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Abstract

This chapter firstly reviews the importance of the Satisfiability Problem (SAT) for a wide range of 
applications, including applications in Operation Management such as planning. A review of methods 
nowadays employed by modern SAT-solvers is then presented. We then use Classical Planning as an 
illustrative example of how a significant problem can be translated into SAT. We point out important 
results and studies concerning reductions of planning into SAT, and explain how to construct a SAT 
instance which is satisfiable if and only if an instance of a bounded version of the classic blocks-world 
problem is solvable.
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Twenty years ago the use of formal logic as a basis for knowledge representation and processing was 
subject to severe critics, founded not only on problems of expressivity, but also on problems of 
running time performance. Since that time the problem of expressivity has been object of intense 
research, which resulted in extensions and alternative formulations of logics intended to deal with 
important aspects of “intelligent” systems not dealt with by classical formal logic (the logic underlying 
purely mathematical reasoning) (Brachman & Levesque, 2004). From the point of view of running 
time performance, significant advancements have also been achieved (A. Robinson & Voronkov, 
2001; Harmelen, Lifschitz, & Porter, 2008), even considering the undecidability of more expressive 
logics.

Although knowledge expression and processing in the area of artificial intelligence is still subject to 
intensive research, far from providing the necessary basis for its highest objectives (as the production 
of intelligent behaviour), the last years have seen a growing use of logic based systems for solving 
many industrial level applications in several domains.

In this chapter one of the simplest logics from the standpoint of expressivity will be considered: 
propositional logic. In spite of its simplicity, it is sufficient for the description and solution of an 
enormous amount of practical problems. Even considering that other logics are more adequate from a 
notational point of view, in order to have more concise descriptions for certain application classes, in 
many cases it is possible to produce automatically a translation to propositional logic (Cadoli & 
Schaerf, 2005; Navarro, 2007).

The justification for using a knowledge processor based on propositional logic, even in some 
situations where more expressive logics would be apparently more adequate (by having more concise 
sentences), is that the actual programs for propositional logic processing are so advanced that they 
allow the solution of many practical problem instances. They are typically not only more efficient than 
respective programs for other logics, but also than specific programs specially tailored to the 
application at hand (Gomes, Kautz, Sabharwal, & Selman, 2008).

The idea underlying the use of formal logic for problem solving is to obtain a solution for a problem 
instance from a given formal specification of the problem expressed in the language of that logic. 
There are two basic approachs for achieving this goal. In the approach based on proof theory, finding a 
solution consists of finding a proof for a formula α from a set of formulas Σ. For example, in the 
problems of software or hardware verification, Σ would be a formal description of an algorithm or a 
digital circuit and α a property to be verified. Another example: to verify the equivalence of two circuit 
descriptions given by two formulas α and ß it is sufficient to establish the validity of the formula α↔ß 
or, in other words, to prove that α ↔ ß follows from the empty set of hypotheses. A huge number of 
other kinds of problems can be formulated as that of obtaining a proof of a formula (theorem) α from a 
set of formulas (axioms or hypoteses) Σ (Larry, 1984; Lifschitz, Morgenstern, & Plaisted, 2008).

The second approach is based on model theory. Here the goal is to find a model that satisfies a set of 
formulas Γ. In propositional logic, that corresponds to finding an assignment of truth values to the 
variables occurring in the formulas of Γ that makes all formulas true under the assignment. The 
problem of finding whether such assignment exists is what is called the satisfiability problem (SAT). 
Usually the algorithms for the satisfiability problem search, in a space of partial variable assignments, 
for a total assigment that satisfies the given set of formulas. An algorithm for SAT, as much as a proof 
procedure, can be used to find if a formula α is a logical consequence of a set of formulas Σ (which 
must be done, for example, to verify if a property follows from a set of specifications), as it is known 
that α follows from Σ if and only if Σ{¬α} is not satisfiable (is unsatisfiable). Consequently, to show 
that α↔ß is valid (true for all possible assignments), it is sufficent to show that ¬(a↔ß) is 
unsatisfiable. It is interesting to note that if the algorithm finds that Σ{¬α} (in the first case) or 
¬(α↔ß) (in the second case) is satisfiable, then the generated satisfying assignment gives a counter-
example that helps at diagnosing software/circuit faults.

