
 MODULAR
DENOTATIONAL
 SEMANTICS

Roberto
 S.
Bigonha

Modular
Denotational Semantics

Roberto S. Bigonha

Belo Horizonte

Minas Gerais – Brazil

05 de junho de 2021

Cataloging Data

B594

Bigonha, Roberto S.
Modular Denotational Semantics / Roberto S.

Bigonha — Belo Horizonte, MG, 2021

256p

Bibliography.

ISBN 978-65-00-22442-9

1. Computer Science 2. Computing Engineer-
ing 3. Informatics 4. Formal Semantics 5. De-
notational Semantics 6. Separation of Concerns
I. Bigonha, Roberto S.

CDD-004.07

COPYRIGHT © 2021 - Roberto S. Bigonha

All right reserved. No part of this book may be reproduced
in any form by electronic or mechanical means without prior
specific permission in writing from the author and a fee.

iii

Prologue

Denotational semantics is a powerful and elegant formal-
ism for describing the meaning of programming language con-
structs. However, it is used less than it should be. Appar-
ently, the lack of popularity stems from the difficulties that
most programmers and even computer scientists have to un-
derstand formal semantics definitions. And probably these
difficulties are inherent to the way formal descriptions have
been organized so far.

This book aims to contribute to the denotational model
by offering means to enhance the comprehensibility of seman-
tic descriptions of languages of realistic size. It seeks to an-
swer the quest for legible formal semantics by proposing a
semantics-definition style based on the syntactic structure of
the language and on the concept of separation of concerns.

The book’s thesis is that a disciplined and well structured
semantic presentation will enhance comprehensibility of de-
scriptions in the formalism, so that they would not be more
complicated than ordinary computer programs written in a
high level language.

This book has been designed for computer science students
who have good knowledge of programming computers in high
level languages. No advanced mathematics is required. Ac-
quaintance with sets and functions is enough to grasp the
basic concepts on denotational semantics.

Chapter 1 describesM, a meta-language specially designed
and proposed to support the methodology herein described
for developing modular and comprehensible presentations of

iv

denotational semantics.
Chapter 2 presents a complete description of the architec-

ture of a hypothetical computer.
Chapter 3 presents the definition of a compiler for translat-

ing programs written in a small imperative language into the
code of the machine described in the preceeding chapter.

Chapter 4 presents a review of the techniques and founda-
tions of Standard Denotational Semantics, so as to make this
textbook self-contained.

Chapter 5 introduces a technique to mix direct and contin-
uation semantics, in order to get the best of both worlds.

Chapter 6 describes in detail a complete and modular defi-
nition of a simple and yet revelatory imperative programming
language, with the objective of highlighting the methodology
proposed for structuring formal definitions.

Chapter 7 shows how to improve the presentation of the de-
scription developed in the preceding chapter by reorganizing
it to promote even deeper separation of concerns by means of
denotational components.

Chapter 8 addresses the foundations of Dana Scott’s the-
ory of domains, which underlies the denotational semantics
model.

Chapter 9, the epilogue, gives the due credits to some of
the pillars of the Field.

This is deliberately a very concise book on a vast and com-
plex subject. Hopefully, this conciseness is in conformance
with the ancient idea that the primordial purpose of the words
is to improve the silence.

v

Acknowledgments

First and foremost, I would like to express my gratitude
to late professor David F. Martin for his high-quality lectures
and remarkable guidance skills that he offered to his students
at the University of California, at Los Angeles, and for having
introduced me to the fundations of programming language
semantics. It was a privilege to have worked closely with him.

I would also like to thank all my undergraduate, master and
doctorate students who did an immense amount of construc-
tive work in the development of their research on subjects
closely related to this book. I have learned a lot from them.

I wanted to avoid singling out their names, for they are
many, and any omission would be unforgivable. It is always
unfair to single out individuals in such a context.

However, it would be even more unfair not to cite those who
directly cooperated with me over many parts of my search
for legible semantics. So I would like to specially mention
Elaine Gouvea Pimentel, Fabio Tirelo and Guilherme Hen-
rique Souza Santos, as important collaborators.

Roberto S. Bigonha

vi

Contents

1 The Meta-Language for Semantics Definitions 1
1.1 Basic structures 2
1.2 Built-in domains 6
1.3 Declarations 9
1.4 Domains . 12

1.4.1 Domain of enumerations 13
1.4.2 Domain constants 14
1.4.3 Domain of tuples 14
1.4.4 Domain of lists 14
1.4.5 Domain of tree nodes 15
1.4.6 Domain of functions 15
1.4.7 Union of domains 16
1.4.8 Domain equivalence and compatibility 17

1.5 Expressions 19
1.5.1 Functional expressions 19
1.5.2 Pattern expressions 22
1.5.3 Conditional expressions 23
1.5.4 Basic expressions 24
1.5.5 Logical expressions 26
1.5.6 Integer expressions 27
1.5.7 Quotations 28
1.5.8 Fixpoint operator 30

vii

viii CONTENTS

1.5.9 Tuple expressions 30
1.5.10 List expressions 31
1.5.11 Node expressions 33
1.5.12 Mapping expressions 34

1.6 Compilation units 35
1.7 Interface modules 36

1.7.1 Imports section 37
1.7.2 Privates e publics sections 39

1.8 Definition modules 41
1.8.1 Lexis section 42
1.8.2 Syntax section 47
1.8.3 Functions section 54

1.9 The main module 61
1.10 Module System 64

2 The Description of a Computer Architecture 65
2.1 The machine architecture 65

2.1.1 The environment 66
2.1.2 The store 68
2.1.3 The stack 69
2.1.4 The dump 70
2.1.5 Files 71
2.1.6 Continuations 73

2.2 Program execution 76
2.3 Machine instructions 77

2.3.1 Flow of execution 78
2.3.2 Instruction set 78

2.4 Concluding remarks 85

CONTENTS ix

3 The Specification of a Compiler 87
3.1 Machine instructions 87
3.2 The compiler specification 88

3.2.1 Concrete and abstract syntax 89
3.2.2 Translation rules 90

3.3 Concluding Remarks 93

4 Standard Denotational Semantics 95
4.1 Direct semantics of a simple language 97

4.1.1 Concrete and abstract syntaxes 98
4.1.2 Informal semantics 99
4.1.3 Semantic domains 99
4.1.4 Semantic equations 100
4.1.5 A worked example 102

4.2 Standard semantics model 103
4.2.1 Standard environments and stores . . 104
4.2.2 Domains of standard values 105
4.2.3 The notion of continuations 106
4.2.4 Standard continuations 109

4.3 Continuation semantics of Simple 111
4.3.1 Semantic domains 112
4.3.2 Semantic equations 113

5 Retractile Continuations 117
5.1 Conciliation of semantics styles 118
5.2 An example 120
5.3 Conclusion 124

6 Syntax-Driven Methodology 125
6.1 Syntax-directed module structure 127

x CONTENTS

6.2 The semantics of Small 129
6.2.1 Semantic infrastructure 130
6.2.2 Function main 140
6.2.3 Small programs 141
6.2.4 Small declarations 142
6.2.5 Small commands 146
6.2.6 Small expressions 150
6.2.7 Small tokens 154

6.3 Evaluation 156

7 Component-Based Style 157
7.1 The fundamental principle 159
7.2 Context removal 160
7.3 Component-based semantics of Small 164

7.3.1 Main function 165
7.3.2 Small programs 166
7.3.3 Small declarations 167
7.3.4 Small commands 170
7.3.5 Small expressions 174
7.3.6 Small tokens 177

7.4 The denotational components for Small . . . 178
7.4.1 Components for declarations 178
7.4.2 Components for commands 179
7.4.3 Components for expressions 180

7.5 Discussion 182

8 Domain Theory 185
8.1 Theoretical problems 186

8.1.1 Recursive definition of functions . . . 188
8.1.2 Recursive definition of sets 189

CONTENTS xi

8.1.3 Program nontermination 189
8.2 The work of Scott 190
8.3 Foundations 191

8.3.1 Functions 191
8.3.2 Relations on sets 192
8.3.3 Partially ordered sets 193
8.3.4 Complete partial order 194

8.4 Scott domains 195
8.5 Flat domains 198
8.6 Cartesian product 199
8.7 Domain union 200
8.8 Domain of sequences 201
8.9 Domain of functions 201

8.9.1 Monotonic functions 201
8.9.2 Continuous functions 202
8.9.3 Domain mapping 204
8.9.4 Composition of functions 208

8.10 LAMBDA functions 208
8.11 M functions 209
8.12 Fixpoints . 210

8.12.1 Calculation of fixpoints 212
8.12.2 The paradoxal operator Y 217

8.13 Final comments 217

9 Epilogue 219

Chapter 1

The Meta-Language for
Semantics Definitions

Entia non sunt multiplicanda praeter necessitatem.1

William of Ockham (1285-1349)

M is a pure functional domain-specific language aimed to
provide a well-suited notation for conveying comprehensible
denotational descriptions of programming language seman-
tics. To that end, issues such as description modularization,
structural type equivalence, control of visibility, encapsula-
tion, and information hiding have been incorporated in the
language’s structure.

Formal semantic definitions in M are composed of mod-
ules, each containing one or more definition elements, which
can be concrete grammars, definition of tokens, declaration of
variables and domains, and the specification of semantic equa-
tions. There are two types of modules: interface modules,
which contain declarations and import/export specifications,
and definition modules, which contain definitions of concrete

1Entities must not be multiplied beyond necessity.

1

2 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

grammars, tokens, and semantic functions.
In a complete language definition, there must be a special

module that contains the definition of the standard function
main (§1.9, page 61), and that usually establishes the environ-
ment in which the semantics is defined, including the program
source code file, input and output files, whose names are col-
lected from the command line that activates the execution of
the semantic definition.

The concrete grammar also contains the definition of the
associated abstract syntax of the language being defined. The
concrete grammar is used to generate translators for rendering
programs in the defined language into an internal notation for
abstract syntax tree (AST). The abstract syntax is used to
convey semantics to language constructs.

The best module organization is user-defined. Indeed, a
formal definition may be composed of several modules, each
of which focusing on a particular syntactic or semantic aspect
of the language being defined. Sometimes it is convenient
to encapsulate the definition of the concrete syntax and the
corresponding semantics of each important construct into a
distinct module in order to permit a better separation of con-
cerns. The languageM is flexible enough to permit the user
to choose the most appropriate module organization.

1.1 Basic structures

The grammar ofM is presented in an extended BNF notation
[59] with the convention that nonterminals are sequences of
letters, possibly with embedded underline _ symbols.

1.1. BASIC STRUCTURES 3

The production rules of the grammar are encoded according
to the following notation:

notation meaning
X* list with zero or more occurrences of X
(Y)* list with zero or more occurrences of Y
X+ list with one or more occurrences of X
(Y)+ list with one or more occurrences of Y
(Y) same as Y
"t" a terminal symbol, t can be anything but "
"\"" the terminal symbol "
A ::= B | · · · | C a cfg production rule
A === "x" .. "y" define A as a character in the interval [x,y]
A =/= "x" define A as any character but x
ε empty string

where X represents a nonterminal, Y is a non-empty string
of terminal and/or nonterminal symbols; x and y stand for
one-character symbols. The letter A represents a nonterminal
symbol, and B and C represent strings of terminals, nontermi-
nals or one of the lists defined above.

Identifiers

M identifiers have different structures depending on their
uses in the program. For instance, identifiers denoting do-
main names always start with a capital letter, e.g., Store,
Command and Environment. Those denoting domains of lists
are suffixed by * or +, and the identifiers of variables or func-
tions are generally initiated with a small letter, and may have
digits, * or + at their end.

The basic identifiers can be classified as decorated or undec-
orated. The undecorated identifiers are proper nouns or com-
mon nouns. The decorated ones are indexed proper nouns,

4 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

indexed common nouns, proper nouns for lists or common
nouns for lists.

The syntax ofM identifiers are as follows:

identifier ::= proper_id | proper_id_list
| proper_idx | proper_idx_list
| common_id | common_id_list
| common_idx | common_idx_list

proper_id ::= uppercase anycase*
proper_idx ::= proper_id digit+
proper_id_list ::= proper_id rep_op+
proper_idx_list ::= proper_id digit+ rep_op+
common_id ::= lowercase anycase*
common_idx ::= common_id digit+
common_id_list ::= common_id rep_op+
common_idx_list ::= common_id digit+ rep_op+
anycase ::= lowercase | uppercase | "_"
uppercase === "A" .. "Z"
lowercase === "a" .. "z"
rep_op ::= "*" | "+"
digit === "0" .. "9"

The case of the letters that occur in an identifier is mean-
ingful, e.g., the identifier readq is distinct from readQ.

Note that the symbols + and *may be part of identifiers. In
this case, they must occur at the end of character’s sequences
that compose identifiers. In these circumstances, they are not
delimiters. In other situations, the symbols + and * are just
binary operators. To be recognized as such, they must be
preceded by a delimiter or white spaces. Note the differences:

s* t -- identifier s* (list) followed by identifier t
s * t -- product of (integer) s by (integer) t
s *t -- same s * t
(s)*t -- same as s * t

1.1. BASIC STRUCTURES 5

The following identifiers are reserved, that is, they have
special meaning, and thus cannot be used for other purposes:

and becomes end File false
functions imports interface is lexis
main module N Nonterminal privates
publics Q return Start syntax
T Token true where Y

The following identifiers denote standard functions with
predefined meaning:

append ascii close compile cond eof
flatten getarg getchar head open putchar
size tail toN toQ toT ungetchar
value

Layout

The newline ("\n") and the carriage return ("\r") characteres
are delimiters inM:

newline ::= "\n" | "\r"

White spaces, including form feed ("\f") character are
treated as delimiters ofM’s tokens, and are not part of any
token.

Comments

Comments inM start with the symbol --, and end with the
end of the line, i.e., when the newline mark is encountered.

comments ::= "--" anychar* newline
anychar =/= newline
newline ::= defined in §1.1, page 5

6 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

1.2 Built-in domains

M domains are complete partial orders with a minimal ele-
ment ⊥ (bottom) [44, 47, 51, 57], and also with an undefined
polymorphic value, represented by ?. Domains and types are
treated as synonymous (§1.4, page 12).

Domains or types have properties that guarantee that so-
lutions of all domain equations always exist up to isomor-
phism. The special value ⊥ (bottom), which is not directly
representable inM, serves to model the semantics of nonter-
mination.

The built-in domains inM are:
builtin_dom ::= "N" | "Q" | "T" | "File" | "?"

| "Nonterminal" | "Start" | "Token"

N is the domain of 32-bit integer numbers, Q is the domain of
quotations or strings, T is the domain of truth-values, File is
the domain of files (§1.2, page 6), Nonterminal is the domain
of all nonterminal symbols used or defined in the syntax part
of a module, Start is the domain of the grammar starting
symbol, and the symbol ? represents the domain of undefined
values.

The built-in domains are standard and flat [47], and thus di-
rectly available in every semantic definition, and each of which
has a number of constants and predefined operations, which
produce ⊥ whenever any of their operands is ⊥. And these
predefined operations produce ?, when any of their operands
is ? and none is ⊥. Otherwise, they have the usual expected
behavior. Saying that an operation produces ⊥ is tantamount
to say that it does not terminate, and not that it returns this
special value.

1.2. BUILT-IN DOMAINS 7

The built-in domain ? contains the special undefined value
?, which is polymorphic, i.e., it is member of all domains,
be they built-in or user-defined. The context should provide
enough information for resolving the overloading of the sym-
bol ?, whenever necessary. The undefined value is used to
indicate the value of semantically non-sensical expressions.
Any operator or predefined operation can be applied to the
undefined value, and the result is always undefined. The unde-
fined value may be passed as argument to a ordinary function.
In this case, the function result depends on the evaluation of
its body, which may evaluate or not to the undefined value.

The domain File represents files containing a list of char-
acters stored in an external media. A character at a time can
be read from these files or written into them by means of the
built-in functions getchar and putchar, respectively.

The domain File defines the structure of file descriptors,
which hold all information that is necessary to read from or
write into a given file, namely: the file current read/write
head position, end-of-file condition indicator, the contents of
the file’s buffer and the file’s physical address.

The standard functions associated with files are:

• open : Q -> File
The function application open(filename) returns the de-
scriptor of the file whose name has been passed as ar-
gument. The file name must be a quotation structured
according to the local execution system conventions. If
the specified file cannot be opened, the undefined value
? is returned. When a file is opened, an empty buffer is
associated with it. No files can be read or written before

8 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

it had been opened.
• close : File -> File
The function application close(file) removes the vin-
culum between the file descriptor that is associated to
given argument file and the file itself in the external
media. Before closing, data in the file’s input buffer are
recorded in the associated file. No files can be read or
written after it had been closed, unless it is opened again.

• getchar : File -> (File,N)
The function application getchar(file) reads the next
input character from the file’s buffer, if the buffer is not
empty, otherwise it reads the next portion of the given
file into the file’s buffer, and returns the integer value
that represents the ASCII code associated with the first
character now in the buffer. If no character is encountered
on the file current reading position, the undefined value
(?) is returned. An updated file descriptor, which records
the reading head position and the current buffer contents,
is also returned. If the end-of-file mark is unexpectedly
encountered while attempting to read a character, the
undefined value ? is returned instead, and the end-of-
file condition is set for this file, and further attempts to
read it will always return a pair containing the current
file descriptor and the undefined value.

• ungetchar : (File,N) -> File
The function application ungetchar(file,n) puts back
to the buffer of the specified file the character represented
by the integer n, so that the next getchar(file) on the
same file will return this character.

1.3. DECLARATIONS 9

• eof : File -> T
If the end-of-file mark of the given file has been detected
in a previous operation or if it will be read in next opera-
tion, the function eof(file) returns true, otherwise, it
returns false.

• putchar : (File,N) -> File
The function application putchar(file,n) prints the con-
tents of the given integer value n as a character on the file
associated with the specified file descriptor. An updated
file descriptor is returned because this operation changes
the current position of the writing head.

1.3 Declarations

Declarations serve the purpose of associating variables with
domains, and, if necessary, providing names for new user-
defined domains. AnyM interface module may have a dec-
laration part, which introduces names used or defined in the
corresponding module definition.

The syntax of the declaration part of a module is defined
by the following syntactic rules:

var_dom_dcls ::= var_dom_dcls ";" var_dom_dcl
| var_dom_dcl

var_dom_dcl ::= new_domain_id "=" domain_exp
| new_vars ":" domain_exp
| new_vars ":" domain_id "=" domain_exp
| empty

new_vars ::= new_var_id ("," new_var_id)*
new_var_id ::= identifer | "main"
domain_id ::= proper_id
identifier ::= defined in §1.1, page 3

10 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

proper_id ::= defined in §1.1, page 3
domain_exp ::= defined in §1.4, page 12

Note that domain names are always proper nouns, and both
common and proper names with or without decoration can be
used in a declaration of variables. However, it is recommended
that proper names be only used to designate certain special
functions, and that nonfunctional variables and ordinary func-
tions are preferentially named with common names.

Names of variables can be decorated with numbers, in which
case they are said be indexed, or marked with the symbols +
or *, which make them list designators. The domains of in-
dexed variables and of list variables are inferred automatically
in the way described in the sequel.

The following variable declarations illustrate some cases:
a, b : A;1

A = N -> N;2

d, g : (N,A*);3

B = Q -> Q;4

x, y, z : (A);5

C : Cmd -> Env -> Cc -> Store -> Ans;6

In the above program code, note that:

• Variables a and b, in line 1, are in domain A, which is the
domain of functions from N to N.

• Variables d and g, in line 3, are two-component tuples of
type (N,A*).

• The new domain B, defined in line 4, is the domain of
functions from type Q to Q.

• Variables x, y and z, declared in line 5, are functions of
type A, i.e., functions that map members of N to N. The

1.3. DECLARATIONS 11

domain expression (A) is not a tuple domain, for tuples
must have at least two components.

• And C in line 6 is a curried function.

All variables must have their types known in the scope they
are used. Variables designated by proper nouns must always
be declared, however, not all variables designated by common
nouns need be explicitly declared. Their types are deduced
from the structure of their identifiers, according to the follow-
ing convention:

• Any nondeclared undecorated variable is assumed to be
in the domain whose name is that of the variable with the
first letter capitalized, e.g., exp is implicitly in Exp.

• Any nondeclared variable decorated with decimal digits
is implicitly in the same domain as its corresponding un-
decorated version. For example, variables s1 and s2 are
by default in the domain of s.

• If a is in domain A, then the occurrences of nondeclared
a+ and a* are interpreted as members of domains A+ and
A*, respectively.

• Variables that are formal parameters of a function are im-
plicitly declared according to the type of the correspond-
ing parameter in the declaration of the function heading.

For instance,
privates1

A = N -> N;2

B = Q -> Q;3

a : N; -- from this point on a has type N4

x : T;5

f : N -> Q;6

12 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

g : Q -> T;7

h : B* -> Q8

functions9

f(x) = ... a ... x ... -- a and x have type N10

g a = ... a ... x ... -- a has type Q, and x, T11

h(a1*) = ... a1* ... -- a1* has type B*12

These conventions are intended to contribute to descrip-
tion compactness and convenience of writing. Since they are
very simple and uniform, they could help producing readable
definitions.

1.4 Domains

There exists a variety of domain operators for creating more
complex domains to model semantic properties of program-
ming languages. Domain expressions that can be associated
with new domains according to the following syntax:

domain_exp ::= domain_exp "|" domain_a
| domain_a

domain_a ::= domain_b "->" domain_a
| domain_b

domain_b ::= simple_domain | tuple_domain
| node_domain | enum_domain
| list_domain | const_domain

simple_domain ::= domain_id | builtin_dom
tuple_domain ::= "(" field_domains ")"
field_domains ::= field_domain ("," field_domain)*
field_domain ::= domain_exp
node_domain ::= "[" domain_c+ "]
domain_c ::= simple_domain | const_domain
enum_domain ::= "{" enum_elems "}" | "{" "}"
enum_elems ::= constant ("," constant)*
list_domain ::= simple_domain rep_op+

1.4. DOMAINS 13

| tuple_domain rep_op+
const_domain ::= quotation
builtin_dom ::= defined in §1.2, page 6
domain_id ::= defined in §1.3, page 9
constant ::= defined in §1.5.4, page 24
quotation ::= defined in §1.5.4, page 24

A domain expression may be a domain name, a quotation,
in which case it is assumed to denote a singleton domain whose
only proper element is that constant, a list of enumerated
elements, or a combination of simpler domain expressions by
means of domain operators. Domain combinations denote
union of domains, domain of tuples, domain of nodes, domain
of lists or domain of functions.

A domain expression may contain names of domains that
are only defined later in the module scope. This should not
cause any problem or error unless the yet undefined domains
are effectively used in an expression in the module before the
undefined elements are properly declared. In order to cope
with this situation, after processing each block of domain dec-
larations, all domain definitions in the current module should
be re-checked to remove any dependency on undefined do-
mains that have been defined in the block after their uses. At
the end of the module, all theses dependencies must have been
solved, so as to not incur a situation of missing declarations.

1.4.1 Domain of enumerations

A domain can be created by enumerating its elements, such
as {"integer, "float", "undefined"}. The enumerated elements
must be constants of the same type.

14 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

1.4.2 Domain constants

All quotations are in domain Q. However, for technical rea-
sons, any quotation occurring in places where a domain is
expected is considered to represent the domain whose only
proper non-bottom element is the quotation itself. The name
of this domain is the quotation itself. For instance in the
declaration

Mode = "int"

the string "int" denotes a domain whose name is "int", and
that contains only the quotation "int", the bottom element
⊥, and the undefined value ?.

1.4.3 Domain of tuples

A domain expression of the form (d1, . . . , dn) represents the
domain of n-tuples whose i-th component is in the domain
denoted by di, for 1 ≤ i ≤ n and n ≥ 2. This notation
represents the cartesian product of domains. When n = 1,
the domain expression is not a domain of tuple, it is just a
domain expression enclosed in parentheses.

1.4.4 Domain of lists

Domain expressions of the form d* denote domains of finite
and possibly empty lists whose components are in d. Domain
expression of the form d+ denotes domain of lists with at least
one element.

Assume that e1, . . . , en, for n ≥ 1, are expressions of the
same type d. An instance of a non-empty list is created by

1.4. DOMAINS 15

(e1, e2, · · · , en), for n ≥ 1. The domain of the list just created
is the domain d+.

An empty list is represented by keyword nil, which is a
polymorphic value, i.e., the exact type of nil depends on the
context it occurs.

1.4.5 Domain of tree nodes

A domain expression of the form [D1 . . . Dn] represents the
domain of abstract syntax tree nodes, each of which consists
of a label and a tuple of emanating branches.

The polyadic operator [· · ·] requires that each Di, for
1 ≤ i ≤ n and n ≥ 1, be either a quotation or a domain iden-
tifier possibly followed by a sequence of * and/or + symbols.
Quotations that occur in domain expressions denote constant
domains.

1.4.6 Domain of functions

The domain expression d1 -> d2 denotes the domain of con-
tinuous functions [44, 47] from domain d1 to domain d2.
The operator -> is right-associated and has precedence over
the operator |.

For instance,
d1 -> d2 | d3 -> d4 -> d5 | d6 -> d7 -> d8

is equivalent to
d1 -> d2 | (d3 -> (d4 -> d5)) | (d6 -> (d7 -> d8))

16 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

1.4.7 Union of domains

The domain expression d1 | . . . | dn represents the union
of the domains denoted by domain expressions d1, d2, . . . , dn.
Each di, for 1 ≤ i ≤ n, is called a summand of the union.
Alternatively, a definition of a union can be unfolded into a
sequence of simpler definitions with the same left hand side.

Distinct definitions of the same domain introduce a union
definition. Both styles lead to equivalent domain definitions.
For instance,

A = X;
A = Y;
A = Z

is equivalent to
A = X | Y | Z

The domain operator | is left-associated and has the low-
est priority. It generates a separated union like the separated
sum of D. Scott [44]. The user has to cope with projections
and injections between a union and its summands through-
out denotational descriptions. So the domain of all values are
carried at run-time and can be inspected. The domain of any
operand of a union to which a given value belongs can be as-
certain by means of the enquiry operation is (§1.5.5, page 26)
or via pattern-matching applications (§1.5.2, page 22).

In pattern-abstraction applications, domain projections are
performed implicitly. However, they can be done explicitly,
if desired. For instance, if A = A1 | · · · | An, a:A, and if a
is A1, the projection of the value a to the summand domain
A1 is achieved via the expression A1(a). On the other hand,
if a is not in the domain A1, the expression A1(a) returns ?.

1.4. DOMAINS 17

The reverse operation, the injection, is automatically per-
formed whenever a value in the domain of any summand is
used where the value of the summation domain is expected.
Alternatively, the explicit injection of a value of a summand
x:X into a union domain C = ... | X | ... can be ex-
pressed as C(x).

As two union domains may intersect, the elements in the
intersection may be explicitly converted from one domain to
another. For instance, in the code fragment below,

privates1

A = N | T;2

B = Q | N3

functions4

a = 1;5

b1 = a is N => N(a), ?;6

b2 = B(a)7

lines 6 and 7 produce the same effect, including the case in
which a is not in N.

1.4.8 Domain equivalence and compatibility

M type discipline is based on structural compatibility [3],
and is defined as follows:

A domain A is structurally compatible to a domain B
if and only if A and B are equivalent or B is a union of
domains, and A is one of its summands.

Two domains A and B are equivalent if and only if at
least one of the following conditions applies:

1. A and B are identical domain names.
2. A and B are the same constant domain.
3. A and B are the domain ? of undefined values.

18 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

4. B is a domain expression of the form (A) or A is of the
form (B).

5. B is a domain expression and A is a domain name, whose
definition is A = d or A = A1 = A2 = ... = An = d,
where Ai, for 1 ≤ i ≤ n, are domain names, and domain
expression d is equivalent to domain expression B.

6. A is a domain expression and B is a domain name whose
definition is B = d or B = B1 = B2 = ... = Bn = d,
where Bi, for 1 ≤ i ≤ n, are domain names, and domain
expression A is equivalent to domain expression d.

7. A and B are domains of lists, A is of the form a*, B is of
the form b*, and a is equivalent to b.

8. A and B are domains of lists, A is of the form a+, B is of
the form b+, and a is equivalent to b.

9. A and B are domains of tuples, domain A is of the form
(a1, · · · , an), B is of the form (b1, · · · , bn), for n ≥ 2,
and, for 1 ≤ i ≤ n, ai is equivalent to bi.

10. A and B are domains of nodes whose labels are identical.
11. A and B are domains of continuous functions, A is of the

form a1 -> a2, B is of the form b1 -> b2, a1 is equivalent
to b1, and a2 is equivalent to b2.

12. A and B are unions of domains, A is of the form a1 | a2

| · · · | an, B is of the form b1 | b2 | · · · | bn, and, there
is a permutation b′i of the elements bi, for 1 ≤ i ≤ n, such
that ai is equivalent to b′i.

13. A and B are distinct domain names, each being the recur-
sive reference to a reflexive domain definition occurring in
exactly the same corresponding position in their domain
structures.

1.5. EXPRESSIONS 19

1.5 Expressions

Expressions are classified as functional, conditional, or basic:
expression ::= functional_exp | conditional_exp

| basic_exp
functional_exp ::= defined in §1.5.1, page 19
conditional_exp ::= defined in §1.5.3, page 23
basic_exp ::= defined in §1.5.4, page 24

Functional expressions denote new anonymous functions
that can be applied to arguments or used as parameters to
other functions.

Conditional expressions allow strict selection of one be-
tween two expressions of equivalent types (§1.5.3, page 23).

Basic expressions essentially contain (monadic and dyadic)
operators, variables, constants, lists, tuples, tokens, and nodes
(§1.5.4, page 24).

1.5.1 Functional expressions

Anonymous non-recursive functions are specified by the nota-
tion \x.e, in which the symbol \ is the typewriter’s rendition
of the traditional λ of λ-calculus, x is pattern expression, e.g.,
an identifier or a tuple of identifiers, and e is an arbitrary ex-
pression. The scope of x is the expression e, and \x.e has
type A->B, if x:A and e:B.

Functional expression is an abstraction that is derived from
the notation of the λ-expression of λ-calculus. The basic idea
is to allow patterns (§1.5.2, page 22) to occur in binding con-
texts, such as p in the functional-expression \p.e, where p is
a pattern-expression. The syntax of functional expression is
as follows:

20 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

functional_exp ::= "\" pattern_exp+ "." expression
pattern_exp ::= defined in §1.5.2, page 22
expression ::= defined in §1.5, page 19

The functional-expression binding mechanism provides a
powerful device for extracting components of compound val-
ues, such as nodes, lists or tuples. For example, if e represents
a tuple of two elements, the application of the functional ex-
pression (\(x1,x2).e1) to e will cause x1 and x2 to be bound
to the first and second components of tuple e, respectively,
during the evaluation of the expression e1 in the body of the
abstraction. On the other hand, if e does not have the form
specified by the corresponding formal parameter, the value of
this function application is ?.

Another illustration is the application
(\[x1 x2].e1)(e2)

that binds x1 and x2 to the immediate subtree components
of node e2 throughout the evaluation of e1. If e2 is not a node
of the form [x1 x2], this application returns ?.

In summary, the binding mechanism associated withe the
application \p.e to argument a falls in one of two cases:

1. If pattern p is an identifier, possibly decorated by indices,
*’s and/or +’s, (\p.e)(a) is just a regular function ap-
plication, in which a is evaluated immediately and bound
to p to provide the scope to evaluate e.

2. On the other hand, when pattern p is not an identifier,
then the argument a must be evaluated immediately in
order to perform the required pattern-matching, which is
conducted as follows:

1.5. EXPRESSIONS 21

(a) If a has the form or structure defined by pattern p,
the identifiers in p are bound to corresponding values
in the structure of a, as described in the sequel, and
then the body e is evaluated.

(b) If a does not have the form defined by pattern p, the
result of the function application (\p.e)(a) is ?.

More specifically, if p is a pattern-expression, p1, · · · , pn
are pattern elements, and a has the structure defined by p,
then the bindings produced by the application (\p.e)(a) or
(\(p).e)(a) are defined as follows:

1. If p is a literal constant or the empty list symbol (nil),
no bindings result, but a and p must be equal.

2. If p is of the form (p1, · · · , pn), for n ≥ 2, then the
identifiers pi, for 1 ≤ i ≤ n, are properly bound to the
corresponding components of a.

3. If p is of the form p1 : p2, then the identifier p1 is properly
bound to the first element of the list a, and the identifier
p2, to the tail of a.

4. If p is of the form [p1 · · · pn], then pi, for 1 ≤ i ≤ n,
that are identifiers are bound to the corresponding parts
of node a, and those that are constants must match the
corresponding element of a.

A recursive functional expression is defined via Y(\p.e),
with the restriction that the value of e is p must be al-
ways “manifestly” true [30] and Y is the Paradoxical Com-
binator [9].

22 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

1.5.2 Pattern expressions

Pattern-matchings occur during parameter passing operations,
as part of the process of applying functions to arguments.
The patterm-matching operation permits checking whether
the function’s arguments have the particular form or structure
that is described by the corresponding formal parameter.

It permits to investigate the structure of a value rather than
the value itself or its domain. In essence, if the value denoted
by the argument can be structured according to the pattern
dictated by the formal parameter, then the matched elements
are bound accordingly.

Function’s formal parameters can be pattern expressions,
whose syntax is defined as follows:

pattern_exp ::= simples_pattern | node_pattern
| compound_pattern

simples_pattern ::= variable_id | constant
node_pattern ::= "[" simples_pattern+ "]"
compound_pattern ::= "(" pattern_elems ")"
pattern_elems ::= pattern_elem ("," pattern_elem)*
pattern_elem ::= simples_pattern

| list_pattern
| node_pattern

list_pattern ::= simple_pattern ":" simple_pattern
constant ::= defined in §1.5.4, page 24
variable-id ::= defined in §1.5.4, page 24

These grammar productions show that pattern-expression
can be an identifier, which matches expressions of the identi-
fier’s type, a literal constant, which matches itself, or a com-
bination of simpler pattern-expressions and pattern construc-
tion operators. If p, p1, · · · , pn are identifiers or constants,
then new patterns can be built up as follows:

1.5. EXPRESSIONS 23

1. (p1, · · · , pn) - to match tuples with n ≥ 2 components.
If n = 1, this pattern matches a single expression.

2. p* - to match lists with zero or more components.
3. p+ - to match lists with at least one component.
4. nil - to match empty lists.
5. (p1:p2*) - to match lists with at least one component.
6. [p1 · · · pn] - to match nodes whose label is equal to this

pattern’s label.
7. (p) - the same as p, i.e., anything that matches pattern
p matches (p).

1.5.3 Conditional expressions

A conditional expression has the structure t=>e1,e2, where
t is an expression that evaluates to true, false, ? or does
not terminate (⊥), and e1 and e2 are arbitrary expressions
of equivalent types. The expression t=>e1,e2 is equivalent to
e1, if t denotes true; equivalent to e2, if t stands for false;
equivalent to ?, if t evaluates to ?, and equivalent to ⊥, if t is
⊥. The syntax of conditional expressions is as follows:

conditional_exp ::= basic_exp
"=>" expression "," expression

basic_exp ::= defined in §1.5.4, page 24
expression ::= defined in §1.5, page 19

Conditional expressions can be nested, so the expression
x = a => b => c, d, e

produces e, when a is false, c, if a and b are simultaneously
true, and d, if a is true and b is false. That is, the expres-
sion

x = a => b => c, d, e

24 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

is the same as
x = a => (b => c, d), e.

