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ABSTRACT
Mining software repositories has been the basis of many studies
on software engineering. Many of these works rely on commits’
data extracted since commit is the basic unit of information about
activities performed on the projects. However, not knowing the
characteristics of commits may introduce biases and threats in
studies that consider commits’ data. Thiswork presents an empirical
study to characterize commits in terms of four aspects: the size
of commits in the total number of files; the size of commits in
the number of source-code files, the size of commits by category;
and the time interval of commits performed by contributors. We
analyzed 1M commits from the 24 most popular and active Java-
based projects hosted on GitHub. The main findings of this work
show that: the size of commits follows a heavy-tailed distribution;
most commits involve one to 10 files; most commits affect one to
four source-code files; the commits involving hundreds of files not
only refer to merge or management activities; the distribution of
the time intervals is approximately a Normal distribution, i.e., the
distribution tends to be symmetric, and the mean is representative;
in the average, a developer proceed a commit every eight hours.
The results of this study should be considered by researchers in
empirical works to avoid biases when analyzing commits’ data.
Besides, the results provide information that practitioners may
apply to improve the management and the planning of software
activities.
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1 INTRODUCTION
Several works have mined data from GitHub to investigate many
subjects, such as code authorship, failure prediction, software evolu-
tion, and change impact analysis. Many of these works are based on
quantitative and qualitative commits’ data extracted from software
systems repositories since commit is the basic unit of information
about activities performed on the projects [18]. An important ex-
ample is the case of the studies on co-change and changes impact
analysis, which is based on commits’ data. Several studies consider
files registered in the same commit as a unit of co-change, i.e., they
assume that if a set of files changed in the same commit, they are
related [9, 13, 16, 19]. However, such an assumption may introduce
biases in the studies if it does not consider the so-called tangled
changes problem, i.e., non-related changes registered in the same
commit transaction [7]. In this study, it is important to know, for in-
stance, the types of activities each commit involves and the number
of commits involving more than one type of activity.

Besides, knowing the commits’ characteristics may reveal pat-
terns of activities performed in the repositories and then may aid
practitioners in planning tasks on software maintenance. Given this
scenario, developing research related to the structure of commits is
essential to increase the accuracy of studies that use GitHub as a
data source. Some characteristics have been investigated regarding
commit practices in GitHub, such as the number of files per commit,
frequency of commits, and others [2–4, 11, 15, 17].

In our previous work, we characterized commits in GitHub repos-
itories regarding categories of activities performed in the commits
and co-occurrences of activities in commits [8]. In this paper, we
aim to characterize commits according to four aspects: the size of
commits in the total number of files, the size of commits in the
number of source-code files; the size of commits by category; and
the time interval of commits performed by contributors.

We concentrate our analysis on a single programming language
to avoid biases since the maintenance activities might differ ac-
cording to the language. We chose to focus on Java because many
empirical studies usually consider Java in their analysis. We an-
alyzed 1M commits from 24 most popular and active Java-based
projects hosted on GitHub.

Specifically, this work aims to answer the following research
questions:

https://doi.org/10.1145/3571473.3571508
https://doi.org/10.1145/3571473.3571508
https://doi.org/10.1145/3571473.3571508
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RQ1.What is the size of commits in software system reposito-
ries? This question investigates the developers’ behavior regarding
the number of files they use to commit together. Such a result may
guide establishing the granularity of commits when carrying out
research using commit data. For instance, in research investigating
co-changes, the files changed together in a commit may be con-
sidered a co-change instance. However, the number of commits
involving many files may bias the research results.

RQ2. What is the size of commits involving only .java files
in software system repositories? In RQ3, we consider all types
of files in the commits. In RQ4, we aim to analyze only source-code
files. As we focus on Java-based software systems, we considered
Java source-code files to answer this research question.

RQ3. What is the size of commits according to their aims?
We analyze the number of files that usually are involved in the
different activities, such as reengineering, managing, Corrective
maintenance, and Forward maintenance. Answering this RQ will
bring insights into the proportion of each type of activity performed
along the software systems’ life cycle.

