
Detection Strategies for Modularity Anomalies: An Evaluation with Software Product Lines

Eduardo Fernandes*,

Priscila Souza

Federal University of

Minas Gerais

Belo Horizonte, Brazil

{eduardofernandes,

priscilasouza}@dcc.ufmg.br

Kecia Ferreira

Federal Center for

Technological Education of

Minas Gerais

Belo Horizonte, Brazil

kecia@decom.cefetmg.br

Mariza Bigonha,

Eduardo Figueiredo

Federal University of

Minas Gerais

Belo Horizonte, Brazil

{mariza,

figueiredo}@dcc.ufmg.br

Abstract—A Software Product Line (SPL) is a

configurable set of systems that share common

and varying features. SPL requires a satisfactory

code modularity for effective use. Therefore,

modularity anomalies make software reuse

difficult. By detecting and solving an anomaly,

we may increase the software quality and ease

reuse. Different detection strategies support the

identification of modularity anomalies. However,

we lack an investigation of their effectiveness in

the SPL context. In this paper, after an

evaluation of existing strategies, we compared

four strategies from the literature for two

modularity anomalies that affect SPLs: God

Class and God Method. In addition, we proposed

two novel detection strategies and compared

them with the existing ones, using three SPLs. As

a result, existing strategies showed high recall

but low precision. In addition, when compared to

detection strategies from the literature, our

strategies presented comparable or higher recall

and precision rates for some SPLs.

Keywords—Detection Strategies; Modularity

Anomalies; Software Product Lines

I. INTRODUCTION

Software reuse consists of using existing code to
develop new systems [20]. Reuse requires a
satisfactory code modularity for its effective
application [4][20]. Since existing software
components may contain problems that should not
be propagated to new systems, modularity anomalies
may make reuse difficult. The literature also
references modularity anomalies as bad smells [13].
Therefore, by detecting and solving an anomaly

before reusing a component, we may increase the
component quality and decrease time and efforts
spent on maintenance, for instance [12][18].

In this context, we need effective methods to
support the detection of modularity anomalies and,
consequently, reuse [3]. Different detection
strategies have been proposed to support the
identification of anomalies [1][8][14]. Besides that,
although several anomalies may affect reuse [8], we
lack an investigation on the effectiveness of the
existing strategies for detecting anomalies in
Software Product Lines (SPL). An SPL is a set of
systems that share common and varying features [4].
By combining features, we generate different SPL
products [4]. SPL aims to support reuse with
decreasing maintenance efforts to developers [20].

In this paper, we investigate modularity
anomalies in SPL, since anomalies affect negatively
the SPL modularity and makes reuse difficult. After
an ad hoc literature review, we compared four
detection strategies from the literature for two well-
known modularity anomalies that may affect SPLs:
God Class [13] and God Method [14]. In addition,
we proposed novel detection strategies to support
the identification of both anomalies. We designed
the novel strategies given the small amount of
strategies from the literature that are based on
traditional, well known, and ease to compute
software metrics. We analyzed three SPLs.

As a result, we presented a novel detection
strategy for each anomaly, i.e., God Class and God
Method. Through the comparison of our strategies
with the ones from the literature, we observed
positive results with respect to our strategies. For
MobileMedia, our strategies obtained comparable
recall and the highest precision results for both

anomalies. In the case of Berkeley DB, we obtained
the best and second best recall when compared to
the existing strategies. Finally, our strategy for God
Class obtained the best recall and precision rates, in
comparison with the others, in the case of TankWar.

II. BACKGROUND

Modularity anomalies are symptoms of deeper
problems in the modularity of systems [13]. Several
types of anomalies may affect the modularity of a
system, such as Lazy Class, Feature Envy, and Long
Parameter List [13][14]. In this study, we
investigated two types of anomaly: God Class [13]
and God Method [14]. We chose these anomalies
because (i) they have different detection strategies in
the literature for comparison and (ii) although both
are general-purpose anomalies, they can affect
negatively the SPL design. God Class is a class that
contains excessive knowledge of the system and
responsibilities [13]. God Method is a large method
with high complexity and many responsibilities [14].

Two approaches may support the detection of
modularity anomalies [18]. Manual detection relies
on code inspection. Automated detection counts on
the support of detection strategies, i.e., compositions
of metric-based rules that define when a specific
software component, e.g., class, method, or package,
is prone to contain a modularity anomaly [14]. In
turn, tools aim to support the automated detection of
anomalies. These tools apply some type of detection
strategy or equivalent techniques [6][18][22].