Conditional expressions can also be specified by means of
the polymorphic built-in function cond, whose generic type is
defined as cond:(D,D)->T->D, for any valid domain D. The
expression cond(d1,d2)b is equivalent to b=>d1,d2.

1.5.4 Basic expressions

The most simple expressions are variables, integer constants,
boolean constants, quotations, the undefined value ?, and the
empty-list constant nil.

Variables are used to denote members of domains. Those
which denote lists are usually, but not necessarily, suffixed by
sequences of * or + symbols. For instance, x* denotes a finite
list of arbitrary size, and x+ represents a non-empty finite list.
The syntax of basic expressions is defined as:

basic_exp ::= exp_a ":" basic_exp | exp_a
exp_a ::= exp_b rel_op exp_b | exp_b
rel_op ::= "is" | "==" | "!=" | "<"

| "<=" | ">" | ">="
exp_b ::= exp_b add_op exp_c | exp_c
add_op ::= "||" | "+" | "-"
exp_c ::= exp_c mul_op exp_d | exp_d
mul_op ::= "&&" | "*" | "/" | "%"
exp_d ::= mon_op exp_e | exp_e
mon_op ::= "!" | "-"
exp_e ::= exp_e exp_f | exp_f
exp-f ::= constant | variable_id

| function_id | nonterm_id
| domain_id | lex_nonterm_id
| builtin_dom | list_exp
| node_exp | mapping_exp

1.5. EXPRESSIONS 25

| tuple_exp | "(" expression ")"
variable_id ::= common_id | common_idx

| common_id_list | common_idx_list
| proper_id | proper_idx
| proper_id_list | proper_idx_list

function_id ::= common_id | common_idx
| proper_id | proper_idx
| builtin_fun

builtin_fun ::= "append" | "ascii"
| "close" | "compile"
| "cond" | "eof"
| "flatten" | "getarg"
| "getchar" | "head"
| "main" | "open"
| "putchar" | "size"
| "tail" | "toN"
| "toQ" | "ungetchar"
| "value" | "Y"

constant ::= truth_const | quotation | empty_list
| integer_const | undefined_const

integer_const ::= digit+
quotation ::= """ quotation_ch* """

| """ quotation_ch* newline
quotation_ch ::= ordinary_char | special_char
ordinary-char =/= """
special-char ::= "\b" | "\\" | "\ddd" | "\r"

| "\t" | "\n" | "\"" | "\f"
truth_const ::= "true" | "false"
undefined_const ::= "?"
empty_list ::= "nil"
digit ::= defined in §1.1, page 3
builtin_dom ::= defined in §1.2, page 6
domain_id ::= defined in §1.3, page 9
expression ::= defined in §1.5, page 19
tuple_exp ::= defined in §1.5.9, page 30
list_exp ::= defined in §1.5.10, page 31

26 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

node_exp ::= defined in §1.5.11, page 33
mapping_exp ::= defined in §1.5.12, page 34
nonterm_id ::= defined in §1.8.2, page 47
lex-nonterm_id ::= defined in §1.8.1, page 42
common_id ::= defined in §1.1, page 3
proper_id ::= defined in §1.1, page 3
common_idx ::= defined in §1.1, page 3
proper_idx ::= defined in §1.1, page 3
newline ::= defined in §1.1, page 5

1.5.5 Logical expressions

The meaningful constants in the domain T are true and false.
The most simple logical expressions are these constants or
variables of type T, and more complex terms may be put to-
gether with the following operators: ! (negation), || (or), &&
(and), == (equal), != (not equal), is (inspect), < (less than),
<= (less than or equal), > (greater), and >= (greater or equal).

Expressions of the form e1==e2 are used to test whether two
expressions, e1 and e2, denote the same value. The expression
e1==e2 evaluates to true if e1 and e2 have the same non-
functional value. Otherwise, if e1 and e2 are functional values
or denote distinct values, it evaluates to false. Of course,
the result is ⊥ if either e1 or e2, or both are ⊥, and, mutatis
mutandis, similar observation holds for the undefined value ?.
The negation of e1==e2 is written as e1!=e2.

The binary relational operators <, <=, >, and >= are appli-
cable to integer values and quotations. And logical operations
not, or, and and are performed by the operators !, ||, and
&&, respectively.

The binary operator is allows inspecting the domain of any
value of a union domain. An element of a union domain may

1.5. EXPRESSIONS 27

be in more than one member of the union, and the is operator
allows checking whether it is in a given member. For instance,
if x:A, and A = A1 | · · · | Ai | · · · | An, the expression x
is Ai returns true if the value currently associated with x is
in the domain Ai, and returns false otherwise.

The built-in function toQ:T->Q converts true into quota-
tion "true", and false into "false". All other quotations
are converted to ?.

1.5.6 Integer expressions

Integer expressions are built upon variables and constants of
type N, function calls, and possibily using some of the follow-
ing operators:

n1 + n2 integer addition
n1 - n2 integer subtraction
n1 * n2 integer multiplication
n1 / n2 integer division
n1 % n2 integer division remainder
- n sign change of integer

where n, n1 and n2 are elements of N or expressions whose
values are in N.

If the result of any of the above operations falls outside the
interval of 32-bit integer numbers, [−232, 231 − 1], the value
undefined ? is returned.

Integer constants are nonnegative integer numbers in the
range of 32-bit integers, i.e., values in the interval [0, 231− 1].

The built-in function toQ:N->Q converts integer values into
quotations containing the decimal digits that compose the
number, whereas the function ascii:N->Q returns a quota-

28 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

tion containing the character whose internal ASCII code is
given. In case of invalid ASCII code, the value ? is produced.

1.5.7 Quotations

Constants in domain Q are sequences of any ASCII characters
enclosed in quotes (") or delimited by a quote and newline
mark (\n or \r), i.e., all quotation start with a quote and
finish with another quote or the end of the line mark. Special
characters can be encoded in quotations as shown below:

Name Code Name Code Name Code
backspace \b carriage return \r newlines \n
backslash \\ form feed \f null character \0
bit pattern \ddd horizontal tab \t quote \"

where \ddd denotes a character whose internal code is the
decimal ddd. An example of special character encoding in a
quotation is:

"She said: \"This is a quotation\""
which denotes the quoting of the text

She said: "This is a quotation"
Quotations may be concatenated by operator +. The op-

erator : produces a quotation that is the concatenation of
a character, its first operand, with a quotation, its second
operand.

If k is an integer value, c is a character, q, q1, and q2 are
in domain Q, the following operations are defined:

1.5. EXPRESSIONS 29

q1 < q2 returns true if q1 < q2 in lexicographic order, else false
q1 <= q2 returns true if q1 <= q2 in lexicographic order, else false
q1 > q2 returns true if q1 > q2 in lexicographic order, else false
q1 >= q2 returns true if q1 >= q2 in lexicographic order, else false
q1 == q2 returns true if q1 is equal to q2, otherwise returns false
q1 != q2 returns true if q1 is not equal to q2, otherwise false
q1 + q2 returns the concatenation of q1 and q2
q(k) returns a quotation containing the k-th character of q
c : q returns a quotation where c is the head and q is the tail

The built-in function toN converts a quotation contain-
ing only decimal digits into an integer number, toT converts
"true" into true, "false" to false, and any other quota-
tion to ?. The function size returns the number of characters
that are within a quotation, and flatten transforms a list of
quotations into a single quotation, containing all the char-
acteres in the given quotations. In summary, the following
built-in functions are applicable to quotations:

• flatten : Q* -> Q
concatenates quotations from a list of quotations.

• toN : Q -> N
converts a quotation containing only decimal digits into
an integer value, if the quotation contains any other char-
acter, it returns ?.

• toT : Q -> T
converts "true" into true, "false" into false, other-
wise, returns ?.

• size : Q -> N
gives the number of characters of a quotation.

30 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

1.5.8 Fixpoint operator

Y is the Curry’s Paradoxical Combinator [9], which computes
the fixpoint of recursive equations and is defined as:

Y = \f.(\x.f(x x))(\x.f(x x))
which is the M’s rendition for the Church’s λ-calculus ex-
pression:

Y = λf.(λx.f (x x))(λx.f (x x))

For instance, in the program text below, f is a fixpoint of the
recursive equation f = g(f) computed by the combinator Y
in line 5:

F: A -> B;1

g: F -> F;2

...3

g = \f. ... f ... ;4

f = Y(g);5

1.5.9 Tuple expressions

Tuples are constructed by explicitly enumerating its compo-
nents by means of the notation (e1, · · · , en), where expres-
sions ei, for 1 ≤ i ≤ n and n ≥ 2, define the values of the
tuple’s components. The syntax of tuple expressions is as
follows:

tuple_exp ::= "(" tuple_elems ")"
tuple_elems ::= expression ("," expression)+
expression ::= defined in §1.5, page 19

Selection of fields of a tuple is achieved by means of pattern-
matching or by element indexing. To illustrate the selection
of tuple’s fields, consider the program fragment:

privates1

X = (A,B,C);2

1.5. EXPRESSIONS 31

f : X -> D;3

g : D -> D4

functions5

x = (... , ... , ...);6

h(...) = ... x(2) ... ;7

f(a,b,c) = ... a ... b ... c.... ;8

g(...) = ... f(x) ... ;9

The expression x(2) in line 7 exemplifies the selection of
a tuple’s second field by means of the indexing operation.
Tuple-indexing operations have the general form e(k), where
k is an integer expression whose value is in the interval 1 ≤
k ≤ number of components of e. This operation returns the
value of the k-th component of tuple e. In case k is outside
limits, the undefined value ? is returned.

The pattern-matching mechanism is associated with func-
tional-abstraction applications (§1.5.2, page 22). When exe-
cuting the body of function f in line 8, due to the function
call in line 9, parameters a, b, and c are bound to the first,
second and third fields of x, respectively.

1.5.10 List expressions

A list is a sequence of one or more expressions of equivalent
types, separated by commas and enclosed in the pair of sym-
bols (and). Lists differ from tuples by requiring that all
expressions in a list must be of equivalent types.

list_exp ::= "(" list_elems ")"
list_elems ::= expression ("," expression)*
expression ::= defined in §1.5, page 19

Note that the use of pair of parentheses in M is three-
fold: they are used to group sub-expressions, to construct

32 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

lists, and also to construct tuples. A single expression inside
parentheses is not a tuple, for tuples must have at least two
components, but it may be, according to context, a list of one
element or just an expression enclosed in parentheses.

The main operations on lists, where D is any domain, e:D,
and k is an integer expression whose value must be in the
interval 1 ≤ k ≤ size e∗, are as follows:
e : e* produces new list whose head is e and tail e*
e1* + e2* constructs a list by concatenating e1∗ and e2∗
e*(k) returns the k-th element of the list e*
The list-indexing operation e*(k), when k is outside limits,

returns the undefined value ? to indicate this error condition.
The other operations on lists are as follows:

• append : (D*,D) -> D+
the operation append(e∗,e) returns a new list by ap-
pending e to the end of a copy of the list e∗.

• flatten : D** -> D*
the flatten(e**) operation generates a list by concate-
nating the elements of the list e**, preserving the order
of the elements in the given list.

• head : D+ -> D
the operator head returns the first element of a list. An-
other way to retrieve the head of a list is by means of
application of pattern-matching (§1.5.1, page 19). The
application of function head to an empty list produces
the undefined value ?.

• size : D* -> N
the operation size(e*) returns the number of compo-
nents in the list e*.

1.5. EXPRESSIONS 33

• tail : D+ -> D*
the operator tail returns a list containing all the ele-
ments of the given list but the first one. Applying func-
tion tail to an empty list produces the undefined value
?. Another way to retrieve the tail of a list is by means
of application of pattern-matching (§1.5.1, page 19).

1.5.11 Node expressions

Nodes are the building blocks of abstract syntax trees (AST).
Members of the domain [D1 · · ·Dn], for n ≥ 1, are repre-
sented as [e1 . . . en], where e1, . . . , en are identifiers or con-
stants in the corresponding domains D1, . . . , Dn. The syntax
of AST nodes is defined as follows:

node_exp ::= "[" node_elem+ "]"
node_elem ::= variable_id | constant
variable_id ::= defined in §1.5.4, page 24
constant ::= defined in §1.5.4, page 24

The components of a tree node can be retrieved by means
of the pattern-matching mechanism associated with the ap-
plications of adequately devised functions. (§1.5.1, page 19).

All nodes are represented internally as having a label and a
tuple of emanating tree branches. The label of a node serves
to distinguish it from other nodes and is implicitly defined by
flatten (q1, ..., qn), where qi, for 1 ≤ i ≤ n, are the names
of the domains of the elements occurring inside the node. For
instance, the label of the node [id ":=" exp], for id:Id and
exp:Exp, is the quotation "Id:=Exp". The label of a node is
used to ease the pattern-matching process (§1.5.1, page 19).

The tuple of emanating branches from a node whose de-
clared domain is [D1 . . . Dn] contains the values that are in

34 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

the non-constant domains specified. For instance, in the pre-
vious example, the tuple is (id,exp). A tree node can be
viewed as a labeled tuple.

1.5.12 Mapping expressions

It is common in denotational semantic descriptions to define
certain functions in a stepwise fashion. For instance, initially
a function is defined to only return the undefined value ?, or
another constant, for all values of its argument. Then, other
elements of this function are gradually defined for certain val-
ues of the argument as its definition progresses. The function
definition is thus updated step-by-step.

Note that the term updating function is just an abuse of
terminology. A new function value is always produced when-
ever the function is updated, as expected in the functional
paradigm.

Mapping expressions are a feature that facilitate the mod-
eling of environments and stores, quite common in semantic
definitions. Consider, for example, the domain S of stores
commonly used in standard denotational semantics [15], and
suppose they are modeled as:

S = Loc -> Sv
where Loc is the domain of locations, and Sv that of storable
values.

Initially, the store is assumed empty and the definition of
function s:S reflects that fact:

s loc = "unused"
where "unused" is a special value in the domain Sv.

Later, when the value denoted by a given expression e is to

1.6. COMPILATION UNITS 35

be associated with a given location, say a:Loc, in the mapping
s, function s is updated to s{a<-e} such that, for any x:Loc,

s{a<-e}(x) =

{
e if x == a
s(x) otherwise

And this updating process may proceed by aggregating new
binding pair to the function definition.

The syntax for mapping expressions is defined as follows:
mapping_exp ::= "{" binding_pairs "}"

| "{" function_id "}"
binding_pairs ::= binding_pair ("," binding_pair)*
binding_pair ::= expression "<-" expression
expression ::= defined in §1.5, page 19
function_id ::= defined in §1.5.4, page 24

Thus an updating function consists of a function identifier
and one or more mapping expressions as the following expres-
sion illustrates:

f{x1<-e1, · · · , xn<-en}{g}

where f and g have type A->B; e1, · · · ,en are arbitrary ex-
pressions in the domain B; and x1, · · · , xn are expressions
denoting members of A. The meaning of this updating func-
tion is :

\x.(g(x)!=?) => g(x),(x==x1) => e1 , · · · ,(x==xn) => en,f(x)

1.6 Compilation units

A complete M definition of a programming language con-
sists of a main module along with zero or more other mod-
ules. Each module is a compilation unit, i.e., a unit that can
be compiled separately, although not independently, from the
units it depends on and from those that depend on it. For-
mally, its syntax is defined as:

36 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

M_definition ::= compilation_unit+
compilation_unit ::= interface_module

| definition_module

An M module is a mechanism for encapsulating declara-
tion of variables, domains, grammars and functions that are
related to each other, and for allowing exercising some degree
of discretionary information hiding, in the sense that details
of selected domains and of functions can be abstracted away,
while highlighting some group of domains and functions for
outside use.

There are two types of modules: the definition module,
which must be held in file with extension ".m", and the in-
terface module, which must be in file with extension ".i". Re-
lated interface and definition modules form a pair that bears
the same principal name, e.g, Command.i and Command.m de-
note the files that hold the interface and definition of a module
called Command.

1.7 Interface modules

The interface module should contains all declarations of the
entities used in the corresponding definition modules. That
is, everything declared in an interface module or imported
to it is automatically avaliable for use in the corresponding
definition module.

An interface module may contain up to three sections, name-
ly imports, privates and publics, always presented in this
order according to the following syntax:

interface_module ::= "interface" interface_id
interface_body "end"

1.7. INTERFACE MODULES 37

interface_id ::= proper_id
interface_body ::= imports privates publics
imports ::= imports_section | ε
privates ::= privates_section | ε
publics ::= publics_section | ε
proper_id ::= defined in §1.1, page 3
imports_section ::= defined in §1.7.1, page 37
privates_section ::= defined in §1.7.2, page 39
publics_section ::= defined in §1.7.2, page 39

The section named imports serves to bring to the current
scope domains, variables and functions that are declared in
other modules. The section named privates allows declara-
tions of entities whose scopes are limited to the proper in-
terface module and to the corresponding definition module.
And the section named publics permits the declarations of
variables, domains and functions that are usually defined in
the corresponding definition module and that can be imported
by other modules.

1.7.1 Imports section

The import section of an interface module allows bringing to
the scope of the module pair entities defined in other mod-
ules, so they can be used in this interface module and in the
corresponding definition module of the pair. The syntax of
the importation mechanism is defined as follows:

imports_section ::= "imports" import_clauses
import_clauses ::= import_clauses ";" windows

| windows
window ::= module_id "(" imported_elems ")"

| empty
imported_elems ::= imported_item ("," imported_item)*

38 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

imported_item ::= item | item "becomes" new_item
new_item ::= item
item ::= domain_id | variable_id

| function_id | nonterm_id
domain_id ::= defined in §1.4, page 12
variable_id ::= defined in §1.5, page 19
function_id ::= defined in §1.5.4, page 24
module_id ::= defined in §1.6, page 35
nonterm_id ::= defined in §1.8.2, page 47

Name conflicts may arise when a module imports entities
from other modules. However, name conflict is only a problem
when the function overloading mechanism (§1.8.3, page 59)
is not able to resolve it. In such cases, conflicts must be
explicitly resolved by means of the becomes clause, which
gives a local name for an imported entity.

The example below shows the use of the becomes device:
interface A | interface B | interface C1

publics | publics | imports2

....... | | A(x,z,r);3

w:H; | w:H; | B(x becomes y,r);4

x:N; | x:N; | -- y is the x from B5

z:Q; | z:Q; | -- x is the x from A6

r:Q; | r:Q; | -- z is the z from A7

....... | | -- r is ambiguous8

end | end | end9

The internal structure of imported domains and types of
imported functions become automatically available in the im-
porting modules. However, only the names of entities used in
their internal structure and that have been also explicitly im-
ported may be used in the importing unit. The code fragment
below should make these rules clear.

interface A | interface B1

1.7. INTERFACE MODULES 39

imports | imports2

... | A(f,D,g);3

privates | ...4

h = D -> D | privates5

publics | h : D -> D;6

f : D -> D; | s : D -> D7

g : D = P -> P; | publics8

P = N | ...9

end | end10

module A | module B11

functions | functions12

... | ...13

g p = ... ; | r (d) = ...;14

n = g(1); | n = g(1); -- wrong15

d = h(f(g)) | d = h(f(d))16

end | end17

Note that, although function f and domain D have been
properly imported to the body of module B, the operation in
line 15 of B does not work properly because domain P has
not been imported along, so the type of the value d(1) is un-
known in body of B. To fix this, P should be included in the
importation list of module B. On the other hand, line 16 of
B is correct, for all needed information for the operation are
available. Also everything in the definition module A is cor-
rect, because a definition module has visibility to all entities
declared in the corresponding interface module.

1.7.2 Privates e publics sections

The privates and publics sections of an interface module have
the following syntax:

privates_section ::= "privates" var_dom_dcls

40 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

publics_section ::= "publics" var_dom_dcls
var_dom_dcls ::= defined in §1.3, page 9

The visibility rules between a interface module and its cor-
responding definition module are as follows:

• All entities declared in the interface module or imported
to it are automatically available in the definition unit that
bears the same name.

• The entities declared in the publics section of an interface
modules can be imported by other modules.

• The entities declared in the privates section of an interface
modules are only visible in this interface and in the cor-
responding definition module. They can not be imported
by other modules, for they are private to the module.

• All domains of nonterminals defined in the syntax part
of a definition module may be included in the publics
section of corresponding interface module, so they can
be imported by any other module. In such case, these
nonterminals should be mentioned in the publics section
of the interface module as member of the built-in domains
Nonterminal or Start.

The example below illustrates a few situations.

interface A |module A |interface B|module B1

import |lexis |imports | v not available2

B(z) | v::=id | A(a,id,D) | id available3

publics |syntax |publics | x not available4

a,b:N; | ... | z:N; | a available5

id:Token; | x:D::=...| r:N; | b not available6

D:Nonterminal | ... | w:N | z,r,w available7

end |end |end |end8

1.8. DEFINITION MODULES 41

The visibility rules for the above corresponding module are
as follows:

• D of definition module A is visible to interface module A,
because it is defined in a syntax section of module A, so
it can be exported by the interface module A.

• z of B is visible to definition module A, because it has been
imported to interface A.

• z, r and w of B is visible to definition module B because
they are declared in the interface module B.

• x, b and v of A are not visible to module B, for they have
not been imported to B. Notice that b could have been
imported, but x and v could not, because they are note
visible in the interface module A.

1.8 Definition modules

Definition modules are also organized into up to three sec-
tions, namely lexis, syntax and functions, always presented
in this order. The syntax and lexis sections define the gram-
matical rules for the concrete and abstract syntactic structure
of language constructs. The functions section of a module is
used to provide the definition of semantic functions.

Declarations of variables, domains, or types of functions are
not allowed in definition modules. These entities, if needed in
the definition module, must be declared in the corresponding
interface module or imported to this interface. Thus, most
definition modules must have a companion interface module,
which performs all needed importation of variables, domains,
or functions from other modules. The interface module must

42 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

also declare all entities that are used or defined in the corre-
sponding definition module, and specifies the collection of the
elements defined in the module and that can be imported by
other modules.

Definition modules have the following syntax:
definition_module ::= "module" module_id

module_body "end"
module_id ::= proper_id
module_body ::= lexis syntax functions
lexis ::= lexis_section | ε
syntax ::= syntax_section | ε

functions ::= functions_section | ε

proper_id ::= defined in §1.1, page 3
lexis_section ::= defined in §1.8.1, page 42
syntax_section ::= defined in §1.8.2, page 47
functions_section ::= defined in §1.8.3, page 54

One of the modules of a complete M denotational spec-
ification must have the definition of the distinguished func-
tion with the reserved name main (§1.9, page 61). This user-
defined function must map elements of type Q* to some type
defined by the user according to the value produced by its
body. The arguments of main are usually information on the
execution environment. The module containing the function
main is recognized as the main module of the formal defini-
tion.

1.8.1 Lexis section

This part of a definition module copes with the specification of
the set of special tokens that can be used in syntax sections.
All terminal symbols, i.e., quotations appearing in produc-
tion rules of the syntax section of the modules that form a

1.8. DEFINITION MODULES 43

semantic definition, are automatically collected and properly
incorporated in the implicit or explicit lexis section of each
respective module. The programmer only has to specify the
lexical definitions of the additional tokens.

The production rules that occur in the lexis section of mod-
ules are restricted to be very simple: no recursion is allowed
neither is element grouping.

The left-hand side of each production rules is an undeco-
rated common identifier (§1.1, page 3), possibly accompanied
by its domain name, which is implicitly a member of the do-
main Token, and can thus be exported to other modules.

The right hand side of a lexis production must be regular
expressions consisting of just a sequence of terminals and non-
terminals, possibly including nonterminals decorated indices
and/or * and +.

The syntax of the lexis section of a definition module is
defined as follows:

lexis_section ::= "lexis" token_defs
token_defs ::= token_defs ";" token_definition

| token_definition
token_definition ::= regular_production

| range_production
| exception_production
| empty

regular_production ::= lhs "::=" reg_exps
reg_exps ::= reg_exp ("|" reg_exp)*
reg_exp ::= regular_factor* "=>" lexis_exp

| regular_factor*
regular_factor ::= terminal

| lex_nonterm_id
range_production ::= lhs "===" character_ranges
lhs ::= new_nonterm_id ":" domain_id

44 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

| new_nonterm_id
character_ranges ::= char_range ("|" char_range)*
char_range ::= char ".." char
except_production ::= lhs "=/=" char
char ::= any ASCII character enclosed in ’
lexis_exp ::= "return" syntactic_unit

| token_value
syntactic_unit ::= "(" token_code "," token_value ")"
token_code ::= common_id
token_value ::= basic_exp
lex_nonterm_id ::= common_id | common_id_list

| common_idx | common_idx_list
common_id ::= defined in §1.1, page 3
common_idx ::= defined in §1.1, page 3
common_id_list ::= defined in §1.1, page 3
common_idx_list ::= defined in §1.1, page 3
new_nonterm_id ::= defined in §1.8.2, page 47

Range production is a special production rule whose syntax
has been borrowed from P. Mosses [30]. They are production
rules whose alternatives can only be an interval of ASCII char-
acters. The value produced is always the character recognized.

Ranges are distinguished from normal production rules by
the use of the symbols === or =/=, instead of ::=, to separate
the production sides. The === symbol defines the recognition
of characters that belong to a given set of characters defined
by a lexicographical order interval, and the =/= symbol defines
the recognized character as those in the complement of the
specified set. In the example

digit === ’0’ .. ’9’
comment_char =/= ’;’

the range defined by digit is equivalent to:
digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’

| ’7’ | ’8’ | ’9’

1.8. DEFINITION MODULES 45

and comment_char is any ASCII character but a semicolon.
As for the associated semantics, the recognition of token

digit by means of the rule
digit === ’0’ .. ’9’

automatically associates with digit the string containing the
digit encountered during the parsing process.

In the case of a rule like num ::= digit+, the nonterminal
digit+ contains the concatenation of the digits encountered
during the recognition process, and this string of digits (of
type Q) becomes the value associated with num. A different
value, though, may be associated with a lexis nonterminal by
attaching a lexis expression to its defining rule. The value of
this expression supersedes the rule default value.

The syntactic unit returned by the lexical analyzer speci-
fied by a lexis section is a token expression that denotes the
construction of a token given its code and its value. The to-
ken code is the grammar symbol properly declared in a lexis
production, and the token value is a value of type Q.

For example, the expression (id,"abc") that is a syntactic
unit associated with a return expression occurring in a lexis
section, denotes a pair whose first component is the token code
of id, and the second component is the token value defined
as the string "abc".

A lexis expression of the form return (id,v) concludes
the recognition of the token id. The value returned by the
lexical analyzer is the specified tuple. In syntactic contexts,
references to the token identifier id refer to its token code. In
other contexts, the associated quotation value, i.e., the token
value is automatically retrieved.

46 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

The standard built-in function value:Token->Q is such
that value(t), where t is a token code, may be used to re-
trieve the value associated with token t, but, most of the time,
this is not necessary. For instance, in the following code,
where terminal id has been properly declared elsewhere as
id:Id,

syntax1

stmt:Stmt ::= id ":=" exp => [id ":=" exp]2

functions3

exec[id ":=" exp] r c s =4

... r(id) ... q ...5

where q = id6

the occurrences of token id in lines 2 and 4 need the token
code, in order to perform pattern-matchings, while those in
lines 5 and 6 refer to the value associated with the token, i.e.,
these latter occurrences of id are equivalent to value(id).

The token id must have been declared in some lexis section
as in:

lexis1

id: Id ::= letter+ => return (id,letter+);2

letter === ’a’ .. ’z’ ;3

num: Num ::= digit+ => return (num,digit+);4

digit === ’0’ .. ’9’5

end6

Each definition module has a proper lexis part, be it explicit
or implicit. Thus, there are a lexical analyzer and a syntac-
tic analyzer for each module that has a syntax section The
lexical and syntactic analyzers of all modules in a semantic
definition of a language are automatically regrouped by the
M execution environment to form the parser of the entire
language.

1.8. DEFINITION MODULES 47

Tokens defined in a module can be used in other modules
as long as their domains are exported by the corresponding
interface modules, in which case these domains must be de-
clared of type Token in the publics section of the exporting
module and properly imported to the context they are needed.

1.8.2 Syntax section

The purpose of the syntax section of a definition module is to
provide the specification of the concrete syntax of an entire
programming language or simply of a part of it, and also for
indicating how the abstract syntax tree (AST) for programs
can be derived from the concrete syntax.

From the syntax sections of all modules that comprise the
definition of a language, theM execution system generates,
among other results, the function compile:File->AST to map
source code of programs written in the language being defined
into AST code.

The syntax specification is a context-free grammar in which
each production rule implicitly or explicitly has an associated
directive for building the corresponding node of the abstract
syntax tree for the program being parsed.

All nonterminals and their respective domains, which are
defined in the syntax part of a module, are visible to the
corresponding interface module, and thus can be listed in its
public section so as to be exportable.

Usually, only the domains of nonterminals need be exported,
since all the information regarding the members of a domain
is exported along with the domain. In fact, the structure of
these exported domains is their definition as nodes or values

48 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

of the associated AST derived from the production specifica-
tions. The domain of all nonterminals is given by the keyword
Nonterminal, which must be used to declare the domains that
are exported.

Syntatic definition of the language being defined may be en-
capsulated in a module unit, or composed of separate pieces of
the grammar definition scattered throughout several modules.
TheM execution environment collect all of them in order to
produce the complete grammar that is necessary to generate
the corresponding lexical analyzer and the parser.

The start symbol of each piece of grammar is the left hand-
side of its first rule, while the start symbol of the complete
grammar is the nonterminal declared to be in a domain that is
declared as Start in the publics section of the corresponding
interface module.

A parse table should be associated with each piece of gram-
mar, and the start symbol of each piece is used to connect all
the parse tables produced by the collection of modules.

The syntax section of a module is defined by:
syntax_section ::= "syntax" productions
productions ::= production ";" production

| production
production ::= rule_lhs "::=" alternatives

| empty
rule_lhs ::= new_nonterm_id ":" domain_id

| new_nonterm_id
alternatives ::= alternative ("|" alternative)*
alternative ::= element* "=>" ast_info

| element*
element ::= nonterm_id | terminal
terminal ::= quotation
ast_info ::= basic_exp

1.8. DEFINITION MODULES 49

new_nonterm_id ::= common_id
nonterm_id ::= common_id | common_id_list

| common_idx | common_idx_list
common_id ::= defined in §1.1, page 3
common_idx_list ::= defined in §1.1, page 3
domain_id ::= defined in §1.3, page 9
basic_exp ::= defined in §1.5.4, page 24

This grammar specification defines that each production
serves the purpose of defining a nonterminal and its corre-
sponding domain. Thus, each production has a nonterminal
and its domain on the left side of ::=, and a list of alterna-
tives, separated by |, on the right side.

The specification of the domain of nonterminals is optional.
When the domain specification is omitted, the domain of the
nonterminal on the left hand side is assumed to be the one
whose name is that of the nonterminal with its first letter
capitalized. All domains of nonterminals are themselves, by
default, in the built-in domain Nonterminal. Of course, do-
mains of nonterminals need not to be declared, except to men-
tion them in the public list of export entities of an interface
module, for example, as in line 7 of the following code:

interface Expression1

imports2

Tokens(Id,Num,Aop,Mop);3

Exp_Components(Ed,send,read,operate,fcall);4

Exp_Components(choose,dereference);5

publics6

Exp : Nonterminal;7

R : Exp -> Ed ; -- r-expressions8

E : Exp -> Ed ; -- l-expressions9

end10

Each rule alternative may have an attached expression,

50 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

which defines the default action for constructing the corre-
sponding abstract syntax tree node (§1.8.2, page 51).

Concrete syntax

Nonterminal symbols are written as common identifiers, and
distinguished occurrences of the same nonterminal in a given
production rule may be suffixed with a string of decimal digits
in order to differentiate them for semantic purposes, while
preserving their syntactic meaning.

A terminal symbol is a quotation or an identifier properly
declared in the lexis section of a module. Recall that terminal
symbols may be imported from other modules by importing
their domain, which must be declared as Token. For example,
given the following two interface modules:

interface A | interface B
publics | imports A(Id,Num);

Id : Token; | privates
Num : Token; | id : Id; num : Num;

end | end

The tokens id and num may be used in module B.
A production alternative defines a possibly empty sequence

of terminals and/or nonterminals. For example, the classical
grammar for expressions can be specified as:

exp : Exp ::= exp "+" term
| term ;

term : Exp ::= term "*" factor
| factor ;

factor : Exp ::= id
| constant
| "(" exp ")" => exp ;

1.8. DEFINITION MODULES 51

From the concrete syntax and lexis specifications, the M
compiler generates LALR(1) parsing-tables, scanner routines,
and ultimately produces a compiler that translates programs
in the specified language into the corresponding abstract syn-
tax tree code.

Abstract syntax

An abstract syntax tree (AST) is generated during program
parsing and it is composed of nodes corresponding to the pro-
ductions involved in the recognition process. Unless other-
wise specified, nodes are constructed from the values asso-
ciated with each grammar symbol that occurs on the right
hand side of the considered production. A tree node of the
AST possesses a label and a structural value, which is a tu-
ple of emanating branches that are the values of the symbols
on the production alternative. The label is built by the con-
catenation of the terminal and domain names of the grammar
symbols that occur on the corresponding production alterna-
tive. A terminal is the quotation that represents the terminal
itself or its identifier when it is declared to have type Token.
The domains of nonterminals are those implicitly or explicitly
declared for each one of them.

The structural value associated with terminal symbols is
the terminal itself, which is a quotation or an identifier. The
value associated with a nonterminal is the one assigned to it
when the considered nonterminal was produced by the reduce
action of the parser. Those values are put together to form
a node according to the structure of the production alterna-
tive. The resulting node becomes the value associated with

52 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

the nonterminal on the left hand side of the production rule.
However, not all productions produce a tree node automat-

ically. These exceptions are defined as follows:

1. Null-rules do not generate nodes. They just propagates
the null string value to the nonterminal on the left hand
side of the production rule.

2. Rules that possess just one symbol on the right hand side
do not generate nodes. The value associated with this
symbol becomes the value of the nonterminal on the left
side.

3. Rules whose right hand side possesses an expression at-
tached to it. In this case, the value of the expression
attached to the alternative is associated with the nonter-
minal that is on the left hand side of the production.

In situations in which the alternatives have more the one
symbol, or the alternatives have an attached value-expression
of type node, a tree node is generated in one of two ways:

1. In productions without a value-expression attached, the
tree node is built directly from the symbols on the pro-
duction alternative.

2. In productions with a value-expression attached, the value
produced is that of the attached expression, which must
be a basic expression (§1.5.4, page 24). If the expres-
sion attached to the rule alternative is a node expres-
sion, the terminals and the nonterminals that compose
this expression are used to construct the label and its
value. The value-expression may only contain operands

1.8. DEFINITION MODULES 53

which are terminal or nonterminal symbols occurring in
the corresponding production alternative. The value of
each operand is that of the value expression implicitly
or explicitly associated with it. Nonterminals that oc-
cur more than once in a production alternative may be
indexed to avoid ambiguity when referenced. Indices do
not change the domain of nonterminals.

