grammar, containing
only one rule named C, is created and binded with name x.
Next, that grammar is passed as the language attribute of
rule B. As a result, the body of B must be retrieved from
that grammar, however it does not have a definition for rule
B thus, resulting in an error. Therefore, the T-Compose ensure
that value passed as language attributes are safe.

Fig. 7 Typing rules for map and grammar extension.

Γ ⊢ 𝑒1 :: 𝜎[[𝜏]]⇝ Γ Γ ⊢ 𝑒2 :: 𝑆𝑡𝑟𝑖𝑛𝑔 ⇝ Γ
T-MPA

Γ ⊢ 𝑒1[[𝑒2]] :: 𝜏 ⇝ Γ

Γ ⊢ 𝑒1 :: 𝜎[[𝜏]]⇝ Γ

Γ ⊢ 𝑒2 :: 𝑆𝑡𝑟𝑖𝑛𝑔 ⇝ Γ

Γ ⊢ 𝑒3 :: 𝜏 ⇝ Γ
T-MPE

Γ ⊢ 𝑒1[𝑒2/𝑒3] :: 𝜎[[𝜏]]⇝ Γ

Γ ⊢ 𝑒1 :: 𝜑⇝ Γ Γ ⊢ 𝑒2 :: 𝜓 ⇝ Γ
T-Compose

Γ ⊢ 𝑒1 ▷ 𝑒2 :: 𝜑⇝ Γ

Γ ⊢ 𝑒1 :: 𝜓 ⇝ Γ Γ ⊢ 𝑒2 :: 𝜓 ⇝ Γ
T-Compose-Rules

Γ ⊢ 𝑒1 ▷ 𝑒2 :: 𝜓 ⇝ Γ

All meta-expressions, presented in figures 9, 10 and 11,
produce an abstract representation (AST) of APEG expres-
sions rather than a value. Therefore, �̊� is the type of such
expressions whenever they produce an AST for a parsing ex-
pression or type �̊� when they produce an AST for an attribute
expression.

Rules in Fig. 9 are similar to the ones in Fig. 6, except that
they all construct ASTs. Therefore, they conclude type �̊�,
except the rule T-MEXP which builds an AST for an attribute
expression and, thus, concludes type �̊�. None of these rules
make changes in the context.

In Fig. 10, we present the rules for building bind and update
parsing expressions. Rule T-PEG-Attr types an operation for
building a bind parsing expressions. This construction results
in the AST of an expression that will store the consumed
input in a variable. Therefore the variable, which value comes
from the evaluation of an expression, must have type String.
The rule T-EXP-Attr expresses the case for building an up-
date parsing expression, which is similar to the one for bind
expression, except that the right-hand side of the rule is an
AST for an attribute expression.

Fig. 11 shows the rule for nonterminals definition. The rule
T-Nt-Decl defines a new nonterminal. Notice that this rule only
check if the expression whose gives the nonterminal name has
type String and if the correspondent right-hand definition has
type �̊�. The reason for this is because some values are known
only when parsing the input string. Therefore, a complete
type verification is possible only after knowing these values.

The required dynamic type of meta-rules occurs only when
the attributed language is extended. At this point, meta-rules,

Fig. 8 An example of an invalid grammar operation
15

⟨𝐴 𝑔 :: 𝜑⟩ −> “00” (x ← de f C 𝑔 :: 𝜑 “10”) (B x)16

⟨𝐵 𝑔 :: 𝜑⟩ −> “11”17

1522

Fig. 9 Meta typing rules for basic parsing expressions.
Γ ⊢ 𝑒1 :: �̊� ⇝ Γ Γ ⊢ 𝑒2 :: �̊� ⇝ Γ

T-MSeq
Γ ⊢ 𝑒1 ⊙ 𝑒2 :: �̊� ⇝ Γ

Γ ⊢ 𝑒1 :: �̊� ⇝ Γ Γ ⊢ 𝑒2 :: �̊� ⇝ Γ
T-MAlt

Γ ⊢ 𝑒1 ⊘ 𝑒2 :: �̊� ⇝ Γ

T-MExp
Γ ⊢ #{𝑒} :: �̊� ⇝ Γ

Γ ⊢ 𝑒 :: �̊� ⇝ Γ
T-MCond

Γ ⊢ ?̊𝑒 :: �̊� ⇝ Γ

Fig. 10 Meta typing rules for update parsing expressions.

