
A Time Series-Based Dataset of Open-Source Software Evolution
Bruno L. Sousa

Department of Computer Science - UFMG

Belo Horizonte, Minas Gerais, Brazil

bruno.luan.sousa@dcc.ufmg.br

Mariza A. S. Bigonha

Department of Computer Science - UFMG

Belo Horizonte, Minas Gerais, Brazil

mariza@dcc.ufmg.br

Kecia A. M. Ferreira

Department of Computing - CEFET-MG

Belo Horizonte, Minas Gerais, Brazil

kecia@cefetmg.br

Glaura C. Franco

Department of Statistics - UFMG

Belo Horizonte, Minas Gerais, Brazil

glaura@est.ufmg.br

ABSTRACT
Software evolution is the process of developing, maintaining, and

updating software systems. It is known that the software systems

tend to increase their complexity and size over their evolution to

meet the demands required by the users. Due to this fact, researchers

have increasingly carried out studies on software evolution to un-

derstand the systems’ evolution pattern and propose techniques to

overcome inherent problems in software evolution. Many of these

works collect data but do not make them publicly available. Many

datasets on software evolution are outdated, and/or are small, and

some of them do not provide time series from software metrics. We

propose an extensive software evolution dataset with temporal in-

formation about open-source Java systems. To build this dataset, we

proposed a methodology of four steps: selecting the systems using

a criterion, extracting and measuring their releases, and generating

their time series. Our dataset contains time series of 46 software

metrics extracted from 46 open-source Java systems, and we make

it publicly available.
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1 INTRODUCTION
Software evolution consists of developing, maintaining, and up-

dating software systems [27]. This process allows the systems to
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adapt to the several demands and become more robust in terms

of functionality. Lehman et al. [28] pointed out that as a software

system evolves, it increases in growth and complexity, whereas its

internal quality declines.

Many studies have investigated how the process of software

evolution occurs [1, 2, 4–8, 11, 13, 16–18, 21–26, 30, 31, 33, 35, 37],

but there is a lack of software evolution data to be analyzed. Some

works have made efforts in providing datasets and making them

public [10, 14, 19, 29, 36, 38]. Nevertheless, they are not too large,

are outdated, or do not provide time series about software metrics.

This work builds a comprehensive software evolution dataset

containing temporal data of open-source Java systems. We defined

a methodology composed of four steps. First, we determined a

selection process with requirements for selecting a system. Second,

we built an approach to make releases from the software systems.

Third, we extracted static software metrics for the systems’ releases.

Fourth, we generated the time series of the metrics values. We

used GitHub
1
to collect the data of the software systems. We have

applied this dataset to a study to model the software evolution

process. In this work, we present the dataset and make it available

so that other studies on software evolution may use it.

2 CONSTRUCTION OF THE DATASET
This section describes the steps we followed to build the dataset.

Figure 1 presents an overview of these four steps.

Step 1 - Selecting the Subject Systems.We identified systems

using a selection criterion composed of two phases. First, we se-

lected nine systems from COMETS [10]. We included them because

COMETS is an important time series dataset and contains relevant

systems. However, it was created in 2010 and is outdated. Second,

we based on the information provided by GitHub to define the

characteristics a system should have to be selected. Therefore, we

considered the following aspects to select a software system:

1. Programming Language: the system needs to be devel-

oped in Java. We concentrated on Java because it is a pro-

gramming language widely used in software engineering

empirical studies and is highly popular among developers.

2. Popularity: this requirement ensures the selection of popu-

lar software systems.We considered here the number of stars

from the projects in GitHub to characterize their popularity.

The higher the number of stars the higher its popularity.

1
https://github.com/

https://orcid.org/0000-0002-8217-3524
https://doi.org/10.1145/3524842.3528492
https://doi.org/10.1145/3524842.3528492
https://github.com/


MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Sousa, et al.

COMETS Systems

Selection Criteria

Systems selected 
in phase 1

Systems selected 
in phase 2

Systems selected 
in phases 1 and 2

Releases of 
the System 1

Releases of 
the System 2

Releases of 
the System n System 1 System 2 System n

CK tool

Metric files of 
the System 1

Metric files of 
the System 2

Metric files of 
the System n

System 1 System 2 System n

Time series 
script

System 1

System 2

System n

Time series

Selecting Releasing Measuring the systems’ releases Generating time series

Dataset

1 2 3 4

5

Figure 1: Dataset creation process

Therefore, we considered the software systems with the

highest number of stars.

3. Activity: the system must have at least 5,000 commits. We

defined 5,000 as the minimum limit of commits for a system

because this was the lower value identified in the software

systems selected in the first phase.