A Software Product Line (SPL) is a configurable
set of systems that share common and varying
features [20]. There are four types of features in a
product line: mandatory, optional, alternative
inclusive (OR), and alternative exclusive (XOR)
[20]. Each product from an SPL is composed by
general features that define the SPL basis
(mandatory features) and specific features that differ
a product from others (optional, OR, or XOR
features) [4]. Artifacts of an SPL may contain
modularity anomalies like in other types of software
systems. However, there are few studies to
investigate anomalies in this specific context [4].

III. STUDY SETTINGS

Sections III-A, III-B, and III-C present the study
goal and research questions, steps, and artifacts.

A. Goal and Research Questions

In this study, we were specifically concerned
with detection strategies to identify modularity
anomalies that hinder reuse in SPL. We then
designed new strategies for these anomalies. We
also conducted a comparative study of detection
strategies in the SPL context. To guide our study, we
designed two research questions as follows.

RQ1. Are the existing detection strategies for
modularity anomalies effective in the SPL context?

RQ2. Are the novel detection strategies more
effective than the existing ones in the SPL context?

B. Study Steps

We designed seven study steps discussed as
follows. Steps 1-5 composed the study phase called
Selection of Artifacts. In Step 1, we selected the
SPLs for analysis. Step 2 consisted of the selection
of modularity anomalies, based on anomalies that
we were able to detect in the chosen systems from
Step 1. Step 3 encompassed the selection of
strategies from the literature for comparison. Step 4
was dedicated to the creation of new strategies for
the anomalies chosen from Step 2. Our strategies
relied on well-known anomaly definitions [13][14]
and the SPL characteristics [4]. In the same step, we
compared such strategies with strategies from the
literature provided by Step 3. Step 5 consisted of
selecting detection tools for modularity anomalies.
This step was essential to support the definition of
reference lists of anomalies for SPLs, collected from
Step 1, without a previously computed reference list
of anomalies. A reference list of anomalies is an
itemization of anomalies that occur in a given
system. Experts in a system can generate reference
lists [19]. Otherwise, such lists may rely on the
detection results provided by a detection tool.

The remaining steps, Steps 6 and 7, composed the
last phase called Comparative Study. Step 6
comprised the comparison of existing detection
strategies from the literature to answer RQ1. Finally,
Step 7 targeted on RQ2 through the comparison of
novel detection strategies with the existing ones.

C. Selected Artifacts

In Steps 1 and 2, we chose three SPLs extracted
from a repository [21]: MobileMedia [10], Berkeley
DB, and TankWar. These systems are implemented

in AHEAD or FeatureHouse and have from 2 K to
42 K number of lines of code (LOC) [15]. We
selected MobileMedia based on the availability of
reference lists for God Class and God Method. We
selected Berkeley DB and TankWar because of the
three following reasons. First, Berkeley DB is one of
the largest systems in the SPL catalog. Second, we
are able to import the code of these systems in
FeatureIDE for automated anomaly detection and
generation of reference lists. Third, there are at least
two occurrences of God Class and God Method in
each system. Details in the discussion of Step 5.

A set of 11 pre-computed software metrics are
provided by the SPL repository. Coupling between
Objects (CBO) [5], Lines of Code (LOC) [15],
Number of Attributes (NOA) [15], Number of
Constant Refinements (NCR) [1], Number of
Methods (NOM) [15], and Weighted Methods per
Class (WMC) [5] are class-level metrics. McCabe's
Cyclomatic Complexity (Cyclo) [16], Method Lines
of Code (MLOC) [15], Number of Method
Refinements (NMR) [2], Number of Operations
Overrides (NOOr) [17], and Number of Parameters
(NP) [15] are method-level metrics.

In Step 3, we selected strategies for each
anomaly. After an ad hoc literature review, we
selected two strategies for God Class and two for
God Method. Although we have found other
strategies, our selection relied on the metrics
provided by the SPL catalog. To adapt each strategy,
we discarded clauses with metrics that are
unavailable in the SPL catalog. We derived
thresholds for the metrics – i.e., values that support
the characterization of a given metric [21] – based
on the selected SPL repository and Vale’s Method
[21]. We chose Vale’s method because it provided
us sufficient flexibility to define detection strategies.
To derive thresholds, we used the R statistical
environment1 and the entire SPL repository [21],
with 33 SPLs, as target systems. Table I presents
each strategy adapted from the literature. In Step 4,
we proposed a new strategy for each modularity
anomaly (details in Section V).

