
Analysis of Coupling Evolution on Open Source Systems
Bruno L. Sousa

Computer Science Department
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

bruno.luan.sousa@dcc.ufmg.br

Mariza A. S. Bigonha
Computer Science Department

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

mariza@dcc.ufmg.br

Kecia A. M. Ferreira
Department of Computing

Federal Center for Technological
Education of Minas Gerais

Belo Horizonte, Minas Gerais, Brazil
kecia@decom.cefetmg.br

ABSTRACT
Software evolution is an intrinsic process of software life cycle. The
comprehension of this process is a central research topic in Soft-
ware Engineering. It is widely accepted that as a software system
evolves, its internal quality declines and its complexity increases.
However, there is a gap in the comprehension on how this process
occurs in a fine-grained view. In this work, we apply a software
metric approach to investigate how the internal quality of object-
oriented software systems evolves in the aspect of coupling. More
specifically, we analyze (i) how the coupling behavior may be de-
scribed over the software evolution, (ii) how the coupling behavior
affects the reusability and complexity of the systems, and (iii) the
percentage of classes from the systems that directly impacts on the
coupling evolution. The results and observations of this study are
compiled in eight properties of coupling evolution, among which
stand out: (i) the coupling behavior is better modeled by a cubic
function, (ii) the coupling evolution tends to increase the complex-
ity of the systems, (iii) the systems tend to be designed with a high
level of complexity, and (iv) the coupling evolution is affected by a
small group of classes.
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1 INTRODUCTION
Software evolution is a process of developing, maintaining, and
updating software systems [26]. Such process is essential during the
software life cycle because it allows to include or enhance features
in the system. In contrast, this process promotes several changes
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in the software structure requiring that the internal and external
quality attributes to be continuously modified.

Lehman [26] analyzed the evolution of large andmature software
and proposed seven laws, which are widely known as Lehman’s
laws. Such study is one of the landmarks on software evolution
and it has inspired other works to investigate this topic. For in-
stance, some studies have investigated the applicability of the
Lehman’s laws in software [17, 21, 24, 29, 35, 45], while others
[2, 8, 15, 16, 20, 23, 43] have analyzed the evolution of software
growth and characterized the evolution of its internal structure.
Although software evolution has been intensely studied, some sub-
jects are still opened [30]. There is a gap in the comprehension on
how software evolution occurs in a fine-grained view. For instance,
it is widely accepted that as a software system evolves, its internal
quality declines and its complexity increases, however it is not
known whether there is a pattern to such degradation.

Coupling is the level of dependence among the modules of a
software system; it is a central dimension of software modularity
and, hence, of software internal quality [34]. In this work, we apply a
software metric approach to investigate how the internal quality of
Java software systems evolves in the aspect of coupling. So, we carry
out an exploratory study on coupling evolution in 10 open source
Java systems. The main goal of this study is to investigate how the
coupling evolves during the software life cycle. More specifically,
we aim to (i) analyze how the coupling behavior may be described
over the software evolution, (ii) evaluate how the coupling behavior
affects the reusability and the complexity of the software, and (iii)
analyze the portion of system classes that directly interfere in the
coupling evolution behavior. We have analyzed fan-in and fan-out
values because these metrics may efficiently quantify the coupling
and they allow to study both the input and output couplings [40].
We propose a method composed of two phases to analyze coupling
evolution via software metrics. The first one consists of applying
linear regression in the global fan-in and fan-out values from the
systems to identify the function that better explains the coupling
evolution behavior. In the second phase, we analyze the fan-in and
fan-out values of each systems component to identify those that
directly interfere in coupling growth or decrease.

The results of this study let to several observations, which we
compile in eight properties that describe the coupling behavior.
Among these properties, those that stand out are: (i) the coupling
growth pattern is better modeled by a cubic function; (ii) the cou-
pling evolution tends to increase the systems complexity; (iii) sys-
tems tend to be designed with a high complexity level; and (iv)
the coupling evolution behavior is affected by a small group of
classes from the systems. The findings being related in this paper
contribute to the body of empirical knowledge on open source
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software evolution with eight different properties that detail and
explain the coupling evolution process in open-source software.
Besides, practitioners and researchers may use these properties as a
background for understanding the open source software evolution
process, and as starting point to propose techniques and methods
that improve the internal quality of these systems during their
evolution process.

2 RESEARCH METHOD
This section describes the methodology we have applied in this
paper.

2.1 Research Questions
We report an empirical study where time series from fan-in/fan-out
measures are analyzed to understand and describe the coupling
evolution in Java software systems. Fan-in and fan-out are soft-
ware metrics used to measure coupling in object-oriented software.
They indicate the number of references made to a given class by
other classes and the number of calls made by a given class to
other classes, respectively [24, 40]. There are other metrics that
compute the coupling in object-oriented software, such as CBO
(coupling between objects) [6], RFC (response for class) [6], COF
(coupling factor) [1], MPC (message passing coupling) [27], DAC
(data abstraction coupling) [27], and ICP (information-flow-based
coupling) [25]. However, COF just computes the global system cou-
pling; RFC, ICP, and MPC are based only on method invocations;
DAC are based on only class attributes, and CBO is based on both
method invocations and class attributes, but it does not differ the
input and output component coupling. Therefore, we decided to
use fan-in and fan-out metrics because they consider both method
invocations and class attributes as coupling, they allow to measure
each internal software component, and they allow to analyze the
coupling in both input and output aspects.