The SAT problem was the first to be proved NP-complete (Cook, 1971). The strength of this class of 



problems in general, and of SAT in particular, derives from the existence of many important practical 
problems that are NP-complete. As these problems are polynomial-time reducible to SAT, SAT 
algorithms with a good average-time performance are serious candidates to be applied at solving them. 
In fact, actually more and more problems are being tackled by means of modern SAT solvers, such as 
software (Chaki et al., 2003) and hardware (Velev & Bryant, 2001) verification, planning (Kautz & 
Selman, 1996), scheduling (Hoos, 2002) and many others. Actually, any NP-hard problem can 
eventually be solved through reduction or reformulation and use of some SAT solver sufficiently 
efficient to solve problem instances that really occur in practice. As already highlighted, it is 
remarkable that last years’ advancements made it possible for some kinds of problems to be solved 
with performance comparable or even superior to that of solvers specially designed for them. For 
introductions to the theory of NP-completeness (and definitions of NP-complete and NP-hard 
problems), the reader may consult e.g. (Garey & Johnson, 1979; Sipser, 1997; Cormen, Leiserson, 
Rivest, & Stein, 2001).

The results obtained using SAT solvers have been so (surprisingly) good that some authors are 
foreseeing repercussions on the actual practice of algorithm design and analysis: the current excessive 
emphasis on the worst-case complexity analysis, that suggests the strict avoidance of non-polinomial 
perfomance, would not be appropriate any more (Gomes et al., 2008). Actually, such good results 
could be sensed early from the paper (D. G. Mitchell, Selman, & Levesque, 1992), which has shown 
that randomically generated difficult instances come from a relatively narrow zone of the space of 
possibilities. It was to be expected that for some classes of instances a specific approach to SAT 
solving could have a reasonable running time behaviour, with a worst-case exponential behaviour 
rarely or even never occurring.

What could have caused the excellent perfomance of modern SAT solvers to the point of opening the 
possibility of their use in the solution of very big instances that occur in industrial applications? 
Mitchell argues that the answer comes from three factors: better algorithms, improved implementation 
techniques and increased computer capacity (time and storage) (D. Mitchell, 2005). In particular, some 
algorithmic improvements (as, for example, heuristics and intelligent backtracking) are effective only 
with the computational resources recently available, which allow for efficient access to tens or 
hundreds of megabytes.

Modern SAT solving

Despite the worst-case exponential runtime of known SAT algorithms and despite the fact that SAT 
encodings generally substantially increase the size of the representation of a problem, modern SAT-
solvers have been used effectively to solve very large problems, involving over a million variables. 
The approach of using SAT encodings and SAT solvers to solve large problems, from diverse areas, 
can be traced back to work on SAT published in the early nineties, but its use has increased 
significantly in the past few years, due to improvements in the performance of SAT solvers.

The work of (D. Mitchell, Selman, & Levesque, 1992) was pioneering in suggesting that, despite their 
worst-case exponential running time, SAT solvers could be used to solve quickly a large proportion of 
randomly generated SAT instances. Their experiments indicated that testing satisfiability (with a 
particular procedure, namely DPLL, see below) becomes less efficient, for any ratio of the number of 
clauses per number of variables, as the percentage of all formulas that are satisfiable approximates 
50% (away from this “hard” area, satisfiability testing could be done efficiently).

In (Selman, Levesque, & Mitchell, 1992) a simple, incomplete, search method, called GSAT, was 
proposed, that solved instances in the hardest region effectively. GSAT’s algorithm searches for a 
satisfying assignment of values to variables, starting from a random assignment and repeatedly 
changing the value assigned to a variable. A variable that leads to the largest increase in the number of 
satisfied clauses is chosen, until either a satisfying assignment is found or a fixed maximum number m



of changes is reached. In the latter case the method is incomplete, since it can fail to find a satisfying 
assignment when m is reached.

Since 2002, competitions of SAT solvers are organized yearly as a satellite event at the international 
conference on Theory and Applications of Satisfiability Testing (cf. http://www.satcompetition.org/, 
the international SAT Competitions web page). These have contributed to the improvement of 
implementations of many SAT solvers (e.g. (Silva & Sakallah, 1996; Moskewicz, Madigan, Zhao, 
Zhang, & Malik, 2001; Gold- berg & Novikov, 2007; Huang, 2007; Selman et al., 1992)) and to the 
availability of large sets of SAT benchmarks (e.g. (Hoos & Stützle, 2000)).