This mechanism for producing abstract syntax tree allows
the following transformations, which are carried out according
to the value-expression attached to the production alternative:

1. Elimination of precedence information present in concrete
syntax specifications by an appropriate domain specifica-
tion. For example, given the production rules:

exp : Exp ::= exp "+" term
| term
;

term : Exp ::= term "*" factor ;
factor : Exp ::= id => [id] ;

where exp, term and factor are declared to be in the do-
main Exp, the resulting abstract syntax produced would
be:

Exp = [Exp "+" Exp]
| [Exp "*" Exp]
| [id]

2. Placement of constructs with similar semantic properties
in a single syntactic domain, while making sure that do-
mains with different semantic roles are distinct.

3. Elimination of production rules that have lost their se-
mantic significance after the operations described in the

54 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

items above had been performed. These are, in general,
productions that would only yield extra chain-reduction
nodes in the parse tree. Thus, nodes that correspond
to alternatives containing only one nonterminal symbol,
such as term above, are automatically eliminated.

4. Addition of terminal symbols to the node structure, e.g.,
parentheses, as in:

x:X ::= x "t" c => [x "t" "(" c ")"] ;
c:C ::= "n" ;

5. Changing the occurence order of the constituents of con-
structs. For example, if a+b, +ab, and ab+ are different
representations of the same expression, it might be desir-
able to reorder the components of some of them so as to
have just one abstract form. Operations of this type are
useful to reduce the number of semantic equations.

1.8.3 Functions section

The functions section of a definition module is initiated by
the keyword functions and contains definitions of semantic
functions. The syntax of the functions section is as follows:

functions_section ::= "functions" definition_list
definition_list ::= definition_list ";" fun_definition

| fun_definition
fun_definition ::= main_definition

| main_definition where_clause
|empty

main_definition ::= lhs "=" expression
where_clause ::= "where" where_definitions
where_definitions ::= main_definition

("and" main_definition)*

1.8. DEFINITION MODULES 55

lhs ::= pattern_exp
| function_name pattern_exp*

function_name ::= common_id | common_idx
| proper_id | proper_idx
| "main"

pattern_exp ::= defined in §1.5.2, page 22
exp ::= defined in §1.5, page 19

The scope of all first-level definitions is the entire collection
of defined functions. The order definitions are listed is not
relevant. That is, one can freely use any functions defined on
the same level. A where-clause introduces a new hierarchical
definition level. Functions defined inside a where-clause are
local to this clause and to the function the where is attached.
In order to keep the language simple, just one level of where
clause is allowed, i.e., where clauses inside a where-clause are
not allowed. Functions in a where-clause may call functions
defined in sibling clauses or in enclosing levels.

In the following program fragment the names visible in the
bodies of functions f1, f2, f3, g1 and g2 are only those listed
in their respective bodies.

f1 a = f1 f2 f3 g1 g2 a1

where g1 x = f1 f2 f3 g1 g2 a x2

and g2 y = f1 f2 f3 g1 g2 h1 a y3

and h1 z = f1 f2 f3 g1 g2 h1 a y z;4

f2 b = f1 f2 f3 b;5

f3 c = f1 f2 f3 c;6

For instance, in the body of f2, the only visible names are
f1, f2, f3 and b, and in the body of h1, only f1, f2, f3, g1,
g2, h1, a, and z are visible.

Notice that only f1, g1 and g2 see h1, which sees all the
functions specified on the same or in enclosing levels.

56 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

The left hand side of a definition may be a pattern expres-
sion or a function heading. The former provides a mechanism
for decomposing a structured value. For instance, in the fol-
lowing program fragment,

privates1

S = (A,B)2

...3

functions4

s = (a,b);5

...6

(a1,b1) = s;7

...8

the definition in line 7 decomposes the value of s and binds
its components to a1 and b1.

In fact, an assignment p = e, where p is a pattern and e,
an expression, is equivalent to (\p.c)e, where c is the context
in which the binding produced is to be available.

The body of a function is an expression, which may be
literal constants, variables, integer expressions, quotation ex-
pressions, logical expressions, lists, tuples, nodes, patterns, in-
quiry expressions, conditional expressions, functional expres-
sions, functional applications or any well-formed combination
of simpler expressions and operators. The body is evaluated
to produce the value to be returned, whose domain must be
compatible (§1.4.8, page 17) with the declared return type.

The types of all functions used in a module unit must be
those properly imported from other units or explicitly de-
clared in the corresponding interface module.

However, since the domains of formal parameters may be of
union type, there may be, in a same scope, several definitions
of the same function, each identified by specific members of

1.8. DEFINITION MODULES 57

these unions.
In fact these definitions just constitute distinct cases of a

single function definition whose body selects the specific case
based on the values or types of the parameters that are passed
to it.

For example, given the fragment of an interface module A,
interface A1

...2

privates3

X = N | Q | T;4

f,g : X -> N;5

...6

end7

Suppose that in the corresponding definition module, func-
tion f is defined four times, three are special cases, and the
fourth is a general definition. Thus, the function application
f(10) in line 8 below performs the function defined in line
4. The function call f("abc") refers to function definition on
line 5. The application f(x) activates the function of line 6.

module A1

functions2

f(0) = 0;3

f(n) = n;4

f(q) = 1;5

f(x) = 2;6

...7

g(x) = ... f(10) ... f("abc") ... f(x) ... f(0) ... ;8

...9

The application f(0) also in line 8 is, in principle, ambigu-
ous in the sense that definitions on lines 3 and 4 are equally
applicable. This kind of ambiguity is resolved favoring the
definition that textually comes first. So, in this case, the

58 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

definition on line 3 is chosen. Note that this only works for
function definitions occurring intra-module, because there is
no ordering relation between definitions occuring in different
modules. The relation come first textually is a partial order,
it only holds within a module.

A more meaningful example of the use of the order of pre-
sentation of the function definitions to resolve conflicts is:

functions1

apply: Q -> (Rv,Rv) -> Ec -> Store -> Ans;2

apply("+")(v1,v2) k s = k (v1 + v2) s;3

apply("-")(v1,v2) k s = k (v1 - v2) s;4

apply("*")(v1,v2) k s = k (v1 * v2) s;5

apply("/")(v1,v2) k s = k (v1 / v2) s;6

apply(op)(v1,v2) k s = "error";7

in which function definitions are processed in the order they
are presented, so the function definition in line 7 is selected
only if all previous definitions do not apply.

Generally speaking, formal parameters of an M function
are indeed pattern-expressions, which may contain identifiers
to be bound to corresponding components of the function’s
argument. Thus, in order to identify the proper definition of
the function being called, a pattern-matching of the function’s
arguments must be performed with the patterns defined by
the formal parameters. And these pattern-matching tests are
ordered according to the textual occurrences of the function’s
definitions on the module.
M is a pure, strict functional language, so that the eval-

uation of function arguments is performed immediately be-
fore function call. Note that the pattern-matching mecha-
nism forces the function’s arguments to be evaluated before
parameter passing, and that curried functions have just one

1.8. DEFINITION MODULES 59

argument, which is the only one evaluated before function
call.

Overloading resolution

As different functions may share the same name in the same
scope, that is, names of functions can be overloaded, more
than one function definition may be elegible for application
as a result of a given function call.

In order to resolve name overloading, the type and value
of each argument of the function application, and those of
the corresponding formal parameters of the candidate func-
tion definitions must provide enough information to tell these
functions apart.

The basic rule is that, in a function call, the domain of
each actual parameter must be compatible to the domain of
the corresponding formal parameter (§1.4.8, page 17).

If, after this compatibility test, more than one function
definition are still candidates, the function application is in-
herently ambiguous.

More specifically, the overloading resolution procedure to
identify the function to be called in a functional application
of the form f(a1 · · · an), where ai is in domain Ai, for i ≥ 1,
follows the steps:

1. From the function designator f, define the set C of candi-
date functions as containing all functions with the same
name f in the considered scope.

2. For each element ai of the actual parameter tuple, for
1 ≤ i ≤ n, eliminate from C functions that have a corre-
sponding formal parameter pi in domain Pi, such that Ai

60 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

is not compatible (§1.4.8, page 17) with Pi.

3. If, at this point, the cardinality of C is still greater than
1, perform the following additional steps:
(a) Assign to each function in C the number of nominal-

matchings occurring between the domains of the com-
ponents of the tuple argument and those of the cor-
responding parameters. A nominal-matching occurs
when both domains has identical names.

(b) Keep in C only the functions to which the greatest
nominal-matching number has been assigned.

4. If C becomes empty, the called function has not been
declared in the calling scope.

5. If cardinality of C is 1, C contains the function to be
called, otherwise, the function call is ambigous.

For example, given the following definition of function types
and applications:

interface M1

privates2

A = N; B = Q; C = N; D = Q;3

f : A -> B -> A; -- function 14

f : N -> B -> N; -- function 25

f : Q -> N -> A; -- function 36

end7

...8

module M9

functions10

...11

f a b = a; -- function 1 definition12

f n b = n; -- function 2 definition13

f q n = q; -- function 3 definition14

1.9. THE MAIN MODULE 61

g(...) = ...f(a)...f(n)...f(q)...f(c)...f(d)... ;15

...16

end17

The overloading resolution is as follows:

• f(a) refers to function 1 defined at lines 4 and 12
• f(n) refers to function 2 defined at lines 5 and 13
• f(q) refers to function 3 defined at lines 6 and 14
• f(c) is ambiguous: functions 1 and 2 are candidates
• f(d) refers to function 3

Curried functions are one-argument strict functions, so only
one argument is processed at a time. The argument, which
may be a tuple of expressions, must bring enough information
to resolve the overloading.

For instance, in the evaluation of f a b c, first a is evalu-
ated, and the application f a is performed. Then b is evalu-
ated to execute r b, where r is the function returned by f a,
and so for the argument c.

1.9 The main module

All complete semantic descriptions must have a main module,
which should establishes the description context, such as, the
source program file, data input files, the initial environment
and the initial store. The main module is the one from which
the execution of the semantic definition must start.

The main module has the same structure as the other mod-
ules, except that it is the one containing the definition of a
special monadic function named main.

62 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

The type of the argument of function main is predefined to
be Q*, but the type of the return value and the body of main
must be defined by the user, as in the following example.

interface miniL1

imports2

Program(Ans);3

publics4

main : Q* -> Ans;5

end6

module miniL7

functions8

main(arg*) = ... ;9

end10

The name of the module containing the function main is
used as the external name of main, that is, a call for execu-
tion of the main module causes the activation of the corre-
sponding function main. The way main modules are called
for execution is implementation dependent. However, typi-
cally, this is accomplished via a command dispatched from
the command line of the computer terminal. This command
line should passes to function main the necessary argument,
which usually is a list of quotations, designating tags and file
names.

For instance, the command line
>miniL -f source.m -i in.txt -o out.txt

where source.m is the source program file, in.txt is the
program input file and out.txt is the program output file.
will produces the call

main(("-f", "source.m", "-i", "in.txt", "-o","out.txt"))

The elements of the list of quotations passed as argument
to main may be retrieved by means of the standard function

1.9. THE MAIN MODULE 63

getarg(q,q*), which has type getarg:(Q,Q*)->Q. So that
the application getarg(q,q*) returns the first string that
follows string q in the list of quotations q*. Usually, q is a
tag, such as "-f", "-i", and "-o" in the command line shown
above.

The definition module below illustrates the use of this and
other built-in functions to initiate a program execution. Note
that in order to keep the example clean, there is no provision
for error detection in the body of main:

interface miniL1

imports Program(Prog,exec,Ans) ;2

privates3

arg, filename : Q;4

source, input : File;5

publics6

main : Q* -> Ans;7

end8

module miniL9

functions10

main(arg*) = exec(prog)(input)11

where filename1 = getarg("-f", arg*)12

and source = open(filename1)13

and filename2 = getarg("-i", arg*)14

and input = open(filename2)15

and prog = compile(source);16

end17

There can be more than one main module per semantics
definition. So there may be more than one semantic descrip-
tion sharing modules, and the execution of each definition
should be started from different main module.

64 CHAPTER 1. THE META-LANGUAGE FOR SEMANTICS DEFINITIONS

1.10 Module System

Module System defines a collection of built-in functions, which
are automatically imported to all context. This module pos-
sesses the following interface, in which D is any domain, and
Token represents the domain of grammar symbols:

interface System1

publics2

append : (D*,D) -> D*; --(§1.5.10, page 31)3

ascii : N -> Q; --(§1.5.6, page 27)4

close : File -> File; -- (§1.2, page 6)5

compile : File -> AST; --(§1.8.2, page 47)6

cond : (D,D) -> T -> D; --(§1.5.3, page 23)7

eof : File -> T; -- (§1.2, page 6)8

flatten : Q* -> Q; --(§1.4.4, page 14)9

getarg : (Q,Q*) -> Q; --(§1.9, page 61)10

getchar : File -> (File,N); -- (§1.2, page 6)11

head : D+ -> D; --(§1.4.4, page 14)12

main : Q* -> D; --(§1.9, page 61)13

open : Q -> File; -- (§1.2, page 6)14

putchar : (File,N) -> File; -- (§1.2, page 6)15

size : Q -> N; --(§1.5.7, page 28)16

size : D* -> N; --(§1.4.4, page 14)17

tail : D+ -> D*; --(§1.4.4, page 14)18

toN : Q -> N; --(§1.5.7, page 28)19

toQ : N -> Q; --(§1.5.6, page 27)20

toT : Q -> T; --(§1.5.7, page 28)21

ungetchar : (File,N) -> File; -- (§1.2, page 6)22

value : Token -> Q; --(§1.8.1, page 45)23

Y : (D -> D) -> D; --(§1.5.8, page 30)24

end25

Chapter 2

The Description of a Computer
Architecture

Simplicity is the ultimate sophistication.
Leonardo da Vinci (1452-1519)

Denotational semantics may be used to precisely describe
computer architecture as this chapter demonstrates with the
formal definition of a computer that features a high-level lan-
guage architecture.

This virtual computer, named SC, possesses a stack to
hold the operands and the results of the execution of its in-
structions. Memory administration and scope control are per-
formed automatically by high-level machine instructions.

2.1 The machine architecture

The execution of a program in the machine SC produces a
sequence of state transformations. Each state in this sequence
consists of a quintet defined by the tuple
State=(Env, Stack, Store, Dump, Output),

where

65

66 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

• Env is the domain of environments.
• Stack is the of domain execution stacks.
• Store is the domain of computer memories or stores.
• Dump is the domain of activation record stack.
• Output is the domain of printable values.

2.1.1 The environment

The environment takes care of the scope mechanism and pro-
vides associations of variables with their corresponding deno-
table values, which can be a location, a right-value, a proce-
dure value or a function value.

The scope mechanism implements the traditional static sco-
ping of imperative languages of the Pascal family, i.e., proce-
dures and functions are executed in their declaration environ-
ments, not in the environment from which they are called.
Upon returning from functions and procedures, the environ-
ment that existed prior the corresponding call must be re-
stored.

interface Menvironment1

imports Minstructions(Code,Ecode);2

privates3

d : Dv | "unbound";4

publics5

Env = Alist*; --machine env6

Alist = Pair* ; --association list7

Pair = (Var,Dv); --an association8

Dv = Loc | Rv | Proc | Fun; --denotable values9

Var = Q; --instr operands10

Loc = N; --store locations11

Rv = Bv | Bool; --r-values12

Bool = T; --logical values13

2.1. THE MACHINE ARCHITECTURE 67

Bv = N; --basic values14

Proc = (Code,Env); --procedure value15

Fun = (Ecode,Env); --function value16

-- operations17

env0 : Env;18

empty : Env -> T; --is env empty?19

empty : Alist -> T; --is alist empty?20

bind : Pair -> Env -> Env; --binds a var21

search : Var -> Env -> (Dv | "unbound");--gets dv22

search : Var -> Alist-> (Dv | "unbound");--gets dv23

pop : Env -> Env; --discards alist24

push : Alist -> Env -> Env; --pushes an alist25

top : Env -> Alist; --gets topmost alist26

locations : Alist -> Loc*; --gets locations27

locations : Env -> Loc*; --gets locations28

end29

An environment is a stack of Association Lists. An asso-
ciation list, a member of Alist, represents an environment
layer containing a list of pairs that associate variables with
their denotable values. The definition of the operations over
environments is detailed in the following module unit:

module Menvironment1

functions2

env0 = nil;3

empty(env) = (size env == 0);4

empty(alist) = (size alist == 0);5

bind(var,d)(env) = (empty env) => (((var,d))),6

((var,d):head env):(tail env);7

search(var)(env) = (empty env) => "unbound",8

(d != "unbound") => d, search(var)(tail env)9

where d = search(var)(head env);10

search(var)(alist) = (empty alist) => "unbound",11

(var1 == var) => d1, search(var)(tail alist)12

where (var1,d1) = head alist;13

68 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

pop env = (empty env) => ?, tail env;14

top env = (empty env) => ?, head env;15

push(alist,env) = alist:env;16

locations(env) = empty(env) => nil,17

locations(head env) + locations(tail env);18

locations(alist) = empty(alist) => nil,19

(d is Loc) => (Loc(d)) + locations(tail alist),20

locations(tail alist)21

where (var,d) = head(alist);22

end23

2.1.2 The store

The state component of type Store models the computer
memory, which associates locations with values. For practical
purpose, the memory has a fixed size, so memory overflow
may happen during execution.

interface Mstore1

imports Mcontinuations(Merror); Menvironment(Bv,Bool);2

privates3

next : Loc -> (Loc | Merror);4

getFree : (Store,Loc) -> (Loc | Merror);5

s : Store; a : Loc; v: Sv;6

publics7

Store = Loc -> (Sv | "unused"); -- machine memory8

Loc = N; -- store locations9

Sv = Bv + Bool; -- storable values10

maxLoc : Loc; -- highest location11

-- operations12

new : Store -> (Loc | Merror); -- gets free cell13

free : Loc* -> Store -> Store; -- frees locations14

get : Loc -> Store -> Sv; -- reads from location15

save : (Loc,Sv)->Store->Store; -- stores at location16

s0 : Store;17

end18

2.1. THE MACHINE ARCHITECTURE 69

The definition of the above operations over machine stores
is detailed in the following module unit.

module Mstore1

functions2

maxLoc = 32767;3

s0 a = "unused";4

new s = getFree(s,0);5

where getFree(s,a) = (s(a) == "unused") => a,6

(a == maxLoc) => "Storage-Full", getFree(s,a + 1);7

free a* s = empty(a*) => s , free tail(a*) s18

where s1 = s{head a* <- "unused"};9

get a s = s(a);10

save(a,v)s = s{a<-v};11

end12

2.1.3 The stack

All expression evaluations are carried out on the machine
stack, i.e., operands of any operation are retrieved and popped
from the stack and the result of all operations are pushed back
on the stack.

interface Mstack1

imports Menvironment(Bv, Bool, Proc, Fun); Mstore(Loc)2

privates3

e : Ev;4

publics5

Stack = Ev*;6

Ev = Bv|Bool|Loc|Proc|Fun; -- expressible values7

-- operations8

stack0 : Stack;9

empty : Stack -> T;10

tooShort : Stack -> T;11

pop : Stack -> Stack;12

push : Ev -> Stack -> Stack;13

70 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

top : Stack -> Ev;14

isBool : Ev -> T;15

areBool : (Ev,Ev) -> T;16

areBv : (Ev,Ev) -> T;17

end18

The definition of the above operations over machine execu-
tion stack is detailed in the following module unit.

module Mstack1

functions2

isBool(e) = e is T;3

areBool(e1,e2) = (e1 is T) & (e2 is T);4

areBv(e1,e2) = (e1 is Bv) & (e2 is Bv);5

stack0 = nil;6

empty stack = (size stack == 0);7

tooShort stack = (size stack < 2);8

pop stack = (empty stack) => ?, tail stack;9

top stack = (empty stack) => ?, head stack;10

push e stack = e:stack;11

end12

2.1.4 The dump

Upon entering a procedure or a function body, the current
environment must be pushed on the dump component of the
state, and a new environment layer must be pushed on the
environment stack. The dump stack allows the environment
to be restored when the procedure or function in execution
returns.

interface Mdump1

imports Menvironment(Env)2

publics3

Dump = Env*; -- environment stack4

dump0 : Dump;5

2.1. THE MACHINE ARCHITECTURE 71

empty : Dump -> T;6

pop : Dump -> Dump;7

push : Env -> Dump -> Dump;8

top : Dump -> Env;9

end10

The definition of the above operations over dump stack is
detailed in the following module unit.

module Mdump1

functions2

dump0 = nil;3

empty(dump) = (size dump == 0);4

pop dump = (empty dump) => ?, tail dump;5

top dump = (empty dump) => ?, head dump;6

push env dump = env:dump;7

end8

2.1.5 Files

The input and output operations are defined in module Mio.
The output file records the execution results.

interface Mio1

imports Menvironment(Rv); Mcontinuations(Merror);2

Mstore(Loc,Store,save);3

privates4

readN : File -> (N,File); -- reads an integer5

readN : (File,N) -> (N,File); -- auxiliary function6

zero : N; -- code for ASCII "0"7

nine : N; -- code for ASCII "9"8

a : Loc;9

publics10

Output = nil | (Output,Ov); --output file11

Ov = Rv | ("stop" + Merror); --outputable values12

-- operations13

readint : (Loc,Store) -> (N,Store);14

72 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

put : (Ov,Output) -> Output;15

o0 : Output;16

end17

In case of an execution error is detected, the output file
records the appropriate error message, otherwise, at the end
of execution, the message recorded is "stop", which signalizes
the success of the execution run.

The definition of the above operations over the input and
output files is detailed in the following module unit, in which
the built-in function getchar(file) reads the next input
character from the input file and returns the integer value that
represents the ASCII code associated with character read.

module Mio1

functions2

zero = 48;3

nine = 58;4

isdigit n = (n >= zero) & (n <= nine);5

digit n = n - zero;6

7

readint(a,s)= eof(file) => (?,s),(n,save(a,file1)s)8

where file = s a; (n,file1) = readN(s a);9

10

readN(file) = eof(file) => (?,file), readN(file,0);11

readN(file,n) = eof(file) => (n,file),12

!isdigit(n1) => (n,file),13

readN(file1,10 * n + digit(n1))14

where (n1,file1) = getchar(file);15

16

o0 = nil;17

put(o,ov) = (o,ov);18

end19

2.1. THE MACHINE ARCHITECTURE 73

2.1.6 Continuations

Suppose that function MC : Code -> State -> State give
the meaning of a sequence of SC instructions, i.e., MC applied
to an instruction sequence and the current machine state pro-
duces a new state. And, naturally, this operation is carried
out executing, in order, each instruction in the sequence, ac-
cording to the equations:

MC(nil)q = q
MC(I:c)q = MC(c)(MI(I)q)

where function MI: Instr -> State -> State executes an
individual instruction, such as I:Instr, followed by a se-
quence c:Code, being q:State the current machine state.

Clearly, the flow of execution is modeled via function com-
position: the state produced by the execution of an instruc-
tion is passed to the execution of the next one, i.e., the above
equation may be rewritten as:

MC(I:c) = MC(c) o MI(I)

This encoding makes clear that the execution of a sequence of
instructions is defined as the execution of the first instruction
to produce a machine state that is to be passed to the function
that computes the meaning of the remaining instructions in
that sequence.

However, when the execution of a instruction causes an er-
ror, the machine state should not be passed to the instructions
that follow in the control flow. In this case, an appropriate er-
ror messagem must be issued instead. In other words, if MI(I)
produces an error message instead of a new state, its compo-
sition with MC(c) must be avoided. Of course, to implement
this, the types of MC and MI must be changed accordingly:

74 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

MC: Code -> State -> State | "error"
MI: Instr -> State -> State | "error"

and the equation above becomes:
MC(I:c)q = (MI(I)q) == "error" -> "error",MC(c)(MI(I)q)

with evident damages to the comprehensibility of the descrip-
tion.

A clever solution for this composition problem is provided
by the notion of continuations. The basic idea is to define
special functions of type Cont, such that,

Cont = State -> Ans
Ans = State | "error"

and pass them to semantic functions, which must now have
the types:

MC : Code -> Cont -> State -> Ans
MI : Instr -> Cont -> State -> Ans

Functions of type Cont normally map intermediate values,
such as the machine state, to the domain of Ans of final ex-
ecution answer, which becomes the destination domain of all
semantic functions. In this example, the final answer is the fi-
nal state reached by the program execution or simply an error
message.

Continuation functions must be constructed to embodied
the semantics of the rest of the program to executed next.
Thus, the new equations for MC become:

MC(nil)z q = z q
MC(I:c)z q = MI(I)(MC(c)z)q

where z:Cont is the continuation function.
These equations tell that the semantics of an empty list

of instructions is obtained by passing the current state q to

2.1. THE MACHINE ARCHITECTURE 75

a given program continuation z. And the semantics of a se-
quence of SC instructions consists of executing the first in-
struction I with a continuation that indicates that the re-
maining instructions are to be executed next.

In summary, to cope with error handling, functions of type
Contmust be passed to semantic functions that check for error
conditions, so that they can have the choice of either aborting
execution with an error message or transmitting their inter-
mediate results to the instructions that follow. For these rea-
sons, functions that map intermediate values to final answers
are called continuations.

interface Mcontinuations1

imports Menvironment(Env); Mstack(Stack); Mstore(Store);2

Mdump(Dump); Mio(Output);3

privates4

q: State;5

z: Cont;6

publics7

State = (Env,Stack,Store,Dump,Output)8

Cont = State -> Ans;9

Ans = State | Merror;10

Merror = {"Empty-Input" , "Unbound-Var" ,11

"Wrong-Opn" , "Storage-Full" ,12

"Stack-Underflow" , "Misplaced-ret" ,13

"Stack-Overflow" , "Non-Return" ,14

"Non-Bool-Value" , "Non-Num-Value" ,15

"Non-Rv-Value" , "Non-Sv-Var" ,16

"Non-Loc-Var" , "Non-Fun-Value" ,17

"Non-Proc-Value" , "Misplaced-end" ,18

"No-File" , "Invalid-Input"};19

-- operation20

z0 : Cont;21

end22

76 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

The sole operation defined in this module unit is the initial
continuation z0, which is the identity function, because after
the execution of the entire program nothing is left to be done.

module Mcontinuations1

functions2

z0 q = q;3

end4

2.2 Program execution

The execution of a program in the computer SC starts by the
application of the function main that is defined in the module
Machine and described in this section.

interface Machine1

imports Compiler(KP,Pro); Mcode(Mc);2

Minstructions(Code);3

Mcontinuations(Ans,State,Cont,Merror,z0);4

Menv(Env,env0); Mstore(Store,s0,save);5

Mstack(Stack,stack0); Mdump(Dump,dump0);6

Mio(Output,o0,Input,Output);7

privates8

P : Pro -> Input -> (Output | Merror);9

out : Ans -> (Output + Merror);10

z : Cont; q: State; s: Store;11

source : File; -- source program file descriptor12

i : File; -- input file descriptor13

arg : Q; -- argument of the main function14

infile : Loc; -- location of the infile descriptor15

publics16

main : Q* -> Ans;17

end18

The source code file, which contains the Small program to
be compiled, and its input file have their names collected from

2.3. MACHINE INSTRUCTIONS 77

the command line of the execution environment and passed
as a list of quotations to the function main.

In order to be executed, source programs in the language
Small are translated into the AST format by the built-in func-
tion compile (§1.8.2, page 47), which is generated from the
syntax specification of Small.

Then, the AST code is compiled via the function KP that
is defined in the module Compiler (§3.2, page 88). The SC
code produced by KP is then executed by function MC defined
in module Mcode (§2.3, page 77).

module Machine1

functions2

main(arg*) = (pro!=? & i!=?) => P(pro)(i),"No-File"3

where source = open(getarg("-f",arg*))4

and pro = (source!=?)=>compile(source),?5

and i = open(getarg("-i",arg*));6

7

P(pro)(i) = out(MC(code)z0 q0)8

where code = KP(pro)9

and infile = new s010

and env1 = bind("input_file",infile) env011

and s1 = save(infile,i,s0)12

and q0 = (env1,stack0,s1,dump0,o0);13

14

out(ans) = (ans is Merror) => ans, State(ans)(5);15

end16

2.3 Machine instructions

The meaning of a sequence of SC instructions is defined by
semantic functions MC or ME. The meaning of each individual
instruction is given by a proper definition of function MI.

78 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

2.3.1 Flow of execution

Module Mcode defines the flow of execution of the machine
code. Function MC executes an ordinary sequence of code,
and ME, a sequence of code that leaves a value on the top of
the machine stack.

interface Mcode1

imports Minstructions(MI,Code,Ecode,Instr);2

Mcontinuations(Cont,State,Ans);3

publics4

MC : Code -> Cont -> State -> Ans;5

ME : Ecode -> Cont -> State -> Ans;6

I : Instr; -- machine instruction7

c : Code; -- machine code for commands8

t : Ecode; -- machine code for expressions9

z : Cont; -- machine continuations10

q : State; -- machine execution states11

end12

The definition of the above operations is detailed in the
following module unit.

module Mcode1

functions2

MC(nil)z q = z q;3

MC(I:c)z q = MI(I)(MC(c)z)q;4

5

ME(nil)z q = z q;6

ME(I:t)z q = MI(I)(ME(t)z)q;7

end8

2.3.2 Instruction set

Module Minstruction describes the meaning of each machine
instruction.

2.3. MACHINE INSTRUCTIONS 79

interface Minstructions1

imports2

Mcontinuations(Cont,State,Ans,Merror);3

Menvironment(Var,Bv,Env,Dv,bind,search,Rv,Proc,Fun);4

Mstack(Stack,Ev,push,top,pop,isBool,areBool,areBv);5

Mstore(Store,Loc,Sv,new,free,get,save);6

Mdump(Dump,push,pop);7

Mio(Input,read,Output,put,readfile,eof);8

privates9

a : Loc; -- memory addresses10

b : Bv; -- basic values11

c : Code; -- machine intruction sequence12

d : Dv; -- machine denotation values13

f : Fun; -- function value14

i : Input; -- input file15

o : Output; -- output file contents16

p : Proc; -- procedure values17

q : State; -- machine state18

s : Store; -- machine store19

t : Ecode; -- machine code for expression20

v : Ev; -- expressible values21

z : Cont; -- machine continuation22

publics23

Instr = ["halt"] | ["loadv" Bv] | ["loadt"]24

| ["loadf"] | ["store"] | ["load" Var]25

| ["read"] | ["output"] | ["deref"]26

| ["add"] | ["minus"] | ["mult"]27

| ["div"] | ["and"] | ["or"]28

| ["not"] | ["begin"] | ["end"]29

| ["alloc"] | ["bind" Var] | ["fcall"]30

| ["pcall"] | ["mkproc" Code] | ["ret"]31

| ["mkfun" Var Code] | ["cond" Code "," Code]32

| ["loop" Ecode "," Code];33

Code = Instr*; Ecode = Instr*;34

MI : Instr -> Cont -> State -> Ans;35

end36

80 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

Function MI, which is implemented in module unit named
Minstructions, defines the meaning of each SC instruction
by first checking its preconditions, and either produces an
appropriate error message or computes the effect of the in-
struction and passes it to the continuation function provided
as parameter.

Therefore, the function MI shows the effect that each in-
struction would produce in the final answer of a program.

module Minstructions1

functions2

MI["read"](z)(env,stack,s,dump,o) =3

(n == ?) => "Invalid-Input", z(q)4

where a = search("input_file") env5

and (n,s1) = readint(a,s)6

and stack1 = push(n)stack7

and q = (env,stack1,s1,dump,o);8

9

MI["output"](z)(env,stack,s,dump,o) =10

(empty stack) => "Stack-Underflow",11

!(top stack is Rv) => "Non-Rv-Value",z(q)12

where stack1 = pop stack13

and o1 = put(o,top stack)14

and q = (env,stack1,s,dump,o1);15

16

MI["store"](z)(env,stack,s,dump,o)=17

(tooShort stack) => "Stack-Underflow",18

!(a is Loc) => "Non-Loc-Value",19

!(v is Sv) => "Non-Sv-Value",z(q),20

where v = top stack21

and a = top (pop stack)22

and stack1 = pop(pop stack)23

and s1 = save(a,v,s)24

and q = (env,stack1,s1,dump,o);25

26

2.3. MACHINE INSTRUCTIONS 81

MI["loadv" b](z)(env,stack,s,dump,o) = z(q)27

where stack1 = push(b)stack28

and q = (env,stack1,s,dump,o);29

30

MI["loadt"](z)(env,stack,s,dump,o) = z(q)31

where stack1 = push(true)stack32

and q = (env,stack1,s,dump,o);33

34

MI["loadf"](z)(env,stack,s,dump,o) = z(q)35

where stack1 = push(false)stack36

and q = (env,stack1,s,dump,o);37

38

MI["load" var](z)(env,stack,s,dump,o) =39

(d = "unbound") => "Unbound-Var", z(q)40

where d = search(var)(env)41

and stack1 = push(d)stack42

and q = (env,stack1,s,dump,o);43

44

MI["deref"](z)(env,stack,s,dump,o) =45

(empty stack) => "Stack-Underflow",46

(a is Loc) => (v = "unused") => "Uninit-Loc",47

!(v is Rv) => "Non-Rv-Value",z(q),48

(a is Rv) => z(env,stack,s,dump,o),49

"Non-Rv-Value"50

where a = top stack; v = get(a,s)51

and stack1 = push(v)(pop stack)52

and q = (env,stack1,s,dump,o);53

54

MI["not"](z)(env,stack,s,dump,o) =55

(empty stack) => "Stack-Underflow",56

!(isBool(top stack))=> "Wrong-Opn" , z(q)57

where stack1 = push(!top stack)(pop stack)58

and q = (env,stack1,s,dump,o);59

60

MI["add"]z(env,stack,s,dump,o) =61

(tooShort stack) => "Stack-Underflow",62

82 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

(!areBv(v1,v2) => "Wrong-Opn" , z(q)63

where v1 = top stack; v2 = top(pop stack)64

and stack1 = push(v1 + v2)(pop(pop stack))65

and q = (env,stack1,s,dump,o);66

67

MI["minus"]z (env,stack,s,dump,o) =68

(tooShort stack) => "Stack-Underflow",69

(!areBv(v1,v2) => "Wrong-Opn", z(q)70

where v1 = top stack71

and v2 = top(pop stack)72

and stack1 = push(v1 - v2)(pop(pop stack))73

and q = (env,stack1,s,dump,o);74

75

MI["mult"]z (env,stack,s,dump,o) =76

(tooShort stack) => "Stack-Underflow",77

(!areBv(v1,v2) => "Wrong-Opn", z(q)78

where v1 = top stack79

and v2 = top(pop stack)80

and stack1 = push(v1 * v2)(pop(pop stack))81

and q = (env,stack1,s,sump,o);82

83

MI["div"]z (env,stack,s,dump,o) =84

(tooShort stack) => "Stack-Underflow",85

(!areBv(v1,v2) => "Wrong-Opn", z(q)86

where v1 = top stack87

and v2 = top(pop stack)88

and stack1 = push(v1 / v2)(pop(pop stack))89

and q = (env,stack1,s,dump,o);90

91

MI["and"]z (env,stack,s,dump,o) =92

(tooShort stack) => "Stack-Underflow",93

(!areBool(v1,v2) => "Wrong-Opn", z(q)94

where v1 = top stack95

and v2 = top(pop stack)96

and stack1 = push(v1 & v2)(pop(pop stack))97

and q = (env,stack1,s,dump,o);98

2.3. MACHINE INSTRUCTIONS 83

99

MI["or"]z (env,stack,s,dump,o) =100

(tooShort stack) => "Stack-Underflow",101

(!areBool(v1,v2) => "Wrong-Opn", z(q)102

where v1 = top stack103

and v2 = top(pop stack)104

and stack1 = push(v1 | v2)(pop(pop stack))105

and q = (env,stack1,s,dump,o);106

107

MI["cond" c1 "," c2](z)(env,stack,s,dump,o) =108

(empty stack) => "Stack-Underflow",109

!(head(stack) is T) => "Non-Bool-Value",110

(head stack) => MC(c1)(z)(q),111

MC(c2)(z)(q)112

where stack1 = pop(stack)113

and q = (env,stack1,s,dump,o);114

115

MI["loop" t "," c](z)(q) = ME(t)(z1)(q)116

where z1 q1 =117

(empty stack) => "Stack-Underflow",118

!(top stack is T) => "Non-Bool-Value",119

(top stack) => MC(c)(z2)q1,z(q1)120

and (env,stack,s,dump,o) = q1121

and z2 q2 = MI["loop" t "," c](z)(q2);122

123

MI["begin"](z)(env,stack,s,dump,o) = z(q)124

where q = (push(nil)env,stack,s,dump,o);125

126

MI["end"](z)(env,stack,s,dump,o) =127

(empty env)=>"Misplaced-end",z q128

where a* = locations(top env)129

and s1 = free(a*,s)130

and q = (pop env,stack,s1,dump,o);131

132

MI["bind" var](z)(env,stack,s,dump,o) =133

(empty stack) => "Stack-Underflow",z(q)134

84 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

where env1 = bind(var,top stack)env135

and q = (env1,pop stack,s,dump,o);136

137

MI["alloc"](z)(env,stack,s,dump,o) =138

(empty stack) => "Stack-Underflow",139

!(a is Loc) => "Storage-Full", z(q)140

where a = new(s)141

and stack1 = push(a)(pop stack)142

and s1 = save(a,head stack)s143

and q = (env,stack1,s1,dump,o);144

145

MI["mkproc" var c](z)(env,stack,s,dump,o) = z(q)146

where q = (bind(var,(c,env))env,stack,s,dump,o);147

148

MI["mkfun" var t](z)(env,stack,s,dump,o) = z(q)149

where q = (bind(var,(t,env))env,stack,s,dump,o);150

151

MI["pcall"](z)(env,stack,s,dump,o) =152

(tooShort stack) => "Stack-Underflow",153

!(p is Proc) => "Non-Proc-Value",154

MC(c)(z)(q)155

where p = top stack; (c,env1) = p156

and q = (push(nil)env1,stack,s,push(env)dump,o);157

158

MI["fcall"](z)(env,stack,s,dump,o) =159

(tooShort stack) => "Stack-Underflow",160

!(f is Fun) => "Non-Fun-Value",161

ME(t)(z)(q)162

where f = top stack; (t,env1) = f163

and q = (push(nil)env1,stack,s,push(env)dump,o);164

165

MI["ret"](z)(env,stack,s,dump,o) =166

(empty dump) => "Misplaced-ret",z(q)167

where a* = locations(env)168

and s1 = free(a*,s)169

and q = (top dump,stack,s1,pop dump,o);170

2.4. CONCLUDING REMARKS 85

171

MI["halt"](z)(env,stack,s,dump,o) = q172

where q = (env,stack,s,dump,put(o,"stop"));173

end174

2.4 Concluding remarks

Denotational semantics is powerful enough to permit a de-
scription of the arquitecture of a computer in a notation that
most programmer can read and understand. The semantic
model can be as detailed as desired, and the definition can be
organized in a modular fashion.