The general research question being investigated in this work is:
RQ1. How does coupling evolve in open source Java software

systems?
This research question aims to study the coupling evolution in

open source Java systems and extract properties that describe its
behavior over the software life cycle. To detail RQ1, we subdivide
it into three other specific research questions, as follows.

RQ1.1.What kind ofmodel better represents the coupling growth
pattern in open source Java software systems?

RQ1.2.Howdoes the relation between fan-in and fan-out behave
throughout the evolution in open source Java software systems?

RQ1.3.What is the percentage of classes contained in the soft-
ware that direct interfere in the coupling growth/decrease?

2.2 Dataset
We have used a public dataset, COMETS (Code Metrics Time
Series), which is composed of time series from 17 well-known
software metrics regarding 10 open source Java systems [7]. These
time series were collected in intervals of bi-weeks, i.e., 14 days
[7]. Table 1 summarizes the COMETS dataset, presenting its main
features.

We identified other three dataset in the literature: D’Ambros
dataset [11], Helix [39], and Qualitas Corpus [42]. However,

Qualitas Corpus does not provide time series from object-oriented
metrics, Helix does not include time series on couplingmetrics, and
D’Ambros dataset even provides time series on coupling metrics,
but COMETS has a greater number of systems and versions than
D’Ambros dataset. So, we include COMETS because it is the largest
dataset with time series regarding coupling metrics that we have
identified in the literature.

2.3 Behavior Analysis
This section describes the first phase of our methodology, where we
investigate what type of model better explains the coupling growth
pattern over its evolution. This phase consists of five steps.

Step 1. Normalizing the fan-in and fan-out time series to obtain
a global measure for each one of these two metrics, and then, model
and evaluate the systems global coupling. As the systems has a set
of time series, we use the sum of fan-in/fan-out values to represent
their global measure. So, for each system we separately sum the
fan-in/fan-out values of all classes in each version, and obtain the
global time series for each metric

Step 2. Applying linear regression methods in the global time se-
ries of fan-in/fan-out to define the analyzed models. Other authors
have used ARIMA to model software metrics evolution [38]. But to
use this approach it is necessary to collect the time series over a
well-defined time scale, such as days, months, or years. Initially, we
tried to apply ARIMA to model the coupling time series. However,
after applying it, we have identified that it was not applicable to
our data since it presents a random walk, i.e., a type of model that
describes a random behavior of the data. Then, we decide to use
linear regression and model the time series in terms of versions,
where each version corresponds to a two-week interval. We model
both fan-in and fan-out using the following models: (i) linear, (ii)
quadratic (polynomial at degree 2), (iii) cubic (polynomial at degree
3), and (iv) logarithmic. We have used all these models to evaluate
which of them better explains the fan-in/fan-out evolution. It is
important to highlight that although we use models to character-
ize the coupling growth pattern, our purpose is not to provide a
prediction model.

Step 3. Regression methods require that the assumption of in-
dependence be satisfied to ensure the validity of the models [5].
However, it is common the emergence of error terms autocorrelated
when we use time series. If the autocorrelation is not treated, the
estimates of coefficients and their standard errors will be wrong and
the model will not correctly describe the time series behavior [5].
So, in this step we evaluate the errors of each model and remove the
occurrences of autocorrelation in their error terms. To identify the
existence of autocorrelation, we apply a statistic test named Durbin-
Watson test [13], which detects the presence of autocorrelation at
lag 1 in the residuals from a regression analysis. Autocorrelation
at lag 1 in time series means that an observation xi is dependent
on the observation xi−1. When identified, we have to remove it
from the model residuals via autoregression [9] and include the
autoregressive error coefficient in the generated models.

Step 4. To evaluate the models, we compute their adjusted deter-
mination coefficient (R2). Both determination coefficient (R2) and
adjusted determination coefficient (R2) are metrics derived from
the analysis based on the general linear model, which measure
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Table 1: Systems of the COMETS dataset.

# System Name Description Time Frame # Versions
1 Eclipse JDT Core Compiler and other tools for Java 07/01/2001 - 06/14/2008 183
2 Eclipse PDE UI Set of tools to create, develop, test, debug and deploy Eclipse

plug-ins, fragments, features, update sites and RCP products
06/01/2001 - 09/06/2008 191

3 Equinox Framework OSGi application implementor 01/01/2005 - 06/14/2008 91
4 Hibernate Core Database persistence framework 06/13/2007 - 03/02/2011 98
5 JabRef Bibliography reference manager 10/14/2003 - 11/11/2011 212
6 Lucene Search software and document indexing API 01/01/2005 - 10/04/2008 99
7 Pentaho Console Software for business intelligence 04/01/2008 - 12/07/2010 72
8 PMD Source code analyzer 06/22/2002 - 12/11/2011 248
9 Spring Framework Java application development framework 12/17/2003 - 11/25/2009 156
10 TV-Browser Electronic TV guide 04/23/2003 - 08/27/2011 221

the degree of adjust of the model to the data in order to under-
stand to what extent the model explains the analyzed data [31].
We chose the (R2) instead of R2 because it takes into account the
number of parameters in the model and penalizes the inclusion of
less explanatory parameters.