This chapter presents the main techniques used in modern SAT solvers and also a general idea of the 
performance of modern SAT-solvers, in particular with respect to the running time these solvers spend 
for solving SAT models of Operation Management problems cited in the previous chapter, considering 
inputs of various sizes.

Techniques for solving SAT

Methods for SAT solving can be complete but also incomplete, according to whether the implemented 
function sat : F → Bool is a total or partial function. In other words: incomplete methods may fail to 
give an answer to some (hopefully few) formulas (problem instances). Complete methods are 
presented first, then incomplete ones. The motivation for the use of incomplete methods is that there 
are cases in which complete ones are not as efficient.

We use in the sequel common terms (like formula, clause, literal etc.) with their usual meaning (see 
e.g. (Garey & Johnson, 1979; Cormen et al., 2001)). In particular, a formula is a set of clauses and a 
clause is a set of literals. A literal is a variable or its negation. The negation of a literal α is denoted by

a . We use also the following functions:   

tickle : (F , Set Lit ) → F
unitProp : F → F

tickle (p,s) denotes the simplified formula obtained by removing from p all clauses with literals in s
and deleting from all remainining clauses literals whose negations occur in s, and unitProp(p) is 
repeated tickling, until an empty clause is obtained or there are no more unit clauses.
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Complete Methods

Modern complete methods are still based, fundamentally, on the simple DPLL algorithm introduced in 
the early 1960’s, which is based on selection and backtracking.

Martin Davis and Hilary Putnam (Davis & Putnam, 1960) defined in 1960 an algorithm, called DP, 



that used the resolution rule:

{ }    { }a x a y

x y

 


as the basic rule for satisfiability testing.

In executions of programs based on an unrestricted use of the resolution rule, a large amount of useless 
consequents of large size can be generated, causing memory consumption to explode. In 1962, an 
alternative to DP was defined by Martin Davis, George Logemann and Donald Loveland (Davis, 
Logemann, & Loveland, 1962), usually called DPLL (the name DP is sometimes used to refer to 
DPLL, confusingly), that used a very simple modification of DP which replaced the use of the 
resolution rule by a select-and-backtrack (also called splitting) rule that avoids the often occurring 
exponential memory explosion problem of DP.

DPLL is presented in Figure 1 in the form of a function dpll : F → Bool.

1

2

1

true              if   

false             if  

otherwise, selecting any  in a minimum size clause of : 

true           if  ( )( ) =

( )    otherwise

    where        ( { }

p

p

k p

dpll pdpll p

dpll p

p unitProp p k

 






 

2

)

                     ( { })p unitProp p k












 

Figure 1. DPLL.

The name DPLL is also used for variations of this original scheme that selects any literal occurring in 
a clause of minimum size, such as the one in which selection involves choosing any unassigned literal. 
The process of identifying unit clauses and performing unit clause propagation is sometimes referred 
to as boolean constraint propagation (BCP) (Nadel, 2002).

The pure literal rule — which removes clauses with pure literals, where a pure literal is one such that 
its negation does not occur anywhere —, usually included in DPLL, has been omitted here. 
Eliminating pure literals may be, however, worthwhile (cf. e.g. (Steedman,1995)).

The main efficiency improvements made in modern SAT solvers, namely clause learning and efficient 
unit propagation, introduce modifications to this basic DPLL algorithm, described next.

Selection and Backtracking by Clause Learning. The heuristics used for selecting a variable and its 
value, also referred to as the decision strategy or branching heuristic, varies significantly among SAT 
solvers. However, advances in the efficiency of modern SAT solvers can be attributed, to a large 
extent, to a technique called clause learning, that uses information obtained as a result of the selection 
process in order to guide further selection, by adding clauses to the set of clauses being tested.

The most successful learning scheme, used by modern solvers (e.g. GRASP(Silva & Sakallah, 1996), 
zChaff(Moskewicz et al., 2001), BerkMin(Goldberg & Novikov, 2007), siege (Huang, 2007)), is based 
on detecting conflicts (assignments that cause the formula to become un- satisfiable) and on adding a 
new clause, called a conflict cause, to the set of clauses being tested, in order to avoid the conflict to 
happen again.