RQ4.What is the time interval a developer registers a commit
in a repository? We analyze the interval of time the contributors
usually perform commits in a repository. The results of this analysis
may aid studies that define heuristics to co-change and change
impact analysis.

We organized this paper as follows. Section 2 presents the study
design and the creation of the dataset used in this work. Section 3
brings the results of the study and Section Section 4 discusses them.
Section 5 describes the related work. Section 6 presents the threats
to validity and Section 7 brings the conclusion.

2 STUDY DESIGN
This section presents themethodwe applied to construct the dataset
analyzed in this work and the data extraction and commits catego-
rization process. The design of this study is basically the same we
applied in our previous work [8].

2.1 Dataset
As this work aims to characterize commits, we selected well-known
open-source software systems with a high number of commits. To
identify the corpus of systems to consider in this work, first, we
identified the 900 highest-rated Java repositories. We found many
repositories that do not contain source code among these projects.
Those repositories were mostly used as libraries - it contains books,
"how to", and similar files. Thus, we removed those repositories
and obtained 846 repositories of Java software. From these 846
repositories, we selected 24 open-source systems with the highest
number of commits to be the subject of this study. We restricted
the number of systems to 24 due to the long time it takes to collect
the data we analyzed in this study.

We developed a Python script using GraphQL API to mine
GitHub to retrieve the projects. The data returned by this API
contain the repositories’ name, owner, age in years, URL, commits,
forks, issues, and the number of stars. Java language was used as the
primary selection criteria to define the projects considered in the

analysis. We chose Java because studies on software engineering
commonly consider this language.

Table 1 shows the name, age, number of commits, and number of
stars of the systems analyzed in this study. The dataset comprises
mature and well-known systems aged between 3 and 11 years
and rated between 52K and 2,6K stars. All the systems have high
commits, varying from 22.9K to 92K. Besides, the dataset is diverse
in terms of application domains.

2.2 Data Extraction
The first step of the data extraction was to create a copy of all
the 24 systems’ repositories using the git clone command.1 We
developed a Python script using GitPython API to perform this
cloning process. The script collects all the commits’ information for
each repository: author, date, description message, and the modified
files, and export all the data to a .csv file.2

In our analysis, we considered data of the first-parent line. We
support our decision by the findings of Kovalenko et al.’s study
[14]. The results of their study show that considering complete file
histories, i.e., including branches, may modestly increase the per-
formance of reviewer recommendation, change recommendation,
and defect prediction techniques. On the other hand, collecting the
entire file history demands extra effort, e.g., the time to collect the
data may be exorbitant. Therefore, the increase in performance
may not justify such an effort.

2.3 Commits Categories
This work analyzes the main activities registered in the system’s
commits to answer the request question RQ3. For this purpose, we
classified each commit into six categories:

• Merge: specific GitHub activities of merge and pull requests.
• Corrective Engineering: changes performed in the code to
correct bugs, errors, or defects.

• Forward Engineering: inclusion of new features or require-
ments.

• Reengineering: changes performed in the code to enhance
its quality.

• Management: activities not related to codification, such as
documentation.

• Other: when the commit does not match any of the five
categories.

We used the same set of categories proposed by Hattori and
Lanza [11] and included a new one: Merge. In Hattori and Lanza’s
work, “merge” was a keyword of the Management category. We
consideredMerge a particular category because a merge is a specific
activity that differs from the other management activities in GitHub.
Unlike Hattori and Lanza’s approach, we do not use a hierarchy to
set only one category for a commit, i.e., in our approach, a commit
may be classified in more than one category. We did that to cover
the cases in which a developer proceeds a commit corresponding
to more than one activity type, e.g., Corrective Engineering and
Reengineering. This type of commit is called tangled commit [6].