Step 5. Testing the statistic significance of the differences be-
tween theR2 values of themodels.We use theWilcoxon signed-rank
test to evaluate this significance. Wilcoxon signed-rank test is a
non-parametric statistical hypothesis test, whose purpose is to com-
pare two related or matched samples or repeated measurements on
a single sample to evaluate if their populations mean ranks differ
[10]. We use it because the difference values between the R2 scores
are not normally distributed. We consider the following hypothesis
during the application of the test:

• H0: the difference between the pairs follows a symmetric
distribution around zero

• H1: the difference between the pairs does not follow a sym-
metric distribution around zero

To reject the null hypothesis (H0), we consider a p-value less than
0.01. After applying it, we analyze the R2 scores of the models to
identify the one that better represents the coupling growth pattern.

2.4 Trend Analysis
This section describes the second phase of our methodology, where
we analyze the percentage of classes that directly interfere in both
coupling growth and decrease. This phase consists of seven steps.

Step 1. Couto et al. [7] have included -1 value in the cases where
classes are not present in a given version. As these values may bias
our results, in this step we remove them, and reorganize the other
values in the time series.

Step 2. Software systems undergo several modifications over
their life cycle, and consequently, a class may appear or disappear
any time. After analyzing the time series of the systems, we have
identified that some classes appear and disappear more than once
during their life cycle. When this situation occurs, the time series
is broken in several small sub-series where some observations do
not have value. We have classified classes with this behavior as
“ghost” classes. Figure 1 shows and example of fan-in time series
of a ghost class extracted from Eclipse JDT Core. This class is
removed from the system, and after some versions, it is inserted

into the system again. This situation may bias the results. So, as the
ghost classes make up a small part of the systems, no more than
2% of all classes, we decided not analyzing them in this part of the
study.
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Figure 1: Time series of a ghost class.

Step 3. Applying trend tests in the time series to analyze and
identify the percentage of classes that affect the coupling growth
and decrease in the systems. We have used three different tests: (i)
Mann-Kendall [22], (ii) Cox-Stuart [32], and (iii) Wald-Wolfowitz
[32]. We use them because they are pointed out as useful for trend
identification in time series [32]. As they are based on hypothe-
sis analysis to check the presence of trend in the time series, we
consider the following hypothesis:

• H0: there is no trend in the time series
• H1: there is a trend in the time series

Step 4. Before applying Mann-Kendall test, we have analyzed
the time series to check if the observations were independent or
they were autocorrelated. To simplify our analysis, we apply trend
tests without checking autocorrelation in the time series. TheMann-
Kendall test is run in its original version. To define the existence of
trend in time series, we define the following criteria: “time series
has a growth or decrease trend if, and only if, the null hypothesis is
rejected at least in two of the three tests”. However, as we did not
check autocorrelation at first, the result of the Mann-Kendall test
may bias the results. To overcome this problem, we have analyzed
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the trend results by looking for “doubtful” cases, which appear
when:

Case 1 : there are two trend tests where the null hypothesis is
rejected, and one of them is the Mann-Kendall test

Case 2 : there is just one trend test where the null hypothesis
is rejected, and necessarily it is not the Mann-Kendall test

After identifying the “doubtful” cases, we plot and analyze their
autocorrelation and partial autocorrelation charts. In the cases
where we identify presence of autocorrelation, we run the Mann-
Kendall test again with the Block Bootstrap approach in Step 5.

Step 5. Running the Mann-Kendall test with the Block Bootstrap
approach for the “doubtful” cases found in Step 4. Block Bootstrap
method is a robust and flexible resampling approach used to esti-
mate the significance of a statistical test [12, 14, 33, 47]. This method
is used in conjunction with other statistical tests for trend removal
and autocorrelation in the data. It shuffles the elements of the data
a lot of times by using replacements and obtains many other sam-
ples with the same number of elements as the original data [36].
After obtaining the samples, the statistical test is calculated for each
sample and the distribution probability is estimated. At the end, the
method computes the statistical analysis for the original data and
compares its results with the distribution generated for the samples
to estimate the level of significance of the test. As the data used
by this method are serially dependent, it runs the whole process in
blocks so that the autocorrelation may be replicated. During the im-
plementation of this approach, we have to inform some parameters
such as number of samples to be generated by the Block Bootstrap
in each case (R) and the size of the blocks (L). In general, set up
these parameters is one of the main problems of this approach
because they depend on the number of observations existing in the
time series. However, some studies have analyzed these parameters
to establish values that better fit to them. For instance, Svensson
et al. [41] find that good stability in significance level estimates
may be obtained with 2,000 samples. Moreover, Önöz and Bayazit
[36] analyze values of the block size and show that five is the size
that better fits as a general value, and minimizes the probability of
errors occurrence. So, based on these studies, we implement the
Block Bootstrap approach with R and L parameters being 2,000 and
5, respectively.