A conflict clause is determined by using an implication graph, which records implications between 
variables that arise due to the assignment of values to variables performed during SAT solving.

An implication graph is a labelled directed acyclic graph (DAG) where each node corresponds to a 
selected or implied literal (implied by unit propagation) and each edge from node a to node b
corresponds to an implication (a → b), as a consequence of existing clauses and selected assignments 

(e.g. a → b is an edge if clause { , , }a b c exists and c has been selected or, else, is implied by unit 
propagation). More precisely, we have (cf. (Gomes et al., 2008)):

Definition 1 An implication graph G = (V, E), at a given stage of a SAT algorithm A, is a directed 
acyclic graph with nodes V and edges E, defined inductively as follows:

 initially, let V contain the set of selected literals and E be empty;

 for each clause 1{ ,..., }nc a a such that 1,..., na a are nodes in G, n ≥ 1, add node a to V and, 

for 1,...,i n and add edges 1( , )i ie a a to G.

Example 1 Let 1 2 6{ , ,..., }p x x x , where:
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and consider literals selected in the sequence 9 8 7 1, , ,a a a a . We have then the following implication 

graph:

Figure 2. Implication Graph

A conflict occurs when both a and a , called conflicting literals, occur in an implication graph (a is 

called a conflicting variable). An implication graph G contains a conflict if a and a are nodes of G, 
for some a, in which case G is said to contain a conflict graph (in other words, a conflict graph is a 

subgraph of G containing conflict literals a and a , for some a).

Consider an implication graph G = (V, E). Let a cut of a subset s of nodes of G, cut (s), be the set of all 
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edges going from nodes in s to nodes not in s, i.e. cut (s) = {e | e = (a, b)  E, b  s, a  s}.

Given an edge (a,b), a is called a source and b a target of e.

Any cut C = cut (s) of a subset s of a conflict graph H separates H in two parts, called the reason and 
the conflict sides of H, the reason side including nodes from a selected literal to a source of an edge in 
C and the conflict side including nodes from a target of an edge in C to a conflicting literal. The 
sources of edges in C, plus conflicting literals, if they are in s, are causes of the conflict (at the conflict 
side) given by C, denoted by causes (C). The set (representing the disjunction) of all negations of 
causes is a conflict clause of C, denoted conflictClause (C).

For example, considering Example 1 we have (where si+1 adds to si , for i = 0, 1, 2, the targets of edges 
in Ci , plus conflicting literals, if they are already targets of an edge in Ci):
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In order to choose a conflict clause, in a clause learning scheme, each selected literal is usually 
associated with a number, from 1 upwards, called the level of the selected literal. The level of an 
implied literal is the maximum of the levels of all selected literals that are used in its implication. The 
level of a node of an implication graph is the level of its literal. Level zero is used to characterize 
unsatisfiability, when a conflict that does not depend on any selection is detected.

The backtracking scheme used in modern SAT solvers consists of changing the value assigned to one 
or more variables occurring in a conflict clause. A SAT solver uses some way — called a clause 
learning scheme — of obtaining a conflict clause. For example, Grasp (Silva & Sakallah, 1996) and 
zChaff (Moskewicz et al., 2001) use FirstUIP, which is a scheme that identifies a node in the 
implication graph that is closest to the conflict variable and is a unique implication point (UIP). 
Letting k and lk be respectively the currently selected literal and its level, in a conflict graph H (k is the 
last selected literal and lk is the highest level in H), a UIP of H is a node (literal) k’ with level lk such 
that every path from k to a conflicting literal must pass through k’ (k itself is always a UIP) (Silva & 

Sakallah, 1996). Note that a conflict clause, the singleton { }k ({a1} in Example 1) thus always exists 



in a conflict graph. a4 in our previous example is a FirstUIP.