Γ(𝑒1) = 𝑆𝑡𝑟𝑖𝑛𝑔 Γ ⊢ 𝑒2 :: �̊� ⇝ Γ
T-PEG-Attr

Γ ⊢ 𝑒1 =̊ 𝑒2 :: �̊� ⇝ Γ

Γ(𝑒1) = 𝑆𝑡𝑟𝑖𝑛𝑔 Γ ⊢ 𝑒2 :: �̊�⇝ Γ
T-EXP-Attr

Γ ⊢ 𝑒1 ←̊ 𝑒2 :: �̊� ⇝ Γ

Fig. 11 Typing rules for APEG: Nonterminals
Γ ⊢ 𝑝 :: �̊� ⇝ Γ

Γ ⊢ 𝑒𝑎 :: 𝑆𝑡𝑟𝑖𝑛𝑔 ⇝ Γ
T-NT-Decl

Γ ⊢ 𝑑𝑒𝑓 𝑒𝑎 (𝜗 :: 𝜏)
𝑛
(𝑒 :: 𝜏 ′)

𝑚
𝑝 :: 𝜓 ⇝ Γ

whose type is �̊�, are evaluated resulting in the complete AST
of a rule. The resulting AST is then submitted to the same
typing rules presented in this text, in a typing context that
contains the types for all the rules previously checked, plus
the ones to be added.

5 WELL-FORMED APEG

A Parsing Expression Grammar could be viewed as a formali-
zation of a top-down descendent recursive parsing. Therefore,
left-recursive grammars could lead to an infinite loop, such
as the grammar rule 𝐴→ 𝐴 ‘𝑎’ / ‘𝑎’. Moreover, the greedy
semantics of the repetition operator * implies that a parsing
expression 𝑝, which the empty string is recognized by it, will
turn the expression 𝑝* on an infinite loop as well. Ford [8] uses
a simple approach to assure termination by just requiring
that at least one input symbol is consumed by the enclosed
expression of the repetition operator and rules are not direct
or mutual left-recursive.

We follow the same path of Ford [8] with two additional
considerations: nonterminal-attribute evaluation must ter-
minate and constraint and update parsing expressions are
treated such as a lambda expression. The latter condition
assures that new parsing expressions introduced in APEG,
whose semantics does not consume any input symbol, also
terminate when combined with repetition operator.

Before defining the concept of well-formed APEG, we
first define a relation, ⇀, on APEG parsing expressions,
which denotes an abstract simulation of it. The idea of this
relation is to inform whether an interpretation of a parsing
expression may succeed, consuming or not an input string,
or fail. An element of this relation is a pair (𝑝, 𝑜) where 𝑝

Fig. 12 Definition of APEG abstract relation.

Update
𝜗← 𝑒 ⇀ 0

𝑝 ⇀ 𝑠
Bind

𝜗=𝑝 ⇀ 𝑠

𝑝 ⇀ 𝑓
¬Bind

𝜗=𝑝 ⇀ 𝑓
True

?𝑒 ⇀ 0
False

?𝑒 ⇀ 𝑓

⟨𝐴 𝜗 :: 𝜏
𝑛
𝑒′ :: 𝜏

𝑚⟩ → 𝑝 𝑝 ⇀ 𝑜
Rule

⟨𝐴 𝑒𝑛 𝜗′𝑚⟩⇀ 𝑜

is a parsing expression and 𝑜 ∈ {0, 1, 𝑓} represents if the
parsing expression may succeed without consuming a symbol
(0), consuming at least one symbol (1) or failing (𝑓).