After implementing this approach, we generate a p-value as the
final value of this approach for each time series and we analyze
them considering the hypothesis of the original Mann-Kendall test.
To reject the null hypothesis, we consider a p-value less than 0.05.

Step 6. Analyzing the p-value of the three trend tests and apply
the criteria defined in Step 4. For all time series we identify the
presence of autocorrelation, we analyze the p-values resulting from
the Mann-Kendall test with the Block Bootstrap approach, Cox-
Stuart, and Wald-Wolfowitz. For the time series we do not identify
presence of autocorrelation, we analyze the p-values resulting from
the Mann-Kendall test without the Block Bootstrap approach, Cox-
Stuart, and Wald-Wolfowitz.

Step 7. Evaluating the type of trend in the systems classes. So,
we plot the original time series chart with a trend line to visually
characterize the type of trend. After that, we manually classify the
trends by considering the criteria as follows.

• Upward trend: it is a pattern whose distance between the
trend line and x-axis increases over the x-axis

• Downward trend: it is a pattern whose distance between
the trend line and x-axis decreases over the x-axis

• Undefined trend: it is a pattern whose distance between
the trend line and x-axis remains the same over the x-axis

3 OBSERVATIONS ON THE COUPLING
EVOLUTION

This section presents some observation regarding the coupling
evolution by answering the specific research questions.

3.1 Coupling Evolution in the System Level
This section answers RQ1.1.

RQ1.1.What kind ofmodel better represents the coupling growth
pattern in open source Java software systems?

This research question aims to identify how the coupling growth
pattern may be described in terms of fan-in and fan-out during
the Java systems evolution. To answer RQ1.1, we apply regressions
techniques on the global time series regarding the 10 systems from
COMETS, and compute the adjusted determination coefficient (R2)
to evaluate and compare the resulting adjust of these models and
identify the one that better describes the coupling growth pattern.

Table 2 summarizes the R2 scores computed for the models ex-
tracted to both fan-in and fan-out metrics in each system. The ”lin.”,
“quad.”, “cub.”, and “log.” columns indicate the R2 scores from the
linear, quadratic, cubic, and logarithmic models, respectively.

After computing the R
2 scores of the models, we apply the

Wilcoxon signed-rank test to check if the difference between them
has statistic significance. To test the significance, we combine the
models in pairs, and consider the hypothesis indicated in Step 5 in
Section 2.3. To reject the null hypothesis, we consider a confidence
of 99%, i.e., a p-value less than 0.01. Table 3 summarizes the p-values
obtained after applying Wilcoxon signed-rank test. In this table,
the models linear, quadratic, cubic, and logarithmic are named as
“lin.”, “quad.”, “cub.”, and “log.”, respectively.

The returned p-values by the test show the R2 scores of the mod-
els presenting significant differences, except for one combination:
linear and logarithmic models (case 3 in Table 3). In this case, the
null hypothesis may not be rejected at 99% confidence, and there-
fore, we may not say anything about the difference of R2 between
these two models.

After comparing the results of the Wilcoxon signed-rank test,
we analyze the R2 scores of the models to identify which model
better describes the coupling growth pattern.We conclude that both
fan-in and fan-out have a growth pattern that is better explained by
a cubic-order model. However, although fan-in and fan-out growth
pattern may be represented by the same model, when we compare
the global time series, we noticed that fan-out is extremely greater
than fan-in. Figure 2 shows this situation via a line chart from the
global fan-in and fan-out time series.

Summary of RQ1.1. In response to RQ1.1, we identify that
both fan-in and fan-out have a growth pattern that may be better
explained by a cubic-order model. However, although the same
model better explains both fan-in and fan-out growth pattern, we
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Table 2: R2 values computed from the fan-in and fan-out models.

System Fan-in Fan-out
lin. quad. cub. log. lin. quad. cub. log.

Eclipse JDT Core 0.973 0.989 0.992 0.908 0.978 0.993 0.994 0.907
Eclipse PDE UI 0.989 0.994 0.996 0.803 0.990 0.995 0.998 0.809
Equinox Framework 0.971 0.975 0.979 0.901 0.978 0.988 0.988 0.919
Hibernate Core 0.912 0.968 0.971 0.677 0.902 0.969 0.973 0.645
JabRef 0.932 0.988 0.995 0.971 0.921 0.988 0.996 0.971
Lucene 0.933 0.939 0.951 0.766 0.930 0.931 0.957 0.804
Pentaho Console 0.406 0.685 0.919 0.506 0.695 0.901 0.975 0.939
PMD 0.976 0.977 0.986 0.837 0.976 0.976 0.986 0.831
Spring Framework 0.842 0.995 0.996 0.928 0.770 0.997 0.997 0.938
TV-Browser 0.921 0.997 0.997 0.937 0.871 0.992 0.994 0.948

Figure 2: Global fan-in/fan-out time series of the analyzed systems.

Table 3: Wilcoxon signed-rank test p-values

# Combinations Fan-in p-values Fan-out p-values
1 lin. versus quad. 0.00195 0.00195
2 lin. versus cub. 0.00195 0.00195
3 lin. versus log. 0.19336 0.55664
4 quad. versus cub. 0.00195 0.00977
5 quad. versus log. 0.00195 0.00586
6 cub. versus log. 0.00195 0.00195

identify an extreme difference between these two metrics since the
fan-out values are much greater than fan-in values.