86 CHAPTER 2. THE DESCRIPTION OF A COMPUTER ARCHITECTURE

Chapter 3

The Specification of a Compiler

Il semble que la perfection soit atteinte
non quand il n’y a plus rien à ajouter,
mais quand il n’y a plus rien à retrancher.1

Antoine de Saint-Exupéry (1900-1944)

Denotational semantics may also be used to precisely de-
scribe the specification of a compiler for programming lan-
guages. In order to illustrate this capability, this chapter
presents the formal definition of a translator from Small pro-
grams into SC code. This translator may be viewed as the
a formal definition of the Small language. Another definition
of this language is the denotational semantics specification
presented in Chapter 6.

3.1 Machine instructions

In order to make this chapter self-contained, relevant parts
of the interface of module MInstructions (§2.3.2, page 78),
defined in Chapter 2, are repeated below.

1It seems that perfection is attained not when there is nothing more to add, but when there is
no longer anything to remove.

87

88 CHAPTER 3. THE SPECIFICATION OF A COMPILER

Please, refer to Chapter 2 for the precise definition of the
meaning of each machine instruction, which is given by func-
tion MI, the architecture of the computer SC, and the def-
inition of the machine continuations and execution environ-
ments.

interface Minstructions1

imports Mcontinuations(Cont,State,Ans);2

Menvironment(Var,Bv);3

publics4

Instr = ["halt"] | ["loadv" Bv] | ["loadt"]5

| ["loadf"] | ["store"] | ["load" Var]6

| ["read"] | ["output"] | ["deref"]7

| ["add"] | ["minus"] | ["mult"]8

| ["div"] | ["and"] | ["or"]9

| ["not"] | ["begin"] | ["end"]10

| ["alloc"] | ["bind" Var] | ["fcall"]11

| ["pcall"] | ["mkproc" Code] | ["ret"]12

| ["mkfun" Var Code]13

| ["cond" Code "," Code]14

| ["loop" Ecode "," Code];15

Code = Instr*;16

Ecode = Instr*;17

MI : Instr -> Cont -> State -> Ans;18

end19

3.2 The compiler specification

The specification of the compiler for Small programs is pre-
sented in two complementary parts.

Initially the concrete syntax of Small programs is defined so
programs in this language can be properly parsed and trans-
lated to the AST format. This is accomplished by the module
called Parser.

3.2. THE COMPILER SPECIFICATION 89

In the second part, the translation of AST nodes into SC
code sequences is presented in the interface and definition
modules named Compiler.

3.2.1 Concrete and abstract syntax

interface Parser1

publics2

Pro, Dec, Cmd, Exp, Op : Nonterminal;3

id : Token;4

num : Token;5

end6

module Parser7

lexis8

id ::= letter+ => return (id,letter+) ;9

letter === "A" .. "Z" | "a" .. "z";10

num ::= digit+ => return (num,digit+);11

digit === "0" .. "9";12

13

syntax14

pro:Pro ::= "program" cmds;15

cmd:Cmd ::= exp ":=" exp16

| exp "(" exp ")"17

| "while" exp "do" cmds "end"18

=> ["while" exp cmds]19

| "if" expr "then" cmds1 "else" cmds2 "end"20

=> ["if" exp cmds1 cmds2]21

| "output" exp22

| "begin" decs ";" cmds "end"23

=> ["begin" decs cmds]24

;25

cmds:Cmd* ::= cmds ";" cmd => append(cmds,cmd)26

| cmd => (cmd)27

;28

exp:Exp ::= num => [num] | "true" => ["true"]29

| "false" => ["false"]30

90 CHAPTER 3. THE SPECIFICATION OF A COMPILER

| "read" => ["read"]31

| id => [id]32

| exp op exp | exp "(" exp ")"33

| "not" exp34

| "if" exp "then" exp1 "else" exp235

=> ["if" exp exp1 exp2]36

;37

op:Op ::= "+" => ["+"] | "-" => ["-"]38

| "*" => ["*"] | "/" => ["/"]39

| "and" => ["and"] | "or" => ["or"]40

;41

dec:Dec ::= "const" id "=" exp42

| "var" id "=" exp43

| "proc" id "(" id1 ")" cmds "end"44

=> ["proc" id id1 cmds]45

| "fun" id "(" id1 ")" exp46

=> ["fun" id id1 exp]47

;48

decs:Dec* ::= decs ";" dec => append(decs,dec)49

| dec => (dec)50

;51

end52

3.2.2 Translation rules

Using the parser generate from module Parser, the AST of
small programs may be generated, so the the function KP
that is exported by interface module Compiler may trans-
late source programs in AST format into sequences of the
machine instructions that are defined in module units named
Minstructions.

Function KP uses local functions called KD, KC and KE. The
function KD elaborates variable declarations, functions KE and
KC serve to compile expressions and commands, respectively.

3.2. THE COMPILER SPECIFICATION 91

interface Compiler1

imports2

Minstructions(Code, Ecode);3

Parser(Pro, Dec, Cmd, Exp, Op, id, num);4

privates5

-- Declarations:6

KD : Dec -> Code;7

KD : Dec* -> Code;8

-- Commands:9

KC : Cmd -> Code;10

KC : Cmd* -> Code;11

-- Expressions:12

KE : Exp -> Ecode;13

KR : Exp -> Ecode;14

KO : Opr -> ECode;15

publics16

Pro : Start;17

KP : Pro -> Code;18

end19

The functions KE, KC, KD and KP are defined by cases in the
following definition module.

definition Compiler1

functions2

KE[num] = (["loadv" toN(num)]);3

KE["true"] = (["loadt"]);4

KE["false"] = (["loadf"]);5

KE["read"] = (["read"]);6

KE[id] = (["load" id]);7

KE["not" exp] = KR(exp) + (["not"]);8

KE[exp1 op exp2] = KR(exp1) + KR(exp2) + KO(op)9

KE[exp "(" exp1 ")"] =10

KE(exp1) + KE(exp) + (["fcall"]);11

KE["if" exp exp1 exp2] =12

KR(exp) + (["cond" KE(exp1) "," KE(exp2)]);13

KR(exp) = KE(exp) + (["deref"]);14

92 CHAPTER 3. THE SPECIFICATION OF A COMPILER

15

KO["+"] = (["add"]);16

KO["-"] = (["minus"]);17

KO["*"] = (["mult"]);18

KO["/"] = (["div"]);19

KO["and"] = (["and"]);20

KO["or"] = (["or"]);21

22

KC[exp ":=" exp1] = KE(exp) + KR(exp1) + (["store"]);23

KC["output" exp] = KR(exp) + (["output"]);24

KC[exp "(" exp1 ")"] =25

KE(exp1) + KE(exp) + (["pcall"]);26

KC["if" exp cmd1 cmd2] =27

KR(exp) + (["cond" KC(cmd1) "," KC(cmd2)]);28

KC["while exp cmd*] =29

(["loop" KR(exp) "," KC(cmd*)]);30

KC["begin" dec* cmd*] =31

(["begin"]) + KD(dec*) + KC(cmd*) + (["end"]);32

KC(cmd:cmd*) = KC(cmd) + KC(cmd*);33

KC(nil) = nil;34

35

KD["const" id "=" exp] =36

KR(exp) + (["bind" value(id)]);37

KD["var" id "=" exp] = KR(exp) + (["alloc"]) +38

(["bind" value(id)]);39

KD["fun" id id1 exp]= (["mkfun" value(id) t]);40

where t = (["bind" value(id)]) + (["bind" value(id1)]) +41

KE(exp) + (["ret"]);42

KD["proc" id id1 cmd*] = (["mkproc" value(id) c]);43

where c = (["bind" value(id)]) + (["bind" value(id1)]) +44

KC(cmd*) + (["ret"]);45

KD(dec:dec*) = KD(dec) + KD(dec*);46

KD(nil) = nil;47

48

KP["program" cmd*] = KC(cmd*) + (["halt"]);49

end50

3.3. CONCLUDING REMARKS 93

3.3 Concluding Remarks

In the next chapters, the emphasis is to provide a standard
way to select meaningful domains and appropriate module
structure in order to produce descriptions that are both effec-
tive and comprehensible by programmers.

94 CHAPTER 3. THE SPECIFICATION OF A COMPILER

Chapter 4

Standard Denotational
Semantics

Le bon sens est la chose du monde mieux partagée.1

René Descartes (1596-1590)

In denotational semantics, the meaning of a language is
given by associating with each construct in the language a
corresponding semantic object. A denotational definition con-
sists of the specification of the syntactic and semantic domains
together with a collection of mappings that associate syntactic
elements with their denotations, as depicted in Fig. 4.1.

The syntactic domain of a language is the domain of all pro-
grams in the form of Abstract Syntax Tree (AST), whose nodes
exhibit the constituents of each construct.

The abstract syntax tree is thus an encoding of the source
program in which only the main constituents of each con-
struction are exhibited, and details regarding their concrete
syntaxes are left out. Nodes of the AST are defined by pro-
duction rules of the form A = r1B1r2B2 · · · rnBn, where ri and

1Common sense is the best distributed asset.

95

96 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

Figure 4.1: The Semantic Model

Bi, for 1 ≤ i ≤ n, are terminal symbols and nonterminal
symbols, respectively.

The meanings of AST nodes are abstract mathematical ob-
jects, which are referred to as denotations. The semantic map-
pings are defined by means of functions such as h and hi, for
1 ≤ i ≤ n, of Fig 4.1, and the denotation of a construct is
defined in terms of the denotations of its constituents.

In order to define the structure of the semantic mappings,
suppose that:

• the abstract production rule p : A → r1B1r2B2 · · · rnBn be
the textual representation of the AST node depicted in
Fig. 4.1;

• TBi
, for 1 ≤ i ≤ n, be the domain of AST nodes with

root Bi, and tBi
∈ TBi

;
• Πp, for each AST production p, is a function that put
together AST subtrees to make an AST node according
to p;

• [[t]], in which t is a sequence of grammar symbols, be the

4.1. DIRECT SEMANTICS OF A SIMPLE LANGUAGE 97

so-called quasi-quotation [44] of the syntactic member t;
• S and Si, for 1 ≤ i ≤ n, be domains of denotations;
• g be a function that combines denotations.

Then the following diagram shows the structure of the map-
pings:

TB1 × TB2 × · · · × TBn

Πp→ TA
↓ h1 ↓ h2 ↓ hn ↓ h

S1 × S2 × · · · × Sn
g→ S

The functions h and hi, for 1 ≤ i ≤ n, are homomorphisms
from Syntactic Domains into Semantic Domains. The func-
tion h is defined as:

h(Πp(tB1
, tB2

, · · · , tBn
)) = g(h1(tB1

), h2(tB2
), · · · , hn(tBn

))

or, using the definitions of Πp and p,
h[[A]] = g(h1[[B1]], h2[[B2]], · · · , hn[[Bn]])

and, hence,
h[[r1B1r2B2 · · ·Bnrn]] = g(h1[[B1]], h2[[B2]], · · · , hn[[Bn]])

In summary, a denotational definition consists in defining
the abstract syntax of the language, the semantic domains
and the function h for each construct in the language. And,
in theory, the semantics of a construct should only depend on
the semantics of its constituents.

4.1 Direct semantics of a simple language

In order to illustrate the application of the denotational se-
mantics model, consider the formal description of a toy lan-
guage named Simple.

Simple is a very small imperative language whose programs

98 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

always read an integer value into a variable, then execute a list
of statements and, at the end, print the value of an expression.
For instance, the program

begin read x do x := succ x ; write suc suc x end

reads an integer value into the variable x, increments the value
stored in x and prints the value of the second successor of
current value of x.

4.1.1 Concrete and abstract syntaxes

The concrete and abstract syntaxes of Simple programs are
defined in the followingM module:

module Simple1

lexis2

id:Token ::= letter+ => return id(letter+);3

letter === "A" .. "Z" | "a" .. "z";4

5

syntax6

pro :Pro ::= "begin" "read" id "do" cmds7

"write" exp "end" => ["read" id cmds exp]8

;9

cmd :Cmd ::= id ":=" exp10

| "while" exp "do" cmds "end"11

=> ["while" exp cmds]12

| "begin" dec "do" cmds "end"13

=> ["begin dec cmds "end"]14

;15

cmds:Cmd* ::= cmds ";" cmd => append(cmds,cmd)16

| cmd => (cmd)17

;18

dec :Dec ::= "var" ids19

;20

ids :Id* ::= id => (id)21

| ids ; id => append(ids,id)22

4.1. DIRECT SEMANTICS OF A SIMPLE LANGUAGE 99

exp :Exp ::= "0" => ["0"]23

| id => [id]24

| "suc" exp25

;26

functions27

-- definition of function to come soon in the sequel28

end29

4.1.2 Informal semantics

The Simple’s statements can be an assignment command, a
repetition command or a block.

The command list that occurs within a repetition state-
ment is to be executed repeatedly until the command control
expression evaluates to a zero value.

Blocks allow the introduction of local scope for variables,
which are allocated upon entering the block and freed at block
exiting.

Simple expressions can be the integer constant 0, a variable
designated by an identifier or an expression that computes the
successor of an integer value.

Identifiers that are declared inside a begin block are auto-
matically initialized with 0 (zero). All other identifiers are
initially associated with ?, and the only possible execution
error in a Simple program is the attempt to use identifiers
whose value is ?, in which case, the result of the program is
"error".

4.1.3 Semantic domains

The states of a Simple program execution are modeled by
the semantic domain State, which is the domain of functions

100 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

that associate variables with integer values. The evaluation of
expressions needs a state to get the current values of the vari-
ables, and assignment commands update the current state.

In the initial state s0, all variables are undefined, that is,
s0(id) = ?, for all s:State and id:Id. It is assumed that
the memory is as large as needed, so there is no provision for
checking memory overflow in the definitions that follow.

4.1.4 Semantic equations

The meaning of language Simple is defined via four semantic
functions: E, for expressions, C, for commands, D, for declara-
tions, and P, for programs. The types of these functions are
defined in the following interface module:

interface Simple1

privates2

s : State;3

init : Id* -> State -> State;4

publics5

State = Id -> N;6

E : Exp -> State -> N;7

C : Cmd -> State -> State;8

D : Dec -> State -> State;9

P : Pro -> N -> (N | "error");10

end11

These semantic functions map their arguments to the result
the associated Simple construction produces. This style of
denotational semantics definition is called direct semantics.

All Simple programs produce a result that is either an in-
teger value or an error message.

Function E takes as arguments an expression and the cur-
rent state, in which variables are bound to their values, and

4.1. DIRECT SEMANTICS OF A SIMPLE LANGUAGE 101

produces the integer value of the expression. No collateral
effect is expected.

Function C takes as arguments a command and the current
state, and produces a new state according to the command
semantics.

Function D takes as arguments a declaration of a list of
identifiers and the current state, and adds the association of
these identifiers with value 0 (zero) to the current state.

And P maps Simple program and an input integer value
into the integer value that is to be printed by the program.

In the initial state s0, all variables are bound to the unde-
fined value ?.

The definition of these functions is exhibited in the follow-
ing definition module.

module Simple1

-- syntax and lexis parts already presented2

functions3

E["0"]s = 0;4

E[id]s = s(id);5

E["suc" exp]s = (E(exp)s == ?) => ?, E(exp)s + 1;6

C[id ":=" exp]s = (E(exp]s == ?) => ?, s{id<-E(exp)s};7

C["while" exp cmd*]s =8

(E(exp)s == ?) => ?, (E(exp)s == 0) => s,9

(C(cmd*)s == ?) => ?, C["while" exp cmd*](C(cmd*)s);10

C["begin" dec cmd* "end"] s = C(cmd*)(D(dec)s);11

C(cmd:cmd*)s = (C(cmd)s == ?) => ?, C(cmd*)(C(cmd)s);12

C(nil)s = s;13

D["var" id*] s = init(id*)s;14

where init(nil)s = s15

and init(id:id*)s = init(id*)(s[id:0]);16

P["read" id cmd* exp]n = (s2!=?)&(v!=?) => v,"error"17

where s0 = \id.?18

and s1 = s0{id<-n}19

102 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

and s2 = C(cmd*)(s1)20

and v = E(exp)s1;21

end22

4.1.5 A worked example

A step by step execution of a program example might help
revealing details of the formal definition of Simple.

Consider the folowing program, hereon called p,
begin1

read x2

do x := succ x ;3

write suc suc x4

end5

The first step is to parse p and translate it into the AST
format, which is be represented textually2 as:

["read" x <[x ":=" "suc" x]> "write" ["suc" "suc" x]]

The step by step computation of the semantics m of this
program with input n is as follows.

m=P<["read" x <[x ":=" "suc" x]>"write"["suc" "suc" x]])n

Applying the definition of P:

m = E["suc" "suc" x] (C(<[x ":=" "suc" x]>)(

s1︷ ︸︸ ︷
s0[x : n])︸ ︷︷ ︸

s2

)

Thus,
m = E["suc" "suc" x](s2)

Applying the definition of E:
m = E["suc" x]s2 + 1

m = E(x)s2 + 1 + 1
2The notation [...] denotes an AST node, and <..>, a list.

4.2. STANDARD SEMANTICS MODEL 103

m = s2(x) + 2

On the other hand,
s2 = C(<[x ":=" "suc" x]>)s1
s2 = C(nil)(C[x ":=" "suc" x]s1)
s2 = C[x ":=" "suc" x]s1
s2 = s1{x <- E["suc" x]s1}
s2 = s1{x <- E(x)s1 + 1}
s2 = s1{x <- s1(x) + 1}
s2 = s1{x <- n + 1}

hence,
s2(x) = s1{x <- n + 1}(x) = n + 1

Given that
m = s2(x) + 2

then
m = n + 1 + 2

and
P["read" x<[x ":=" "suc" x]> "write"["suc" "suc" x]]n =

n + 3

As expected, the semantics of the program p is a function
that maps the input integer value n into n + 3.

4.2 Standard semantics model

Discipline in the process of constructing denotational seman-
tics definitions facilitates language comparison and the for-
mulation of the semantic mappings. In fact, most languages
share similar domain structure. For instance, in the imper-
ative paradigm, there are important issues that must be ad-
dressed and treated uniformly among different languages, such

104 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

as memory allocation, memory sharing, error handling and
scope management, which should follow a standardized struc-
ture.

4.2.1 Standard environments and stores

From the programmer viewpoint, it would be easier to assume
that identifiers can be directly associated with their values as
it has been done in the definition of Simple. However, it is
quite common the case that more the one identifier share the
same memory association, in such a way that changing the
value associated with one of them would cause the updating
of the value associated with the others, as it happens with
C pointers holding the address of the same memory location,
and thus creating an aliasing situation.

Thus, it may be convenient to split the binding of identifiers
into two standard mappings: environments and stores. Stan-
dard environments are members of the domain Env=Id->Dv,
and thus map identifiers to denotable values (Dv), among
which are the locations (Loc). The standard stores, which are
members of Store=Loc->Sv, map locations in Loc to storable
values (Sv). The exact nature of the domains Dv and Sv
is language dependent, and these domains form a dimension
along which languages can be classified. This scheme facil-
itates expressing the semantics of identifier aliasing and dy-
namic allocation of memory space. Throughout the defini-
tions in the sequel, r, r1, r2, and so forth, are elements of
Env, and s, s1, s2, and so forth, are elements of Store.

Similar standardization should be applied to other domains
of values and specially to the way errors and jumps are han-

4.2. STANDARD SEMANTICS MODEL 105

dled. To that end, Michael Gordon [15] has defined standard
denotational semantics as the semantic definition based on
the following conditions:

1. The binding of identifiers that represent variables to val-
ues should be split into two parts: a mapping from identi-
fiers to locations and a mapping from locations to values.
The first mapping is the environment and the latter one,
the store.

2. The machine state should be transmitted along the pro-
gram elements via a device called continuations.

3. The language dependent domains of values, particularly
those that go in the environments, the denotable values,
and in the stores, the storable values, should be clearly
defined and have their structures standardized.

4.2.2 Domains of standard values

In the imperative language paradigm, the evaluation of ex-
pressions produces values and may cause the collateral effect
of updating the memory.

The values produced by expressions are called expressible
values (Ev), and they also form a dimension to classify lan-
guages.

Expressible values can be a memory address, which is in
the domain Lv of left value, or other types of values, which
are said to be in the domain Rv of right values. What left
values and right values are is also a language dependent issue
and forms a classification dimension. A subdomain of the
expressible values is the domain Ov of outputable value, which

106 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

is the domain of elements that can be sent to the program
output file.

Environments and stores deal with denotable and storable
values, as discussed in previous sections.

In summary, in addition to Environments, Stores and Con-
tinuations, the following language dependent domains should
be defined in a standard denotational semantics description:

• Storable Values Sv: the domain of values that can be
associated with locations in the store. Throughout the
definitions, v, v1, v2, · · · ∈ Sv.

• Denotable Values Dv: the domain of values that can be as-
sociated with identifiers in the environment. Throughout
the definitions, d, d1, d2, · · · ∈ Dv.

• Expressible Values Ev: the domain of values that can
be produced by evaluating expressions. Throughtout the
definitions, e, e1, e2, · · · ∈ Ev.

• Left Values Lv: the domain of values that can appear
on the left-hand side of an assignment statement, usually
they are elements of Loc.

• Right Values Rv: the domain of values that can be used
on the right-hand side of an assignment statement.

• Outputable Values Ov: the domain of values that can be
sent to the program output file.

4.2.3 The notion of continuations

In standard semantics, commands are supposed to alter the
store, and not the environments. For instance, the assign-
ment statement [id ":=" exp] has the effect of updating
the memory location associated with the identifier id. Nor-

4.2. STANDARD SEMANTICS MODEL 107

mally, the updated store must be transmitted to other parts
of the program.

Declarations usually have effect on the environment and on
the store, e.g., the declaration ["var" id "=" exp] has the
effect of allocating a new cell in the memory, associating, in
the environment, the location of this cell with the identifier id,
and updating this memory location with the value of exp. The
updated environment and the updated store must be passed
to declarations or commands that follow the declaration just
processed.

In general, in the imperative language paradigm, the evalu-
ation of expressions produces values and may cause collateral
effects by updating the memory. The values produced by an
expression and the possibly updated store must be transmit-
ted to the program text that follows the expression.

Information, like environments and stores, is easily trans-
mitted along program execution as parameters of the semantic
functions, which are composed in order to produce the final
result of the program. These parameters define the context
in which the semantics of each construct is to be evaluated.

This device for transmitting context via parameters in func-
tion composition works fine and seems quite natural. How-
ever, it does not make good pair with error handling and
with control transfer. Error handling demands an effort to
cope with error propagation throughout remaining function
compositions, and control transfer requires the discard of the
normal function composition and the acquisition of a new one
to continue execution.

Error propagation and the process of discarding certain

108 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

function compositions may be a nuisance to cope with, al-
though yet feasible. A better solution is offered by Wadsworth
& Strachey’s Continuations [54]. The idea is to add a new pa-
rameter, the continuation, to all functions, so that instead of
returning the value they compute, these functions pass the
computed value to the continuation that has been passed as
parameter. In this way, functions with continuation param-
eters have the option of passing their intermediate values to
the given continuation or sending them to other destinations.

For instance, suppose that functions f, g and h be defined
as follows.

declarations1

f : N -> N2

g : N -> (N | "error")3

h : N -> (N | "error")4

v : N | "error"5

functions6

f n = n7

g n = (n == 0) => "error", 100/n8

h n = (g(n) == "error") => "error", f(N(g(n)))9

v1 = h(0)10

v2 = h(100)11

Note that function h, defined in line 9, is polluted, for it must
be aware of the fact that g(n) may return "error", and so
propagates this value accordingly, and must be careful in cast-
ing to N the value returned by g(n), before passing it to f.
Thus, in the above example, the value of v1, defined in line
10, is "error", and that of v2 in line 11 is 1.

Using continuations, one could rewrite, while keeping the
intended meaning, the above functions to include a new pa-
rameter of type K, which is the continuation, so that these

4.2. STANDARD SEMANTICS MODEL 109

functions may choose to return the value they compute or to
pass it to the continuation, as it is illustrated in the following
program fragment.

privates1

f : K -> N -> N;2

g : K -> N -> N;3

h : K -> N -> N;4

K = N -> N;5

...6

functions7

f k n = k(n);8

g k n = (a==0) => "error", k(100/n);9

h k n = g(\n.f k n) n;10

v1 = h(\n.n)(0);11

v2 = h(\n.n)(100);12

Notice that the pollution caused by error handling has been
removed from the new definition of h, which now simply in-
vokes g with the appropriate continuation, and the pollution
has been confined in the definition of g in line 9, which is the
proper place for it. The evaluation of variables v1 and v2, in
lines 11 e 12, still produces "error" and 1, respectively.

The definition of labels and goto statements of imperative
languages follows similar pattern: all semantic functions must
carry a continuation parameter that define the normal control
flow and that could be discarded in favor other continuations
when necessary.

4.2.4 Standard continuations

The continuation of a construct must model what follows it.
The continuation takes the intermediate results produced by
the construct and uses it to produce the result of executing

110 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

the rest of the program. Hence, the continuation is a mapping
from intermediate results to the final result of the program.
The standard domain of final answers of a program is Ans.
What the members of Ans are depends on the language being
defined.

Of course, the intermediate results depend on the construct
with which the continuation is associated. For instance, decla-
rations produce new environments and update the store, com-
mands update the store, and expressions produce expressible
values and may change the store. Therefore, the standard
continuations for these constructs have the following types:

• Command Continuation (Cc):
Cc = Store → Ans
z, z1, z2, · · · ∈ Cc

• Expression Continuations (Ec):
Ec = Ev → Store → Ans
Ec = Ev → Cc
k, k1, k2,· · · ∈ Ec

• Declaration Continuations (Dc):
Dc = Env → Store → Ans
Dc = Env → Cc
u, u1, u2,· · · ∈ Dc

Continuation functions in the domains above should be
used as parameter of the semantic functions E, C and D as
follows:

• Semantics of Expressions (Exp):
E : Exp -> Env -> Ec -> Store -> Ans

4.3. CONTINUATION SEMANTICS OF SIMPLE 111

• Semantics of Commands (Com):
C : Com -> Env -> Cc -> Store -> Ans

• Semantics of Declarations (Dec):
D : Dec -> Env -> Dc -> Store -> Ans

The selection of the above parameter ordering is due to the
frequency of modification of the structures: more stable ar-
guments should come first. In this way, for instance, the ex-
pression E(exp)r can be used with different continuations and
stores, and the expression E(exp)r kmay be used with differ-
ent stores, while its intermediate results are sent to the same
continuation k. Also note that the destination domain Ans of
the semantic functions must be the same as the destination of
the associated continuation functions, for the latter functions
are responsible to transmit intermediate results to the rest of
the program in order to produce final answers.

Typically, the bodies of standard semantic functions follow
the structure:

• E(exp)r k s = (any error) => "error", k e s1

• C(com)r z s = (any error) => "error", z s1

• D(dec)r u s = (any error) => "error", u r1 s1

where e, r1 and s1 are intermediate results, and "error", a
member of domain of final answers Ans.

4.3 Continuation semantics of Simple

A new semantic definition of Simple is presented in order to
illustrate the use of continuation. The direct and the continu-
ation semantic definitions of Simple convey the same meaning,

112 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

and the concrete and abstract syntaxes of Simple are the same
defined in module Simple (§4.1.1, page 98).

The new semantic domains and equations are detailed in
the sequel.

4.3.1 Semantic domains

The states of a Simple program execution are modeled by
the semantic domains Env and Store, which are domains of
functions that associate variables with locations and locations
with integer values, respectively. It is assumed that the store
is as large as needed, so there is no need to check for memory
overflow in the definition that follows.

Expressions need the state to get the current value of pro-
gram variables, and assignment commands update the current
state accordingly.

In the initial state, all variables and locations are undefined,
that is, r0(id)=? and s0(a)=?, for r:Env, s:State, a:Loc
and id:Id.

Declared variable must be associated with a free memory
cell, which is then initialized with the integer value 0.

The semantics of Simple is built upon four semantic func-
tions: E, for expressions, C, for commands, D, for declarations,
and P, for programs, whose types are defined in the following
interface module.

interface Simple1

privates2

r: Env = Id -> Dv;3

s: Store = Loc -> Sv;4

k: Ec = Ev -> Store -> Ans;5

z: Cc = Store -> Ans;6

4.3. CONTINUATION SEMANTICS OF SIMPLE 113

u: Dc = Env -> Store -> Ans;7

Ans = N | "error";8

a: Loc = N;9

Dv = Loc;10

Sv = N;11

e: Ev = N;12

new : Store -> Loc;13

getFree : (Store, Loc) -> Loc;14

arg, filename : Q;15

source, input : File;16

dc : Id* -> Env -> Dc -> Store -> Ans;17

E : Exp -> Env -> Ec -> Store -> Ans;18

C : Com -> Env -> Cc -> Store -> Ans;19

D : Dec -> Env -> Dc -> Store -> Ans;20

P : Pro -> N -> Ans;21

publics22

main : Q* -> Ans;23

end24

4.3.2 Semantic equations

Function E takes as arguments an expression and the current
state, in which variables are bound, and produces the integer
value of the expression.

Function C takes as arguments a command and the current
state and updates the current state according to the given
command.

Function D takes as arguments identifier declarations and
the current state, allocates these identifiers in the current
store, and updates the current state according to the declared
identifiers.

Function P maps Simple program and an integer value into
the integer value to be printed by the program, or returns an

114 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

error message.
module Simple1

syntax2

...3

lexis4

...5

functions6

new s = getFree(s,0)7

where getFree(s,a) = (s a==?) => a, getFree(s,a + 1);8

9

E["0"]r k s = k 0 s;10

11

E[id]r k s = (r(id) == ?) => "error",12

(s r(id)) == ?) => "error",13

k (s r(id)) s;14

E["suc" exp]r k s = E(exp)r k1 s15

where k1 e s = k (e + 1) s;16

17

C[id ":=" exp]r z s = (r(id) == ?) => "error",18

E(exp)r k s19

where k e s = z(s[r(id):e]);20

21

C["while" exp cmd*]r z s = E(exp)r k s22

where k e s = (e==0) => z s, C(cmd*)r z1 s23

and z1 s = C["while" exp cmd*]r z s;24

25

C["begin" dec cmd* "end"]r z s = D(dec)r u s26

where u r s = C(cmd*)r z s;27

28

C(nil)r z s = z s;29

C(cmd:cmd*)r z s = C(cmd)r z1 s30

where z1 s = C(cmd*)r z s;31

32

D["var" id*]r u s = dc(id*)r u s33

where dc(nil)r u s = u r s34

and dc(id:id*)r u s = dc(id*)(r{id<-a}) u (s{a<-0})35

4.3. CONTINUATION SEMANTICS OF SIMPLE 115

and a = new s;36

37

P["read" id cmd* exp]n = C(cmd*)r z s38

where s0 a = ?39

and a = new s040

and s = s0{a<-n}41

and r0 id = ?42

and r = r0{id<-a}43

and k = \e s.e44

and z s = E(exp)r k s;45

46

main(arg*) = P(pro)(input)47

where filename1 = getarg("-f", arg*)48

and source = open(filename1)49

and filename2 = getarg("-i", arg*)50

and input = open(filename2)51

and prog = compile(source);52

53

end54

Observe that the continuation mechanism allows that error
conditions be checked only at the places (lines 12, 13 and 18)
from where they are originated, preventing these concerns to
be scattered throughout other equations.

116 CHAPTER 4. STANDARD DENOTATIONAL SEMANTICS

Chapter 5

Retractile Continuations

Make everything as simple as possible, but not simpler.
Albert Einstein (1879-1955)

The notion of retractile continuation is the basis of a tech-
nique for accommodating, in a same denotational semantics
definition, both the continuation and direct semantics styles.