Fig. 12 shows the relation definition. This definition is
straightforward to represent each possibility of a parsing
expression to succeed or not on a given input. We omit the
rules for standard parsing expressions and present just the
rules for binds (rules Bind and ¬Bind), constraints (rules
True and False), updates (rule Update) and nonterminals
(rule Rule) parsing expressions.

The semantics of a bind parsing expression 𝜗=𝑝 is to bind
the string consumed by the parsing expression 𝑝 to variable
𝜗. Then, it behaves exactly as parsing expression 𝑝, succeed-
ing in consuming the same portion of the input string of 𝑝
when it succeeds, and fails when 𝑝 fails. Constraint expres-
sion defines a predicate on attributes, succeeding without
consuming any input symbols if it evaluates to true and
fails, otherwise. Therefore, there are two possibilities for an
abstract evaluation of a constraint parsing expression: suc-
ceeding without consuming symbols (rule True) and fails
(rule False). Note that this relation is defined independently
of any input string and particular values of attributes. As-
suming that the attribute type system assure all attribute
expressions are correct and do not produce erroneous values,
an update parsing expression just changes the bind of an
attribute variable name and does not consume any input
symbols. As a result, an update parsing expression always
succeeds without consuming input symbols. This behavior
is expressed by the rule Update. Finally, as the constraint
rules, an abstract evaluation of a nonterminal does not con-
sider expressions of inherited and synthesized attributes and
its result is determined only by its right-hand side parsing
expression abstract evaluation. In the following theorem, no-
tation 𝐸 ⊢ (𝑝, 𝑥)⇒ 𝑜 ⊢ 𝐸′ comes from [15].

Theorem 5.1. Let 𝐸 and 𝐸′ be environments, 𝑝 a parsing
expression, 𝑥 a string, 𝑜 a string with at least one symbol and
𝑓 the symbol representing fails. The relation ⇀ summarizes
the semantics of APEG as follows:

∙ If 𝐸 ⊢ (𝑝, 𝑥)⇒ 𝑜 ⊢ 𝐸′, then 𝑝 ⇀ 1;
∙ If 𝐸 ⊢ (𝑝, 𝑥)⇒ 𝜆 ⊢ 𝐸′, then 𝑝 ⇀ 0;
∙ If 𝐸 ⊢ (𝑝, 𝑥)⇒ 𝑓 ⊢ 𝐸′, then 𝑝 ⇀ 𝑓 ;

Proof. Straightforward induction over the input size. □

Based on the abstract relation ⇀, we define a set of well-
formed parsing expressions, 𝑊𝐹 , inductive as presented in

1523

Fig. 13 Definition of well-formed parsing expressions.
Empty

𝜆 ∈ 𝑊𝐹
Term

𝑎 ∈ 𝑊𝐹
True

?𝑒 ∈ 𝑊𝐹

𝑝1 ∈ 𝑊𝐹 𝑝1 ⇀ 0 implies 𝑝2 ∈ 𝑊𝐹
Seq

𝑝1.𝑝2 ∈ 𝑊𝐹

𝑝 ∈ 𝑊𝐹
Not

!𝑝 ∈ 𝑊𝐹

𝑝1 ∈ 𝑊𝐹 𝑝2 ∈ 𝑊𝐹
Alt

𝑝1/𝑝2 ∈ 𝑊𝐹

𝑝 ∈ 𝑊𝐹 𝑝 ̸⇀ 0
Star

𝑝* ∈ 𝑊𝐹

𝑝 ∈ 𝑊𝐹
Bind

𝜗 = 𝑝 ∈ 𝑊𝐹
Update

𝜗← 𝑒 ∈ 𝑊𝐹

⟨𝐴 𝜗 :: 𝜏
𝑛
𝑒′ :: 𝜏

𝑚⟩ → 𝑝 𝑝 ∈ 𝑊𝐹
Rule

⟨𝐴 𝑒𝑛 𝜗′𝑚⟩ ∈ 𝑊𝐹

Fig. 13. A grammar is well-formed if all parsing expression
and subexpression on it are well-formed.