3.2 Evolution of Fan-in/Fan-out Relation
This section answers RQ1.2.

RQ1.2.Howdoes the relation between fan-in and fan-out behave
throughout the evolution in open source Java software systems?

This research question aims to analyze how the relation between
fan-in and fan-out impacts on the coupling evolution in open source
Java software systems. In a previous study, Berard [3] categorizes
the occurrence of the coupling in software as two types: necessary
and unnecessary. Basically, necessary coupling consists of high
fan-in and low fan-out and unnecessary coupling consists of high
fan-out and low fan-in [3]. Moreover, according to Lee et al. [24],
high fan-in, i.e. necessary coupling, usually represents a good object
design and high level of reuse, since classes at the same package are
reused together. In contrast, high fan-out, i.e. unnecessary coupling,
is not desirable in software because it is an indication of complexity,
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and low reusability [3, 4, 19, 28]. In this way, we use the definition
of necessary and unnecessary coupling, given by Martin [28], to
answer this research question.

After identifying that fan-in and fan-out follow the same growth
pattern, we analyze which type of coupling stands out during the
systems evolution. So, we compute the necessary and unnecessary
coupling rates for each systems version. The necessary coupling
rate consists of dividing fan-in by fan-out, and the unnecessary
coupling rate consists of dividing fan-out by fan-in. Figure 3 sum-
marizes the behavior of these two types of coupling.

Analyzing Figure 3, we observe that for most of systems, the un-
necessary coupling rate increases over their evolution, whereas the
necessary coupling rate grows minimally remaining almost stable.
This scenario is in line with Lehman’s 2nd and 6th , which indicate
increasing complexity and declining quality in the systems during
their evolution. Moreover, we observe that for almost all systems,
except to JabRef, the unnecessary coupling rate is much greater
than the necessary coupling rate in the first systems version. This
finding shows that most open source systems tend to be developed
for the first time already with a high degree of complexity.

Summary of RQ1.2. The unnecessary coupling rate tends to
increase over the systems evolution. Besides, the systems have
a high unnecessary coupling rate since their first version. The
necessary coupling has a slight growth over time. This behavior
shows that, in general, systems are created with high complexity
and low quality and the complexity tends to be even higher over
the time, whereas the quality tends to be even low.

3.3 Coupling Growth/Decrease Analysis
This section answers RQ1.3.

RQ1.3.What is the percentage of classes contained in the soft-
ware that direct interfere in the coupling growth/decrease?

To answer RQ1.3, we identify the classes responsible for increas-
ing and decreasing the coupling. Then, we carry out a trend analysis
in the time series of the systems classes and computed the percent-
age of classes whose fan-in and fan-out have increased/decreased
over time. Figure 4 presents the distribution of percentage of classes
with fan-in growth, fan-in decrease, fan-out growth, and fan-out
decrease, and Table 4 provides a descriptive analysis in terms of
percentiles of the boxplot in Figure 4. We separate the discussion
about the results regarding coupling growth and decrease.

Table 4: Descriptive Analysis of the Percentage Distribu-
tion of Classes within the Systems that Impact on Coupling
Growth/Decrease.

Event 0% 25% 50% 75% 100%
Fan-In Growth 3.00 8.00 8.50 12.75 23.00
Fan-Out Growth 5.00 6.50 11.50 17.50 27.00
Fan-In Decrease 1.00 2.25 3.00 3.75 4.00
Fan-Out Decrease 3.00 6.25 7.50 9.00 10.00

3.3.1 Classes Responsible for Coupling Growth. Figure 4 and Ta-
ble 4 show that the median of percentage of classes in the systems
responsible for “fan-in growth” and “fan-out growth” are 8.50% and
12.75%, respectively. The maximum percentages we have found

were 23% and 27% for fan-in and fan-out, respectively. Nevertheless,
it is important to highlight that 23% is as an outlier in Figure 4
because only one of the system in analyze presents this value.

The results for fan-in/fan-out coupling show that although they
have a growth pattern that is better described by a cubic-order
model, their growth are directly influenced by a small group of
classes that represents no more than 30% of the systems. We also
analyze how these classes are distribute over the systems versions
and we identify that, in 50% of the systems, more than 25% out
of the classes that contribute to both fan-in and fan-out growth
are classes introduced in the first version of the system and not
removed during their evolution.

3.3.2 Classes Responsible for Coupling Decrease. Observing the
results shown in Figure 4 and Table 4, we see that the median of
percentage of classes responsible for “fan-in decrease” and “fan-out
decrease” are 3% and 7.5%, respectively. The maximum percentages
are 4% and 10% for fan-in and fan-out, respectively. Therefore, this
result shows that there are a low percentage of classes, no more
than 10%, that impact on the coupling decrease. Besides, there is a
significant discrepancy between the results obtained for growth and
decrease coupling. We also analyze the distribution of the classes
that impact on the coupling decrease. Just as in coupling growth
analysis, we identify that in 50% of the systems, legacy classes
represent more than 25% out of the total of these classes.