In Step 5, we extracted the reference lists of God
Class and God Method for MobileMedia from a
previous work [19], with 7 instances per anomaly.

1 https://www.r-project.org

Experts from the MobileMedia development team
composed these lists. For Berkeley DB and
TankWar, we did not find reference lists. Therefore,
we generated them based on the results of JSpIRIT
[22], a plug-in tool for Eclipse IDE. The automated
detection in BerkeleyDB and TankWar supported
the composition of reference lists. Based on a SLR
[9], we chose JSpIRIT because of its availability for
download and sufficient recall and precision. The
tool found 35 God Class and 37 God Method
instances for Berkeley DB, and 2 and 3 instances,
respectively, for TankWar. After the validation of
the results by the paper’s authors, we obtained (i) 17
and 12 instances for God Class and God Method,
respectively, for Berkeley DB and (ii) 1 and 2
instances for the same anomalies, for TankWar. The
study artifacts are available in the research website2.

TABLE I. DETECTION STRATEGIES FROM THE LITERATURE

God Class

GC1 [21]: [(LOC > 77) AND (WMC > 17) AND (CBO > 0)]

OR (NCR > 1)
GC2 [11]: (WMC > 34) AND (NOM > 14) AND (NOA > 8)

God Method

GM1 [6]: (MLOC > 50)

GM2 [14]: (MLOC > 13) AND (Cyclo > 2)

IV. COMPARISON OF EXISTING STRATEGIES

This section aims to answer RQ1. Table II
presents recall and precision, per SPL, for both God
Class and God Method. TP is the number of true
positives (correct identification of real anomalies).
FP is the number of false positives (incorrect
identification of real anomalies). TN is the number
of true negatives (correct non-identification of
anomalies). Finally, FN is the number of false
negatives (incorrect non-identification of anomalies)
[7]. The used formula are Precision = TP / (TP +
FP) and Recall = TP / (TP + FN) [7].

In general, we observed a mean and median
recall of 66% and 90%, respectively, i.e., a
significant result. However, regarding precision, we
observed mean and median of 16% and 9%,
respectively, a low result. Therefore, our data
suggests that the existing detection strategies were
not sufficiently effective in the SPL context. GC1
presented the highest recall rate for all SPLs and a
slight highest precision for two of them. Therefore,
our data suggests that GC1 was more effective than

2 http://labsoft.dcc.ufmg.br/doku.php?id=about:itng17-detection-strategies

GC2. In turn, both GM1 and GM2 performed
similarly in terms of recall for two of the three SPLs,
although precision was slightly higher for GM1. We
provide a discussion per SPL as follows.

TABLE II. RESULTS FOR EXISTING STRATEGIES

SPL Strat. TP FP TN FN Recall Precision

MobileMedia

GC1 5 10 126 2 71% 33%

GC2 0 0 7 136 0% 0%

GM1 0 1 365 7 0% 0%

GM2 3 30 336 4 43% 9%

Berkeley DB

GC1 17 80 524 0 100% 18%

GC2 15 21 583 2 88% 88%

GM1 11 53 5618 1 92% 17%

GM2 11 441 5230 1 92% 2%

TankWar

GC1 1 11 76 0 100% 8%

GC2 0 2 85 1 0% 0%

GM1 2 10 297 0 100% 17%

GM2 2 66 241 0 100% 3%

MobileMedia. Regarding God Class, GC1 was the
only strategy able to detect code anomaly instances,
with recall and precision rates of 71% and 33%,
respectively, against 0% for both measures in the
case of GC2. The low percentages for GC2 may
relate to the high threshold for WMC, computed
based on MLOC that is generally low for the
analyzed SPLs. Regarding God Method, we
observed similar behavior, in which GM1 was
unable to detect anomalies, although GM2 provided
43% and 9% of recall and precision, respectively.
Again, the justification for the non-effectivity of
GM1 relies on the high threshold for MLOC.

Berkeley DB. Regarding God Class detection
strategies, GC1 presented 100% of recall (a result
12% higher than GC2), but a low precision of 18%
(70% lower than for GC2). Considering the
significant difference between precision rates, we
observed that GC2 was more effective than GC1.
Although such results differ from the previous ones,
they reinforce our assumptions that MLOC for the
SPLs affected the results, since the methods from
classes of Berkeley DB are significantly larger than
MobileMedia. With respect to God Method, both
GM1 and GM2 presented the same recall, but GM1
provided 15% more precision than the other
strategy, probably for the same reason discussed in
the case of MobileMedia. Therefore, we assume that
GM1 was slightly more effective than GM2.