Theorem 5.2. Let G be a well-formed adaptable parsing
expression grammar. If every attribute expression in G is
correct, then G handles all input string.

Proof. Straightforward induction over the input size. □

Because this definition does not depend on the input string
and attribute expression, and there are a finite number of
relevant expressions in a grammar, we may compute this set
over any grammar by iteratively applying the rules on Fig. 13
until we reach a fixed point.

6 RELATED WORK

As extensible languages may change their own set of rules
during parsing, the most appropriate formalisms to specify
their syntaxes may be the ones which also allow modifying
their own set of grammar rules. Several models have been
proposed in this direction, for instance, [4, 5, 19, 20].

Christiansen [5] proposes Adaptable Grammars, which is
essentially an Extended Attribute Grammar [22] where the
first attribute of every nonterminal symbol is inherited and
represents the language attribute. The language attribute con-
tains the set of rules allowed in each derivation. The initial
grammar works as the language attribute for the root node
of the parse tree, and new language attributes may be built
and used in different nodes. Each grammar adaptation is re-
stricted to a specific branch of the parse tree. One advantage
of this approach is that it is easy to define statically scoped
dependent relations, such as block structure declarations of
several programming languages. Although APEG was in-
spired in the Adaptable Grammars of Christiansen, the main
difference between them are related to the models on which
they are based [15]. The attribute expressions of Christiansen
Adaptable Grammars may use any mathematical functions
which are not clear defined. Moreover, Christiansen work
does not treat termination.

Shutt [19] observes that Christiansen’s Adaptable Gram-
mars inherit the lack of orthogonality of attribute grammars.
The CFG kernel is simple, generative, but computationally
weak. The augmenting facility is obscure and computationally
strong. He proposes Recursive Adaptable Grammars (RAGs),

where a single domain combines the syntactic elements, meta-
syntactic and semantic values. One problem of RAG and
Christiansen’s Adaptable Grammars is the difficulty to model
forward references,which is important, for instance, to define
the syntax of the Fortress language. Using APEG, forward
references may be easily modeled with and-predicate and
not-predicate operators [17]. There are no evidences that
RAGs are suitable for automatic generated efficient parsers
and termination guaranties. We argue that we solve Shutt’s
allegation about the lack of orthogonality of Adaptable Gram-
mars giving a formal definition of a simple and restrict form
of attribute language with limited computer power.

The interest on modular language extensions has been
increasing in recent years. APEG is a formal model which
aims to implement the method of defining modular exten-
sions through sugar libraries and extensible languages [6, 7].
Silver [23] uses a similar approach. It is an extensible lan-
guage of specification based on attribute grammars with
addition of forward and high-order attributes. Silver defines
a core syntax and languages are defined as extensions of it.
Silver’s attributes are used to define extension semantics.
APEG attributes, instead, have a syntax purpose and are
used during parsing time to guide it. It is an important differ-
ence on conventional attribute grammar system and APEG
syntactic attributes. APEG does not define a way to give
semantics to language constructions, although it is possible
to use APEG attribute with this purpose. Another difference
between APEG and Silver is the time when extensions oc-
curs: Silver extensions are statically defined and APEG uses a
dynamic on-the-fly grammar modification. To provide sound-
ness composition of extension specifications, Schwerdfeger
and Wyk [18] propose a test for checking whether grammar
extensions do not produce LR conflicts when combined with
others, under certain conditions. A proof that the composed
compiler behavior is as expected when multiple extensions
are combined is showed in Silver system [12].