3.3.3 Growth versus Decrease. Here, we perform an intersection of
the trend results for fan-in and fan-out to identify the percentage
of classes that have the following behaviors: (i) both fan-in and
fan-out growth, (ii) both fan-in and fan-out decrease, (iii) fan-in
growth and fan-out decrease, and (iv) fan-in decrease and fan-out
growth. Table 5, presents the percentages obtained for these cases.

Table 5: Intersection of the trend results for fan-in and fan-
out.

System i ii iii iv
Eclipse JDT Core 15% 1% 2% 1%
Eclipse PDE UI 4% 1% 1% 0%
Equinox Framework 3% 0% 1% 1%
Hibernate Core 1% 0% 0% 0%
JabRef 5% 0% 1% 1%
Lucene 2% 0% 1% 1%
Pentaho Console 1% 0% 1% 0%
PMD 3% 1% 0% 0%
Spring Framework 5% 1% 1% 1%
TV-Browser 10% 1% 1% 1%

The behavior of Case i have the highest chance to occur since
it has the maximum percentages, 15% and 10% respectively, and
present a greater percentage than the other cases in all systems.
Even though, when we analyze the distribution of the percentages
in the Case i , we notice that both 15% and 10% are outliers, and
the median and maximum values are 3.5% and 5%, respectively, by
disregarding these two outliers. So, in general, we observe a low
percentage of classes that follow the patterns being analyzed in
all cases. This result shows that most of the classes that directly
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Figure 3: Evolution of unnecessary and necessary coupling.
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Figure 4: Percentage distribution of classes within the sys-
tems that impact on coupling growth/decrease.

impact the coupling evolution do not tend to follow a combined
pattern in terms of growth and decrease of fan-in and fan-out.

Summary of RQ1.3. Coupling evolution is affected by a small
and specific group of classes in the systems. When we analyze the
distribution of these classes over the systems versions, we identify
a strong influence of legacy classes on the coupling growth and
decreased in 50% of the analyzed systems. We consider a legacy
class in this analysis as being the one that is introduced in the
first version of a system and it is not removed during its evolution.

Moreover, the growth/decrease of fan-in, and fan-out of the classes
that directly impact the coupling evolution are not associated.

4 COUPLING EVOLUTION PROPERTIES
This section compiles the observations of coupling evolution, and
synthesizes our results as properties of coupling evolution to answer
and detail the general research question (RQ1). In each property we
present a brief description about it. The eight coupling evolution
properties identified in this work are summarized as follows.

Growth pattern modeled by a cubic function. The growth
pattern of coupling evolution is better modeled by a cubic function
since it has a flexible curve that may identify the small variations
in the global time series of the systems.

Lehman’s 2nd and 6th laws are applied. The Lehman’s 2nd

and 6th laws indicate that the complexity tends to increase and
the quality tends to decline during the software evolution. When
we perform a quality analysis of the coupling evolution, these two
behaviors described by these laws are detected.

Unnecessary coupling is greater than necessary coupling.
Necessary coupling consists of high fan-in and low fan-out, whereas
unnecessary coupling consists of low fan-in and high fan-out. Com-
paring the rate of these two types of coupling over the evolution,
we notice that there is a big difference between them, with the
unnecessary coupling always greater than necessary coupling.

Fast unnecessary coupling growth and slownecessary cou-
pling growth.Comparing the unnecessary and necessary coupling
evolution, in the most of the systems the unnecessary coupling
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presents a rate that tends to grow up fast and the necessary cou-
pling shows a rate that tends to grow up slowly almost remaining
stable over the evolution of the systems.

Complexity is introduced into the first software version.
Coupling is divided as unnecessary and necessary, and while the
necessary coupling favors the reusability, the unnecessary cou-
pling favors the complexity [3, 4, 19, 24, 28]. We notice that in the
first systems version the unnecessary coupling rate is extremely
greater than the necessary coupling rate. Based on this analysis
and the quality indication pointed by the literature, we conclude
that complexity is introduced in systems since their initial version.

A small group of classes influences the coupling. There is
a small group of classes in a system that directly influences the
coupling growth and decrease, equivalent to no more than 30% and
10% of the total classes, respectively.

Legacy classes mainly contribute to the coupling evolu-
tion. Legacy classes are classes introduced in the first system ver-
sion that are not removed during its evolution. Analyzing the dis-
tribution of the classes that influence the coupling growth/decrease
over the systems versions, we identify a strong presence of legacy
classes on 50% of classes that make up the systems. Therefore,
we have extracted this property since classes with this role may
have a high probability of directly affecting the coupling growth or
decrease.

The evolution of fan-in and fan-out are not associated.We
do not identify pattern in terms of growth and decrease of fan-in
and fan-out for the classes that impact on the coupling evolution.
This means that the growth/decrease of fan-in is not related to the
growth/decrease of fan-out, i.e., when a class becomes more/less
dependent of other classes does not necessarily imply that the other
classes will demand more/less services from it.

5 THREATS TO VALIDITY
This section presents the main threats to validity according to the
guidelines proposed by Wohlin et al. [44].