TankWar. Regarding God Class, GC2 was unable
to detect anomalies, while GC1 presented 100% and
8% of recall and precision, respectively. Besides the
considerations valid for MobileMedia and Berkeley

DB, NCR contributed to the high recall observed for
GC1. On the other hand, NRC contributed to low
precision, by causing an increase in the number of
FP, mainly because the threshold is very low. Note
that, in SPL, several methods tend to have more than
1 refinement, due to the modularization of features.
We conclude that GC1 was more effective than the
other strategy. However, regarding God Method,
both GM1 and GM2 obtained the same recall. In
turn, GM1 presented a precision only 14% higher
than the other strategy, due to the higher, stricter
threshold for MLOC. We conclude that GM1 was
slightly more effective than GM2.

V. COMPARISON WITH NOVEL STRATEGIES

 This section aims to answer RQ2. Table III
presents the novel strategies for God Class (GC3)
and God Method (GM3). We took into account the
findings from Section IV to design each strategy
aiming better recall and precision. For CG3, we used
LOC because a high number of code lines may
indicate excessive responsibilities of the class. We
also used NOA and NOM because a high number of
attributes (NOA) and methods (NOM) suggests
excessive knowledge of the class (attributes) and
responsibilities (methods). Finally, we used WMC
because a high weight of the class indicates that the
class is doing more than it should do. For GM3, we
used MLOC because a high number of code lines is
a symptom of complex method. We also used NP
because a large list of parameters may point that the
method requires too much knowledge of the current
or external classes. Finally, we used Cyclo because
it indicates too many responsibilities of the method.

TABLE III. NOVEL STRATEGIES PROPOSED IN THIS STUDY

God Class

GC3: (LOC > 77) AND (NOA > 4) AND (NOM > 10) AND (WMC > 17)

God Method

GM3: (MLOC > 13) AND (NP > 2) AND (Cyclo > 3)

Table IV presents recall and precision for the
novel strategies, per SPL. We observed moderate
rates of recall, but low precision – we obtained
moderate-to-high rates only for MobileMedia. For
God Class, GC1 presented the highest rates of recall
for Berkeley DB and TankWar, and the highest
precision for MobileMedia and TankWar. However,
with respect to God Method, we observed a
significant rate of precision for MobileMedia.

TABLE IV. RESULTS FOR THE NOVEL STRATEGIES

SPL Strat. TP FP TN FN Recall Precision

MobileMedia
GC3 2 0 136 5 29% 100%

GM3 1 1 365 6 14% 50%

Berkeley DB
GC3 17 51 553 0 100% 25%

GM3 6 139 5532 6 50% 4%

TankWar
GC3 1 4 83 0 100% 20%

GM3 0 10 296 3 0% 0%

MobileMedia. Regarding God Class, our strategy
GC3 presented the highest precision (100%), 67%
higher than for the second highest (GC1). This
positive result relates to the discard of metrics that
generated high FP in the other strategies (e.g. NCR).
However, GC1 presented recall of 71%, a result
42% higher than for GC3, probably because GC3 is
stricter since it has more metrics to compare.
Regarding God Method, GM3 presented the highest
precision rate (50%), a result 41% higher than for
GM2. This positive result relates to lower threshold
for MLOC combined with two metrics that support
the identification of Long Method even in SPL (i.e.
NP and Cyclo). However, the precision for GM2
was 29% higher than for GM3. This result may
relate to the very low thresholds for NP and Cyclo,
although such metrics tend to be low in SPL. We
conclude that GC3 and GM3 were more precise.

Berkeley DB. Regarding God Class, our strategy
GC3 presented the highest recall (100%), similarly
to GC1. Note that GC2 obtained 88% of recall, a
result only 12% lower than our strategy. Regarding
precision, GC3 presented the second highest rate,
although it is 63% lower than for GC2. Therefore,
our data suggests that GC2 was the most effective
strategy, in general. For God Method, GM3 obtained
the second highest recall, against 92% for both GM1
and GM2. In addition, GM3 had low rates of recall
(50%) and precision (4%) when compared to the
highest rates obtained by GM1 (92% and 17%,
respectively). Therefore, GM2 was the most
effective strategy. Overall, our findings for Berkeley
DB have similar justification than in the case of
MobileMedia, for both GC3 and GM3.