1We cloned all repositories in January 2021.
2The data was exported as a .csv file and is available at https://figshare.com/s/
fab86b2522ded083f81c

https://figshare.com/s/fab86b2522ded083f81c
https://figshare.com/s/fab86b2522ded083f81c
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System Age #Commits #Stars
ballerina-lang/ballerina-platform 3 96,121 2,644
neo4j/neo4j 8 69,702 8,315
jdk/openjdk 2 62,947 6,553
elasticsearch/elastic 10 57,414 52,228
camel/apache 11 50,138 3,489
graal/oracle 4 53,665 13,950
languagetool/languagetool-org 7 46,224 4,114
vespa/vespa-engine 4 46,403 3,363
lucene-solr/apache 4 34,703 3,863
rstudio/rstudio 9 34,292 3,423
alluxio/Alluxio 7 31,587 4,805
hazelcast/hazelcast 8 30,936 4,033
jenkins/jenkinsci 9 31,136 16,463
sonarqube/SonarSource 9 30,480 5,272
beam/apache 4 30,519 4,362
spring-boot/spring-projects 8 30,671 51,678
bazel/bazelbuild 6 28,662 15,673
shardingsphere/apache 4 28,457 12,387
ignite/apache 5 27,401 3,518
selenium/SeleniumHQ 7 26,432 19,074
cassandra/apache 11 25,994 6,278
flink/apache 6 25,543 14,626
hadoop/apache 6 24,584 11,041
tomcat/apache 9 22,909 4,984
Table 1: Dataset systems sorted by number of commits.

Similar to other works [3, 11], our approach to categorizing a
commit is based on the analysis of keywords extracted from the
commit’s messages. We chose to analyze the messages because
it presents a complete description of the commits’ activities. We
developed a Python script to identify the commits’ activity cate-
gories using the flashtext API. Given the vast number of commits
(≈ 1𝑀), we used this API because its performance is better than the
search using regex. The flashtext API counts an instance of a word
only if there is an exact match in the text with the word. Therefore,
it was necessary to build a dictionary containing the keywords
corresponding to the commits’ categories we considered and their
variations, e.g., add, addition, adding, added, and adds. We started
the construction of the dictionary having as basis the keywords
used by Hattori and Lanza [11]. Then, we ran the classification
and manually inspected the results considering a set of randomly
selected ≈ 500 commit messages. We included new keywords ex-
tracted from the commits’ messages in the dictionary based on the
manual inspection. We executed such a process iteratively until
we found a correct classification of the set of commits selected for
manual inspection. Table 2 exhibits the final primary keywords
set. It is worthwhile to note that the complete dictionary contains
variations of these words.

To assess the approach used to classify the commits’ activities,
we calculated the precision and the recall considering a random
sample containing 500 commits. In this evaluation, we manually
analyzed each commit and tagged each categorization result as:

• True positive (TP): when the script indicates that a commit
belongs to a category and this categorization is correct;

Category Keywords

Merge merge, pull request

Corrective bug, fix, correct, miss, proper, broken, corrupted, failure,
fault, deprecate, throw/catch exception, crash, typo

Forward
implement, add, request, new, test, increase, expansion,
include, initial, create, introduce, launch, define, determine,
support, extend, set

Reengineering

parallelize, optimization, adjust, update, delete, remove,
expunge, cut off, refactor, replace, modification, improve,
is/are now, change, rename, eliminate, duplicate, obsolete,
enhance, restructure, alter, rearrange, withdraw, conversion,
revision, simplify, move, relocate, downgrade, exclude, reuse,
revert, extract, reset, redefine, edit, readd, revamp, decouple

Management

clear, license, release, structure, integration, copyright,
documentation, manual, Javadoc, migrate, review, polish,
upgrade, style, standardization, TODO, migration, organization,
normalize, configure, ensure, resolve conflict, bump, dump,
comment, format code, do not use

Table 2: Primary keywords used to identify the activity cate-
gory of commits.

• False Positive (FP): when the script shows that a commit
belongs to a category and this categorization is wrong; and

• True Negative (TN): when the script indicates that a commit
does not belong to a category and this result is right.

Precision is given by TP/(TP+FP) and indicates how many posi-
tive classifications are correct. As shown in Table 3, all categories
showed precision above 52%. Merge is the category with the high-
est precision (96%). A Recall is given by TP/(TP+FN) and indicates
how many situations the script should detect as true positives were
correctly detected. The results show that the categorization’s recall
reaches 99%.