A learning clause scheme enables distinct heuristics for performing and extending backtracking, in 
particular:

 Backjumping (also called non-chronological backtracking) is a term that generally refers to 
some way of performing backtracking by going directly to a previous point (level) in order to avoid 
irrelevant ones (Dechter & Frost, 1999). Several ways of performing backjumping have been used in 
SAT solvers.
Consider for example a situation in which n is any large positive number and the ordering of variables 
used for selecting values in variable assignment is:

1 1 2 2 3, , ,..., , ,na b b b a a

and consider clauses that include:

1 2 3 1 2 3 1 2

1 2 3 1 2 3 1 2

{  { , , },   { , , },   { , ,..., },

    { , , },   { , , },   { , ,..., }  }

n

n

a a a a a a b b b

a a a a a a b b b

Any assignment ρ for which ρ (a1) = 0 will lead to a contradiction, since any assignment of values to 
a2 and a3 will generate in this case a contradiction. If the selection scheme uses the variable ordering

1 1 2 3[ , ,..., , , ]na b b a a and selection starts by assigning 0 to a1, all 2n assignments to b variables could be 

performed by the algorithm, all of them generating a contradiction. A naive backtracking strategy can 
take thus a very long time trying all such assignments before changing the assignment of a1 to 1. To 
avoid this, modern SAT solvers use backjumping. Backjumping identifies, at a failed choice point (i.e. 
when both assignments, of true and false, to a variable, in our example a2, lead to a contradiction), the 
causes of the conflicts (consisting of previously selected or implied variables, in our example the 
singleton {a1}). In this case, backtracking changes the assignment of the variable with the greatest 
decision level (i.e. most recently selected). For example, Grasp and zchaff’s backjumping heuristic 
allow backtracking to a lower decision level d when one of the branches that leads to a conflicting 
literal involves only literals at level d or lower with the exception of the literal with the current level 
(Gomes et al., 2008).

 SAT solvers can spend a lot of time in unproductive parts of a search tree. Many SAT solvers 
then randomly restart the search from scratch, with an empty assignment, taking into account the fact 
that searches will not be repeated due to a randomness that occurs in the selection process (Gomes, 
Selman, & Kautz, 1998).
Proposals to guarantee completeness in the presence of restarts, discussed in (Nadel, 2002), include: 
preserving all learnt clauses, repeatedly increasing the number of conflicts between consecutive 
restarts, preserving an increasing number of learnt clauses after each restart, and including a learnt 
clause with the negations of all decision variables that participated in the conflict in order to avoid the 
search path that led to the conflict to be taken again.

 As the set of learnt clauses increases, the ability to prune the search space increases but also 
does the cost of unit propagation. Heuristics that try to achieve a balance on the size of the set of learnt 
clauses include associating a measure of activity for each variable, that is increased each time a 
variable (and also a clause, as in (En & Sorensson, 2003)) is involved in a conflict (Moskewicz et al., 
2001). Periodically removing inactive clauses and the more common use of variable activity to guide 
the selection process are heuristics used in e.g. (En & Sorensson, 2003).

Unit propagation with Watched Literals. Efficient unit propagation is a key to current fast SAT 
solvers. It has been observed by profiling that around 90% of SAT solvers runtime is spent in unit 



propagation (Zhang, Madigan, Moskewicz, & Malik, 2001).

Almost all modern SAT solvers use an algorithm for unit propagation based on a simple technique of 
(so-called) watched literals, firstly used in the Chaff SAT solver (Moskewicz et al., 2001). The idea is 
to use, for each active (i.e. not yet satisfied) clause c, two literals k1 and k2 (called watches of c) such 

that 1k and 2k are not yet selected or implied (in other words, neither k1 nor k2 are false), and update 

information about watched literals whenever one of them, say k2, is assigned to false (as a result of 
selection or implication, by unit propagation, of k2), as follows:

1. k1 is not implied; then there exists another literal k3 in c that is not false, and k1 and k3 become 
the watched literals of c;

2. k1 is implied (assigned to true); then 1k is assigned to false and unit propagation is done for 

k1;

The watched literals technique is beneficial particularly because, upon backtracking, nothing has to be 
done or undone, since watched literals can stay the same.

The implementation of the watched literal scheme typically uses a watch-list for each literal k, that 
contains a list of clause references (numbers) for which k is a watch, and, for each clause reference 
(number), its pair of watches. When k is assigned to false, k’s watch list is scanned and, for each 
encountered clause x, x’s watches are updated.