Internal Validity. This kind of validity is concerned with the
risk of some factor to affect the investigation of a causal relation
between two variable of the experiment [44]. In our trend analysis,
we have used statistical tests for identifying trend in time series, and
finding the classes that directly affect the coupling growth/decrease
in the systems. The choice of the tests may be considered a threat
to validity since they are not able to ensure their results are error
free. To mitigate this threat, we evaluate each time series with three
different tests and determined the presence of trend if and only if it
is confirmed at least two out of three trend tests. Besides, the tests
used to check the existence of trends in time series are point out as
useful and reliable.

External Validity. This kind of validity is concerned with to
what extent it is possible to generalize the findings, and to what
extent they are of interest to other people outside the investigated
case [44]. We have presented an exploratory study regarding the
coupling evolution in open source Java systems. We have used
a dataset composed of time series from 10 relevant systems. Al-
though the obtained results provide relevant findings regarding the
coupling evolution, such observations and properties may not be

generalized to other system domains, such as proprietary software
and systems written in any language other than Java.

Construct Validity. This kind of validity is concerned with to
what extent the experiment setting reflects the theory that the
researcher has in mind [44]. To study the coupling evolution, we
chose some metrics that measure and quantify this aspect. However,
the choice of these metrics may be considered a threat to validity
since it may result in metrics that do not provide a good represen-
tation of the coupling. To mitigate it, we chose two well-known
and very used metrics, fan-in and fan-out, to measure the coupling.
Besides, fan-in and fan-out allow evaluating the coupling in two
viewpoints: input and output. Such a distinction of coupling is a
factor that differs them from the other coupling metrics that usually
measure the coupling considering these characteristics as only one.

During the trend analysis, we carry out a step where we re-
moved the “ghost” classes from our analysis because they produce
broken time series, which does not present values for some ob-
servations. This step may be considered a threat to validity, since
these classes may indicate relevant information about the coupling
growth/decrease trend. To mitigate it, we analyze them separately
to check if they have significant information. We identify that the
removal of the “ghost” classes does not bias our results since they
make up a small portion of the systems, no more than 2% of all
classes, and they have a random and inconclusive trend pattern.

Conclusion Validity. This kind of validity is concerned with
to what extent the data and analysis are dependent on the specific
research. When analyzing the coupling growth pattern, we have
used linear regression techniques to create models that describe
this pattern. Although linear regression is a method usually used
to define models, it may bias the results when the data are serially
dependent. Therefore, to mitigate this threat, after applying the
linear regression methods, we analyze the models residuals, and for
the cases that presented autocorrelation, we use an auto-regression
technique in their residuals to model their errors and remove the
presence of this autocorrelation.

To evaluate the quality of the models and identify the one that
better describes the behavior of the coupling growth pattern, we
use a statistical test to check if the differences between the deter-
mination coefficients of the models are significant. However, the
choice of the test may be considered a threat to validity since tests
with low statistical power may be chosen. Therefore, to mitigate
this threat, we use the Wilcoxon signed-rank test since it is well
known and usually used for other studies in the literature [23].

6 RELATEDWORK
This section provides an overview of some related work and dis-
cusses the main differences between them and our study.

Software evolution has been extensively studied in the last years.
One of the great landmarks in this topic was the creation of software
evolution laws in the ’70s by Lehman and contributors [26]. Since
then, several studies have studied the application of these laws to
open source systems. For instance, Godfrey and Tu [17] study the
Linux Kernel and some other systems and found that the Linux
has a continuous growth in a high rate and many open source
systems do not follow some Lehman’s laws. Lee et al. [24] analyze
the JFreeChart system, and identify that it follows the 1st , 2nd and
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6th laws, but the 7th law is not applicable in it because its quality
tends to better over time. Mens et al. [29] study the Lehman’s laws
in Eclipse evolution with support of number of errors, number of
removed/ added files, and number of changed files metrics. The
results indicate evidence of increasing complexity and continuous
growth, which complies with the 2nd and 6th laws, respectively.
Besides, they also identify a high occurrence of changes, which
shows that Eclipse also follows the 1st software evolution law.

Xie et al. [45] analyze the evolution of open source systems to
check if they obey the Lehman’s laws. They find that open source
systems follow some rules, such as: continuing change (1st ), in-
creasing complexity (2nd ), self-regulation (3rd ), and continuing
growth (6th ). They also realize that most of the modifications occur
in a small portion of source code, and changes usually occur in
the initial phases of the software evolution. Israeli and Feitelson
[21] evaluate the Linux kernel to check if its evolution reflects the
Lehman’s laws. They conclude that most laws occur, but the com-
plexity decreases over time when several small functions are added
in the software. Oliveira et al. [35] study a software product line
(SPL) to understand its evolution. They find that the 4th Lehman’s
law is completely supported and the 5th and 6th Lehman’s laws
are partially supported by SPL.

Besides the Lehman’s laws, software evolution has been studied
under the growth aspect. Herraiz et al. [20] characterize the growth
evolution of open source systems by comparing the evolution of the
following metrics: source lines of code and number of modules/files.
They find that these two metrics follow the same behavior over
time, and the patterns that are not conforming to Lehman’s law
are indeed apparent. Koch [23] analyze the evolution of many open
source systems to understand how they evolve and describe their
evolutionary behavior, and find that the growth rate of open source
systems is linear or decrease over time, but there is a significant
percentage of projects that have a super-linear growth. He also
identifies that systems with super linear growth are impacted by
the number of participants and inequality in the distribution of
work within the development team. Adnan [2] studies an open
source Java system to characterize it in terms of size of methods
and size of classes. He notes that the system has a sub-linear growth
pattern, and its evolution is explained by some of Lehman’s laws,
especially the 1st law.