Precision Recall

Merge 0,96 0,99
Bug 0,78 0,98
Reengeneering 0,84 0,79
Foward 0,59 0,93
Management 0,52 0,77
Others 0,74 0,70

Table 3: Categorization Results: Precision and Recall

3 RESULTS
This section presents the results of our study by answering the
research questions.

RQ1. What is the size of commits in software
system repositories?
The first step in answering this research question was to analyze
the data distribution. Therefore, we calculated the number of files
changed by each commit. Figure 1 shows the results, where a box-
plot represents the distributions of the number of files per commit
for each system. We marked the distributions’ median as red dots
in the boxplots.

The result presents some standard behaviors. All systems, ob-
serving the boxplots’ shapes, show a long tail distribution because
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a high concentration of commits involves few files. The boxes are
placed at the chart bottom. The extensive lines ranging from the
third quartile to the outliers indicate that commits registering a
higher number of changed files are atypical events, i.e., there are
few commits with this behavior. The median ranges from 1 to 3,
with two being the median in 58% of the systems. The boxes’ height
(i.g, the difference between the first and the third quartiles) is not
high and is very similar. They range from 1 to 3 in 41.67% of the
systems. From 4 to 6 in 41.67% of the systems, and from 7 to 9 in
16.67% as well. Table 4 presents the first quartile, the median, and
third quartile values.

We may take jdk as an example of the enormous data disparity
in the number of files per commit. In jdk, the 80th percentile is 14,
i.e., 80% of the commits register the modification of a maximum
of 14 files. In contrast, Table 4 shows a commit in this system that
modified 56K files. We detailed the analysis of the distributions’
tails to verify whether there is a pattern of developers committing
a high number of files in a single transaction. We consider outliers’
values greater than the upper outer fence, i.e., values higher than
𝑄3 + 3 ∗ 𝐼𝑄𝑅, where Q3 is the third quartile, and IQR is given by
3rd quartile - 1st quartile. Figure 2 shows the distribution’s outliers.
The outliers’ distribution is also heavy-tailed. We can see that by
observing the violin plots’ shape: the most significant part of the
plot is placed at the chart’s bottom, and as the y-axes increase, the
plots’ shape becomes thinner. There is a big difference between
the median values of the outliers. Unlike the distribution shown
in Figure 1, the medians vary between 56 and 198, and the values
contained in the interquartile are more dispersed.

Summary. In general, the total files per commit range between 1
and 10. Nevertheless, some commits modify a very high number of
files. Among the outliers, the medians vary between 56 and 198.

RQ2. What is the size of commits involving only
.java files in software system repositories?
To answer this research question, we carried out the same analysis
of RQ1; however, observing only Java source-code files, i.e., files
with the extension .java. Figure 3 exhibits the results. We observe
that the number of .java files committed in a single transaction also
has a long tail distribution. The medians range between 0 and 2. In
70.8% of the systems, the median is 1, 16.7% is 2, while 12.5% is 0.
In 66.5% of the analyzed systems, the first quartile is 0. The third
quartile has the main values of modified java files per commit: 4
files, 29.2% of the systems, and three files, 20.8% of systems.

We observed the same behavior found in the analysis of RQ1.
The results show that jdk also presents the most considerable dis-
parity between the number of .java files registered in a commit.
The system’s 80th percentile is 182, and the third quartile is 6.

Figure 4 shows the analysis of the distributions’ tail of the num-
ber of .java files modified in a commit. Among the outliers, the
median ranges from 25 to 104. In the same way as the previous
distributions’ plots, jdk system shows a particular behavior, with
the highest median value, 104, and higher dispersion. Such charac-
teristic is essential to be considered when performing studies about
this system.