Incomplete Methods

In principle, unsatisfiability could be searched but, in practice, most incomplete methods typically run 
with pre-set limits until a satisfying assignment is found or failure is reported, unsatisfiability being 
never reported. On problems of various domains, they run much faster than complete methods. 
Incomplete methods have been the subject of a lot of work since the early 1990’s. References can be 
found in chapter 6 of the Handbook of Satisfiability, by Henry Kautz, Ashish Sabharwal and Bart 
Selman ((Kautz, Sabharwal, & Selman, 2008)), of which the material in this section is a condensed 
and adapted version.

The original work with incomplete local search methods was incentivated by experiments done with 
GSAT (Selman et al., 1992), which showed that global minima could be reached with local search 
strategies, in many cases much faster than with complete search methods. GSAT uses a very simple 
technique of choosing random assignments for all variables of a propositional formula p in cnf 
(conjunctive normal form, see e.g. (Prestwich, 2008)) and changing this assignment for the variable 
that leads to the greatest decrease in the number of unsatisfied clauses of p. GSAT is written in Figure 
2 as a function gsat : F → Bool , overloaded for clarity and for parametrization on the number (t) of 
tries (number of ran- dom assignments chosen), with maximum value maxTries, and on the number (n) 
of flips (i.e. variable assignment changes), with maximum value maxFlips (fVs below abbreviates, say, 
flippedVars).

Experiments have demonstrated that GSAT usually proceeds quickly towards a truth assignment but in 
many cases it spends a lot of time flipping variables without changing the number of unsatisfied 
clauses, before finding another assignment in which this number does decrease. One of the most 
successful strategies to speed up this process has been the one used in Walksat (Selman, Kautz, & 
Cohen, 1996), which tries to select a variable to flip from an unsatisfied clause, chosen at random and, 
if that leads current satisfied clauses to become unsatisfied, either i) a random variable in C is flipped 
or ii) a variable in C with lowest break-down (the number of satisfied clauses that becomes 
unsatisfied, according to the current assignment) is chosen. The choice between i) and ii) is controlled 
by a so-called noise parameter ρ, which is a value between 0 and 1 that controls how often i) is chosen, 
instead of ii).
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Figure 3. gsat

walksat can be defined as gsat with only flip changed:
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Figure 4. walksat

Several other approaches for improving the performance of local search methods have been proposed, 
for which we refer interested readers to (Kautz et al., 2008).

Planning as SAT

Due to significant improvements in the efficiency of satisfiability solvers in recent years, many 
scientific and industrial problems have been modeled as a translation into SAT (Chaki et al., 2003; 
Velev & Bryant, 2001; Kautz & Selman, 1996; Hoos, 2002). Since the 1990s, software for solving 
Planning and Scheduling problems of Operations Management, in particular, have experienced great 
advances with this approach (Andrew & Baker, 1994; Kautz & Selman, 1996). This section gives a 
brief overview of the planning-as-SAT approach and explain the main issues involved in this 
approach.

Classical planning is a well-known problem in Artificial Intelligence and Operations Research. 
Planning is the problem of finding a sequence of actions that can be used for going from a initial to a 
final state, from given specifications of initial and final states and a set of action definitions, that 
specify changes of the state. Classical planning is its most basic form, where actions are deterministic.

Despite its importance in real world tasks, until the 1990s planners were not capable of solving real 
world instances, partly due to computer technology but mainly because of the algorithms used. During 
the 1990s dramatic advances occurred, with the introduction of three new methods: the GraphPlan 
algorithm (Blum & Furst, 1995), the compilation-to-SAT approach (first proposed by Kautz and 



Selman in (Kautz & Selman, 1992), extended by the same authors with improved encodings and test 
results in (Kautz & Selman, 1996) and extended in many ways in (Kautz, Mcallester, & Selman, 1996; 
Ernst, Millstein, & Weld, 1997)) and by new heuristic search based techniques (described in e.g. 
(Bonet & Geffner, 2001; Hoffmann & Nebel, 2001)).

The basic idea behind using SAT for solving problems of planning is to restrict planning to practically 
interesting cases where the sequence of actions to reach a final state from the initial state is bounded, 
by some length n. The problem can then be encoded so that a propositional formula for a given n is 
satisfiable if and only if there exists a plan of such length n; a different value of n must be searched for 
in the case of unsatisfiability.