The kind of semantics used in most denotational definitions
is continuation semantics [17, 26, 42, 54, 57]. The continuation
approach is generally chosen for its convenient way of dealing
with error conditions and jumps. However, the sequential
nature of continuations presents some practical difficulties.
Take a list of mutually recursive equations as an example. In
order to manufacture each one of the equations in the list, it
is required that all others equations have already been defined
so that the types of free variables occuring in the body in each
equation are available in a common environment.

In the direct approach to semantics, a situation like this
is easily modelled by defining a system of mutually recursive
equations, each defining a partial environment that results
from the evaluation of the associated equation. Each equa-
tion is then defined in the same environment, which should

117

118 CHAPTER 5. RETRACTILE CONTINUATIONS

be recursively defined in terms of those partial environments
produced by the individual equations.

On the other hand, in the continuation approach, each se-
mantic function is supposed to pass the intermediate value
it produces, for example an environment, to the rest of the
definition, i.e., to the normal continuation, which generally
maps intermediate results to final answers. This means that
intermediate values in the continuation approach are not re-
turned by the semantic functions, and, therefore, they are not
available locally to construct the desired system of recursive
equations.

The conclusion is that the continuation approach makes it
easier to cope with error conditions, whereas the direct ap-
proach facilitates the modeling of non-sequential evaluations.
Hence, it would be very convenient to have a mechanism that
allows a harmonious coexistence of both semantics styles, so
that the right kind of semantics may be used where it works
best.

5.1 Conciliation of semantics styles

The proposal is that the default semantics’ style be continu-
ation semantics and, in order to define systems of mutually
recursive equations, for example, there must be means to per-
form a temporary switch to direct semantics style, so that
each equation may return its intermediate result instead of
sending it to the continuation.

The switching mechanism can be implemented by passing
to the semantic functions involved in the process a conve-

5.1. CONCILIATION OF SEMANTICS STYLES 119

niently manufactured continuation in place of the normal con-
tinuation. This new continuation has the purpose of forcing
intermediate values to be returned by the function.

For example, let f be a semantic function of type
f : X -> C -> Ans

where C = V->Ans is a domain of continuations, Ans is that
of final answers, and V is the domain of intermediate values
that f passes to its continuation.

The first step is to make f return a value, say v:V, rather
than the final answer. The idea is to make arrangements to
force f to return the intermediate value v it produces instead
of passing it to the normal continuation. And this must be
achieved without invalidating the application of f in different
contexts, which certainly assume that f still deals properly
and systematically with its continuation.

The solution herein proposed consists of passing to f a spe-
cial type of continuation, named retractile continuation,
with the purpose of hoisting the intermediate value produced
by f to the calling point. A retractile continuation works like
a boomerang, which when correctly thrown (passed as pa-
rameter) glides back to a point near the thrower (the calling
point).

A retractile continuation w has type w:V->A, where V is the
domain of intermediate values accepted by normal continua-
tions, and A is a new domain of final answers, which is the
original domain Ans extended to incorporate the domain V.
Retractil continuations must be always defined as an identity
function such as w=\v.v.

Accordingly, the type of the semantic function f must be

120 CHAPTER 5. RETRACTILE CONTINUATIONS

changed from f:X->C->Ans to f:X->C->A, where A=Ans|V is
the extended domain of final answers.

Hence, the value of a:A in a = f(x)(w) is the value which
f passes to its continuation. It is an intermediate value, if f
succeeds, otherwise it is some other value in the domain of
final answers, such as an error message, for example.

Later, when comes the time to switch back to continuation
semantics, the intermediate value a produced locally can be
explicitly passed to the normal continuation as it would have
been done under normal conditions.

5.2 An example

In order to illustrate the application of the switching mecha-
nism just proposed, the denotational semantics of a toy lan-
guage, herein called R, is presented in the sequel using a com-
bination of continuation and direct semantics.

The syntactic structure of R is defined by the following
grammar module:

module R1

lexis ... id: Token; ...2

syntax3

pro:Prog ::= "write" exp;4

exp:Exp ::= defs "in" exp5

| id "(" exp ")" => [id exp]6

| "\" id "." exp7

| id => [id]8

| "0" => ["0"];9

defs:Def+ ::= defs def => append(defs,def)10

| def => (def);11

def:Def ::= "let" id "=" exp;12

end13

5.2. AN EXAMPLE 121

A program in the language R is simply the constant 0,
an identifier id, a function application, a λ-abstraction or a
sequence of let-clauses ended by an in-expression.

The let-clauses serve to bind identifiers to R-expressions.
Bound identifiers can be freely used in any expression of the
let-clauses and in the corresponding in-expression. In order to
capture this semantics, all let-clauses shall be evaluated in an
environment containing all bindings they introduce, possibly
in a mutually recursive fashion. The direct semantic approach
is more suitable to model the meaning of this feature, and
for the remaining constructs, continuation semantics is more
appropriate, so errors can be easily handled.

To formulate the continuation semantics of R, the following
semantic domains are defined:

interface R1

privates2

Ans = N | "error"; -- Final answers3

A = Ans | Env; -- New final answers4

Env = Id -> Dv; -- Environments5

Dv = N | G | "unbound"; -- Denotable values6

Dc = Env -> A; -- Decl continuations7

Ec = Dv -> A; -- Exp continuations8

a: A; r: Env; v:Dv; ok: T; k: Ec;9

u: Dc; -- normal decl continuation10

w: Dc; -- retractile def continuation11

G = Dv -> Ec -> A; -- One arg function12

E : Exp -> Env -> Ec -> A; -- semantics of exp13

L : Def* -> Env -> Dc -> A; -- semantics of def*14

F : Def -> Env -> Dc -> A; -- semantics of def15

P : Prog -> Ans; -- semantics of prog16

end17

The domain Env of environments is part of the domain A

122 CHAPTER 5. RETRACTILE CONTINUATIONS

of extended final answers in order to implement the switching
mechanism proposed in the previous section.

The continuation semantics definition of R is detailed in
the following definition module:

module R1

syntax ...2

functions3

E["0"]r k = k(0);4

5

E[id]r k = (r(id) == "unbound") => "error", k(r(id));6

7

E["\" id "." exp]r k = k(g)8

where g = \v k1.E(exp)(r + {id<-v})k1);9

10

E[id exp]r k = (r(id) is G) => E(exp)r k1, "error"11

where k1 v = r(id)v k;12

13

E[def+ "in" exp]r k = L(def+)r u14

where u = \r1. E(exp)r1 k;15

16

L(nil)r u = u(r);17

L(def:def*)r u = ok => u(r1),"error"18

where w = \r.r19

and a1 = F(def)r1 w20

and a2 = L(def*)r1 w21

and ok = (a1 is Env) & (a2 is Env)22

and r1 = ok => r{a1}{a2}, r;23

24

F["let" id "=" exp]r u = u(r1)25

where r1 = r[id:(\k. E(exp)r1 k)];26

27

P["write" exp] = E(exp)r0 k28

where r0 id = "unbound"29

and k v = (v is N) => N(v), "error";30

end31

5.2. AN EXAMPLE 123

The initial environment is defined as r0(id) = "unbound",
in line 29, to indicate that initially all identifiers in R are un-
bound. An error should be indicated whenever, in the evalu-
ation of an expression, a reference to identifier not bound by
any of the let-clauses is encountered. Errors should also be in-
dicated when non-functional values are applied to any values.
Since continuation semantics works best in this situation, it
has been chosen to define the language R.

The retractile continuation w:Dc needed by the switch-
ing mechanism is defined, in line 19, as w = \r.r, for r:Env.

Semantic function E (lines 4 to 14) defines the semantics of
R-expressions.

Function L (lines 17 to 18) define the semantics of a list of
let-clauses. The meaning of non-empty lists of let-clauses is
easily defined in terms of a system of recursive equations in a
pure direct semantics style.

Function F (line 25) and function L evaluate the elements
of def:def*, and compute, in lines 23 and 26, the environ-
ment r1 recursively. Environment r1 contains all the bindings
produced by def and def*, so recursive calls are dealt with
appropriately.

In the definition of semantic function L, the equations defin-
ing environments a1, a2 and r1 form the following system of
mutually recursive equations:

w = \r.r
a1 = F(def)r1 w
a2 = L(def*)r1 w
ok = (a1 is Env) & (a2 is Env)
r1 = ok => r{a1}{a2}, r

Note that the use of retractile continuation w removes tem-

124 CHAPTER 5. RETRACTILE CONTINUATIONS

porarily the continuation nature of F and L.

5.3 Conclusion

This chapter has shown a method for accommodating in a
same denotational semantics definition both continuation and
direct semantics styles, and also has illustrated the application
of the method by means of an example.

The claim is that the advantages of this method is that
it permits the right kind of semantics to be used where it
works best. The continuation approach makes it easier to
cope with error conditions, and the direct approach facilitates
the modelling of non-sequential evaluations.

Retractile continuation was used for the first time in 1981 in
the formulation of the formal definition of a functional meta-
language of realistic size and complexity[4].

Chapter 6

Syntax-Driven Methodology

Metodologia é a arte de guiar o es-
pírito na investigação da verdade.1

Michaelis - Dictionary (2014)

Denotational semantics is a very powerful and elegant for-
malism for describing the meaning of programming language
constructs, but it is used less than it should be. In fact, in
the industry, programming languages are generally described
by means of a formal presentation of their syntaxes based on
context free grammars together with an informal description
of their semantics. The definition of M in Chapter 1 is an
example of this style of presentation. Even when a formal
definition of a language is publicly available, it is rarely read
by programmers and computer scientists.

According to Peter Mosses[33], one of the reasons for this
limited use of formal semantics in the industry is the difficulty
most programmers and computer scientists have in dealing
with the mathematical apparatus of formal definitions. Ad-
ditionally, the difficulty of comprehending formal semantics

1Methodology is the art of guiding the mind in the search for truth.

125

126 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

definitions is also inherent to the way they have been orga-
nized so far.

One way to improve the presentation of denotation se-
mantics definitions can be based upon the resources offered
by the abstract-data-type and object-oriented methodologies
[12, 21, 22, 25]. As in the object-oriented methodology, atten-
tion should be focused on data rather than control. Basically,
a good strategy is to build modules to encapsulate data struc-
ture, i.e., domain definitions, and related semantic and auxil-
iary functions. This could help enhancing conceptual clarity
while making the semantic definition more compact and ele-
gant.

Clearly, the first step to enhance the comprehensibility of
denotational definitions is to find a good module structure.
The partitioning of the syntacic domains of constructs of a
language into conceptually meaningful groups seems to be a
good way to explore. Note that the classification of the con-
structs of a language into groups according to their semantic
similarities is not a difficult task, as long as some knowledge
about the semantics of the language is available in advance.
In fact, at the time the definition of a programming language
is being formulated, at least a major portion of the language
must have already been designed, so that the definer should
have good insight into its intended semantics.

The second step in the formulation process of a denota-
tional definition is the characterization of the necessary se-
mantic domains. In general, the structure of the semantic
domains depends on the way the associated mappings are
defined. For instance, standard denotational semantic defi-

6.1. SYNTAX-DIRECTED MODULE STRUCTURE 127

nitions are modeled upon the notion of stores, environments
and continuations. However, the need for these concepts and
the details of their internal structures vary from language to
language. Therefore, it seems quite natural to provide the
specification of semantic domains incrementally as they are
demanded by semantic functions.

Abstract-data-type and object-oriented methodologies are
useful but they are not enough to achieve a satisfactory mod-
ule partitioning in denotational semantics. This book ad-
dresses this issue in two complementary ways: this chapter
presents a modular semantics definition style that separates
concerns according to the syntactic structure of the language
being defined, and the next chapter describes a complemen-
tary technique for promoting an even deeper separation of
concerns.

6.1 Syntax-directed module structure

A key characteristic of denotational semantic definitions is
that they are (abstract) syntax-directed. Therefore, unlike
programs in a general purpose programming language, deno-
tational definitions have their control structure more or less
established in advance by the language’s abstract syntax. It
seems natural that the language’s abstract syntax should play
a very important role in the organization of denotational def-
initions, and thus a methodology for formulating semantic
definitions should give special attention to the specification of
abstract syntaxes and semantic domains rather than on the
control structure of semantic functions.

128 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

The main idea behind syntactic-directed modular structure
is that the formulation of a denotational semantic definition
should start with the specification of the syntactic universe,
i.e., the concrete and the abstract syntax of the language being
defined, and use this syntactic structure as a guide to define
and organize the semantic modules, and thus promote better
separation and encapsulation of related concerns.

This approach has the advantage to automatically estab-
lish the module structure when the language’s abstract syn-
tax is defined. Therefore, solving the most difficult task in
traditional modular programming methodology, namely, the
problem of finding the best collection of modules.

Similar criteria have been widely used since long ago to
provide BNF-based informal definitions of programming lan-
guages [2, 20, 37, 58]. These definitions were, in general, or-
ganized into chapters and sections that could be viewed as
modules, each of which dedicated to some specific language
concept, such as expressions, commands and declarations,
while abstracting away details of others. Abstractions were
informally used throughout these informal definitions. For
instance, the section concerned with for statement only re-
quires knowledge about the types of the expressions involved
in the construction, leaving details on how expressions are
constructed and evaluated to other sections of the defining
document.

In summary, the methodology herein proposed for formu-
lating modular denotational semantics definitions consists of
the following steps:

1. From the concrete syntax of the language and from the

6.2. THE SEMANTICS OF SMALL 129

language’s semantics the definer has in mind, the corre-
sponding abstract syntax should be defined.

2. One or more syntactic domains should be encapsulated in
modules, each of which should define:

• the internal structure of the associated semantic do-
mains

• definition of the associated semantic functions
3. As the definition of modules progresses, the need for new

domains or semantic functions may arise, which may be
grouped to form new ad-hoc modules.

It should be emphasized that inherent properties of deno-
tational semantics do not permit traditional information hid-
ing principles to be used to their full extent. The internal
structure of syntactic domains may not be completely hidden
inside the modules they are defined because of the syntax-
directed nature of the semantic definition style. Also, the
internal structure of certain domains, e.g., the domains of con-
tinuations, cannot be completely encapsulated because their
internal details are needed at the various points of the def-
inition, mainly where the continuation functions are defined
incrementally. This implies that the mechanism for control-
ling the visibility to information in semantic modules must be
more flexible than those of modules that implement abstract
data types in modern imperative languages.

6.2 The semantics of Small

In the sequel, the denotational definition of a variant of Michael
Gordon’s Small language [15] is presented to illustrate the ap-

130 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

plication of the technique just discussed. Small is a simple
imperative language containing basic constructs for encoding
expressions, statements and declarations.

Small expressions may contain variables, integer constants,
logical values, function calls, file reading operations, condi-
tional terms, and basic operators. They may produce collat-
eral effect because any operand of an expression may be a
read operation, which inputs an integer value from the stan-
dard input file, and changes accordingly the descriptor of the
input file, which is part of the execution state.

Small statements are assignments, conditional commands,
while-loops, procedure calls, and blocks. A block contains in-
ner declarations and commands, including other inner blocks.

Small declarations just introduce and initialize variables
and constants. There is no explicit type declaration, but vari-
ables and constants have the type of the values associated
with them.

The body of a procedure is a list of statements, and that
of functions is just an expression, which yields the function
return value. Procedures and functions of Small are restricted
to have just one parameter.

6.2.1 Semantic infrastructure

Domains defined in modules named Environment, Storage
and Continuations model the run-time and compile-time
standard infrastructure for imperative languages whose ex-
pressions may have collateral effects and several types of er-
rors may be flagged during program execution.

6.2. THE SEMANTICS OF SMALL 131

Environment

Interface and definition modules named Environment model
the context in which expressions should be evaluated and
where values produced by expressions and declarations can
be bound to identifiers.

interface Environment1

imports Tokens(Id);2

Storage(Store,Loc);3

Continuations(Ec,Ans);4

privates5

r: Env; d: Dv; k: Ec; e: Ev; r: Rv; id:Id;6

publics7

Env = Id -> Dv;8

Dv = Loc | Rv | Proc | Fun | "unbound";9

Rv = T | N;10

Fun = Ec -> Ev -> Store -> Ans;11

Proc = Cc -> Ev -> Store -> Ans;12

Ev = Loc | Rv | Proc | Fun | "unbound";13

ro : Env;14

push : (Id,Dv) -> Env -> Env ;15

push : Env -> Env -> Env;16

bind : (Id,Dv) -> Env;17

get : Id -> Env -> Dv;18

isLoc : Ec -> Dv -> Store -> Ans;19

isLoc : Ec -> Ev -> Store -> Ans;20

isRv : Ec -> Dv -> Store -> Ans;21

isRv : Ec -> Ev -> Store -> Ans;22

isFun : Ec -> Dv -> Store -> Ans;23

isFun : Ec -> Ev -> Store -> Ans;24

isProc : Ec -> Dv -> Store -> Ans;25

isProc : Ec -> Ev -> Store -> Ans;26

isBool : Ec -> Rv -> Store -> Ans;27

isN : Ec -> Rv -> Store -> Ans;28

end29

132 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

The domains defined and exported by the interface module
Environment have the following meaning:

• Env represents an abstract structure used to associate
names with their meanings. It is a mapping from iden-
tifiers to denotable values. The environment works like
a stack: new bindings introduced by a block are pushed
down on its top, and are popped up when the execution
of the block finishes.

• Dv is the domain of denotable values, with which Small
identifiers can be associated in the environment. There
is a special denotable value, named "unbound", which is
used to indicate that the associated identifier has not been
bound yet.

• Rv represents the r-values of the language, i.e., values of
the same nature as those produced in the evaluation of
the operands of expressions occurring on the right-hand
side of assignment statements.

• Fun is the domain of function values, which contain all
the information needed to call the designated function,
namely: the return address, the actual parameter, the
function body, and the environment in which this body
must be evaluated.

• Proc is the domain of procedure values, which contain all
the information needed to call the designated procedure,
namely: the return address, the actual parameter, the
procedure body, and the environment in which this body
must be executed.

• Ev is the domain of expressible values, i.e., values pro-
duced by the evaluation of expressions.

6.2. THE SEMANTICS OF SMALL 133

The domains Dv and Ev are union domains, so in order
to performing the usual projection operations between the
unions and their summands, the following operations, in which
k:Ec and s:Store, are provided:

• isLoc k v s checks if v of type Dv or Ev holds a Loc
value, and, if so, passes it to continuation k, otherwise
stops execution with the message "error".

• isRv k v s checks if v of type Dv of Ev holds an r-value,
i.e., an member of Rv, and, if so, passes it to continuation
k, otherwise stops execution with the message "error".

• isBool k v s checks if v of type Rv holds a boolean
value, and, if so, passes it to continuation k, otherwise
stops execution with the message "error".

• isN k v s checks if v of type Rv holds an integer value,
and, if so, passes it to continuation k, otherwise stops
execution with the message "error".

• isProc k v s checks if v of type Dv or Ev holds a Proc
value, and, if so, passes it to continuation k, otherwise
stops execution with the message "error".

• isFun k v s checks if v of type Dv or Ev holds a Fun
value, and, if so, passes it to continuation k, otherwise
stops execution with the message "error".

Note that these functions are defined as continuation trans-
forming mapping, i.e., they all have type Ec->Ec, so as to
encapsulate the error condition handling.

The following operations, which are exported by interface
module Environment, and in which r:Env, id:Id and d:Dv,
deal with binding and scope handling:

134 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

• r0(id) returns the value unbound for any id.
• push(id,d)r pushes the binding value {id<-d} on the
top of the environment r.

• push(r1)r2 combines environments r1 and r2, pushing
r1 on the top of r2.

• get(id)r retrieves the denotable value associated with
id in environment r.

• bind(id,d) constructs a little environment {id<-d}.

The definition of the functions exported by the interface
module Environment is as follows.

module Environment1

functions2

push(id,d)r = r{id<-d};3

push(r1)r2 = r2{r1};4

bind(id,d) = {id<-d};5

get id r = r(id);6

r0(id) = "unbound";7

isLoc k d s = (d is Loc) => k Loc(d) s,"error";8

isLoc k e s = (e is Loc) => k e s,"error";9

10

isRv k d s = (d is Rv) => k Rv(d) s,"error";11

isRv k e s = (e is Rv) => k e s,"error";12

13

isProc k d s = (d is Proc) => k Proc(d) s,"error";14

isProc k e s = (e is Proc) => k e s,"error";15

16

isFun k d s = (d is Fun) => k Fun(d) s,"error";17

isFun k e s = (e is Fun) => k e s,"error";18

19

isBool k r s = (r is T) => k r s,"error";20

isN k r s = (r is N) => k r s,"error";21

end22

6.2. THE SEMANTICS OF SMALL 135

Storage

Modules named Storage define the structure of the machine
memory and functions that deal with stores and storable ele-
ments.

interface Storage1

imports Continuations(Ec,Cc,Ans); Environment(Ev);2

privates3

s: Store; k: Ec; e: Ev; a: Loc; v: Sv; z: Cc;4

n, minLoc, maxLoc: N;5

getFree: (Store,N) -> (N | "Storage-Full");6

publics7

Store = Loc -> Sv;8

Loc = N | "input";9

Sv = Rv | File | "unused";10

isRv : Ec -> Sv -> Store -> Ans;11

new : Store -> Loc;12

free : Loc* -> Store -> Store;13

get : Loc -> Store -> Sv;14

s0 : Store;15

ref : Ec -> Ev -> Store -> Ans;16

update : (Loc,Sv) -> Store -> Store;17

update : Loc -> Cc -> Ev -> Store -> Ans;18

deref : Ec -> Ev -> Store -> Ans;19

contents: Ec -> Ev -> Store -> Ans;20

end21

The domains exported by the interface Storage are:

• Store is the machine-memory domain, which associates
locations with Storable values.

• Loc is the domain of store locations, with which storable
values can be associated in the machine store. There is
a special location, named "input", which is used to hold
the descriptor of the input file of Small programs.

136 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

• Sv is the domain of storable values, i.e., the domain of
values that can be associated with locations in the store.
There is a special storable value, named "unused", to
mark store locations that are not in use.

The operations that are exported by module Storage have
the following meaning, in which a:Loc, s:Store, k:Ec, z:Cc,
v:Sv, and e:Ev:

• new s, if there a free cell in s, returns the location of a
free cell from the store s, otherwise returns "error".

• free a* s returns a new store that is a copy of s, ex-
cept that the store locations in the list a* are marked as
"unused" in the store returned.

• get a s retrieves the value associated with location a in
store s.

• s0 is the initial store, where all locations are associated
with "unused".

• ref k e s, if there is a free cell in s, stores the value e in
a newly allocated location in store s and passes this loca-
tion and the updated store to the expression continuation
k, otherwise it stops execution with message "error".

• update(a,v)s stores the storable value v on location a
of store s, and returns the store just updated.

• update a z e s, if the value e, an Ev value, is storable,
stores it into location a, and passes the updated store to
the command continuation z, otherwise it stops execution
with "error".

• deref k e s, if e is not a location, passes it to the con-
tinuation k, otherwise it passes the dereferenced value of
e to this continuation.

6.2. THE SEMANTICS OF SMALL 137

• contents k e s, if e is a location, passes the contents of
this location in the store s to the expression continuation
k, otherwise it stops execution with "error".

The functions exported by the interface Storage are im-
plemented as follows:

module Storage1

functions2

s0(a) = "unused";3

minLoc = 0;4

maxLoc = 32767;5

6

isRv k v s = (v is Rv) => k Rv(v)s,"error";7

8

new s = getFree(s,minLoc)9

where getFree(s,n) = (s n == "unused") => n,10

(n == maxLoc)=>"Storage-Full",getFree(s,n + 1)11

and free a* s = (size a*==0) => s,12

free(tail a*,s{head a* <- "unused"});13

get a s = s(a);14

update(a,v)s = s{a<-v};15

16

ref k e s = (new s == "error")=>"error",17

update(new s)(k(new s))e s;18

update a z e s = e is Sv => z(s{a<-Sv(e)}),"error";19

20

contents k e s = !(e is Loc) => "error",21

(s e == "unused") => "error",k(s e)s;22

deref k e s = (e is Loc) => contents k e s , k e s;23

end24

Continuations

Modules named Continuations encapsulate the basic appa-
ratus to deal with error conditions and jumps.

138 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

interface Continuations1

imports Environment(Env,Ev,Rv); Storage(Store);2

privates3

s : Store;4

publics5

Dc = Env -> Store -> Ans;6

Cc = Store -> Ans;7

Ec = Ev -> Store -> Ans;8

Ans = {"error","stop"} | (Rv,Ans);9

z0 : Cc;10

end11

The main domains exported by the interface Continuations
are:

• Dc is the domain of functions that implement declaration
continuations. These functions map environments and
stores, produced by declarations, to final answers.

• Cc is the domain of functions that implement command
continuations. These functions map stores, produced by
command execution, to final answers.

• Ec is the domain of functions that implement expression
continuations. These functions map expressible values
and stores, produced by expression evaluation, to final
answers.

• z0 is the initial continuation function, which models the
end of an execution without errors.

• Ans is the domain of Small program final answers, which
consist of a sequence of numerical and/or truth values
ended either by the message "stop", for correct programs,
or "error", for programs containing any semantic error.

The initial continuation function z0 is the only function
defined in the definition unit of Continuations.

6.2. THE SEMANTICS OF SMALL 139

module Continuations1

functions2

z0 s = "stop" ;3

end4

Module units Files

Small programs can be fed with input values by reading a
file from the domain File. This input file is modelled in the
semantic definition by associating it with a special location,
named "input" in the machine store, which holds the file
descritor and its contents.

The module Files describes the function readint, de-
clared in line 11 of the interface module below and defined
in line 3 of the corresponding definition module, that perfoms
the desired input file operation.

The function readint reads the next integer value from
the input file and returns the value just read and the store
updated with the file descriptor to be used in the next reading
operation. In case of reading error detection, the undefined
value ? is returned instead.

interface Files1

imports Storage(Store,Loc,get,update)2

privates3

in : File; -- input file4

readN : File -> (N,File); -- reads an integer5

readN : (File,N) -> (N,File); --6

isdigit : N -> T; -- check if a digit7

s : Store;8

acc : N;9

publics10

readint : Store -> (N,Store);11

end12

140 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

The definition of readint is in the definition module Files:

module Files1

functions2

readint(s)= !(in is File)=>(?,s),eof(in)=>(?,s),(n,s1)3

where in = get("input")s4

and (n,in1) = readN(in)5

and s1 = update("input",in1)s;6

7

readN(in) = eof(in) => (?,in), readN(in,0);8

9

readN(in,acc) = eof(in) => (acc,infile),10

!isdigit(n1) & (n==0) => (?,ungetchar(n1,in1)),11

!isdigit(n1) =>(acc,ungetchar(n1,in1)),12

readN(in1,acc1)13

where (n1,in1) = getchar(in)14

and digit n = n - 4815

and isdigit n = (n >= 48) & (n <= 58)16

and acc1 = 10 * acc + digit(n1);17

end18

6.2.2 Function main

The interface and definition modules, named Small, that are
presented in the sequel define the body of the function main,
which when automatically activated from the command line

>Small -f smallprog.txt -i data.txt
performs the necessary checks, and, if all succeed, generates
the AST for the Small program that is stored in file named
smallprog.txt, using the built-in function compile.

The AST code produced by this function and the program’s
input file data.txt are passed to the semantic function P
that is imported from module Program in order to initiate
the execution of the small program.

6.2. THE SEMANTICS OF SMALL 141

interface Small1

imports Continuations(Ans); Programs(P,Pro);2

privates3

source, in : File;4

arg : Q;5

publics6

main : Q* -> Ans;7

end8

The module below shows how the information from the
command line is passed to the function main:

module Small1

functions2

main(arg*) = (pro!=?)&(in!=?) => P(pro)(in), "error"3

where source = open(getarg("-f",arg*))4

and pro = (source!=?) => compile(source), ?5

and in = open(getarg("-i", arg*));6

end7

6.2.3 Small programs

The abstract syntax of Small programs is derived from the
grammar defined in the modules Programs, Declarations,
Commands and Expressions.

The semantic processing starts with module units Program,
which export the domain Pro and semantic function P that
maps Small programs in the abstract syntax domain Pro into
their denotations in domain Pd.

The semantic function P, activated by the function main,
initiates the execution of the commands of the given program
in the initial context, in which (i) the descriptor of the input
file is stored into the special location "input" of the initial and
unused store, (ii) all identifiers in the environment are bound

142 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

to "unbound", and (iii) the initial continuation z0 models a
successful execution.

The interface of Programs is:
interface Programs1

imports Continuations(Cc,z0,Ans);2

Commands(Cmd,C);3

Environment(Env,r0);4

Storage(Store,s0,update);5

privates6

r: Env; z: Cc; s: Store;7

infile : File;8

cmds : Cmd*;9

publics10

Pro : Start;11

P : Pro -> Pd;12

Pd = File -> Ans;13

end14

And the definition module Programs is as follows:

module Programs1

syntax2

pro:Pro ::= "program" cmds "end";3

functions4

P["program" cmd* "end"](infile) = C(cmd*)r0 z0 s15

where s1 = update("input",infile)s0;6

end7

Recall that domain of functions Store has a special location
named "input" that is used to hold the program input file.

6.2.4 Small declarations

The syntax and semantics of Small declarations are presented
in the following module units:

6.2. THE SEMANTICS OF SMALL 143

module Declarations1

syntax2

decs:Dec* ::= decs ";" dec => append(decs,dec)3

| dec => (dec);4

dec:Dec ::= "const" id "=" exp5

| "var" id "=" exp6

| "proc" id "(" id1 ")" ":" cmds7

=> ["proc" id "(" id1 ")" cmds]8

| "fun" id "(" id1 ")" ":" exp9

=> ["fun" id "(" id1 ")" exp];10

-- semantic functions defined here11

end12

The semantic functions D, whose types are declared at lines
16 and 17 of modules Declarations, map Small declarations
to their denotations, whose domain is defined at line 18 of the
following interface module:

interface Declarations1

imports2

Environment(Env,Dv,Proc,Fun,Ev,bind,push);3

Storage(Store); Continuations(Dc,Ans);4

Tokens(Id);5

Expressions(Exp);6

Commands(Cmd,C);7

Expressions(E,R);8

Commands(C);9

privates10

r: Env; u: Dc; s: Store; k: Ec;11

z: Cc; v: Ev; p: Proc; f: Fun;12

cmds: Cmd*;13

publics14

Dec: Nonterminal;15

D : Dec -> Dd;16

D : Dec* -> Dd;17

Dd = Env -> Dc -> Store -> Ans;18

end19

144 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

The definition of the the cases of the functions named D is
detailed in the definition module Declarations below.

module Declarations1

-- here comes the grammar definition of declarations2

functions3

D["const" id "=" exp]r u s = R(exp)r k1 s4

where k1 v s = u(bind(id,v))s;5

6

D["var" id "=" exp]r u s = R(exp)r k1 s7

where k1 v s = ref k2 v s8

and k2 a s = u(bind(id,a))s;9

10

D["proc" id "(" id1 ")" cmd*] r u s = u bind(id,p) s11

where p z v s = C(cmd*)r1 z s12

and r1 = push(id,p)(push(id1,v)r);13

14

D["fun" id "(" id1 ")" exp]r u s = u bind(id,f) s15

where f k v s = E(exp)r1 k s16

and r1 = push(id,f)(push(id1,v)r);17

18

D(dec:dec*)r u s = D(dec)r u1 s19

where u1 r1 s = D(dec*)(push r1 r)u2 s20

and u2 r2 s = u(push r2 r1)s;21

22

D(nil)r u s = u r s;23

end24

These definitions of D, in which r:Env, u:Dc, and s:Store,
can be informally read as follows.

• D["const" id "=" exp]r u s evaluates exp to obtain
a denotable value, and then associates this value with
id to form a little environment, which together with the
current store, is passed to declaration continuation.

6.2. THE SEMANTICS OF SMALL 145

• D["var" id "=" exp]r u s evaluates exp, stores the value
obtained at a new location in the current store and asso-
ciates this location with id to form a little environment,
which together with the store just updated, is passed to
the declaration continuation.

• D["proc" id "(" id1 ")" cmd*]r u s computes a pro-
cedure value and associates it with id to form a little en-
vironment, which is passed to the given declaration con-
tinuation. This procedure value defines that, whenever
it is applied, the body cmd* of the procedure is to be
executed in the environment in which the procedure has
been declared, and that the value of the actual parame-
ter and the procedure value itself are bound to id1 and
id, respectively. The continuation of cmd* and the store
to be used must be passed to the procedure value at the
moment the procedure is called.

• D["fun" id "(" id1 ")" exp]r u s computes a func-
tion value and proceeds, mutatis mutandis, as described
in the semantics of procedure declaration above.

• D(dec:dec*)r u s elaborates dec and dec* in sequence,
and passes to the declaration continuation the little en-
vironment formed by pushing the environment produced
by dec on that produced by dec*.

• D(nil)r u s ends the elaboration of a declaration list,
passing the current environment and store to the normal
declaration continuation.

146 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

6.2.5 Small commands

The syntax and semantics of Small commands are encapsu-
lated in the module units called Commands, which is shown
below in a stepwise fashion.

Initially, the concrete and abstract syntax of commands are
defined and, in the sequel, the associates semantic functions
are detailed.

module Commands1

syntax2

cmd:Cmd ::= id ":=" exp3

| "output" exp4

| "while" exp "do" cmds "end"5

=> ["while" exp cmds]6

| "if" exp "then" cmds1 "else" cmds2 "end"7

=> ["if" exp cmds1 cmds2]8

| "begin" decs ";" cmds "end"9

=> ["begin" decs cmds]10

| exp1 "(" exp2 ")"11

=> ["call" exp1 exp2];12

cmds:Cmd* ::= cmds ";" cmd => append(cmds,cmd)13

| cmd => (cmd);14

functions15

-- semantic functions defined here (see below)16

end17

The two semantic functions named C, declared at lines 12
and 13 in the module below, map Small commands into their
denotations, whose domain is defined at line 14.

interface Commands1

imports2

Continuations(Cc,Ec,Ans);3

Storage(Store,Loc,update); Tokens(Id);4

Expressions(E,R,Exp); Declarations(D,Dec);5

6.2. THE SEMANTICS OF SMALL 147

Environment(Env,Ev,isLoc,Proc,isProc,push);6

privates7

r:Env; z:Cc; k:Ec; s:Store; p:Proc; a:Loc; v:Ev;8

decs : Dec*;9

publics10

Cmd: Nonterminal;11

C : Cmd -> Cd;12

C : Cmd* -> Cd;13

Cd = Env -> Cc -> Store -> Ans;14

end15

The semantic functions of Small commands are detailed in
the following definition module unit.

module Commands1

syntax2

-- here comes the grammar of commands as shown above3

functions4

C[id ":=" exp]r z s = E(id)r k1 s5

where k1 v1 s = isLoc k2 v1 s6

and k2 v2 s = R(exp)r k3 s7

and k3 v3 s = update Loc(v2) z v3 s;8

9

C["output" exp]r z s = R(exp)r k s10

where k v s = (v,z s);11

12

C["if" exp cmd1 cmd2]r z s = R(exp)r k1 s13

where k1 v s = isBool k2 v s14

and k2 v s = T(v) => C(cmd1)r z s, C(cmd2)r z s;15

16

C["while" exp cmd*]r z s = f17

where f = Y(\f.R(exp) r k1 s)18

and k1 v s = isBool k2 v s19

and k2 v s = T(v) => C(cmd*)r z1 s, z s20

and z1 s = f r z s;21

22

C["call" exp1 exp2]r z s = E(exp1)r k1 s23

148 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

where k1 v s = isProc k2 v s24

and k2 p s = E(exp2)r(p z)s;25

26

C["begin" dec* cmd*]r z s = D(dec*)r u s27

where u r1 s = C(cmd*)(push r1 r)z s;28

29

C(cmd:cmd*)r z s = C(cmd)r z1 s30

where z1 s = C(cmd*)r z s;31

32

C(nil)r z s = z(s);33

end34

In the informal explanation presented in the sequel for the
equations defined in the module above, it is implicit that
whenever the value obtained in the evaluation process does
not have the expected type, the normal continuation is aban-
doned, an error message is sent to the final answer, and the
execution stops. This is the semantics incorporated in all
type checking functions used in the above equations. Thus,
for r:Env, z:Cc, and s:Store, the equations for D have the
folowing interpretations:

• C[id ":=" exp]r z s evaluates id to obtain the deno-
table value associated with it, checks if this value is a lo-
cation, in which case evaluates exp to obtain an r-value,
stores this r-value at this location and passes the store
just updated to the normal continuation.