4. Lifetime: to include a system in the dataset, it must have at

least five years.

5. Not be deprecated: the year of the last commit in the project

should be 2020. This requirement avoids selecting systems

which have been abandoned by the developer community.

We implemented a Python script using a REST API provided

by GitHub applying the criteria defined to select the systems. We

obtained 46 software systems. Nine of them belong to COMETS,

and 37 were selected in the second phase. It is essential to highlight

that TV-Browser considered in COMETS was discontinued in 2013.

Therefore, as it is not updated, we did not consider it.

Step 2 - Extracting the Software Systems’ Releases. We car-

ried out a process to extract the systems’ source code in a versioned

way. We based on information provided by GitHub about the whole

lifetime of the software systems and defined an interval to delineate

a release. We formalized a release as source code information of

software regarding bi-weeks, i.e., 14 days.

We implemented a script in Python. We used Python because

it works efficiently with a large quantity of data, and it provides a

library that deals directly with the REST API provided by GitHub.

The library we used is named PyGitHub.
2

To get the released source code of the systems, we defined the

following approach. We identify the repository of a particular sys-

tem on GitHub by providing the complete name of this repository

for our approach. It is essential to highlight that the full name of

the repository is always composed of a user’s name followed by

a bar (“/”) and the name of the system repository. For instance, if

we want to access the Eclipse JDT CORE repository, we need to

inform “eclipse/eclipse.jdt.core” to the script. Observe that “eclipse”

is the owner user’s name of this repository, and “eclipse.jdt.core” is

the name of the system repository we want to access.

Our script creates a folder using the project’s name and clones the

repository inside its respective folder. With support of PyGitHub,

2
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our script analyzes the data and extracts its release list considering

the timeframe of the life of the project on GitHub. At this moment,

the releases list of the project is only a sequence of bi-week periods

that indicates the beginning and end of each release. The script

downloads the source code of each release, considering the last

commit from the bi-week interval, inside the project’s folder con-

sidering its release list, creates a sub-folder for each release, and

stores the respective source code inside this sub-folder.

Step 3 - Collecting Metrics. We computed static metrics of

the releases of the 46 selected systems. We collected a total of 46

software metrics that characterize several aspects of the software,

such as size, cohesion, inheritance hierarchy, coupling, complexity,

and others. To compute the set of metrics, we used a tool named

CK tool. CK tool is an open-source tool hosted on GitHub that

computes a broad set of code metrics for Java projects at class-

level, method-level, and variable-level [3]. We decided to use it due

to its ease of installation, good documentation, and completeness

regarding the number of software metrics. Although the CK tool

allows to extract metrics at method-level and variable-level, we

decided to compute only the class-level metrics for our dataset,

which already consists of a large quantity of information about the

software systems. CK tool exports the metrics values in CSV files.

Step 4 - Generating Time Series.We considered the same pat-

tern defined in [10, 12] for generating the time series. This pattern

consists of defining CSV files for each metric M and each system S,
where the lines represent the classes of S, the columns represent

the versions, and each cell (c,r) consists of the metric value of class

c in the release r. Then, each generated CSV contains time series of

classes regarding a given metric in a specific system. We considered

only classes that refer to the systems’ core functionality to extract

the time series. Then, we discarded “test” classes because they do

not have this characteristic and may statistically invalidate the in-

formation provided by this dataset for future prediction studies.

To remove these classes, we filtered the classes considering their

directory when generating their time series. We did not generate

time series from classes kept in a directory that started with “test”,

or from directories that had “test” as part of its complete name.

Table 1 presents the 46 open-source Java systems that compose

our dataset. We make the dataset publicly available and provide

additional information about it on our supplementary website [34].

https://pygithub.readthedocs.io/en/latest/index.html
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We also make the scripts used to construct the dataset publicly

available as supplementary material.
3

3 RELATEDWORK
The literature has produced datasets for supporting studies on

software evolution. Some of them are publicly available [10, 14, 36,

38] whereas others are not [15, 20, 24, 32, 33]. This section provides

an overview of these two kind of studies and discusses how our

study differs from the related works.

Public datasets. Aiming to support empirical studies on soft-

ware evolution and evaluate bug prediction models, D’Ambros et al.

[14] proposed a benchmark containing data of defects in software

systems over their lifetime. The D’Ambros dataset comprises time

series metrics values of five open-source Java systems. Vasa et al.