Systems Q1 Median Q3 80th % Max Files

alluxio 1 1 4 5 2448
ballerina-lang 1 3 10 13 21405
bazel 1 2 5 6 2733
beam 1 2 4 6 7206
camel 1 2 4 5 17925
cassandra 1 2 4 5 645
elasticsearch 1 2 6 8 14916
flink 1 3 8 10 11013
graal 1 2 5 6 11103
hadoop 2 3 6 8 5194
hazelcast 1 2 6 8 8674
ignite 1 3 10 15 9971
jdk 1 2 9 14 56923
jenkins 1 1 3 5 8949
languagetool 1 1 2 2 1266
lucene-solr 1 2 5 6 5570
neo4j 1 2 7 9 10716
rstudio 1 2 4 5 4624
selenium 1 2 4 5 3619
shardingsphere 1 2 6 8 5259
sonarqube 1 3 7 9 9263
spring-boot 1 1 3 4 4616
tomcat 1 1 3 3 1157
vespa 1 2 6 8 18589
Table 4: Percentiles of number of files per commit, where, Q1
= 1st quartile, Q3 = 3rd quartile.

Summary. The number of .java files modified per commit follows
a heavy-tailed distribution. The systems generally have between
1 and 4 .java files modified per commit. Among the outliers, the
median ranges from 25 to 104.

RQ3. What is the size of commits according to
their aims?
To answer this research question, we calculated the number of files
modified by each commit category: Merge, Corrective Engineering,
Forward Engineering, and Management.

Figure 5 shows the results of alluxio. The median values are low
in the data distribution, ranging from 1 to 3 files. The other systems
presented a similar result, except jdk. Due to space limitations, we
do not show all graphics with the results of this research question
in this paper. However, we make them available online.3

Figure 6 shows the results of jdk. Reengineering, Forward Engi-
neering, Corrective Engineering, and Management have the same
distribution pattern, and the median value is 2. The merge category
presents a different result: it has the largest interquartile range:4 99

3https://figshare.com/s/ffd7b22c520abdc7129c
4Difference between the first and third quartiles. In jdk, there are, respectively, 1 and
100 files.

https://figshare.com/s/ffd7b22c520abdc7129c
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Figure 1: Distribution of files modified in commits.

Figure 2: Distribution of files modified in commits - upper outer fence outliers.
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Figure 3: Distribution of Java files modified in commits.

Figure 4: Distribution of Java files modified in commits - Upper outer fence outliers.
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Figure 5: Alluxio distribution of files modified in commits
grouped by category.
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Figure 6: JDK distribution of files modified in commits
grouped by category.

files. An important characteristic observed in jdk is that commits
that did not change files were categorized exclusively as merge.

Summary. The number of files modified in a commit does not
significantly differ regarding the activity type.

RQ4. What is the time interval a developer
registers a commit in a repository?
With this research question, we aim to investigate if developers
have a pattern of time to proceed with commits in the repositories.
To identify the contributor, we considered the field “author” of the
commit’s data retrieved from GitHub. For each project and each
contributor, we calculated the time intervals between the subse-
quent commits he/she performed in the repository. For example, if
a contributor performed three subsequent commits at 12 a.m., 13
a.m, and 13:20 a.m, such an activity will result in two-time intervals,
60 and 20 minutes, respectively. For each project contributor, we
computed the average time intervals he/she registered a commit

in the repository. For the easiness of calculation, we considered
seconds as a unit of time. We then analyzed the distribution of the
mean time intervals of commits in each project, considering all its
contributors. Figure 7 shows the box-plots of these distributions.

The analysis of these results indicates that the distributions are
approximately Normal distributions. This result indicates that the
mean value obtained in a given sample is representative, i.e., it
may be used to infer the population means. In this context, the
population corresponds to the time intervals computed for a given
project, and a sample corresponds to a subset of these time intervals.

The results also indicate that the means vary among the projects.
The lowest mean is of shardingsphere (986), whereas the highest one
is of jdk (162,225). Computing the average of the mean values of
the 24 projects, we find 27,903 seconds, which corresponds to 7.75
hours. This fact indicates that, on average, a developer proceeds a
commit every eight hours.

Summary. The time intervals between the developers’ commits fol-
low approximately a Normal distribution. On average, a developer
proceeds a commit every eight hours.

LESSONS LEARNED FROM OUR PREVIOUS
WORK
In our previouswork [8], we analyzed the characteristics of commits
in the following aspects: categories of activities performed in the
commits and co-occurrences of activities in the commits. As in
the present paper, we analyzed the size of commits by category of
activity. This section summarizes the main results of our previous
work for contextualization purposes.