• C["output" exp]r z s evaluates exp to obtain an r-
value, sends it to the final answer, and then proceeds
computing the remaining elements of the final answer by
executing the normal continuation of the command in the
current store.

6.2. THE SEMANTICS OF SMALL 149

• C["if" exp cmd1 cmd2]r z s evaluates exp to obtain
an r-value, which must be of type boolean, in which case,
uses this boolean value to determine whether to execute
next, in the current store, cmd1 or cmd2.

• C["while" exp cmd*]r z s evaluates exp to obtain an
r-value, which must be boolean, in which case, if this
value is false just follows the normal continuation in
the current store, otherwise executes the command list in
the body of the while statement to obtain a new store,
which is used to recursively re-executes the same while
statement.

• C["call" exp1 exp2]r z s evaluates exp1 to obtain the
associated procedure value, then evaluates exp2 to pro-
duce the necessary parameter value, and then performs
the procedure call by applying the procedure value just
obtained to the normal continuation and the parameter
produced. The normal continuation is used as return ad-
dress for the procedure call.

• C["begin" dec* cmd*]r z s elaborates dec* to obtain
a little environment, which is pushed on the top of the
current environment, and the combined environment and
the updated store are then used to execute cmd*.

• C(cmd:cmd*)r z s executes cmd to get a new store, which
is used to execute the command list cmd*.

• C(nil)r z s passes the current store s to the continua-
tion z.

150 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

6.2.6 Small expressions

The syntax and the semantics of Small expressions are defined
by module pair named Expressions.

module Expressions1

syntax2

exp:Exp ::= term3

| exp rop term4

;5

term:Exp ::= factor6

| term aop factor7

;8

factor:Exp ::= primary9

| factor mop primary10

;11

12

primary:Exp ::= id => [id] | "true" => ["true"]13

| "false" => ["false’] | num => [num]14

| "read" => ["read"]15

| exp1 "(" exp2 ")" => [exp1 exp2]16

| "if" exp "then" exp1 "else" exp2 "end"17

=> ["if" exp exp1 exp2]18

;19

functions20

-- here comes the semantic functions21

end22

The semantic functions E and R, declared at lines 14 and
15 in the module below, map Small expressions into their
denotations, which are in the domain Ed that is defined at
line 16 of the following module:

interface Expressions1

imports2

Continuations(Ec,Ans);3

Storage(Store);4

6.2. THE SEMANTICS OF SMALL 151

Tokens(Id, Rop, Aop, Num);5

Environment(Env,Ev,Rv,isFun,get,isN);6

Storage(Loc,get,update);7

Files(readint);8

privates9

r: Env; k: Ec; s: Store; v: Ev; op: Q; a: Loc;10

apply : Q -> (N,N) -> Ec -> Store -> Ans;11

publics12

Exp : Nonterminal;13

E : Exp -> Ed;14

R : Exp -> Ed;15

Ed = Env -> Ec -> Store -> Ans;16

end17

The semantic functions for Small expressions are detailed
in the following definition module unit:

module Expressions1

syntax2

--- here comes the grammar of expressions3

functions4

apply("+")(n1,n2) k s = k (n1 + n2) s;5

apply("-")(n1,n2) k s = k (n1 - n2) s;6

apply("*")(n1,n2) k s = k (n1 * n2) s;7

apply("/")(n1,n2) k s = k (n1 / n2) s;8

apply("<")(n1,n2) k s = k (n1 < n2) s;9

apply(">")(n1,n2) k s = k (n1 > n2) s;10

apply(">=")(n1,n2) k s = k (n1 >= n2) s;11

apply("<=")(n1,n2) k s = k (n1 <= n2) s;12

apply(op)(n1,n2) k s = "error";13

14

E["true"]r k s = k(true)s;15

E["false"]r k s = k(false)s;16

E[num]r k s = k(toN num)s;17

18

E[id]r k s = (a == "unbound") => "error", k(a)s19

where a = get(id)r;20

152 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

21

E["read"]r k s = (n==?) => "error", k n s122

where (n,s1) = readint(s);23

24

E[exp1 rop exp2]r k s = R(exp1)r k1 s25

where k1 v1 s = isN v1 => R(exp2)r k2 s, "error"26

and k2 v2 s = isN v2 =>27

apply(rop)(N(v1),N(v2))k s, "error";28

29

E[exp1 aop exp2]r k s = R(exp1)r k1 s30

where k1 v1 s = isN v1 => R(exp2)r k2 s, "error"31

and k2 v2 s = isN v2 =>32

apply(aop)(N(v1),N(v2))k s, "error";33

34

E[exp1 mop exp2]r k s = R(exp1)r k1 s35

where k1 v1 s = isN v1 => R(exp2)r k2 s, "error"36

and k2 v2 s = isN v2 =>37

apply(mop)(N(v1),N(v2))k s, "error";38

39

E[exp1 exp2]r k s = E(exp1)r(isFun k1)s40

where k1 f s = E(exp2)r(f k) s;41

42

E["if" exp exp1 exp2]r k s = R(exp) r k1 s43

where k1 v s = isBool k2 v s44

and k2 v s = T(v) => R(exp1)r k s, R(exp2)r k s;45

46

R(exp)r k s = E(exp) r k1 s47

where k1 v s = deref k2 v s48

and k2 v s = isRv k v s;49

end50

In the explanation below, it is implicit that, whenever the
value obtained in the process of evaluating an expression does
not have the expected type, the normal expression continua-
tion is abandoned, an error message is sent to the final answer,

6.2. THE SEMANTICS OF SMALL 153

and the execution stops.
Abstracting from this error handling mechanism, the se-

mantics of the above equations, whose parameters are r:Env,
k:Ec, and s:Store, can be construed as:

• E["true"]r k s passes true and the current store to the
normal expression continuation.

• E["false"]r k s passes false and the current store to
the normal expression continuation.

• E[num]r k s converts the quotation associated with the
token num into integer, and passes the converted value and
the current store to the normal expression continuation.

• E[id]r k s retrieves from the given environment the de-
notable value associated with id, and, if this value is not
"unbound", passes it and the current store to the normal
expression continuation.

• E["read"]r k s reads the next string of digit from the
input file and returns the corresponding integer value and
a store containing the updated file descriptor of the input
file. The value just read and the store updated are passed
to the normal expression continuation.

• E[exp1 rop exp2]r k s evaluates expressions exp1 and
exp2, in this order, to get the operands for the indicated
binary relational operation. If they are both of integer
type, executes the operation rop, and passes the result
and the current store to the normal expression continua-
tion.

• E[exp1 aop exp2]r k s evaluates expressions exp1 and
exp2, in this order, to get the operands for the indicated
binary arithmetic operation. If they are both of integer

154 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

type, executes the operation aop, and passes the result
and the current store to the normal expression continua-
tion.

• E[exp1 mop exp2]r k s evaluates expressions exp1 and
exp2 to get the operands for the indicated binary arith-
metic operation. If both operands are of integer type,
executes the operation mop, and passes the result and the
current store to the normal expression continuation.

• E[exp1 exp2]r k s evaluates exp1 to obtain the asso-
ciated function value, evaluates exp2 to produce the nec-
essary parameter value, and then perform the function
call, applying the function value just obtained to the nor-
mal expression continuation and the parameter produced.
The normal expression continuation is used as return ad-
dress for the function call.

• E["if" exp exp1 exp2]r k s evaluates exp to obtain
a boolean r-value, which is used to select one of the ex-
pressions exp1 and exp2, which is evaluated in the sequel
with the normal expression continuation.

• R(exp)r k s evaluates the expression exp to produce an
expressible value. If the value obtained is a location, gets
the storable value associated with this location. Either
way, if the value obtained is an r-value, passes it and the
current store to the normal expression continuation.

6.2.7 Small tokens

The terminal symbols of the Small language are those col-
lected in the grammar sections of the various modules pro-
vided by this semantic definition. In addition to these termi-

6.2. THE SEMANTICS OF SMALL 155

nal symbols, there are still other five tokens that are exported
by the interface module Tokens:

interface Tokens1

syntax2

Id, Aop, Mop, Rop, Num: Token;3

end4

Note that the elements exported are the domains of the to-
ken, not the tokens themselves, and each of these tokens must
be properly specified as shwown in the following definition
module:

module Tokens1

lexis2

id:Id ::= letter+ => return id(letter+)3

;4

letter === ’A’ .. ’Z’ | ’a’ .. ’z’ ;5

aop ::= "+" => return (aop,"+")6

| "-" => return (aop,"-")7

;8

mop ::= "*" => return (mop,"*")9

| "/" => return (mop,"/")10

;11

rop ::= "<" => return (rop,"<")12

| ">" => return (rop,">")13

| "<=" => return (rop,"<=")14

| ">=" => return (rop,">=")15

| "=" => return (rop,"=")16

;17

num:Num ::= digit+ => return (num,digit+)18

;19

digit === ’0’ .. ’9’20

;21

end22

156 CHAPTER 6. SYNTAX-DRIVEN METHODOLOGY

6.3 Evaluation

The encapsulation of fundamental and intricate concepts of
programming languages may contribute to make formal defi-
nitions popular and turn formal descriptions of the semantics
of large programming languages comprehensible by program-
mers and computer scientists.

Accordingly, the formal definition of Small has been de-
composed into small pieces which are more or less indepen-
dent from each other. Basic semantic concepts such as stores,
environments and continuations have been isolated into sepa-
rate modules so that the choice of a particular model for them
does not affect the structure of the rest of the definition.

The syntactic structure of the language was used to guide
the partitioning of the definition into small modules. Each
module encapsulates the details of the definition of some do-
mains and related functions, and makes their names and types
available for use in other modules.

This partitioning of a semantic definition into syntactic
modules corresponds to common practice in informal speci-
fications of programming languages [2, 20, 37, 58].

The claim is that such a partitioning of a denotational defi-
nition produces satisfactory results in the sense that the inter-
faces among the various modules are kept reasonably small.

Chapter 7

Component-Based Style

Ne sutor supra crepı̌dam.1

Apelles (circa 330 B.C.)

The process of organizing denotational semantics defini-
tions according to the syntactic structure of the language be-
ing defined produces a good set of modules. However, the
comprehension level of these modules can still be further im-
proved, for there are complexities in the denotational model
that still need to be tamed.

If Backus-Naur form has been established as a universal
notation for defining programming language syntax, formal
semantics methods have never achieved similar success. Prob-
ably this is due to the fact no formal semantics method has
the simplicity of the syntactic formalisms.

There are many explanation for that, and a good one would
be that, in denotational semantics, although the semantics of
a language construct should depend only on the semantics of
its immediate constituents, there are always, in the semantic
equations, explicit dependencies on other elements, such as

1The shoemaker should not go beyond the sandals (apud [40]).

157

158 CHAPTER 7. COMPONENT-BASED STYLE

the context of the construct.
The context of language constructs is usually composed

of three elements: antecedents, destination and locality, as
proposed by Tirelo et al. [52].

The antecedents of a construct’s context comprises the ef-
fects of what has been executed previously in the program.
In general these effects are propagated to the construct by
entities like store and environment. For example, the val-
ues previously assigned to variables are part of the context in
which an expression is evaluated.

The destination of a construct provides the context to which
the effects of its execution are to be sent. This is usually
modeled by the notion of continuations. For example, in a
statement sequence, the destination of the results produced
by the execution of a statement are usually the commands
that follow it.

And the locality is the context given by the construct’s en-
closing structure in the abstract syntax tree. The semantics of
the Java break statement, for instance, depends on whether
it occurs inside or outside a try-finally statement [1].

In order to cope with all these facets of the context, the
semantic equation of a construct must be provided with ap-
propriate parameters, in addition to those that specify its
constituents. These parameters allow context information be
transmitted to the denotations of the construct’s constituents,
and also to its destination. The need to explicitly deal with
context produces an undesirable dependence relation among
otherwise independent equations, and complicates the related
domain apparatus in which they are defined, impairing the

7.1. THE FUNDAMENTAL PRINCIPLE 159

comprehensibility of the equations.
Moreover, the abstraction mechanisms of λ-calculus, con-

sidered insufficient to properly encapsulate definition details
of semantic domains, aggravate even more the comprehensi-
bility issue [19, 32, 33, 60]. In summary, context dependence
and the lack of appropriate modularization mechanisms in λ-
calculus make semantic equations very intricate.

It would be nice to rescue the idea that the semantics of
a construct only depends on the meanings of its immediate
constituents. Thus, the semantic equations should only spec-
ify the direct mappings from language constructs to their de-
notations by means of denotational components in an easy
and readable way, and the details, such as context handling,
should be encapsulated away.

7.1 The fundamental principle

An important property of denotational semantic definitions
that derives from that idea that the meaning of a language
construct should only depend on the meaning of its imme-
diate constituents is called referentially transparent property
[15]. This property is related to the fact that the denotation
of a construct is intended to be a complete representation of
its semantics, and, the semantics of a construct should only
depend on the denotations of its constituents and on nothing
else. Requiring referential transparency is tantamount to re-
quiring that if two constructs have the same denotation, then
they are semantically indistinguishable.

Moreover, the dependency between the denotation of a con-

160 CHAPTER 7. COMPONENT-BASED STYLE

struct and those of its constituents need only be on the types
and names of the associated semantic functions, and not on
their complete definition.

In terms of formulating language definitions, the property
of referential transparency provides the basis for applying in-
formation hiding techniques as suggested by modern object-
oriented programming methodology.

A module can then be used as the adequate apparatus to
abstract away details of syntactic domains and associated se-
mantic functions. However, a higher level of abstraction could
be achieved if the context dependence is removed from all se-
mantic equations and encapsulated in separate modules.

7.2 Context removal

The process of removing context information from semantics
equations is inspired by Peter Mosses’ concept of components
[34, 35, 36] that he has used to improve reusability of action
semantics and structured operational semantics descriptions.

The basic idea of this process applied to denotational se-
mantics is illustrated with the following development of a
comprehensible description for the semantics of the classical
if-then-else statement of an imperative language. Tradition-
ally, the semantics of this type of construction is defined as
follows:
C["if" exp cmd1 cmd2]r z s =

R(exp)r(\v s.isBool(\v s.
v => C(cmd1)r z s, C(cmd2)r z s)v s)s

(7.1)

Notice that context information in equation (7.1) is defined
by the environment r:Env, the command continuations z:Cc,

7.2. CONTEXT REMOVAL 161

and by the machine store s:Store. This equation can be read
as:

the semantics of the if-then-else statement in the
presence of an environment r, command continuation
z and store s comprises the evaluation of the state-
ment condition to obtain an r-value, which is passed
to the continuation to be checked if it is a boolean and,
if so, to selected one of the branches of the statement
to continue the execution.

Clearly the use of context information is fundamental to
convey the desired meaning to the above command, but it
certainly impairs definition comprehensibility.

The context, represented by r, z and s, is mentioned 17
times in the equation (7.1), and it would be nice to be able
to cancel out all these occurrences.

In fact, this can be achieved by creating a combinator [18],
named choose, which permits transforming equation (7.1)
into equation (7.2):
C["if" exp cmd1 cmd2]r z s =

choose(R(exp),C(cmd1),C(cmd2))r z s
(7.2)

where choose is defined as:
choose(e,d1,d2) r z s =

e r (\v s.isBool(\v s.v=>d1 r z s, d2 r z s)v s)s
(7.3)

Next step is to abstract away the definition of the combi-
nator choose from the reader’s eyes, placing it in a library of
denotational components, and apply η reduction to equation
(7.2) to reduce it to:

C["if" exp cmd1 cmd2] = choose(E(exp),C(cmd1),C(cmd2))

This equation emphasizes the following semantics:

162 CHAPTER 7. COMPONENT-BASED STYLE

the semantics of the if-then-else command is such
that the value of the command’s condition is to be
evaluated first, and if its value is true, the execu-
tion proceeds with command cmd1, otherwise com-
mand cmd2 is to be executed.

Hopefully, to have this level of understanding of the mean-
ing of the defined construction it is enough to know the in-
terface of the component choose, which can be presented in
a high level of abstraction, relieving the reader from learning
the details of the definition of this combinator.

To generalize this structuring process, consider the seman-
tic function h of a generic construct A defined in a context
c:Context:

A→ r0B1r1B2 . . . Bnrn

h : A→ Context→ Ans
h〚r0B1r1B2 . . . Bnrn〛 c = g(h1〚B1〛, h2〚B2〛, . . . , hn〚Bn〛, c)

In the above equations, functions hi, for 1 ≤ i ≤ n, give
the semantics of the A’s constituents; rj, for 0 ≤ j ≤ n, are
terminals, and Bk, for 1 ≤ k ≤ n, are nonterminals.

In order to remove the context c from the parameter list of
function g, and to set up the basis to encapsulate the flow of
context information, consider a generic combinatorK, defined
as:

K (d1, d2, . . . , dn) c = g(d1, d2, . . . , dn, c)

where di, for 1 ≤ i ≤ n, are denotations.
The use of the combinatorK to rewrite the above definition

of h produces:

h〚r0B1r1B2 . . . Bnrn〛c = K(h1〚B1〛, h2〚B2〛, . . . , hn〚Bn〛)c

7.2. CONTEXT REMOVAL 163

which may be simplified to:

h〚r0B1r1B2 . . . Bnrn〛 = K(h1〚B1〛, h2〚B2〛, . . . , hn〚Bn〛)

To keep the formulation simple, each semantic equation
typically must use just one combinator, avoiding the enticing
idea of using combinator composition. In fact, to achieve com-
prehensibility, discipline and standardization are mandatory.
Thus, it seems reasonable to require that all denotational com-
binators like K must have the standard type:

K: (D1 , D2 , · · · , Dn) -> Context -> Ans
where Di, for 1 ≤ i ≤ n, are domains of denotations or of
special values associated with the production, and Ans the
usual domain of final answers.

This discipline permits rescuing the central idea of the de-
notational semantics formalism in which the meaning of a
construct only depends on the meaning of its immediate con-
stituents. In this sense, the parameters of a combinator should
be only denotations of constructs because the semantics model
should follows the premises that the combinatorK must com-
bine the semantics of the immediate constituents of A to pro-
duce its meaning.

Additionally, the function K should not contain any refer-
ences to the terminal symbols that occur on the right hand
side of the production defining A. Only the nonterminals are
allowed to take part in the formulation. This means that, to
keep the model clean, each right hand side of a grammar pro-
duction must imply in a new g, i.e., dependences on terminal
symbols are to be forged into the structure of function g.

However, in order to favor reuse of components and yet pre-
serving comprehensibility, sometimes it may be convenient to

164 CHAPTER 7. COMPONENT-BASED STYLE

pass to a combinator special values to determine some specific
behavior, instead of writing several similar combinator func-
tions. The need for this arises when more than one production
have the same nonterminals on their right hand sides, being
distinguished only by the terminal symbols involved. The use
of the resource, though, should be an exception rather than a
rule.

This process of encapsulating context should be applied
to the semantic equations of all constructs in the language,
producing a clean set of combinators whose use is much more
comprehensible than their counterparts, which exhibit all con-
text dependencies.

A special attention should be paid to the initial semantic
equation, which should not be object of componentization be-
cause this equation is the place in which the execution context
must be established.

7.3 Component-based semantics of Small

A component-based denotational definition of Small, the toy
programming language presented in Chapter 6, is used to il-
lustrate the technique proposed for separation of concerns.

The following module units, defined in Chapter 6, are used
in this definition:

• Environment (§6.2.1, page 131), which defines and im-
plements domains that are specific to Small environments.

• Storage (§6.2.1, page 135), which defines the domains
and functions dealing with program stores.

7.3. COMPONENT-BASED SEMANTICS OF SMALL 165

• Continuations (§6.2.1, page 137), which defines the var-
ious types of continuations.

• Files (§6.2.1, page 139), which defines the domain of file
and i/o operations.

7.3.1 Main function

Module small defines the function main, which is implicitly
activated from the command line

>small -f source.small -i in.txt
where source.m is the source code file containing the Small
program to be compiled and executed, and in.txt, the pro-
gram input file. The activation of main is carried out as:

main(("-f", "source.small", "-i", "in.txt"))

The interface module small is as follows:
interface small1

imports2

Continuations(Ans);3

Programs(P,Pro);4

privates5

source, in : File;6

arg : Q;7

publics8

main : Q* -> Ans;9

end10

And the corresponding definition is:
module small1

functions2

main(arg*) = (pro!=?)&(in!=?)=> P(pro)(in), "error"3

where source = open(getarg("-f",arg*))4

pro = (source!=?) => compile(source), ?5

in = open(getarg("-i", arg*))6

end7

166 CHAPTER 7. COMPONENT-BASED STYLE

Note that main retrieves the program input and the source
program file descriptors from its argument list, generates the
AST for the program stored in file source.small using the
built-in function compile and passes the program AST and
the input file to the semantic function P of Small programs to
produce the final answer of its execution.

7.3.2 Small programs

The semantic function P maps Small programs represented as
elements of the abstract syntax domain Pro into their denota-
tions Pd, which are mappings from program input file to final
answers, as defined in the following module:

interface Programs1

imports Continuations(Cc,z0,Ans); Commands(C,Cmd);2

Environment(Env,r0); Storage(Store,s0,update);3

privates4

r : Env ; z : Cc; s : Store;5

cmds : Cmd*6

publics7

P : Pro -> Pd;8

Pd = File -> Ans;9

end10

Function P initiates the execution of the given program in
the initial context, in which the descriptor of the input file is
plugged to the special location "input" of the initial store.

module Programs1

syntax2

pro:Pro ::= "program" cmds "end" ;3

functions4

P["program" cmd*]file = C(cmd*)r0 z0 s15

where s1 = update("input",file)s0;6

end7

7.3. COMPONENT-BASED SEMANTICS OF SMALL 167

7.3.3 Small declarations

The syntax and the semantic functions for Small declarations
are detailed in the following module units:

• interface Dec_Components, which defines the interface
of the denotational components that implement the de-
tails of the semantics of declarations.

• module Dec_Components, which defines the definition of
the denotational components for the semantics of Small
declarations (§7.4.1, page 178).

• interface Declarations, which contains the interface
of the high level semantic functions for Small declarations.

• module Declarations, which contains the definition of
the semantic equations for Small declarations.

Declaration component interface

interface Dec_Components1

imports2

Exp_Components(Ed); Cmd_Components(Cd);3

Storage(Store); Environment(Env,Fun,Proc); Tokens(Id);4

Declarations(Ev); Continuations(Dc,Cc,Ec,Ans);5

Exp_Components(Ed); Cmd_Components(Cd);6

privates7

r : Env; s : Store; d : Dd; c : Cd; e : Ed; v: Ev;8

f : Fun; p : Proc; u : Dc; z : Cc; k : Ec;9

publics10

Dd = Env -> Dc -> Store -> Ans;11

cbind, vbind : (Id,Ed) -> Dd;12

pbind : (Id,Id,Cd) -> Dd;13

fbind : (Id,Id,Ed) -> Dd;14

elab : (Dd,Dd) -> Dd;15

continue: Dd;16

end17

168 CHAPTER 7. COMPONENT-BASED STYLE

In the above interface module, Dd is the domain of com-
mand denotations, and the denotational components specified
in the module are, for r:Env, u:Dc, and s:Store:

• cbind(id,e)r u s, which elaborates the expression de-
notation e:Ed, binds the result to the identifier id in the
current environment, which is passed to the continuation.

• vbind(id,e)r u s, which elaborates the expression de-
notation e:Ed, stores the result in a new location of the
current store, binds this location to the identifier id in the
current environment, which is passed to the continuation.

• pbind(id,id1,c)r u s, which builds a procedure value
with parameter id1 and body denotation c:Cd, and as-
sociates this value with identifier id in the current envi-
ronment, which is passed to the continuation.

• fbind(id,id1,e)r u s, which builds a function value
with parameter id1 and body denotation e:Ed, and as-
sociates this value with the identifier id in the current
environment, which is passed to the continuation.

• elab(d1,d2)r u s, which elaborates the two declaration
denotations d1 and d2, in this order, combines their re-
sults and pushes the little environment produced on the
top of the current environment, which is passed to the
continuation.

• continue r u s, which passes the current environment
to the declaration continuation.

The context defined by r, u and s are not mentioned in the
semantic equations for Small declaration definitions presented
in the sequel, since the context handling of these components
is hidden and detailed in modules defined in Section 7.4.1.

7.3. COMPONENT-BASED SEMANTICS OF SMALL 169

Semantic equations for declarations

The types of the semantic functions for Small declarations are
declared in the interface module:

interface Declarations1

imports2

Expressions(E,R,Exp); Commands(C,Cmd); Tokens(Id);3

Dec_Components(Dd,cbind,vbind,pbind,fbind);4

Dec_Components(continue,elab);5

privates6

cmds: Cmd*7

publics8

D : Dec -> Dd;9

D : Dec* -> Dd;10

end11

The syntax of Small declarations and the associates seman-
tics are defined in the following module:

module Declarations1

syntax2

decs:Dec* ::= decs ";" dec => append(decs,dec)3

| dec => (dec);4

dec:Dec ::= "const" id "=" exp5

| "var" id "=" exp6

| "proc" id "(" id1 ")" ":" cmds7

=> ["proc" id "(" id1 ")" cmds]8

| "fun" id "(" id1 ")" ":" exp9

=> ["fun" id "(" id1 ")" exp];10

functions11

D["const" id "=" exp] = cbind(id,R(exp));12

D["var" id "=" exp] = vbind(id,R(exp));13

D["proc" id "(" id1 ")" cmd*] = pbind(id,id1,C(cmd*));14

D["fun" id "(" id1 ")" exp] = fbind(id,id1,E(exp));15

D(nil) = continue;16

D(dec:dec*) = elab(D(dec),D(dec*));17

end18

170 CHAPTER 7. COMPONENT-BASED STYLE

7.3.4 Small commands

The syntax and semantics definition of Small commands com-
prise the modules:

• interface Cmd_Components, which defines the interface
of the denotational components that implement the de-
tails of the semantics of commands.

• module Cmd_Components, which defines the definition of
the denotational components for the semantics of Small
commands (§7.4.2, page 179).

• interface Commands, which contains the interface of the
high level semantic functions for Small commands.

• module Commands, which contains the definition of the
semantic equations for Small commands.

The interface of module Commands, which exports the se-
mantic function D, is:

interface Commands1

imports2

Declarations(Dec,D);3

Expressions(Exp,E,R);4

Tokens(Id);5

Cmd_Components(Cd,assign,toAns,choose,loop);6

Cmd_Components(newblock,execute,continue);7

privates8

decs : Dec*;9

publics10

C : Cmd -> Cd;11

C : Cmd* -> Cd;12

end13

The syntax and semantics of Small commands are detailed
in the following definition module:

7.3. COMPONENT-BASED SEMANTICS OF SMALL 171

module Commands1

syntax2

cmd:Cmd ::= id ":=" exp3

| "output" exp4

| "while" exp "do" cmds "end"5

=> ["while" exp cmds]6

| "if" exp "then" cmds1 "else" cmds2 "end"7

=> ["if" exp cmds1 cmds2]8

| "begin" decs ";" cmds "end"9

=> ["begin" decs cmds]10

| exp "(" exp1 ")" => ["call" exp exp1]11

;12

cmds:Cmd* ::= cmds ";" cmd => append(cmds,cmd)13

| cmd => (cmd)14

;15

functions16

C[id ":=" exp] = assign(E(id),R(exp));17

C["output" exp] = toAns(R(exp));18

C["if" exp cmd1 cmd2]=choose(R(exp),C(cmd1),C(cmd2));19

C["while" exp "do" cmd] = loop(R(exp),C(cmd));20

C["call" exp exp1] = pcall(E(exp),E(exp1));21

C["begin" dec* cmd*] = newblock(D(dec*),C(cmd*));22

C(cmd:cmd*) = execute(C(cmd),C(cmd*));23

C(nil) = continue;24

end25

Note that the context of command execution, i.e., the pa-
rameters r:Env, z:Cc and s:Store, is not mentioned in the
above equations in order to enhance comprehensibility.

Command component interface

The domains and the types of the functions used in the defi-
nition of the semantic equation of commands are hidden and
defined in the modules for command components as follows:

172 CHAPTER 7. COMPONENT-BASED STYLE

interface Cmd_Components1

imports2

Exp_Components(Ed);3

Storage(Store);4

Environment(Env,Ev,isBool,isLoc,isProc);5

Storage(Store,update);6

Continuations(Dc,Cc,Ec,Ans);7

Dec_Components(Dd);8

Exp_Components(Ed);9

privates10

r : Env; u : Dc; z : Cc; s : Store;11

d : Dd; c : Cd; e : Ed; v : Ev;12

p : Ev; f : Cd;13

publics14

Cd = Env -> Cc -> Store -> Ans;15

assign : (Ed,Ed) -> Cd;16

toAns : Ed -> Cd;17

choose : (Ed,Cd,Cd) -> Cd;18

loop : (Ed,Cd) -> Cd;19

pcall : (Ed,Ed) -> Cd;20

execute : (Cd,Cd) -> Cd;21

continue : Cd;22

newblock : (Dd,Cd) -> Cd;23

end24

In the interface above, Cd is the domain of command de-
notations, and the specified denotational components are as
follows:

• assign(e1,e2)r z s, which elaborates the expression
denotation e1:Ed to obtain a location, say a:Loc, then
evaluates the expression denotation e2:Ed to obtain a
value which is associated with location a in the current
store.

7.3. COMPONENT-BASED SEMANTICS OF SMALL 173

• toAns(v)r z s, which sends value denoted by v:N|T to
the program final answer.

• choose(e,c1,c2)r z s, which checks whether the eval-
uation of expression denotation e:Ed leads to a boolean
value, in which case, elaborates the command denotation
c1:Cd, if e denotes true, otherwise elaborates command
denotation c2:Cd.

• loop(e,c)r z s, which repeatedly checks whether the
evaluation of expression denotation e:Ed produces the
boolean value true, in which case, command denotation
c:Cd is evaluated in the current store to produce a new
store. The repetition process ends when the boolean value
produced is false, and then the current store is passed
on to the normal continuation.

• pcall(e1,e2)r z s, which elaborates expression deno-
tation e1 to obtain a procedure denotation, and then ap-
plies it to e2, current environment and store.

• execute(c1,c2)r z s, which elaborates command de-
notation c1:Cd, and, in the sequel, elaborates command
denotation c2:Cd in the current environment and store.

• continue r z s, which passes the current store to the
continuation.

• newblock(d,c)r z s, which starts a new scope layer,
adding declarations encountered in the evaluation of the
declaration denotation d:Dd to the current environment,
and then evaluates the command denotation c:Cd in the
extended environment.

174 CHAPTER 7. COMPONENT-BASED STYLE

7.3.5 Small expressions

The concrete and abstract syntaxes of Small expressions are
defined in the following interface and definition modules:

• interface Exp_Components, which defines the interface
of the denotational components that implement the de-
tails of the semantics of expressions.

• definition Exp_Components, which defines the defini-
tion of the denotational components for the semantics of
Small expressions (§7.4.3, page 180).

• interface Expressions, which contains the interface of
the high level semantic functions for Small expressions.

• definition Expressions, which contains the definition
of the semantic equations for Small expressions.

Semantic equations for expressions

The interface module Expressions is:
interface Expressions1

imports2

Exp_Components(Ed,send,read,operate,fcall);3

Exp_Components(choose,dereference);4

Continuations(Ec,Ans);5

Environment(Env,Rv,isFun,isRv,isBool,isN);6

Storage(Store,deref);7

Tokens(Id,Num,Aop,Mop);8

privates9

r: Env; k: Ec; s: Store; e: Ed; op: Q; v: Ev; r: Rv;10

apply : Q -> (N,N) -> Ec -> Store -> Ans;11

publics12

R : Exp -> Ed; -- r-expressions13

E : Exp -> Ed; -- l-expressions14

end15

7.3. COMPONENT-BASED SEMANTICS OF SMALL 175

And the corresponding definition module, which contains
the syntax and semantic definitions of Small expressions, is:

module Expressions1

syntax2

exp:Exp ::= term3

| exp rop term4

;5

term:Exp ::= factor6

| term aop factor7

;8

factor:Exp ::= primary9

| factor mop primary10

;11

primary:Exp ::= id => [id] | "true" => ["true"]12

| "false" => ["false"] | num => [num]13

| "read" => ["read"]14

| exp "(" exp1 ")" => [exp exp1]15

| "if" exp "then" exp1 "else" exp2 "end"16

=> ["if" exp exp1 exp2]17

;18

functions19

E["true"] = send(true);20

E["false"] = send(false);21

E[num] = send(toN num);22

E[id] = send(id);23

E["read"] = read;24

E[exp1 rop exp2] = operate(rop,R(exp1),R(exp2));25

E[exp1 aop exp2] = operate(aop,R(exp1),R(exp2));26

E[exp1 mop exp2] = operate(mop,R(exp1),R(exp2));27

E[exp exp1] = fcall(E(exp),E(exp1));28

E["if" exp exp1 exp2] =29

choose(R(exp),E(exp1),E(exp2));30

R(exp) = dereference(E(exp));31

end32

176 CHAPTER 7. COMPONENT-BASED STYLE

Expression component interface

The modules named Exp_Components define the components
that hide the details of the semantics of expressions:

interface Exp_Components1

imports2

Environment(Env); Storage(Store);3

Continuations(Ec,Ans);4

publics5

Ed = Env -> Ec -> Store -> Ans;6

send : T -> Ed;7

send : N -> Ed;8

read : Ed;9

operate : (Q, Ed,Ed) -> Ed;10

fcall : (Ed,Ed) -> Ed;11

choose : (Ed,Ed,Ed) -> Ed;12

dereference: Ed -> Ed;13

end14

In the above interface module, Ed is the domain of expres-
sion denotations, and the specified denotational components
have the following description, in which e, e1 and e2 are ele-
ments of Ed, and r:Env, k:Ec, and s:Store are the context:

• send(t)r k s, which transmits value t:T to the current
expression continuation.

• send(n)r k s, which transmits value n:N to the current
expression continuation.

• send(id)r k s, which retrieves the value associated with
id in the current environment and, if the retrieved value
is not "unbound", passes it to the current expression con-
tinuation.