Spoofax [13] relies on the idea of language workbenches,
which provides resources to define syntax, semantics and
IDE development. It underlies on SDF [9] formalism for
syntax definition and uses rewrite rules on Stratego/XT [2]
for defining semantic analyses and code desugaring. Given
the semantics of extensions by desugaring extension nodes
on base language nodes may produce code with type errors.
Therefore, Lorenzen and Erdweg [14] propose a system for
syntactic extensibility with guarantee that desugaring code
is well-typed.

Metaprogramming is the act of writing programs that
generate other programs. Our work is not exactly a metapro-
gramming system, but it has some similarities in the sense
that our grammar language has constructors to build new
grammars. Metaprogramming languages, such as MAJ [10]
and SafeGen [11], use quote and unquote operator for build-
ing abstract syntax of the target language. Quote operator
is used to construct the AST of the quoted string. When
the target language is large, as the Java language, the quote
operator simplify writing metaprograms. Our attribute lan-
guage formalization does not use quote operator, instead

1524

we use explicit operators for build any kind of APEG pars-
ing expressions. We prefer this approach because the set of
APEG parsing expression is small and the explicit use of the
operator clearly indicate what type of parsing expression are
been built. We include unquote operator on APEG to build
an abstract representation based on the value of a variable.
This gives the flexibility to build programs based on dynamic
value of expressions.

One advantage of metaprogramming techniques is to build
syntactically correct programs, however, it may generate
programs containing static semantics errors. SafeGen [11]
tries to solve this problem using a theorem proof to assure
that the generated code satisfies some proprieties on respect
to the target type system. MetaOCaml [3] is a multistage
language that keeps track of type contexts to guarantee that
if the generator is type safe, the generated program is as well.
Our approach keeps track the type context and uses it to
assure the soundness of new rules. Note that our system does
not have the problem of generated hygienic names. When a
generated rule is built with the same name of an existed one,
the APEG semantics combine these two definitions. And, if
the definition of attributes are distinct, it is a type error.

7 CONCLUSIONS

Previous works on APEG do not formally define the attribute
language, and reported implementation uses informal Java
code to manipulate attributes and grammar modifications.
This paper provides a formal definition of APEG type at-
tribute language and operators for building and manipulating
grammars on-the-fly. Our formalization assures that correct
grammar rules are produced.

It is well known that some PEG rules may lead to an infi-
nite loop, which is not a desired property for parser. Therefore,
we presented a restricted form of grammar rules, called well-
formed, and stated that well-formed APEG grammars may
handle all inputs. For it, we assume that well-typed attributes
terminate, however we do not provide a formal proof. Thus,
the immediate future work is to prove it and, also, the sound-
ness of the system and check it in proof assistance. Also, the
well-formed relation is separated from the type system and
it is performed after it. A future work is to integrate it on
the type system in order to type only well-formed rules.

ACKNOWLEDGMENTS

This work is supported by the CNPq – Brazil under grant
No.: 426232/2016.

REFERENCES
[1] William J. Bowman. 2016. Growing a Proof Assistant. https:

//www.williamjbowman.com/resources/cur.pdf
[2] Martin Bravenboer, Karl T. Kalleberg, Rob Vermaas, and Eelco

Visser. 2008. Stratego/XT 0.17. A language and toolset for pro-
gram transformation. Science of Computer Programming 72, 1-2
(2008), 52–70.

[3] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy.
2003. Implementing Multi-stage Languages Using ASTs, Gensym,
and Reflection. In Generative Programming and Component
Engineering, Frank Pfenning and Yannis Smaragdakis (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 57–76.

[4] Adam Carmi. 2010. Adaptive Multi-pass Parsing. Master’s thesis.
Israel Institute of Technology.

[5] Henning Christiansen. 1990. A survey of adaptable grammars.
SIGPLAN Not. 25 (1990), 35–44. Issue 11.

[6] Sebastian Erdweg, Stefan Fehrenbach, and Klaus Ostermann. 2014.
Evolution of Software Systems with Extensible Languages and
DSLs. IEEE Software 31, 5 (2014), 68–75.