[38] also proposed a dataset that provides temporal information

on source code static metrics’ values. It comprises 40 open-source

Java systems and contains time series information on many soft-

ware metrics. However, this dataset did not include several relevant

software metrics, such as CK metrics [9] and coupling. Tempero

et al. [36] built a corpus composed of 111 software systems for

supporting empirical studies on software engineering, named Qual-

itas Corpus, containing evolution data of 14 systems and did not

represent these data as time series. Couto et al. [10] proposed a

dataset named COMETS, composed of time series of 17 well-known

software metrics data of defects existing in 10 Java software sys-

tems. Although these datasets contain software metrics data, they

were created years ago and are outdated. Gousios [19] constructed

a public dataset named GHTorrent, which contains information

about many open source systems. It contains the main information

about a software system from GitHub, such as repository name,

commits, pull request, essential for extracting insights about the

software systems. However, it does not provide time series from

the software systems. Ma et al. [29] proposed World of Code (WoC),

a public dataset containing information about 1.6 billion of com-

mits made by authors of repositories from GitHub. This dataset has

versioned data about the software. However, it does not provide

time series regarding metrics of the source code from the systems.

Not publicly datasets. Robles et al. [33] studied how open-

source software systems evolve from the perspective of size. For

this purpose, they created a dataset containing time series from

size metrics of 20 relevant software systems. Herraiz et al. [24]

investigated how software systems evolve in size from different

perspectives. They built a dataset composed of time series regarding

size software metrics. Their dataset contains temporal information

of 13 open-source software systems. Raja et al. [32] carried out

their dataset with time series regarding defects in software. Their

purpose was to analyze how defects evolve in open-source systems.

The proposed dataset comprises eight open-source Java systems and

contains only information about defects. They spaced out the time

series considering 30 days as the release interval. Darcy et al. [15]

carried out an empirical study to identify the pattern that open-

source software systems follow over time. They built a dataset

composed of 108 software systems to perform this analysis. Their

dataset contains temporal information of size and complexity met-

rics, which was not publicly available. Grigorio et al. [20] studied

3
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the relationship between complexity metrics and the abandonment

of open-source systems. For this purpose, they created a dataset

composed of 10 open-source systems and provided time series of

complexity metrics. Each observation present in their dataset refers

to a release defined by the project owners in SourceForge.
4

This paper proposes a software evolution dataset composed of

46 relevant open-source Java systems hosted in GitHub. Our dataset

contains time series of 46 static metrics for each software system

included in it. Even though several studies proposed software evo-

lution dataset, not all of them are available to be used in further

empirical studies [15, 20, 24, 32, 33]. Although there are some of

them made public [10, 14, 19, 29, 36, 38], they do not contain soft-

ware metrics data and/or are outdated. Our present work differs

from the studies described above because our dataset (i) is public,

(ii) contains recent information on system evolution, (iii) provides

software metrics time series, and (iv) to the best of our knowledge,

it is the largest dataset of metrics time series, both in number of

software metrics and software systems.

4 THREATS TO VALIDITY
This section presents the threats to the validity of this work and

discusses the major decisions we made to mitigate them.

We defined a selection criterion and considered data from 46

open-source Java systems hosted on GitHub to build our time series

dataset. As GitHub is a large control version platform with many

software systems, our dataset may be considered limited to the num-

ber of systems. However, collecting time series from open-source

Java systems requires a considerable effort. Besides, no other public

time series dataset as extensive as the one we propose is public

available. Therefore, our dataset can be advantageous to researchers

and practitioners to carry out software evolution studies.

To carry out the data collection, we used tools and scripts. We

used CK Tool [3] to extract the metrics’ values from the systems’

releases, and we also built Python scripts to release the source

code of the systems and generate the time series. Although tools

automate and facilitate the data collection process, they configure

a threat to validity since tools may have errors. We decided to use a

tool well evaluated and tested to mitigate this threat. We also made

some manual checks in the results exported by CK Tool and the

Python scripts to ensure that they produced results as expected.

5 CONCLUSION
This study provides a comprehensive software evolution dataset

with temporal information of 46 static software metrics of 46 open-

source Java systems. We defined a methodology composed of four

steps to build the dataset reported in this work. First, we determined

the aspects we consider relevant to choose the systems. Second, we

made the releases from the source code of the systems. Third, we

collected the static metrics from the releases. Finally, we generated

the time series in the fourth step.

Although some literature efforts aim to provide data to support

software evolution studies [10, 14, 19, 29, 36, 38], the datasets built

so far do not encompass many systems or time series, and some of

them are outdated. The dataset created in this work fills this gap

4
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Table 1: Overview of the software systems included in the dataset.