The commits nature should be considered by the studies.
This study found that most commits register Reengineering activi-
ties, followed by Forward Engineering and Corrective Engineering.
A possible explanation for this characteristic is that as open-source
software projects are developed collectively, it may demand refac-
toring the system more often. Besides, as the systems are publicly
available, their users may continuously report defects and failures
in the systems. This result indicates the need to properly select
the commits in studies on refactoring and faults in software since
Reengineering commits correspond to only 32.97% and Corrective
Engineering to 25% of the commits in the systems.

The percentage of Merge, Management, and Other activities
should not be ignored: 18.7%, 16.49%, and 16%, respectively. If these
activity types can impact the analysis in a study, they need to be
identified when collecting the data.

The systems analyzed in this study are popular and very active,
which may be a reason for the high number of Forward Engineering.
Therefore, the sample analyzed in this work may be considered for
future work concentrated on Forward Engineering.

The Quantification of the Tangled Changes Problem.We
found that 30% of commits involve more than one activity type, indi-
cating the extent of tangled changes in software repositories. There-
fore, works threatened by tangled changes should perform charac-
terization of commits in terms of activities because the amount of
co-occurrence of activities is expressive. For example, this care is
critical in studies on change impact analysis, and many studies on
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Figure 7: Time-interval of commits by developers - represented in seconds.

this subject consider a commit as a basic unit of correlated changes.
In the face of the results found in this work, the analysis performed
in those works may be biased.

4 DISCUSSION
Understanding the dataset’s characteristics is critical for conduct-
ing a good experiment, and working with an inadequate dataset
will lead any well-designed study to inaccurate results. This sec-
tion discusses the main lessons learned from our study and their
implications for studies that consider commits’ data.

Reengineering has the highest co-occurrence with other
activity types, but this does not happen too often. The incre-
mental software development methodologies, such as the Agile
methodologies, favor Reengineering, Corrective Engineering, and
Forward Engineering to occur in parallel. For example, it is possible
that correcting a bug or introducing a new feature in the system
may cause a reengineering. Then both types of activities may be
committed together. However, the results of this study show that
these co-occurrences do not happen very often. The highest fre-
quency of co-occurrences is between Reengineering and Corrective
Engineering, and between Reengineering and Forward Engineering,
8% in both cases. Studies on refactoring that are based on commit
analysis should verify if this amount of co-occurrence introduced
bias in their results.

Intuitively, we may consider that when a system is well con-
structed, making changes to it will be more comfortable; there-
fore, it will demand fewer refactoring activities. Consequently, we
raise two hypotheses that may explain the low percentage of co-
occurrence between reengineering with corrective and forward
engineering: (i) or fixing bugs and changing a piece of system usu-
ally demands few refactoring in the system, (ii) or the practice of

developers is to commit the refactor of the system before fixing a
bug or changing the system.

The size of the commitmatters. The results show that the size
of commits follows a heavy-tailed distribution. Therefore, although
most commits involve just a few files, a relevant number of them
involve many files. A single commit may include hundreds of files.
In contrast with what one may intuitively assume, large commits
do not occur only in Merge or Management activities.

This result is significant to studies that consider the set of files
in a commit, which is the case of studies on change impact analysis
and code authorship. In these works, disregarding that a relevant
number of commits (more than 50%) involve a very high number of
files may introduce bias in the analysis. In change impact analysis
studies, the files in large commits may be more likely not to relate
to a common cause of the change. In authorship analysis, a commit
by a contributor involving a large number of files may not express
authorship.

JDK is an exception.Many empirical studies have considered
JDK, and our results revealed that JDK is an exception regarding the
number of files per commit. The commits of JDK involve a higher
number of files per commit than the other systems. Therefore,
the study design based on commit analysis should consider this
characteristic if JDK is part of its analysis.

Commits’ size is not Normal. All results shown in this study
lead us to a simple but not so obvious conclusion: one of the essential
characteristics regarding commits’ size is that we cannot apply the
Normal distribution statistical analysis methodologies to them. The
number of files modified in a commit has a long tail distribution,
and besides, there is no standard distribution for the number of
commits considering the activity type.