[7] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus
Ostermann. 2011. SugarJ: library-based syntactic language exten-
sibility. In Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applica-
tions (OOPSLA’11). ACM, New York, NY, USA, 391–406.

[8] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-
based Syntactic Foundation. In Proceedings of the 31st Sym-
posium on Principles of Programming Languages (POPL’04).
ACM, New York, NY, USA, 111–122.

[9] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. 1989. The
syntax definition formalism SDF reference manual. SIGPLAN
Not. 24, 11 (1989), 43–75.

[10] S. Shan Huang, David Zook, and Yannis Smaragdakis. 2008.
Domain-specific Languages and Program Generation with meta-
AspectJ. ACM Trans. Softw. Eng. Methodol. 18, 2, Article 6
(2008), 32 pages.

[11] Shan S. Huang, David Zook, and Yannis Smaragdakis. 2011. Stati-
cally safe program generation with SafeGen. Science of Computer
Programming 76, 5 (2011), 376 – 391. Special Issue on GPCE
2004/2005.

[12] Ted Kaminski and Eric Van Wyk. 2017. Ensuring Non-interference
of Composable Language Extensions. In Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language
Engineering (SLE 2017). ACM, New York, NY, USA, 163–174.

[13] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench: Rules for Declarative Specification of Languages and
IDEs. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applica-
tions (OOPSLA’10). ACM, New York, NY, USA, 444–463.

[14] Florian Lorenzen and Sebastian Erdweg. 2016. Sound Type-
dependent Syntactic Language Extension. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’16). ACM, New York,
NY, USA, 204–216.

[15] Leonardo V.S. Reis, Roberto S. Bigonha, Vladimir O. Di Iorio,
and Luis Eduardo S. Amorim. 2012. Adaptable Parsing Expres-
sion Grammars. In Programming Languages, Francisco Heron
Carvalho Junior and Luis Soares Barbosa (Eds.). Lecture Notes in
Computer Science, Vol. 7554. Springer Berlin Heidelberg, 72–86.

[16] Leonardo V.S. Reis, Roberto S. Bigonha, Vladimir O. Di Iorio,
and Luis Eduardo S. Amorim. 2014. The formalization and imple-
mentation of Adaptable Parsing Expression Grammars. Science
of Computer Programming 96, Part 2 (2014), 191 – 210. Selected
and extended papers of the SBLP 2012.

[17] Leonardo V. S. Reis, Vladimir O. Di Iorio, and Roberto S. Bigonha.
2014. Defining the Syntax of Extensible Languages. In Proceedings
of the 29th Annual ACM Symposium on Applied Computing
(SAC’14). ACM, New York, NY, USA, 1570–1576.

[18] August C. Schwerdfeger and Eric Van Wyk. 2009. Verifiable
Composition of Deterministic Grammars. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’09). ACM, New York, NY,
USA, 199–210.

[19] John N. Shutt. 1998. Recursive Adaptable Grammars. Master’s
thesis. Worchester Polytechnic Institute.

[20] Paul Stansifer and Mitchell Wand. 2011. Parsing Reflective Gram-
mars. In Proceedings of the Eleventh Workshop on Language
Descriptions, Tools and Applications (LDTA ’11). ACM, New
York, NY, USA, Article 10, 7 pages.

[21] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen. 2011. Languages as li-
braries. In Proceedings of the 32nd ACM SIGPLAN confer-
ence on Programming language design and implementation
(PLDI’11). ACM, New York, NY, USA, 132–141.

[22] David A. Watt and Ole Lehrmann Madsen. 1983. Extended
Attribute Grammars. Comput. J. 26, 2 (1983), 142–153.

[23] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan.
2010. Silver: An extensible attribute grammar system. Science
of Computer Programming 75, 1 (2010), 39 – 54. Special Issue
on LDTA 06/07.

1525

https://www.williamjbowman.com/resources/cur.pdf
https://www.williamjbowman.com/resources/cur.pdf

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