Some studies in the literature have characterized the software
evolution by analyzing the internal structure of the systems. Fer-
reira et al. [15] analyze the software evolution by applying complex
networks concepts and find that the connectivity decreases as the
software grow, and classes that provide services for many other
classes are unstable and their cohesion degrade over time. Besides,
they provide a macroscopic model of the software structure that
they named as Little House. In a latter study, Ferreira et al. [16]
model and characterize the internal structure of 13 object-oriented
programs using the Little House model. They find that classes that
fit in the LSCC and Out components of this model are more critical,
and they tend to suffer substantial degradation during their evolu-
tion. Trindade et al. [43] investigate the evolution and growth of
the internal structure from object-oriented systems, and find that
their architecture follows an evolution pattern. They analyze this
pattern and define a stochastic model that explains this evolution

pattern. Ostrand et al. [37] develop a statistical prediction model
based on history information from a large industrial inventory con-
trol system to predict faults occurrence in software. They evaluate
the accuracy of this model for two different systems and identify
that it correctly predicts 73% and 74% of the faults existing in these
two systems. Hamill and Goseva-Popstojanova [18] study faults
and failures data to identify where the faults that lead to software
failures are localized into the software, and how the type of software
failures are distributed in the software. They consider failures as
being cases where the software does not behave like it is required,
and faults as being accidental conditions in the software operation
that may the software to fail. They find that failures are caused by
multiple faults spread throughout the system. Besides, requirements
faults, coding faults, and data problems are the most common types
of faults that occur in software, and the majority them occur in a
small portion of the system. Couto et al. [8] analyze the evolution
of defects and software metrics in open source Java systems, and
propose a defect prediction approach to warn programmers about
the probability of defects occurrence. Yang et al. [46] investigate
the predictive power of unsupervised models in just-in-time defect
prediction, and compare their power with supervised models. They
identify that unsupervised models have a good predictive effective-
ness and many simple unsupervised models perform better than
supervised defect prediction models existing in the literature.

Our work presents an exploratory study on coupling evolution
in Java systems. We have analyzed how the coupling behaves dur-
ing its evolution, how this behavior affects the systems quality,
and what is the percentage of the system that directly impacts on
the coupling evolution behavior. Most of previous studies have
investigated if the Lehman’s laws apply to evolution certain soft-
ware [17, 21, 24, 29, 35, 45]. The present study differs from them
because we do not aim to analyze the applicability of Lehman’s
laws, but how the coupling evolves. Besides, other studies have ex-
amined the software growth evolution, characterized the evolution
of the internal structure of systems, and propose prediction defect
models [2, 8, 15, 16, 18, 20, 23, 37, 43, 46]. Our study differs from
them because we analyze the evolution of the complexity instead of
growth, we use different metrics, and we evaluate how the coupling
evolution impacts the quality instead of internal structure.

7 CONCLUSION
This paper presents an exploratory study on coupling evolution
in Java systems. Our main goals are: (i) analyze how the coupling
behaves during the systems evolution and how they may be ex-
plained, (ii) evaluate how the evolution of coupling behavior affects
the systems reusability and complexity, and (iii) identify what is the
part of the systems that directly impacts on the coupling behavior.

In this study, we use a dataset composed of time series from
softwaremetrics regarding 10 open source Java systems. To quantify
the coupling, we analyze time series from fan-in and fan-out metrics
because they characterize the coupling in two aspects, input and
output of a module, respectively. To achieve our goal, we propose a
method composed of two phases. At first, we normalize the data to
create time series that represents the global coupling of the systems,
and apply linear regression methods to identify which model better
explains the coupling evolution behavior in open source systems.
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After that, we analyze the times series from the systems classes
to identify the ones that directly impact on coupling growth or
decrease in the systems.

The results and analysis we perform in this study are compiled in
eight properties that describe and summarize the coupling evolution
in Java system. Among these properties, those that stand out are: (i)
the coupling growth pattern is better modeled by a cubic function,
(ii) the coupling evolution tends to increase the systems complexity,
respecting the 2nd and 6th Lehman’s laws, (iii) systems tend to
be designed with a high level of complexity, and (iv) the coupling
behavior is affected by a small group of classes, which in general
represent no more than 30% of the system classes that influence
the coupling growth and no more than 10% of the system classes
that influence the coupling decrease. The findings of this work are
valuable to the literature on software evolution because they report
and detail eight different properties that occurs during the coupling
evolution process in open source software. Besides, these properties
may serve as a background and object of study to practitioners and
researchers in the proposal of techniques and methods that improve
the interval quality of the systems during their evolution.

As future work we intend to (i) define a global model to predict
how the coupling evolves, (ii) replicate this study for other software
aspects and metrics, and (iii) investigate how the evolution of the
metrics occurs considering the system from different domains.
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