• read r k s, which reads the integer number from the
head of the standard input file, advances the reading po-

7.3. COMPONENT-BASED SEMANTICS OF SMALL 177

sition accordingly, and passes the value just read to the
current continuation.

• operate (op,e1,e2)r k s, which performs the binary
operation designed by op:Q over the operands e1:Ed and
e2:Ed, and passes the result to the current expression
continuation.

• fcall(e1,e2)r k s, which elaborates e1:Ed to obtain
a function denotation, applies it to the parameter e2:Ed
and then passes the result to the normal expression con-
tinuation.

• choose(e,e1,e2)r k s, which if e:Ed evaluates to the
value true, elaborates e1:Ed, otherwise elaborates e2:Ed,
and then passes the result of either case to the current
continuation.

• dereference(e)r k s, which dereferences the value de-
noted by e:Ed and if it is an r-value, passes the derefer-
enced value to the current expression continuation.

7.3.6 Small tokens

In addition to the terminal symbols, which are written within
quotes in production rules of the several modules of this defini-
tion, there are additional tokens whose domains are exported
by the following module:

interface Tokens1

publics2

Id, Aop, Mop, Rop, Num : Token3

end4

The tokens in these domains exported by module Tokens
are defined in the following definition module:

178 CHAPTER 7. COMPONENT-BASED STYLE

module Tokens1

lexis2

id ::= letter+ => return (id,letter+)3

;4

letter === ’A’ .. ’Z’ | ’a’ .. ’z’5

;6

aop ::= "+" => return (aop,"+")7

| "-" => return (aop,"-")8

;9

mop ::= "*" => return (mop,"*")10

| "/" => return (mop,"/")11

;12

rop ::= "<" => return (rop,"<")13

| ">" => return (rop,">")14

| "<=" => return (rop,"<=")15

| ">=" => return (rop,">=")16

| "=" => return (rop,"=");17

num ::= digit+ => return (num,digit+)18

;19

digit === ’0’ .. ’9’20

;21

end22

7.4 The denotational components for Small

In order to complete the semantic definition of Small, the
following section details the implementation of the semantic
components used in the definition of declarations, commands
and expressions.

7.4.1 Components for declarations

The definition of the functions listed in the interface module
for declaration components (§7.3.3, page 167) is given in the

7.4. THE DENOTATIONAL COMPONENTS FOR SMALL 179

following companion module:
module Dec_Components1

functions2

cbind(id,e)r u s = e r k s3

where k v s = u bind(id,v) s;4

5

vbind(id,e)r u s = e r k1 s6

where k1 v s = ref k2 v s7

and k2 a s = u bind(id,a) s ;8

9

pbind(id,id1,c)r u s = u bind(id,p) s10

where p z v s = c r1 z s11

and r1 = push(id,p)(push(id1,v)r);12

13

fbind(id,id1,e)r u s = u bind(id,f) s14

where f k v s = e r1 k s15

and r1 = push(id,f)(push(id1,v)r);16

17

elab(d1,d2)r u s = d1 r u1 s18

where u1 r1 s = d2 (push r1 r) u2 s19

and u2 r2 s = u (push r2 r1) s;20

21

continue r u s = u r s;22

end23

7.4.2 Components for commands

The definition of the functions listed in the interface module
for command components (§7.3.4, page 171) is given in the
following companion module:

module Cmd_Components1

functions2

assign(e1,e2)r z s = e1 r k1 s;3

where k1 v s = isloc k2 v s4

180 CHAPTER 7. COMPONENT-BASED STYLE

and k2 a s = e2 k3 s5

and k3 v s = update a z v s;6

7

toAns e r z s = e r k s8

where k v s = (v,z s);9

10

choose(e,c1,c2) r c s = e r k1 s11

where k1 v s = isBool k2 v s12

and k2 v s = T(v) => c1 r z s , c2 r z s;13

14

loop(e,c) r z s = f15

where f = Y(\f.e r k1 s)16

and k1 v s = isBool k2 v s17

and k2 v s = T(v) => c r z1 s , z s18

and z1 s = f r z s;19

20

pcall(e1,e2)r z s = e1 r k1 s21

where k1 v s = isProc k2 v s22

and k2 p s = e2 r (p z) s;23

24

execute(c1,c2)r z s = c1 r z1 s25

where z1 s = c2 r z s;26

27

continue r z s = z s;28

29

newblock(d,c) r z s = d r u s30

where u r1 s = c (push r1 r) z s;31

32

end33

7.4.3 Components for expressions

The definition of the functions listed in the interface module
for expression components (§7.3.5, page 176) is given in the
following companion module:

7.4. THE DENOTATIONAL COMPONENTS FOR SMALL 181

module Exp_Components1

functions -- auxiliaries2

apply("+")(n1,n2) k s = k (n1 + n2) s;3

apply("-")(n1,n2) k s = k (n1 - n2) s;4

apply("*")(n1,n2) k s = k (n1 * n2) s;5

apply("/")(n1,n2) k s = k (n1 / n2) s;6

apply("<")(n1,n2) k s = k (n1 < n2) s;7

apply(">")(n1,n2) k s = k (n1 > n2) s;8

apply(">=")(n1,n2) k s = k (n1 >= n2) s;9

apply("<=")(n1,n2) k s = k (n1 <= n2) s;10

apply(op)(n1,n2) k s = "error";11

12

send t r k s = k t s;13

send n r k s = k n s;14

send(id)r k s = (r id == "unbound") => "error",15

k(r id);16

read r k s = (n == ?) => "error", k n s117

where (n,s1) = readint(s);18

19

operate(op,e1,e2)r k s = e1 r k1 s20

where k1 v1 s = isN v1 => e2 r k2 s, "error"21

and k2 v2 s = isN v2 => apply(op,N(v1),22

N(v2))k s;23

fcall(e1,e2)r k s = e1 r k1 s24

where k1 v s = isFun k2 v s25

and k2 f s = e2 r k3 s26

and k3 v s = f k v s;27

28

choose(e,e1,e2)r k s = e r k1 s29

where k1 v s = isBool k2 v s30

and k2 v s = v => e1 r k s , e2 r k s;31

32

dereference(e)r k s = e r k1 s33

where k1 v s = deref k2 v s34

and k2 v s = isRv k v s;35

end36

182 CHAPTER 7. COMPONENT-BASED STYLE

7.5 Discussion

The component-based style for denotational semantics is a
complementary approach to other solutions to the compre-
hensibility problem of formal semantics. For instance, the in-
cremental definition style of Tirelo at al. [52], which is based
on the linguistic concept of vagueness can benefit from the use
of components. In the incremental approach details are added
one by one to a simpler definition by means of a mechanism
named denotation transformation. The use of components
may help separating concerns, which is very important to fa-
cilitate the integration of new elements to the definition.

Another important attempt to solve the comprehensibility
problem is the monadic semantics proposed by Moggi[27, 28],
which also removes context information from the equations
and, consequently, reaches high level of modularity. However,
monadic semantics requires complex and intricate monad trans-
formation operations. Component-based semantics are much
simpler, they can encapsulate fundamental concepts in a way
that is easy to use.

Apparently P. Mosses [34, 35, 36] has avoided the use of
denotational semantics as the basis for a technique based
on components due to the low comprehensibility caused by
the explicit use of context information. The present proposal
overcomes these difficulties.

Comparison with other approaches to formal semantics [32,
60], such as action semantics and structured operational se-
mantics, was not addressed at this moment because the focus
of this work is the improvement of the comprehensibility of de-

7.5. DISCUSSION 183

notational semantics, not to make it supersede other models.
Each formal method has its proper niche, in which it produces
better results. Component-based semantics just brings value
to the denotational formalism.

Judicious use of denotational components permits the re-
moval of context dependence from the presentation of seman-
tic equations, making themmore comprehensible. To this pur-
pose, the component signatures can be standardized and the
flow of context information encapsulated within these compo-
nents. The result are semantic definitions which are reduced
to mappings from abstract syntax constructs to their respec-
tive denotations expressed as a combination of denotational
components.

Encapsulation of fundamental and intricate concepts of pro-
gramming languages may contribute to make formal seman-
tics popular and turn descriptions of the semantics of large
programming languages comprehensible by programmers and
computer scientists.

The claim is that to understand a component-based deno-
tational semantics description of a given programming lan-
guage all that is required is to know the interface of the used
components, without any concern regarding details of their
definitions.

Due to the continuous evolution of programming languages,
it would be interesting to have a library of generic components
that allows easy incorporation of new constructs to the lan-
guages. The more generic are the components the better will
be the library, because the same components could be used
to define many languages.

184 CHAPTER 7. COMPONENT-BASED STYLE

The challenge is to find a set of generic components capable
of modeling the semantics of the most important constructs
of popular languages, thus reducing the need to define new
components whenever defining new programming languages.

In this respect, Santos [41] has proposed and implemented
a set of generic denotational components to provide scalable
definitions. In this way, the construction of new descriptions
could be simply an act of putting together predefined com-
ponents from this library, without any concerns to context
handling.

In summary, the claim is that the separation of concerns
and the use of generic denotational components are a promiss-
ing way to go in order to make formal descriptions more
limpid, comprehensible and scalable.

Chapter 8

Domain Theory

Quelli che s’innamoran di pratica senza scienzia
sono como il nocchieri che entra in navilio sanza
timone o bussula, che mai ha certezza dove si vada.1

Leonardo da Vinci (1452-1519)

This chapter addresses elementary aspects of Dana Scott’s
theory of domains and continuous functions, and the use of
fixpoint techniques to find solutions for recursive equations.

In formal definitions of semantics, domains should be used
instead of sets. The traditional concepts of sets and total
functions work properly in the formulation of the definition
of constructs whose semantics, in essence, requires just map-
pings from a set to another. However, there are situations in
which the notion of set without a more elaborated structure
does not work properly. In fact, some equations based on
ordinary sets and total functions may present problems and
inconsistences, and thus, to assure soundness of the model, a
more sophisticated mathematical apparatus is required.

1Those in love with practice without scientific knowledge are like the helmsman that enters a
ship without rudder or compass, and is never certain to where he might go.[13]

185

186 CHAPTER 8. DOMAIN THEORY

8.1 Theoretical problems

There are indeed three separate problems that require the use
of domains instead of sets:

• recursive definition of functions
• recursive definition of sets
• program nontermination

The definition of Circularity, a very small imperative lan-
guage, highlights the need for domains and exhibits their dif-
ferences from sets.

module Circularity1

syntax2

prog:Prog ::= "program" cmds "write" exp3

;4

cmds:Cmd* ::= cmds ";" cmd => append(cmds,cmd)5

| cmd => (cmd)6

;7

cmd :Cmd ::= id ":=" exp8

| "while" exp "do" cmds9

| id10

;11

exp:Exp ::= "0" | "suc" exp | "proc" cmds12

;13

id:Id ::= token14

;15

lexis16

id ::= letter+ => return (id,letter+)17

;18

letter === ’A’ .. ’Z’ | ’a’ .. ’z’19

;20

functions21

-- here comes the definitions of semantic functions22

end23

8.1. THEORETICAL PROBLEMS 187

Suppose that the following module defines sets, instead of
domains, and that all functions are total:

interface Circularity1

publics2

Id : Token;3

Exp, Cmd : Nonterminal;4

Prog : Start;5

Value = N | Proc;6

Proc = State -> State;7

State = Id -> Value;8

E : Exp -> State -> Value;9

C : Cmd -> State -> State;10

C : Cmd* -> State -> State;11

P : Prog -> Value;12

end13

The execution of a Circularity program is modeled be a se-
quence of state transformations. Each state is represented by
the set State that contains functions to associate identifiers
with their values, which can be integers or procedure values.
Initially, all functions in State associates all identifiers with
0.

No continuations are used so as to keep the example clean.
The semantic functions E, for expressions, C, for commands,
and P, for programs, are defined as follows:

module Circularity1

syntax2

-- here the syntax is defined3

lexis4

-- and so is lexis5

functions6

E["0"]s = 0;7

E["suc" exp] s = E[exp]s is N => E[exp]s + 1, 0;8

E["proc" cmd*]s = \s.C(cmd*)s;9

188 CHAPTER 8. DOMAIN THEORY

C[id ":=" exp]s = s{id<-E(exp)s};10

C[id]s = s(id)s;11

C["while" exp "do" cmds] s = (E(exp)s==0)=>s,12

C["while" exp "do" cmds](C(cmds)s);13

C(nil)s = s;14

C(cmd:cmd*)s = C(cmd*)(C(cmd)s);15

P["program" cmd* "write" exp]=E(exp)(C(cmd*)(\id.0));16

end17

8.1.1 Recursive definition of functions

Recursive function definition is a natural device to model the
semantics of some language constructs such as the while state-
ment, which is defined at lines 12 and 13 of the definition unit
above by means of a recursive equation.

This recursive equation seems correctly formulated, but it
raises relevant questions as to whether it has a solution, or, if
so, whether the solution is unique.

Generally speaking, it is a fact that many recursive equa-
tions work fine with sets. For instance, the recursive equation

f (x) = (x = 0) → 1, x× f (x− 1)

uniquely defines the factorial function f (x) = x!.
However, not always recursive equations are mathemati-

cally sound, because plain sets do not prevent bad equations
to be written. For instance, the equation

f (x) = f (x) + 1

does not have any solution, and the equation
f (x) = f (x)

has an infinite number of solutions.
In order to keep the model consistent, all equations should

have a solution or, when there are more than one solution,

8.1. THEORETICAL PROBLEMS 189

there must be a systematic way to select one of them. Sets
cannot give this guarantee.

8.1.2 Recursive definition of sets

Sets may be recursively defined also. For instance, in the
interface module Circularity, State is defined, at line 8, in
terms of Value, which is defined in terms of Proc, which is
defined as State -> State. Therefore, State is defined in
terms of State -> State. Ignoring other elements of State,
the definition of State, for the sake of argument, may be
viewed as:

State = State -> State
which is an equation that violates the Cantor’s theorem [44]:

Theorem 8.1 The space of all functions in the set V → V

has more elements than set V, if the cardinality of V ≥ 2.

Clearly, the system of mutually recursive equations defined
in the interface Circularity does not lead to consistent and
sound results, since it implies in function spaces that have
too many functions.

8.1.3 Program nontermination

The semantic function P:Prog->Value defined as
P["program" cmd* "write" exp] = E(exp)(C(cmd*)(\id.0))

does not cope with the case of program nontermination, for
the type of P requires that it always returns a value, miss-
ing the fact that nonterminating programs do not return any

190 CHAPTER 8. DOMAIN THEORY

value. Therefore, P only gives the semantics for programs that
terminate, which is not satisfactory.

8.2 The work of Scott

In order to solve the three problems just described, Dana Scott
[43, 44, 45, 46] introduced the concept of domains as a special
kind of sets with an internal structure that ensures that every
definition based on domains is good, and that all equations
have at least one solution. He also defined a method to select
the best solution when there are more than one.

According to Dana Scott, domain equations always have a
solution provided that:

1. the mapping between two domains be not the domains
of all function with this type, but only those that pre-
serve the structure of the domains involved and that are
continuous;

2. the symbol = in a domain definition, such as A=B, for any
domains A and B, be not interpreted as equality. It should
be viewed as an isomorphism.

In the formulation of his domain theory, Scott has accom-
plished the following:

1. he defined a class of structured sets with cartesian product
(×), domain union (|), mapping (→), and sequence (∗)
operators that are defined in a way that preserves the
structure of these sets;

2. he showed how domain elements can be defined recur-
sively;

8.3. FOUNDATIONS 191

3. he showed how domains can be recursively defined;
4. he included in all domains the semantics of nontermina-

tion.
The interesting thing is that not everyone needs to know

the theory of domains to be able to formulate sound denota-
tional semantics definitions. In fact, only those interested in
performing rigorous proofs of program properties, designing
new description techniques, e.g., modeling of concurrency, or
to be an expert need deeper knowledge of this theory.

8.3 Foundations

The underlying idea of the domain theory is the notion of
ordering data objects according to the information contents
of their representations, from which the theory of partial and
infinite objects with finite representation has been developed.

In this section, the notion of approximation and partial
order relation are introduced to establish the basis to define
Scott’s domains.

The notation and definitions used in this section mostly
come from David F. Martin’s UCLA class notes [23].

8.3.1 Functions

Definition 8.1 A function f from a domain A into a domain
B is a rule that associates with each element of A a unique
element of B. Symbolically, this statement says f : A→B.
Definition 8.2 A function f : A→B is total if it has a value
defined for all elements of domain A. Otherwise, it is a partial
function.

192 CHAPTER 8. DOMAIN THEORY

Definition 8.3 The Graph(f) of a function f : A→B is a
subdomain2 of the cartesian product A×B, such that

Graph(f) = {(a, b) | a ∈ A ∧ b ∈ B ∧ b = f (a)}

8.3.2 Relations on sets

Definition 8.4 A binary relation R on a set A is a two-
argument predicate R : A × A → B, where B is the set of
boolean values.

A binary relation R on a set A is a subset of the cartesian
product A× A, i.e., R ⊆ A× A.

If there is a relation between a, b ∈ A, one may writeR(a, b)

or a R b or then (a, b) ∈ R.
A relation R on a set A is:

• reflexive if and only if
∀a ∈ A, a R a

• transitive if and only if
∀a, b, c ∈ A, a R b ∧ b R c ⇒ a R c

• symmetric if and only if
∀a, b ∈ A, a R b ⇒ b R a

• asymmetric if and only if
not (∀a, b ∈ A, a R b ⇒ b R a)

• antisymmetric if and only
∀a, b ∈ A, a R b ∧ b R a ⇒ a = b

Definition 8.5 An equivalence relation is a relation that is
reflexive, transitive and symmetric.

Definition 8.6 A partial order relation is a relation that is
reflexive, transitive and antisymmetric.

2Subdomains are the counterpart of subsets.

8.3. FOUNDATIONS 193

8.3.3 Partially ordered sets

Definition 8.7 A partially ordered set (poset) is a set P equipped
with a partial order relation ≤ on P.

The fact that the relation ≤ on P is a partial order implies
that, for x, y and z ∈ P , it is:

1. reflexive : x ≤ x

2. transitive: x ≤ y ∧ y ≤ z ⇒ x ≤ z

3. antisymmetric: x ≤ y ∧ y ≤ x ⇒ x = y

Definition 8.8 An upper bound in a poset P for an X ⊆P is
a u ∈ P, such that ∀x ∈ X, x ≤ u.

Definition 8.9 The least upper bound lubP X in a poset P,
for a subset X ⊆ P, is an upper bound u for X, such that
∀ v ∈ P, if v is an upper bound for X, then u ≤ v.

If X = {x0, x1, . . . } is a denumerable set, then lub X, the
least upper bound of X , is written as lub

i ≥ 0xi. The term lub X
means lubP X , when P is understood in the context.

Definition 8.10 The bottom element of a poset P, written as
⊥P, has the properties:

1. the bottom element ⊥P ∈ P;
2. the bottom element is such that ∀x ∈ P,⊥P ≤ x;
3. if a poset has a bottom element, then this bottom ele-
ment is unique;
4. the bottom element ⊥P represents no information or
nontermination.

194 CHAPTER 8. DOMAIN THEORY

Definition 8.11 A set X ⊆ P is chain in a poset P if the
relation ≤ is a total order on X, i.e., ∀x, y ∈ X, x ≤ y ∨
y ≤ x.

If the denumerable set X = {x0, x1, x2, · · · } is a chain, then
it can be written as x0 ≤ x1 ≤ x2 ≤ · · ·, and the length of a
finite chain X is |X|, the cardinality of X .

A poset may have many chains, some finite and others in-
finite. If a poset does not have infinite chains, then it has a
finite height, which is the length of its longest chain.

8.3.4 Complete partial order

Definition 8.12 A complete partial order (cpo) is a poset
P (under the partial ordering ≤) with a bottom element, and
in which every chain has a least upper bound in P.

All finite chain x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn has a lub xn,
which is its last element, thus a poset of finite height and
that has a bottom element is a cpo.

Consider, as an example of the process of determining that
a poset is not a cpo, the poset P = {a, b, c, d, e} with the
partial order relation defined as: a ≤ b, a ≤ c, b ≤ d, b ≤ e

and c ≤ d, pictorially represented by Fig. 8.1. Note that d
and e are not related.

The chains in P are {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c},
{b, e}, {b, d}, {c, d}, {a, b, e}, {a, b, d} and {a, c, d}.

The bottom element of the poset P is a. And all these
chains, except {b} and {a, b}, have a least upper bound in P ,
which is the last element of each chain.

8.4. SCOTT DOMAINS 195

d

b
c

a

e

Figure 8.1: Partial order of a poset (from D. Martin’s notes [23])

The elements d and e are upper bounds of the chains {b}
and {a, b}, but neither is a lub of these chains because they
are unrelated. Therefore, according to definition 8.12, the
poset P is a not cpo.

Theorem 8.2 The empty poset is not a cpo.

Proof: The empty poset does not have any element, so it
cannot have a bottom element. 2

8.4 Scott domains

Infinite mathematical entities need a finite representation to
be computable, for computers operate on discret objects. Thus,
in computing, either the objects are finite or they have a fi-
nite representation. For instance, π, {n2|n ≥ 0}, λn . n + 2

are infinite objects that must be treated in a finite way. Of
course, infinite object cannot be totally computed in a finite
time, so approximations must be used instead.

Several approximations of the same object O can be re-
lated by the relation v , which reads approximates, such that
x v y means that x has less information than y, or that y is
a better approximation to O than x. Thus, approximations

196 CHAPTER 8. DOMAIN THEORY

are partially computed objects containing incomplete infor-
mation. Each approximation may carry a different amount of
information.

An infinite object O can be computed by a program by
enumerating a sequence of better approximations, whose limit
is the complete representation of O.

Consider, as an example, the infinite object defined by the
quadratic function f (x) = x2, ∀x ≥ 0, x ∈ IN, and imple-
mented by the program:

integer procedure p(x) is return x*x end

In general, during program execution, only a few pairs of
the function graph must be computed, e.g., the function call
p(0) produces 0, the call p(1) returns 1, p(2) returns 4, etc.

Thus, successive calls to program p can compute, step by
step, approximations of f (x) = x2, ∀x ≥ 0, x ∈ IN. For
example:
1. p(0) produces 0, thus p has computed the function graph

f = {(0, 0)}
2. and then p(2) produces 4, thus p has computed so far

f = {(0, 0), (2, 4)}
3. and then p(1) produces 1, thus p has computed so far

f = {(0, 0), (1, 1), (2, 4)}
4. and then p(3) produces 9, thus p has computed so far

f = {(0, 0), (1, 1), (2, 4), (3, 9)}
5. and so forth, ad infinitum, p may be used to compute,

stepwisely, more elements of the graph of the quadratic
function.

Several graphs like this one may be computed, and they
form sequences of better approximations of function f . One

8.4. SCOTT DOMAINS 197

chain of approximations could be:
{(0, 0)} v {(0, 0), (2, 4)} v {(0, 0), (1, 1), (2, 4)} v
{(0, 0), (1, 1), (2, 4)(3, 9)} v · · · {(x, x ∗ x) | x ≥ 0}.

Consider now the problem of determining the function f

that is implemented by the program q below, where x is an
integer:

integer procedure q(x) is
if x = 0 then 1 else x*q(x-1)

end

The first information that can be derived from this pro-
gram is that at least the function f = {(0, 1)} is implemented
by q. If f = {(0, 1)}, then the second approximation could
be the graph f = {(0, 1), (1, 1)}. The third approximation
could be the graph f = {(0, 1), (1, 1), (2, 2)}). The fourth
approximation could then be f = {(0, 1), (1, 1), (2, 2), (3, 6)}.

And, therefore, the execution of q for other values of x en-
larges the sequence of better approximations of f , such as:

{(0, 1)} v {(0, 1), (1, 1)} v {(0, 1), (1, 1), (2, 2)} v
{(0, 1), (1, 1), (2, 2), (3, 6)} v
{(0, 1), (1, 1), (2, 2), (3, 6), (4, 24)} v
{(0, 1), (1, 1), (2, 2), (3, 6), (4, 24), (5, 120)} v · · ·

and provides, stepwisely, more precise definitions of the func-
tion. In fact, the above sequence of approximations suggests
that its limit is the function f = {(x, y) | y = x! ∧ x ≥ 0}.

This is a classical example, so it is easy to guess the limit of
the sequence of approximations. Guessing like this may not
be that easy for an arbitrary program.

However, the theory of domain comes to the rescue by
mechanizing the process of finding this limit and provides:

198 CHAPTER 8. DOMAIN THEORY

• a special value to model nontermination, so that all se-
mantic functions make sense in all cases;

• a partial order relation v to express the relationship among
approximations;

• means to ensure the existence of limit in all approximation
sequences;

• a method to compute this limit.

Definition 8.13 A Scott domain is a cpo on which the par-
tial order relation of approximations is v .

Henceforth, the word domain means Scott domain, and
it denotes a complete partial order equipped with the par-
tial order relation v , and P , Q and R are, unless explicitly
specified otherwise, assumed to be Scott domains, or simply
domains, in which the respective partial orders are vP, vQ
and vR, and the bottom elements are ⊥P, ⊥Q and ⊥R,
respectively.

And, in order to keep the equations cleaner, frequently v
is used instead of vα, where α is the name of the domain
that the context unambigously identifies as the one on which
the relation v applies.

8.5 Flat domains

A domain can be constructed from an ordinary set A by cre-
ating a bottom element ⊥A, such that ⊥A 6∈ A, and defining
a new set A⊥ = A ∪ {⊥A} equipped with a partial order
relation v such that, for all a, b ∈ A⊥, a v b, only and only
if a = ⊥A or a = b. Domains constructed in this way are said
to be flat.

8.6. CARTESIAN PRODUCT 199

The chains in A⊥= {⊥A, a0, a1, a2, · · · } are {⊥A}, whose
least upper bound is {⊥A}, {⊥A, ai}, and {ai}, for i ≥ 0,
whose least upper bounds are ai.

Theorem 8.3 The set A⊥ = A ∪ {⊥A} is a domain, for
any set A, provided that, for all a, b ∈ A⊥, a v b only and
only if a = ⊥A ∨ a = b.

Proof:
All chains in A⊥ have a least upper bound in A⊥, v on A⊥ is
a partial order by definition, and the poset A⊥ has a bottom
element by construction, therefore A⊥ is a domain. 2

From flat domains, more complex domains can be con-
structed by the means of domain operators, such as cartesian
product, union, sequencing and mappings.

8.6 Cartesian product

Definition 8.14 The cartesian product P ×Q is defined as
P ×Q = {(x, y) | x ∈ P, y ∈ Q}

together with the partial order vP×Q, such that
(x, y) vP×Q (w, z), if and only if x vP w ∧ y vQ z.

Theorem 8.4 If P and Q are domains, the cartesian product
P ×Q is also a domain.

Proof:
1. P ×Q has a bottom element <⊥P,⊥Q>.

2. The partial order vP×Q is reflexive, antisymmetric and
transitive because vP and vQ are.

200 CHAPTER 8. DOMAIN THEORY

3. All chains (t0, v0) v (t1, v1) v · · · in P ×Q have a lub (t, v)

in P ×Q, such that t = lub
i ≥ 0

ti in P , and v = lub
i ≥ 0

vi in Q.

4. Therefore, the cartesian product P ×Q is a domain. 2

8.7 Domain union

Definition 8.15 The separate union U = Q1|Q2| · · · |Qn of
domains Qi, for 1 ≤ i ≤ n, is defined as
U = {⊥U} ∪ {(qj, j) | qj ∈ Qj, for integer j, 1 ≤ j ≤ n},

together with the partial order vU, such that for all k,
1 ≤ k ≤ n, ⊥U vU(⊥Qk

, k) ∧ (x, k) vU (w, k), if and only
if x vQk

w.

This definition assures that each member of the union cor-
responds to exactly one element of a union member. The
tag associated with each element of the union allows inferring
from which union member it comes.

Theorem 8.5 The separate union U = Q1|Q2| · · · |Qn of the
domains Qi, for 1 ≤ i ≤ n, is also a domain.

Proof:

1. By definition, the union U has a bottom element ⊥U.

2. The relation vU is reflexive, antisymmetric and tran-
sitive, because vQi

, for 1 ≤ i ≤ n, are partial order
relations.

3. All chains (t0, k) v (t1, k) v · · · in U , for t0, t1, · · · ∈ Qk,
and 1 ≤ k ≤ n, have a lub (t, k) in U , such that t = lub

i ≥ 0
ti

in Qk.

4. Therefore U = Q1|Q2| · · · |Qn is a domain. 2

8.8. DOMAIN OF SEQUENCES 201

8.8 Domain of sequences

Definition 8.16 Q∗ is a poset defined as the union
Q∗ = {⊥Q*} ∪ Q ∪ Q×Q ∪ Q×Q×Q ∪ · · ·, together

with the partial order vQ∗, such that ∀k, 1 ≤ k ≤ n,
(⊥Q* vQ* ⊥Q) ∧ (⊥Q* vQ* ⊥Q× Q) ∧ · · ·

∧ (⊥Q* vQ* ⊥Q × Q × · · · Q),
and that x vQ* y, if and only if x vR y, where R is a
member of the union.

Theorem 8.6 If Q is a domain, then Q∗ is also a domain.

Proof: Q∗ is defined as a union of domains of different struc-
ture, and thus it is similar to a separate union, which, accord-
ing to Theorem 8.5, is a domain. Therefore, the same reason-
ing steps used to show that separate unions are domains lead
to the desired proof. 2

8.9 Domain of functions

In addition to the cartesian product, union of domains and do-
main sequencing, new domains can be constructed by defining
mapping between domains. In order to introduce this oper-
ation to construct more elaborated domains, the notion of
monotonic and continuous functions is required.

8.9.1 Monotonic functions

Definition 8.17 The function f : P→Q is monotonic, if, for
all p, p′ ∈ P, p vP p′ ⇒ f (p) vQ f (p′).

202 CHAPTER 8. DOMAIN THEORY

Proposition 8.1 Let p0 vP p1 vP p2 vP · · · be a chain in
P, and f , a monotonic function, then f (p0) vQf (p1) vQ · · ·
is a chain in Q.

Proof:
1. f is monotonic, so pi vP pi+1 ⇒ f (pi) vQf (pi+1), for
i ≥ 0.

2. p0 vP p1 vP p2 vP · · · is a chain in P , and the par-
tial orders vP and vQ are transitive relations, then
f (p0) vQf (p1) vQ · · · is a chain in Q. 2

8.9.2 Continuous functions

The notion of continuous functions is also essential to provide
a method to solve recursive equations.

Definition 8.18 The one-argument function f : P → Q is
continuous with respect to its argument, if, for all nonempty
chain p0 v p1 v · · · in P, the following conditions hold:

1. f (p0) v f (p1) v · · · is a chain in Q

2. f (lub
i ≥ 0

pi) = lub
i ≥ 0

f (pi)

Henceforth, P 7→ Q will denote the domain of continuous
functions from P to Q.

Proposition 8.2 All continuous functions are monotonic.

Proof:
Let p, p′ ∈ P, such that p v p′, and let f : P 7→ Q, then, by
definition 8.18, f (p) v f (p′) is a chain in Q. Therefore, f is
monotonic. 2

8.9. DOMAIN OF FUNCTIONS 203

Proposition 8.3 Let P be a domain of finite height, and Q be
domain of any height. If function f : P → Q is monotonic,
then f is continuous.

Proof:

1. Let p0 v p1 v · · · v pn be a chain in P.

2. Since f is monotonic, f (p0) v f (p1) v · · · v f (pn) is,
according to preposition 8.1, a chain in Q.

3. f (lub
0 ≤ i ≤ n

pi) = f (pn) = lub
0 ≤ i ≤ n

f (pi) 2

Proposition 8.4 Let f : P 7→ Q and g : Q 7→ R. Then
function composition g o f : P → R is continuous, i.e.,
g o f : P 7→ R.

Proof:

1. Let p0 v p1 v · · · be a chain in P .

2. f is continuous ⇒ f (p0) v f (p1) v · · · is a chain in Q.

3. g is continuous ⇒ g(f (p0)) v g(f (p1)) v · · · is a chain
in R.

4. Hence, g(f (lub
i ≥ 0

pi)) = g(lub
i ≥ 0

f (pi)), because f is continu-
ous.

5. Hence, g(lub
i ≥ 0

f (pi)) = lub
i ≥ 0

g(f (pi)), because g is continu-
ous.

6. Hence, g(f (lub
i ≥ 0

pi)) = lub
i ≥ 0

g(f (pi))

7. Therefore, g o f is a continuous function. 2

204 CHAPTER 8. DOMAIN THEORY

Definition 8.19 A function f : P ×Q → R is continuous
in its first argument if and only if, ∀x ∈ Q:

1. for each chain p0 v p1 v · · · in P ,
f (p0, x) v f (p1, x) v · · · is a chain in R

2. f (lub
i ≥ 0

pi, x) = lub
i ≥ 0

f (pi, x)

Theorem 8.7 A multi-argument function is continuous if and
only if it is continuous in each of its individual arguments.

Proof: The definition 8.19 can be extended to cover continu-
ity of a function in its second argument, or to other arguments,
so as to establish this theorem [23]. 2

8.9.3 Domain mapping

Definition 8.20 Let P 7→ Q be a set of functions together
with the partial order relation vP 7→Q, such that, ∀f, g ∈
P 7→ Q, f vP 7→Q g, when f (x) vQ g(x),∀x ∈ P.

Lemma 8.1 Let f0 v f1 v · · · be a chain in P 7→ Q. Then,
for all p ∈ P, (lub

i ≥ 0
fi)(p) = lub

i ≥ 0
fi(p).

Proof:

1. Since P 7→ Q is a cpo, and f0 v f1 v · · · is a chain in
P 7→ Q, then there exists f = lub

i ≥ 0
fi, f ∈ P 7→ Q.

2. From the definition of vP 7→Q, and that f0 v f1 v · · ·
is a chain in P 7→ Q, f0(p) v f1(p) v · · · , for any p ∈ P ,
is a chain in Q.

3. Since Q is a cpo, all of its chain has a least upper bound,
so, there exists a q ∈ Q, such that q = lub

i ≥ 0
fi(p).

8.9. DOMAIN OF FUNCTIONS 205

4. Since f (p) = (lub
i ≥ 0

fi)(p), p ∈ P , is an upper bound for
f0(p) v f1(p) v · · · , then q = lub

i ≥ 0
fi(p) v (lub

i ≥ 0
fi)(p).

5. On the other hand, considering the function g : P 7→ Q,
defined as g(p) = lub

i ≥ 0
fi(p), then fi(p) v g(p), for all p ∈

P , implies that fi v g, for i ≥ 0, and therefore g is an
upper bound for the chain f0 v f1 v · · · .

6. From items (1), (2) and (3), f (p) = (lub
i ≥ 0

fi)(p) v lub
i ≥ 0

fi(p).

7. Item (4) establishes that lub
i ≥ 0

fi(p) v (lub
i ≥ 0

fi)(p), item (6)
shows that (lub

i ≥ 0
fi)(p) v lub

i ≥ 0
fi(p), and relation v is re-

flexive, therefore: (lub
i ≥ 0

fi)(p) = lub
i ≥ 0

fi(p) 2

Lemma 8.2 Let f0 v f1 v · · · be a chain in P 7→ Q, where
P and Q are domains, and p0 v p1 v · · · be a chain in P.
Hence, lub

i ≥ 0
(lub
j ≥ 0

fi(pj)) = lub
j ≥ 0

(lub
i ≥ 0

fi(pj)).