The time intervals of commits by developers. Understand-
ing the developers’ behavior when registering commits in the
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repositories may aid practitioners, especially in management tasks.
We investigated if there is a pattern of time intervals in which devel-
opers register commits in the repositories. The results indicate that,
in a project, the distribution of the time intervals is approximately a
Normal distribution, i.e., the distribution tends to be symmetric, and
the mean is representative. The results also show that the time in-
tervals vary among the projects. In this work, we do not investigate
the causes of the behavior of developers when performing commits.
However, we presume that the projects’ nature, application domain,
and the number of contributors may influence the frequency of
commits by developers.

5 RELATEDWORK
Previous works investigated the characteristics of commits in CVCS
[1, 11, 12, 17]. Alali et al.[1] analyzed nine OSS from Subversion to
characterize commits regarding the number of files, number of lines,
number of hunks committed together, and the top 25 words used
in the systems’ log messages. They analyzed GCC, Collab, JEdit 6.1,
Ruby, LinuxBoss, Phpmyadmin, MySql-Administrator, and Python
Debian-installer. They found that 75% of the commits are very small
and that the largest commits usually encompass all the system’s
files or add/modify a large file.

Hattori and Lanza[11] studied the size of the commits consider-
ing the number of files and the content of their log messages. They
considered nine OSS: aMSN, ArgoUML, Firebird, JEdit, JHotdraw,
Mantis, Miranda, Spring, and Swig. They found that the number
of files in commits follows a Pareto distribution. They classified
the commits into four groups according to the number of files: tiny
(1 to 5), small (6 to 25), medium (26 to 125), and large (up to 126).
They concluded that these categories correspond to 80%, 15%, up to
5%, and less than 1% of the commits in a project. They concluded
that: tiny commits are related to Corrective Maintenance, small
and medium commits are heterogeneous, large commits are more
related to Management activities in five projects, while Forward
Engineering is the most frequent activity in four, and Manage-
ment activities tend to generate larger commits, while Corrective
activities are related to small and tiny activities.Hindle et al.[12]
concentrated on large commits. They analyzed data from nine OSS:
Boost, MySQL, Firebird, Samba, Egroupware, Enlightenment, Spring
Framework, PostgreSQL, and Evolution. They concluded that most
large commits are perfective, and most small ones are Corrective.
The findings of Marzban et al.[17] are similar to Hindle et al.[12].
Marzban et al. also investigated the relationship between size and
type of commit. Their study considered data up to 2008 from 10
OSS: Bug-buddy, Epiphany, Gconf-editor, Gedit, Gnome-desktop,
Gnome-terminal, Metacity, Nautilus-cd-burner, Sound-juicer, and
Yelp. in small categories, most activities are related to bugs - fixing
bugs or file-, but in large commits adding new files or data is more
common.

With the advent of Distributed Version Control Systems (DVCS),
such Git, the research community’s interest in commit characteri-
zation has increased. Zafar et al. [21] developed an automatic ap-
proach to classify a commit as a "bug-fix commit" or not. However,
their approach covers only the corrective engineering category,
whereas our approach covers five categories. Casalnuovo et al. [3]
created a tool called GitcProc for mining and processing commit