To date, lots of different encoding schemes for compilation into SAT have been proposed (e.g. (Ernst 
et al., 1997; Xing, Chen, & Zhang, 2006; N. Robinson, Gretton, Pham, & Sattar, 2008)), but the basic 
idea behind them is to construct a SAT instance along the lines described by means of the classic 
“blocks world” example presented in Figure 5 (cf. e.g. (Kautz & Selman, 1992; Kautz, McAllester, & 
Selman, 1996)).
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Figure 5. Instance of the classic blocks-world planning problem

The blocks world problem consists of placing blocks, initially on a table (in Figure 5, blocks b1, b2, b3

and table t), so that bi becomes on top of bi+1 (i = 1, 2). Symbols ¬, , , → and ↔ are used in Figure 
5 and in the sequel as the logical connectives of negation, conjunction, disjunction, implication and 
equivalence, respectively.

In the rather self-explanatory problem specification above, init marks the beginning of the 
specification of the initial state, goal of the final state and action of an action definition. Initial and 
final states are defined by propositions. In our example, a proposition consists of conjunctions of 
predicate applications (in general a proposition may use other logical connectives). Predicates are 
functions which return a boolean value, given elements in the domain of the problem instance (in our 
example, the domain of the problem instance consists of blocks bi, i = 1, 2, 3, and table t). An action 
definition defines a predicate by means of:

1. a precondition: a proposition that must hold for the action to be taken. The definition of a 
precondition begins with the keyword pre.

2. an effect: a proposition that holds after the action is taken. The definition of an effect begins 
with the keyword effect.

A plan that solves the problem above in the smallest number of steps is the sequence of actions: [move
(b2 ,t ,b3), move (b1,t ,b2)].

In order to translate a bounded version of the planning problem in terms of SAT, we have first to 



choose a limit n to the length of a plan to reach the final state. Algorithms for choosing values of n in 
order to improve the efficiency of the process of finding a solution to the planning problem (if it 
exists) — which is a critical step of the planning-as-SAT approach — are presented in e.g. (Rintanen, 
2009). If no solution exists, a different value of n may be tried; if there is no n such that the planning 
problem is solvable with a plan of length n, this process iterates forever. The approach is thus only 
useful for problems for which a solution exists. For problems for which it is not known whether a 
solution exists and, furthermore, for problems for which the planning problem requires a formula that 
grows exponentially with the size of the problem instance, another approach should in general be used 
(see e.g. (Stockmeyer & Meyer, 1973)). However, in practice most planning problems have a solution 
— a plan — whose length grows polynomially with the size of the problem.

Once n is chosen, a propositional formula A is constructed that consists of a conjunction of 
“instantiations” of each action definition a, for each stage 0,..., 1k n  and for each possible 
combination of arguments for a. An instantiation of an action a with precondition p and effect e is an 

equivalence 1 1( ,..., , )
k

l l
m k k aa x x k p e F   , where 1,..., mx x is sequence (possible combination 

of arguments of a, l
kpre is an instantiation of the precondition for a for these arguments and state k,

1
l
keffect  is an instantiation of the effects of a for these arguments and stage k + 1, and 

kaF are so-

called “frame conditions”, which are implications that state that predicate instantiations that are not 
altered remain in the stage as they were in the previous state.

The propositional formula that corresponds to the bounded planning problem is a conjunction S0  G 
A  E, where:

 S0 represents the initial state,
 G the final goal state,
 A is as described above, and
 E asserts that at most one action occurs at each stage.

In our example, for the chosen value of n = 3 these proposition are as follows (where c abbreviates 
clear):
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The presence of action definitions with 3 arguments (like move in the example above) or more leads in 
general to the generation of a proposition that is too big to be processed efficiently, which would make 



the approach impractical. However, there are techniques that may be used for reducing the number of 
parameters of action definitions and other techniques for reducing the number of variables and clauses 
of the generated proposition (cf. e.g. (Kautz, McAllester, & Selman, 1996)).

Conclusion

We have presented a brief overview of the problem of satisfiability of propositional formulas (SAT), 
which has many practical implications and is at the heart of the most important problem in theoretical 
computer science (the P versus NP question). There is a lot of research related to SAT, spanning from 
complexity analysis, heuristics, encodings of different problems into SAT, quantified boolean 
formulae, predicate logic and other kinds of logics, constraint programming etc. We have also given a 
gentle introduction to the approach of translating classical planning problems into SAT. The material 
aims at giving the reader a motivation for further studies in this vast and exciting field of research.
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