Proof:

1. Let f = lub
i ≥ 0

fi and p = lub
j ≥ 0

pj be the least upper bounds
of their respective chains.

2. Functions fi, for i ≥ 0, are continuous by hypothesis,
then lub

i ≥ 0
(lub
j ≥ 0

fi(pj)) = lub
i ≥ 0

(fi(lubj ≥ 0
pj))

3. Since p = lub
j ≥ 0

pj, then lub
i ≥ 0

(fi(lubj ≥ 0
pj) = lub

i ≥ 0
(fi(p)),

4. Removing the unnecessary parenthesis,
lub
i ≥ 0

(fi(p)) = lub
i ≥ 0

fi(p)

5. According to Lemma 8.1, lub
i ≥ 0

fi(p) = (lub
i ≥ 0

fi)(p)

6. Hence, (lub
i ≥ 0

fi)(p) = f (p)

206 CHAPTER 8. DOMAIN THEORY

7. Therefore, lub
i ≥ 0

(lub
j ≥ 0

fi(pj)) = f (p)

8. On the other hand, lub
j ≥ 0

(lub
i ≥ 0

fi(pj)) = lub
j ≥ 0

(f (pj))

9. From the continuity of f , lub
j ≥ 0

(f (pj)) = f (lub
j ≥ 0

(pj))

10. Therefore, lub
j ≥ 0

(lub
i ≥ 0

fi(pj)) = f (p) 2

Theorem 8.8 The set P 7→ Q, together with a partial order
relation vP 7→ Q defined as

f vP 7→ Q g
4
= (∀p ∈ P) (f (p) vQg(p))

and a bottom element ⊥P 7→ Q ∈ P 7→ Q defined as
(∀p ∈ P)(⊥P 7→ Q(p) = ⊥Q),

is also a domain.

Proof:

1. This theorem requires that the order relation vP 7→ Q
must be partial, that the value ⊥P 7→ Q be indeed the bot-
tom element, and all chains in P 7→ Q have a least upper
bound in P 7→ Q.

2. The relation vP 7→ Q is reflexive, transitive and antisym-
metric because vQ is.

3. Note that function⊥P 7→ Q is continuous, and ∀f ∈ P 7→ Q,
⊥P 7→ Q v f .

4. If P 7→ Q is a domain, all chains in P 7→ Q must have a
least upper bound in P 7→ Q.

5. Let f0 v f1 v · · · be a chain in P 7→ Q. From the def-
inition of vP 7→ Q (Theorem 8.8), f0(p) v f1(p) v · · ·
is a chain in Q, for each p ∈ P .

8.9. DOMAIN OF FUNCTIONS 207

6. Q is a domain, therefore lub
i ≥ 0

fi(p) exists.

7. From Lemma 8.1, (lub
i ≥ 0

fi)(p) = lub
i ≥ 0

fi(p), and as lub
i ≥ 0

fi(p)

exists, then lub
i ≥ 0

fi also exists, i.e., all chains have a least
upper bound.

8. The next step is to show that the least upper bound of
each chain in P 7→ Q is in P 7→ Q.

9. Let p0 v p1 v · · · be a chain in P , then, from Lemma
8.1, (lub

i ≥ 0
fi)(lubj ≥ 0

pj) = lub
i ≥ 0

(fi(lubj ≥ 0
pj)).

10. As fi is a continuous function,
lub
i ≥ 0

(fi(lubj ≥ 0
pj)) = lub

i ≥ 0
(lub
j ≥ 0

fi(pj)).

11. So far: (lub
i ≥ 0

fi)(lubj ≥ 0
pj) = lub

i ≥ 0
(lub
j ≥ 0

fi(pj))

12. pj v pj+1 holds and fi is monotonic, then fi(pj) v fi(pj+1).

13. As fi vP 7→ Qfi+1, then fi(pj) vQfi+1(pj).

14. From Lemma 8.2, lub
i ≥ 0

(lub
j ≥ 0

fi(pj)) = lub
j ≥ 0

(lub
i ≥ 0

fi(pj)).

15. From Lemma 8.1, lub
j ≥ 0

(lub
i ≥ 0

fi(pj)) = lub
j ≥ 0

((lub
i ≥ 0

fi)(pj)).

16. Hence, (lub
i ≥ 0

fi)(lubj ≥ 0
pj) = lub

j ≥ 0
((lub

i ≥ 0
fi)(pj))

17. Therefore, lub
i ≥ 0

fi is a continuous function.

18. And hence, lub
i ≥ 0

fi ∈ P 7→ Q.

19. And P 7→ Q is a poset in which all chains have a least
upperbound in P 7→ Q.

20. Therefore, P 7→ Q is a domain, according to its definition.
2

208 CHAPTER 8. DOMAIN THEORY

8.9.4 Composition of functions

Theorem 8.9 If f : P 7→ Q and g : Q 7→ R, for domains P ,
Q and R, then g o f : Q→R is a continuous function.

Proof:

1. Let p0 v p1 v · · · be a chain in domain P .

2. Since f and g are continuous, then
f (p0) v f (p1) v · · · is a chain in Q, and
g(f (p0)) v g(f (p1)) v · · · is a chain in R.

3. Since f is continuous, then g(f (lub
i ≥ 0

pi)) = g(lub
i ≥ 0

f (pi))

4. Since g is continuous, then g(lub
i ≥ 0

f (pi)) = lub
i ≥ 0

g(f (pi))

5. Therefore, f o g is continuous, so,
g(f (lub

i ≥ 0
f (pi)) = lub

i ≥ 0
g(f (pi)). 2

8.10 LAMBDA functions

Definition 8.21 Dana Scott’s language LAMBDA[46] is an
extension of Church’s λ-calculus [11] that includes integers,
conditionals and the operations + and - on integers, and whose
syntax is:

L ::= L(L) | L L | λx.L | L → L,L

| x | 0 | x + 1 | x− 1
where x is a variable denoted by an identifier.

Theorem 8.10 All LAMBDA-definable functions are con-
tinuous.

Proof: The proof can be found in Dana Scott’s paper [46].
2

8.11. M FUNCTIONS 209

8.11 M functions

M is a pure functional language of the λ-calculus family. It
features a high-level module structure, all of its syntactic con-
structions can be mapped to basic λ-expressions, and all of its
data types are defined as domains. Thus, the Scott’s theorem
8.10 can be adapted for the meta-languageM of Chapter 1
to become the following theorem:

Theorem 8.11 AllM-definable functions are continuous.

Proof:

1. The basic types ofM, i.e., N, T, Q, Nonterminal, File,
Token, Sart and ?, are flat domains by definition.

2. The domain operations of M for domain tupling, do-
main sequencing, domain union, and domain mapping,
correspond to the cartesian product, sequencing, sepa-
rate union and domain mapping operations of the Scott’s
theory, thus it is straightforward to show that these op-
erations also preserve the domain structure ofM.

3. The rest of the proof consists in showing howM-functions
are translated into LAMBDA-expressions. This transla-
tion is a quite straightforward process, although long and
tedious, and for this reason this proof has been omitted.

2

This theorem establishes that: (i) all functions that can
be written in M are naturally continuous; (ii) the fixpoints
of M-functions can always be computed; (iii) and all M-
equations are sound.

210 CHAPTER 8. DOMAIN THEORY

8.12 Fixpoints

The solution of recursively defined equations for domains and
functions can be computed via the fixed point (or fixpoint)
operator µP, which operates in the realm of domains and
continuous functions.

Definition 8.22 The function µP : (P7→P)7→P defined as
µP(f)

4
= lub

i ≥ 0
f i(⊥P),

such that
f ∈ P 7→P, f 0(⊥P)

4
= ⊥P

and
f i+1(⊥P)

4
= f (f i(⊥P)), ∀i ≥ 0

has the following properties:

1. µP is continuous.

2. f (µP(f)) = µP(f), i.e., µP(f) computes fixpoint of f .

3. ∀p ∈ P , f (p) = p implies that µP(f) vP p, i.e., µP(f) is
the least fixed point of f .

Proposition 8.5 Let f ∈ P 7→P. Then
f 0(⊥P) vP f (⊥P) vP f 2(⊥P) vP f 3(⊥P) vP · · ·

is a chain in P.

Proof:

1. From Theorem 8.11: f 0(⊥P) = ⊥P.

2. From the definition of bottom: ⊥P vP f (⊥P).

3. From the fact that f is monotonic: f (⊥P) vP f (f (⊥P))

4. Thus, ⊥P vP f (⊥P) vP f 2(⊥P).

8.12. FIXPOINTS 211

5. Repeating the argument:
⊥P vP f (⊥P) vP f 2(⊥P) vP f 3(⊥P) vP · · · 2

Proposition 8.6 The operator µP : (P7→P)7→P computes a
fixed point of f ∈ P 7→P, i.e., f (µP(f)) = µP(f).

Proof:

1. From the definition of fixpoint:
f (µP(f)) = f (lub

i ≥ 0
f i(⊥P))

2. Since f is a continuous function:
f (µP(f)) = lub

i ≥ 0
f (f i(⊥P))

= lub
i ≥ 0

f i+1(⊥P)

= lub
i ≥ 0

f i(⊥P)

= µP(f) 2

Proposition 8.7 The operator µP : (P7→P)7→P computes the
least fixed point of f ∈ P 7→P, i.e., ∀p ∈ P, f (p) = p implies
µP(f) vP p.

Proof:

1. Let p = f (p), i.e., p is a fixed point of f .

2. Since P is a domain and p ∈ P, ⊥P vP p

3. f ∈ [P 7→P] is continuous, hence monotonic:
⇒ ⊥P vP p ⇒ f (⊥P) vP f (p) ⇒ f (⊥P) vP p

⇒ f (f (⊥P)) vP f (p) ⇒ f 2(⊥P) vP p

⇒ f (f 2(⊥P)) vPf (p) ⇒ f 3(⊥P) vP p · · ·
⇒ f i(⊥P) vP p · · · ⇒ lub

i ≥ 0
f i(⊥P) vP p

4. Therefore, µP(f) vP p, ∀p ∈ P 2

212 CHAPTER 8. DOMAIN THEORY

Definition 8.23 The solutions of the equation x = f (x) are
the fixpoints of function f .

Definition 8.24 If there two solutions x1 and x2 of the equa-
tion x = f (x), x1 v x2 means that x1 is an approximation of
x2 or that solution x1 has less information than x2.

Definition 8.25 The least solution of the equation x = f (x)

is the least fixpoint of f .

Definition 8.26 If P is a domain and f ∈ P 7→P, then
x = µP(f) = lub

i ≥ 0
f i(⊥P)

is the least fixpoint of the equation x = f (x).

8.12.1 Calculation of fixpoints

Let IN be the domain of natural numbers, Bool = {true,
false}, the domain of boolean values, and let IN⊥ and Bool⊥
be the corresponding flat domains.

Fixpoint of the factorial equation

Consider, as an example, f ∈ IN⊥ 7→IN⊥ defined by
f = λn . n = 0→ 1, n ∗ f (n− 1), for n ≥ 0,

which can be rewritten as
f = H(f), for H ∈ (IN⊥ 7→IN⊥) 7→ (IN⊥ 7→IN⊥), and
H(f) = λn . n = 0→ 1, n ∗ f (n− 1), for n ≥ 0,

The domain theory establishes that the least fixpoint of H is
given by equation f = lub

i ≥ 0
H i(⊥).

In order to provide the necessary basis for computing the
solution of H, the following primitive operations, in which
x, y, z ∈ N⊥ and b ∈ Bool⊥, are assumed available:

8.12. FIXPOINTS 213

• x = 0
4
=

⊥Bool if x is ⊥N

true if x is 0

false otherwise

• x ∗ y 4=
{
⊥IN if x or y is ⊥IN

x ∗ y as usual with IN

• x− y 4=

⊥IN if x or y are ⊥IN

0 if x ≤ y

x− y as usual with IN

• b→ y, z
4
=

⊥Bool if b = ⊥Bool

y if b = true
z if b = false

A step by step computation of the fixpoint of the recursive
factorial equation is given by the formula:
f = lub

i ≥ 0
H i(⊥), where H(f) = λn . n = 0→ 1, n∗f (n−1)

To find f the limit of the chain ⊥ v H1(⊥) v H2(⊥) v · · ·
may be computed as follows:

1. H0(⊥) = ⊥

2. H1(⊥) = λn . n = 0→ 1, n ∗ ⊥(n− 1)

= λn . n = 0→ 1,⊥

3. H2(⊥) = λn . n = 0→ 1, n ∗H(⊥)(n− 1)

= λn . n = 0→ 1, n ∗ (n− 1 = 0→ 1,⊥)

= λn . n = 0→ 1, n ∗ (n = 1→ 1,⊥)

= λn . n = 0→ 1, n = 1→ n,⊥

4. H(f) = λn . n = 0→ 1, n ∗ f (n− 1)

H2(⊥)= λn . n = 0→ 1, n = 1→ n,⊥

214 CHAPTER 8. DOMAIN THEORY

5. H3(⊥) = H(H2(⊥))

= λn . n = 0→ 1, n ∗H2(⊥)(n− 1)

= λn . n = 0→ 1,

n ∗ (n− 1 = 0→ 1, n− 1 = 1→ n− 1,⊥)

= λn . n = 0→ 1,

n ∗ (n = 1→ 1, n = 2→ n− 1,⊥)

= λn . n = 0→ 1,

n = 1→ n, n = 2→ n ∗ (n− 1),⊥

6. H(f) = λn . n = 0→ 1, n ∗ f (n− 1)

H3(⊥)= λn . n = 0→ 1,

n = 1→ n, n = 2→ n ∗ (n− 1),⊥

7. H4(⊥) = H(H3(⊥))

= λn . n = 0→ 1, n ∗H3(⊥)(n− 1)

= λn . n = 0→ 1,

n ∗ (n− 1 = 0→ 1, n− 1 = 1→ n− 1,

n− 1 = 2→ (n− 1) ∗ (n− 1− 1),⊥)

= λn . n = 0→ 1, n∗ (n = 1→ 1, n = 2→ n− 1,

n = 3→ (n− 1) ∗ (n− 2),⊥)

= λn . n = 0→ 1, n = 1→ n, n = 2→ n∗(n−1),

n = 3→ n ∗ (n− 1) ∗ (n− 2),⊥
H4(⊥) = λn . 0 ≤ n < 4→ n!,⊥

8. H(f) = λn . n = 0→ 1, n ∗ f (n− 1)

H4(⊥) = λn . 0 ≤ n < 4→ n!,⊥)

9. Hk(⊥) = λn . 0 ≤ n < k → n!,⊥)

10. ⊥ v H1(⊥) v H2(⊥) v · · ·
is a chain of approximate solutions, whose limit is the
solution of f = H(f).

8.12. FIXPOINTS 215

11. For k →∞: Hk(⊥)→ λn . n!, which is the least fixpoint
of f = H(f).

Fixpoint of a circular equation

1. Consider the equation f = H(f), such that
H(f) = λx . (x = 0)→ 1, x ∗ f (x), for x ≥ 0,

2. The least solution of f = H(f) computed by f = lub
i ≥ 0

H i(⊥)

is f = λx . (x = 0)→ 1,⊥IN, for x ≥ 0

3. Note that:

• ⊥IN models the circularity of the equation.
• f is a total function, although from the operational
viewpoint it is partial.

Fixpoint of an unsolvable equation

1. Consider now the equation f = H(f), such that
H(f) = λx . (x = 0)→ 1, f (x + 1), for x ≥ 0,

2. H has an infinite number of fixpoints f⊥ and fk,∀k ≥ 0,
defined as:

• f⊥ = λx . (x = 0)→ 1,⊥IN

• fk = λx . (x = 0)→ 1, k

3. It is easy to show that ∀k ≥ 0, f⊥ v fk.
4. Therefore, f⊥ is the least fixpoint of H, that is,

f⊥ = lub
i ≥ 0

H i(⊥IN⊥ 7→IN⊥)

The calculation of f⊥ is as follows:

1. Let f = H(f), where H(f) = λx . x = 0→ 1, f (x + 1)

2. H0(⊥) = ⊥

216 CHAPTER 8. DOMAIN THEORY

3. H1(⊥) = λx . x = 0→ 1,⊥(x + 1)

= λx . x = 0→ 1,⊥

4. H2(⊥) = λx . x = 0→ 1, H1(⊥)(x + 1)

= λx . x = 0→ 1, x + 1 = 0→ 1,⊥
= λx . x = 0→ 1,⊥

5. H2(⊥) = λx . x = 0→ 1,⊥

6. H3(⊥) = λx . x = 0→ 1, H2(⊥)(x + 1)

= λx . x = 0→ 1, x + 1 = 0→ 1,⊥
= λx . x = 0→ 1,⊥

7. Hk(⊥) = λx . x = 0→ 1, Hk−1(⊥)(x + 1) ∀k ≥ 1

= λx . x = 0→ 1, x + 1 = 0→ 1,⊥
= λx . x = 0→ 1,⊥

8. Therefore,
f⊥ = lub

i ≥ 0
H i(⊥IN⊥ 7→IN⊥) or f⊥ = λx . x = 0→ 1,⊥

The functions fk = λx . (x = 0) → 1, k, ∀k ≥ 0, are also
fixpoints of f = H(f), where

H(f) = λx . x = 0→ 1, f (x + 1),
because

H(fk) = λx . x = 0→ 1, fk(x + 1)

= λx . x = 0→ 1, (x + 1 = 0→ 1, k)

= λx . x = 0→ 1, k

= fk
On the other hand, f⊥ v fk,∀k ≥ 1, because

f⊥ = {⊥, (0, 1)} v fk = {⊥, (0, 1), (1, k), (2, k), · · · }

8.13. FINAL COMMENTS 217

8.12.2 The paradoxal operator Y

The fixpoint of LAMBDA-expressions orM-expressions can
be computed by means of Curry’s paradoxal combinator Y,
which is defined by the following theorem:

Theorem 8.12 All λ-expressions H have a fixpoint Y H,
where Y is the paradoxal operator defined as

Y = λh . (λx . h(x x))(λx . h(x x))

Proof:
Y H = (λh . (λx . h(x x))(λx . h(x x)))H

= (λx .H(x x))(λx .H(x x)))

= H((λx .H(x x))(λx .H(x x)))

= H(Y H)

Hence, Y H computes a fixpoint of H. 2

8.13 Final comments

This chapter presents elementary aspects of Dana Scott’s the-
ory of domains and continuous functions, and how to use the
theory of fixpoints to find solutions for recursive equations.

The concept of domains and continuous functions have
been introduced in order to establish the basis of a sound
framework for computing fixpoints of recursive equations, and
ensure that all equations are consistent and sound, including
the modeling of nonterminating programs.

Most definitions, theorems and propositions come from pro-
fessor David F. Martin’s class notes [23, 24].

For a deeper understanding of the domain theory, the reader
may refer to the classical books on the subject, such as Carl

218 CHAPTER 8. DOMAIN THEORY

A. Gunter’s [17], Robert Milne and Christopher Strachey’s
[26] and Joseph E. Stoy’s [48] excellent books.

Chapter 9

Epilogue

La lecture de tous les bons livres est comme une
conversation avec les plus honnêtes gens des siè-
cles passés, qui en ont été les auteurs, et même
une conversation étudiée en laquelle ils ne nous
découvrent que les meilleures de leurs pensées. 1

René Descartes (1596-1650)

The design ofM has been inspired by Peter Mosses’ [4, 29,
30] and Michael Gordon’s [15] works, which have been taken
as M’s starting point in the sense that most of their nota-
tions have been adopted, notably those for concrete grammars
and abstract syntaxes, default declaration convention, carte-
sian products, lists, parse tree nodes, patterns, and where
notations.

The concepts of standard denotational semantics and the
formal definition of the language Small come from Michael
Gordon’s excellent book [15].

The component-based style for semantics presentation is
1The act of reading good books is like a conversation with the most qualified people from past

centuries — their authors, and also an educated conversation in which they reveal to us their best
thoughts.

219

220 CHAPTER 9. EPILOGUE

inspired by Peter Mosses’ concept of components [34, 35, 36].
The main ideas underlying the denotational definition of

the Stack Machine SC come from the UCLA professor David
F. Martin’s lectures and class notes [23, 24].

The chapter on the foundations of the theory of domains is
also heavily based on professor David F. Martin’s class notes
[23], which made this theory quite comprehensible for any
engineering student.

As it is announced in this book’s prologue, in fact, this
is deliberately a very concise book on a vast and complex
subject.

Bibliography

[1] Ken Arnold, James Gosling and David Holmes. The Java
Programming Language. Pearson Education, Inc, 2006.

[2] Lennart Augustsson and Thomas Johnsson. Lazy ML:
User’s Manual. Technical Report, Department of Com-
puter Science, Chalmers University, Goteborg, Sweden,
1992.

[3] Daniel M. Berry and Richard L. Schwartz. Type Equiva-
lence in Strongly Typed Languages: one more look. ACM
SIGPLAN NOTICES, 14(9), 1979.

[4] Roberto S. Bigonha. A Denotational Semantics Imple-
mentation System. PhD thesis, University of California,
Los Angeles, 1981.

[5] Roberto S. Bigonha. Retractil Continuations. Technical
Report 01/96, DCC/UFMG, 1996

[6] Roberto S. Bigonha. The Revised Report on the Lan-
guage Script for Denotational Semantics. Technical Re-
port 002/98, DCC/UFMG, 1998.

[7] Roberto S. Bigonha, Fabio Tirelo and Guilherme H.
S. Santos. Separation of Concerns in Denotational Se-
mantics Descriptions. Technical Report LLP 01/2013,

221

222 BIBLIOGRAPHY

DOI:10.131140/2.1.1897.7924, DCC/UFMG, 2013. Avail-
able in ResearchGate.net.

[8] Richard Bird and Philip Wadler. Introduction to Func-
tional Programming. Prentice Hall International Series in
Computer Science, 1988.

[9] William H. Burge. Recursive Programming Techniques.
Reading, Mass, 1975.

[10] Luca Cardelli and Peter Wegner. On Understanding
Types, Data Abstraction, and Polymorphism. ACM Com-
puting Surveys, 17(4):471–522, 1985.

[11] Alonzo Church. The Calculi of Lambda-Conversion. An-
nals of Mathematical Studies, vol 6, Princeton University
Press, Princeton, N.J., 1951.

[12] Ole-Johan Dahl et al. Structured Programming. Academic
Press, London and New York, 1972.

[13] Egon Börger and Roberto Stärk. Abstract State Machine.
Springer, 1998.

[14] Fabíola Fonseca de Oliveira. Compilação de uma Lin-
guagem Funcional, Orientada por Objetos, para Definição
de Semântica Denotacional. Tese de Mestrado, UFMG,
1998.

[15] Michael J. C. Gordon. The Denotational Description
of Programming Languages - An Introduction. Springer-
Verlag, New York - Heiberg - Berlin, 1979.

[16] Carl A. Gunter, Peter D. Mosses, & Dana S. Scott. Se-
mantic Domains and Denotational Semantics. Internal

BIBLIOGRAPHY 223

Report DAIMI PB-276, Computer Science Department,
Aarhus University, April 1989.

[17] Carl A. Gunter. Semantics of Programming Languages:
Structures and Techniques. MIT Press, Cambridge, Mas-
sachusetts, 1992.

[18] Simon L. Peyton Jones. The Implementation of Func-
tional Programming Languages. Prentice Hall Interna-
tional Series in Computer Science, Englewood Cliffs,
1987.

[19] Sheng Liang, Paul Hudak, and Mark Jones. Monad
Transformers and Modular Interpreters. In POPL’95:
Proc. of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1995.

[20] Butler W. Lampson, James J. Horning, Ralph L. Lon-
don, James G. Mitchell and Gerald J. Popek. Report on
the Programming Language EUCLID. ACM SIGPLAN
NOTICES, 2:1–79, 1977.

[21] Barbara Liskov and S. Zilles. Programming with Abstract
Data Types. ACM SIGPLAN NOTICES, 9(4), 1974.

[22] Barbara Liskov. An Introduction to CLU. Memo 136,
MIT. Computation Structure Group, 1976.

[23] David F. Martin. Class Notes for CS225L. University of
California, Los Angeles, Fall 1977.

[24] David F. Martin. Class Notes for CS282B. University of
California, Los Angeles, Fall 1981.

224 BIBLIOGRAPHY

[25] Bertrand Meyer. Object-Oriented Software Construction.
Prentice Hall International Series in Computer Science,
New York, 1988.

[26] Robert E. Milne and Christopher Strachey. A Theory of
Programming Language Semantics, Parts a and b. Chap-
man and Hall, London, 1976.

[27] Eugenio Moggi. Computational Lambda-Calculus and
Monads. In Proceedings of the Fourth Annual Sympo-
sium on Logic in Computer Science, pages 14, 23, Piscat-
away, NJ, USA. IEEE Press, 1989.

[28] Eugenio Moggi. Notions of Computation and Monads.
Inf. Comput., 93(1):55-92, 1991.

[29] Peter D. Mosses. Mathematical Semantics and Compiler
Generation. PhD thesis, Programming Research Group,
Oxford University Computing Lab, 1975.

[30] Peter D. Mosses. SIS - A Compiler-Generator System
Using Denotational Semantics. Technical Report, Uni-
versity of Aarhus, Denmark, 1978.

[31] Peter D. Mosses. Denotational Semantics. In Lectures
Notes of the State of the Art Seminar on Formal De-
scription of Programming Concepts – IFIP TC2 WG 2.2,
Rio de Janeiro, Brazil, April 1989.

[32] Peter D. Mosses. The Varieties of Programming Language
Semantics. In Revised Papers from the 4th International
Andrei Ershov Memorial Conference on Perspectives of

BIBLIOGRAPHY 225

System Informatics: Akademgorodok, Novosibirsk, Rus-
sia, volume 2244, pages 165-190, London, UK. Springer-
Verlag, 2001

[33] Peter D. Mosses. What Use is Formal Semantics. Inter-
national Andrei Ershov Memorial Conference on Perspec-
tives of System Informatics. Akademgorodok, Novosi-
birsk, Russia, 2001.

[34] Peter D. Mosses. A Constructive Approach to Lan-
guage Definition. Journal of Universal Computer Science,
11(7):1117-1134, 2005.

[35] Peter D. Mosses. Component-Based Description of Pro-
gramming Languages. In Visions of Computer Science.
Electronic Proceedings, pages 275-286, 2008.

[36] Peter D. Mosses. Component-Based Semantics. In Pro-
ceedings of the 8th international workshop on Speci-
fication and verification of component-based systems,
SAVCBS’09. ACM, pages 3-10, New York, NY, USA,
2009.

[37] Peter Naur (Editor). Revised Report on the Algorithm
Language ALGOL 60. Communications of the ACM,
6(1), 1963.

[38] Hanne R. Nielson & Flemming Nielson, F. Semantics
with Applications - A Formal Introduction. John Wiley
& Sons, 1992.

[39] Frank Pagan. Formal Specification of Programming Lan-
guages: A Panoramic Primer. Prentice Hall, 1981.

226 BIBLIOGRAPHY

[40] Paulo Rónai. Não Perca seu Latim. Editora Nova Fron-
teira, 1980.

[41] Guilherme H. S. Santos. Semântica Denotacional
Escalável de Linguagens Imperativas. Dissertação de
Mestrado, Departamento de Ciência da Computação,
UFMG, March 2013.

[42] David A. Schmidt. Denotational Semantics: A Method-
ology for Language Development. Allyn & Bacon, 1986.

[43] Dana S. Scott. Outline of a Mathematical Theory of Com-
putation. In Proceedings of the 4th Princeton Conference
on Information Sciences and Systems, 1970.

[44] Dana S. Scott and C. Strachey. Toward a Mathemati-
cal Semantics for Computer Languages. In Proceedings
Symposium on Computers and Automata, Polytechnic
Institute of Brooklyn, 1971.

[45] Dana S. Scott and C. Strachey. Toward a Mathemati-
cal Semantics for Computer Languages. Technical Mono-
graph PRG-6, Oxford University Computing Lab, Poly-
technic Institute of Brooklyn, 1971.

[46] Dana S. Scott. Data Type as Lattice. SIAM Journal of
Computing, 5:522-587, 1976.

[47] Joseph E. Stoy. Foundations of Mathematical Seman-
tics. Lecture Notes in Computer Science, Springer-Verlag,
1979.

BIBLIOGRAPHY 227

[48] Joseph E. Stoy. Denotational Semantics: The Scott-
Stratchey Approach to Programming Language Theory.
MIT Press, 1977.

[49] Robert D. Tennent. The Denotational Semantics of Pro-
gramming Languages. Communications of the ACM, Au-
gust 1976, 437-453.

[50] Robert D. Tennent. Language Design Methods Based on
Semantic Principles. Acta Informatica, 8:97–112, 1977.

[51] Robert D. Tennent. A Denotational Definition of the
Programming Language PASCAL. Technical Memo, Ox-
ford University Computing Lab, Programming Research
Group, 1978.

[52] Fabio Tirelo, Roberto S. Bigonha, and João Saraiva. Dis-
entangling Denotational Semantics Definitions. Journal
of Universal Computer Science, 14(21), pages 3592-3607,
December 2008.

[53] David Turner. An Overview of Miranda. ACM SIGPLAN
NOTICES, 21(12):158–166, 1986.

[54] Christopher P. Wadsworth and Christopher Strachey.
Continuations – A Mathematical Semantics for Handling
Full Jumps. Tech. Monograph PRG-11, Programming
Research Group. Oxford University Computing Labora-
tory, 1974.

[55] David A. Watt. Programming Languages Syntax and Se-
mantics. Prentice Hall International Series in Computer
Science, New York, 1991.

228 BIBLIOGRAPHY

[56] Adriaan Wijngaarden et al. Revised Report on the Algo-
rithm Language ALGOL 68. Acta Informatica, 5(1):1–3,
1975.

[57] Glynn Winskel. Semantics of Programming Languages.
MIT Press, 1993.

[58] Niklaus Wirth. The Programming Language PASCAL.
Acta Informatica, 1(1), 1971.

[59] Niklaus Wirth. What Can We Do about the Unnecessary
Diversity of Notation for Syntatic Definition? Commu-
nication of the ACM, 20(11):822-823, 1977.

[60] Yingzhou Zhang and Baowen Xu. A Survey of Seman-
tic Description Frameworks for Programming Languages.
SIGPLAN NOTICES, 39:14-30, March 2004.

Index

Approximation, 196

Bottom, 193

Chain, 194
Citations

Albert Einstein, 117
Antoine de Saint-Exupéry,

87
Apelles, 157
Leonardo da Vinci, 65, 185
Michaelis, 125
René Descartes, 95, 219
William of Ockham, 1

Complete partial order, 194
Continuation

definition, 106
retractile, 117, 119, 123
standard, 109

Cpo, 194
bottom, 194
least upper bound, 194

Domain, 185, 217
built-in, 6
cartesian product, 199

compatibility, 17
constant, 14
cpo, 198
equivalence, 17
expression, 12
flat, 198
function, 15
list, 14
mapping, 204
node, 15
Scott, 195, 198
standard, 105
tuple, 14
union, 16

Environment, 104
denotable value, 104
standard, 104

Expression
abstraction, 19
basic, 19, 24
conditional, 19, 23
integer, 27
list, 31
logical, 26

229

230 INDEX

mapping, 34
node, 33
pattern, 22
quotation, 28
token, 45
tuple, 30
updating, 34

Files, 7
Fixpoint, 30, 210

circular equation, 215
computation, 213
factorial equation, 212
least, 210
operator, 210
paradoxal Y, 217
unsolvable equation, 215

Function
continuous, 202
definition, 191
Graph, 192
homomorphism, 97
monotonic, 201
partial, 191
recursive, 188
standard, 5
total, 191

LAMBDA, 208
Least upper bound, 193
Location, 104

Nontermination, 189
Noun

common, 4
indexed, 4
list, 4
proper, 4

Paradoxal operator, 217
Poset, 193

bottom, 193
least upper bound, 193

Relation, 192
antisymetric, 192
asymetric, 192
equivalence, 192
partial order, 192
reflexive, 192
symmetric, 192
total order, 194
transitive, 192

Semantics
continuation, 111
direct, 97
standard, 105
standard model, 103

Set
recursive, 189

Small, 129, 164
Stack Machine

INDEX 231

architecture, 65
compiler, 87
continuations, 73
dump, 70
environment, 66
files, 71
stack, 65, 69
store, 68

Store, 104
standard, 104
storable value, 104

Upper bound, 193
least upper bound, 193

Value
denotable, 104
expressible, 105
left, 105
outputable, 105
right, 105
storable, 104

Variable
declaration, 9

232 INDEX

The Author

Roberto S. Bigonha
Born 1948

PhD in Computer Science from University of California, Los
Angeles, USA.
Professor Emeritus of Computer Science at Federal University
of Minas Gerais, Brazil.
Member of the Brazilian Computer Society.

	The Meta-Language for Semantics Definitions
	Basic structures
	Built-in domains
	Declarations
	Domains
	Domain of enumerations
	Domain constants
	Domain of tuples
	Domain of lists
	Domain of tree nodes
	Domain of functions
	Union of domains
	Domain equivalence and compatibility

	Expressions
	Functional expressions
	Pattern expressions
	Conditional expressions
	Basic expressions
	Logical expressions
	Integer expressions
	Quotations
	Fixpoint operator
	Tuple expressions
	List expressions
	Node expressions
	Mapping expressions

	Compilation units
	Interface modules
	Imports section
	Privates e publics sections

	Definition modules
	Lexis section
	Syntax section
	Functions section

	The main module
	Module System

	The Description of a Computer Architecture
	The machine architecture
	The environment
	The store
	The stack
	The dump
	Files
	Continuations

	Program execution
	Machine instructions
	Flow of execution
	Instruction set

	Concluding remarks

	The Specification of a Compiler
	Machine instructions
	The compiler specification
	Concrete and abstract syntax
	Translation rules

	Concluding Remarks

	Standard Denotational Semantics
	Direct semantics of a simple language
	Concrete and abstract syntaxes
	Informal semantics
	Semantic domains
	Semantic equations
	A worked example

	Standard semantics model
	Standard environments and stores
	Domains of standard values
	The notion of continuations
	Standard continuations

	Continuation semantics of Simple
	Semantic domains
	Semantic equations

	Retractile Continuations
	Conciliation of semantics styles
	An example
	Conclusion

	Syntax-Driven Methodology
	Syntax-directed module structure
	The semantics of Small
	Semantic infrastructure
	Function main
	Small programs
	Small declarations
	Small commands
	Small expressions
	Small tokens

	Evaluation

	Component-Based Style
	The fundamental principle
	Context removal
	Component-based semantics of Small
	Main function
	Small programs
	Small declarations
	Small commands
	Small expressions
	Small tokens

	The denotational components for Small
	Components for declarations
	Components for commands
	Components for expressions

	Discussion

	Domain Theory
	Theoretical problems
	Recursive definition of functions
	Recursive definition of sets
	Program nontermination

	The work of Scott
	Foundations
	Functions
	Relations on sets
	Partially ordered sets
	Complete partial order

	Scott domains
	Flat domains
	Cartesian product
	Domain union
	Domain of sequences
	Domain of functions
	Monotonic functions
	Continuous functions
	Domain mapping
	Composition of functions

	LAMBDA functions
	M functions
	Fixpoints
	Calculation of fixpoints
	The paradoxal operator Y

	Final comments

	Epilogue