data given the URL of the git repository. Among other data, the tool
indicates which commits are involved in bug fixes. To do so, the tool
uses regular expression matching to find error related-keywords in
the messages associated with each commit. Similarly, our study also
analyzed keywords in the commits’ messages. Levin and Yehudai
[15] proposed a method based on source code changes to classify
commits into three maintenance activities: corrective, perfective,
and adaptive. Differently from the works of Casalnuovo et al. and
Levin and Yehudai, we considered five types of activities. Dey et al.
[4, 5] investigated commits performed by bots and found that most
bot commits involve a single file. Yan et al. [20] proposed a model
to identify commits that will be reverted. Goyal et al. [10] proposed
a method to identify unusual commits in GitHub, i.e., commits
whose characteristics differ from the majority commits of the same
repository, such as large commits, commits in files that are rarely
changed, and commits registered at unusual times. Their method
is based on data distribution analysis, which we also applied in
this study. However, they did not consider the same characteristics
we considered in our analysis. Moreover, their work differs from
ours since they define a model that compares commits of the same
system, and we aim to identify general characteristics of commits.
Brindescu et al.[2] conducted the first in-depth, large-scale study to
analyze the differences between CVCS and DVCS empirically. Their
study considered 132 repositories and showed that the commit size
tends to decrease, and the quantity of issues tends to increase over
the project evolution. Commits in DVCS are 32% smaller than in
CVCS. Commits in DVCS are more likely to have references to issue
tracking labels, and 81% of the developers split commits in DVCS
and 76% in CVCS. Their survey with 820 developers revealed that
most developers commit several times a day (65.96%) or once an
hour (19.66%). In our study, we also investigated commits’ size and
frequency of commits by developers. However, our analysis is con-
centrated on Java-based software systems. Moreover, we considered
three types of analysis regarding commits’ size: all files, only Java
files, and activity categories involved in the commits. Regarding
the frequency of commits by developers, differently from Brindescu
et al., we analyzed the distribution of time intervals in which the
developers register commits.

Another difference in our work from the previous ones is that
the GitHub repositories they analyzed were selected based on their
popularity, i.e., the repositories most favorite or forked by develop-
ers. As we are interested in analyzing commit data, we based our
sampling on the projects’ number of commits.

6 THREATS TO VALIDITY
To answer RQ3, we relied on the approach defined in our previous
work to categorize commits [8]. That approach is based on the au-
tomatic search for keywords in the commits’ messages. Therefore,
as described in Section 2, it was necessary to build a dictionary
containing the keywords and their variations. We constructed the
dictionary manually, which may cause us to forget some keywords.
To mitigate this threat, we built the dictionary based on the key-
words described by a previous work [11] and added new words
that we found in the manual inspection of ≈ 500 commits. We
also evaluated the approach via manual inspection and found high
precision and recall.
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We considered the field “author” of the commit’s data to identify
the developers when calculating the time interval between commits.
Depending on the type of study, such an approach may introduce
substantial bias in the results, which is the case, for instance, of
studies on code ownership because a developer may have more than
one GitHub username. However, this is not the case in the present
work because we are interested in analyzing sequential commits
performed by a user whose name may be properly identified.

This work focused on Java-based software systems and consid-
ered data from 24 Java-based systems hosted on GitHub. GitHub
has about 20 million public repositories. Therefore, it is not possi-
ble to ensure the generalization of the results found in this study.
However, as this study concentrates on commit’s data, we selected
the most rated systems containing the highest number of commits,
resulting in a dataset containing ≈ 1𝑀 commits of mature systems
from well-known owners, such as Apache.

7 CONCLUSION
The system’s data hosted in GitHub have been profusely used in
software engineering works. Commits data are one of the most
used analysis sources in such works. However, not knowing or not
considering the characteristics of commits may introduce biases
in research. Besides, investigating the characteristics of commits
may bring insight into the developers’ practices and, hence, provide
important information to practitioners to improve the management
and the planning of the software activities.

We carried out an empirical study to characterize commit data in
this work. We evaluated the 24 most popular and active Java-based
projects hosted on GitHub. We analyzed ≈ 1𝑀 commits.

The main findings of this work revealed that:

• the size of commits follows a heavy-tailed distribution;
• most commits involve one to 10 files;
• most commits involve one to four source-code files;
• the commits involving hundreds of files not only refer to
Merge or Management activities.

• the distribution of the time intervals is approximately a Nor-
mal distribution, i.e., the distribution tends to be symmetric,
and the mean is representative.

• on average, a developer proceeds a commit every eight hours.

The results of this study lead to some lessons that should be
considered by researchers in empirical studies based on commit
analysis. In particular, the activity types involved in the commits
and the number of files in a commit should be considered when
designing a study.

Other analyses are essential to bringing more insights into the
characteristics of commits, such as analyzing data of software sys-
tems developed in other programming languages; and investigating
the relationship between issues and commits. Also, we can use arti-
ficial intelligence techniques such as natural language processing
to improve the categorization of commits.
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