ID System Name Repository on GitHub # of Versions Timeframe
1 Alluxio Alluxio/alluxio 64 2018-04-24 – 2020-12-08

2 Antlr4 antlr/antlr4 264 2010-01-28 – 2020-11-30

3 Arduino arduino/Arduino 372 2005-08-25 – 2020-12-03

4 Bazel bazelbuild/bazel 141 2015-02-25 – 2020-12-09

5 Bisq bisq-network/bisq 162 2014-04-11 – 2020-12-04

6 Buck facebook/buck 184 2013-04-18 – 2020-11-06

7 CAS apereo/cas 252 2010-07-22 – 2020-11-25

8 CoreNLP stanfordnlp/CoreNLP 180 2013-06-27 – 2020-11-16

9 Dbeaver dbeaver/dbeaver 199 2012-10-03 – 2020-12-04

10 Dropwizard dropwizard/dropwizard 223 2011-10-07 – 2020-12-02

11 Druid alibaba/druid 232 2011-05-11 – 2020-11-18

12 Eclipse JDT Core eclipse/eclipse.jdt.core 473 2001-06-05 – 2020-11-06

13 Eclipse PDE UI eclipse/eclipse.pde.ui 474 2001-05-24 – 2020-11-09

14 Elasticsearch elastic/elasticsearch 262 2010-02-08 – 2020-11-11

15 Equinox Framework eclipse/rt.equinox.framework 414 2003-11-25 – 2020-11-24

16 FrameworkBenchmarks TechEmpower/FrameworkBenchmarks 187 2013-03-22 – 2020-11-24

17 Gocd gocd/gocd 162 2014-04-12 – 2020-12-05

18 Graylog Graylog2/graylog2-server 252 2010-07-31 – 2020-12-04

19 Guava google/guava 273 2009-09-01 – 2020-11-16

20 Hibernate Orm hibernate/hibernate-orm 326 2007-06-29 – 2020-11-16

21 J2ObjC google/j2objc 201 2012-09-05 – 2020-12-06

22 Jabref JabRef/jabref 418 2003-10-14 – 2020-12-12

23 Jenkins jenkinsci/jenkins 342 2006-11-05 – 2020-11-20

24 Jitsi jitsi/jitsi 371 2005-07-21 – 2020-10-14

25 JMeter apache/jmeter 86 2017-05-26 – 2020-12-05

26 JUnit 5 junit-team/junit5 125 2015-10-17 – 2020-12-03

27 K-9 Mail k9mail/k-9 293 2008-10-28 – 2020-11-08

28 Kafka apache/kafka 227 2011-08-01 – 2020-11-25

29 LanguageTool languagetool-org/languagetool 73 2017-12-16 – 2020-12-14

30 Lucene apache/lucene-solr 259 2010-03-28 – 2020-11-14

31 MinecraftForge MinecraftForge/MinecraftForge 229 2011-07-12 – 2020-12-05

32 Neo4j neo4j/neo4j 329 2007-05-24 – 2020-11-25

33 Netty netty/netty 299 2008-08-08 – 2020-11-17

34 OpenRefine OpenRefine/OpenRefine 258 2010-04-26 – 2020-11-28

35 OrientDB orientechnologies/orientdb 260 2010-03-29 – 2020-11-30

36 Pentaho Kettle pentaho/pentaho-kettle 329 2007-05-16 – 2020-11-17

37 Pentaho Platform pentaho/pentaho-platform 223 2011-09-21 – 2020-11-16

38 Pinpoint pinpoint-apm/pinpoint 153 2014-08-23 – 2020-12-03

39 PMD pmd/pmd 449 2002-06-21 – 2020-11-27

40 Realm Java realm/realm-java 210 2012-04-20 – 2020-12-03

41 RxJava ReactiveX/RxJava 192 2012-12-28 – 2020-11-15

42 Spring Boot spring-projects/spring-boot 185 2013-04-19 – 2020-11-22

43 Spring Framework spring-projects/spring-framework 294 2008-10-23 – 2020-11-18

44 Spring Security spring-projects/spring-security 407 2004-03-16 – 2020-12-01

45 Tomcat apache/tomcat 358 2006-03-27 – 2020-12-07

46 Tutorials eugenp/tutorials 184 2013-04-29 – 2020-11-17

because it contains many systems and software metrics, provides

time series, and contains recent information about the systems.

Future work may (i) maintain the dataset by incorporating new

open-source Java systems; (ii) extend the dataset by including evo-

lution dataset regarding software developed in other programming

languages; (iii) create a specific dataset with software evolution

data regarding proprietary systems; and (iv) apply the dataset in

empirical studies on software evolution based on software metrics.
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