TankWar analysis. Regarding God Class, we
observed the highest recall and precision (100% and
20%, respectively) for our strategy GC3. Although
GC1 and GC3 presented the same recall of 100%,
our strategy presented a 12% higher precision. The
justification is similar to the MobileMedia case. We
conclude that GC3 was more effective than the GC1.
For God Method, GM3 did not find anomalies, and

the highest results were obtained by GM1 (100% of
recall and 17% of precision). In this case, an
anomalously low NP (even for SPLs) for most of the
methods affected significantly GM3.

VI. THREATS TO VALIDITY

We discuss threats to validity as follows.

Construct and Internal Validity. We designed our
study with steps for replication. The study settings
relied on the literature. We also provided the study
artifacts in the research website. These treatments
aim to minimize problems with study replication and
reliability. Moreover, we conducted a careful data
collection to prevent missing data, incorrect
selection of metrics, and inappropriate use of
threshold derivation methods. We double-checked
the collected data. Therefore, we expect that our data
collection is reliable for analysis. Regarding the
automatically generated reference lists of anomalies,
we chose an effective tool from a previous work [9].

Conclusion and External Validity. We carefully
performed the data analysis to minimized problems
with data interpretation. We based the choice of
mathematical computation (recall and precision) on
previous studies. Finally, some factors may prevent
the generalization of our research findings, since we
proposed strategies based on the authors’
background and subjective perceptions of
anomalies. To minimize this problem, we carefully
chose metrics from the available metric set, and we
defined each strategy in details.

VII. RELATED WORK

Fontana et al. (2012) [12] conducted a literature
review and a comparison of detection tools for
modularity anomalies. They concluded that the tools
provide significantly different results for a same
anomaly, some results are redundant, and the tools’
agreement is high for anomalies as Large Class.
Moha et al. (2010) [18] also evaluated tools. The
authors compared a set of tools with a new one
proposed by them. By relying on reference lists of
anomalies built after manual code inspection, they
computed recall and precision of the tools. However,
their study did not compare an extensive set of tools,
and there was no agreement computation.

In a previous work [9], we conducted a
systematic literature review on detection tools for

modularity anomalies. We found 84 tools, 29 of
them available for download. We also compared
tools by computing recall, precision, and agreement.
We observed that most of the tools rely on detection
strategies based on metrics. We also observed
redundant results of the tools, and conclude that
new detection strategies may be explored to improve
the detection effectiveness. In the present study, we
aimed to contribute by filling the gap observed in
our previous work [9] focused on the SPL context.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we evaluated detection strategies
for modularity anomalies in SPL. We compared
detection strategies from the literature, for two well-
known anomalies that may affect the SPL
modularity: God Class and God Method. This
comparison aimed to assess if they are effective in
the SPL context. We then proposed novel strategies,
one for each anomaly, and compared them with the
existing strategies. Our study analyzed three SPLs.

 As a result, when comparing existing detection
strategies, we have observed high recall, with
respective mean and median of 66% and 90%.
However, we observed low precision with respective
mean and median of 16% and 9%. We concluded
that the existing strategies were not effective for
SPLs. In turn, when comparing our novel strategies
with the existing ones, we observed higher recall for
our strategies, but low precision as observed for the
other strategies. As future work, we suggest the
investigation a larger amount of anomalies, new
detection strategies, and the analysis of other SPLs.

ACKNOWLEDGEMENTS

This work was partially supported by CAPES,
CNPq (grant 424340/2016-0), and FAPEMIG (grant
PPM-00382-14).

REFERENCES

[1] R. Abilio, J. Padilha, E. Figueiredo, and H. Costa,

“Detecting Code Smells in Software Product Lines,” in

Proc. of the 12th ITNG, 2015, pp. 433–438.

[2] R. Abilio, G. Vale, E. Figueiredo, and H. Costa, “Metrics

for Feature-Oriented Programming,” in Proc. of the 7th

WETSoM, 2016, pp. 36–42.

[3] E. Almeida, A. Alvaro, D. Lucrédio, V. Garcia, S. Meira,

“RiSE Project,” in Proc. of the 5th IRI, 2004, pp. 48–53.

[4] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-

Oriented Software Product Lines. Springer Science &

Business Media, 2013.

[5] S. Chidamber and C. Kemerer, “A Metrics Suite for

Object Oriented Design,” Transactions on Software

Engineering (TSE), vol. 20, no. 6, pp. 476–493, 1994.

[6] A. Fard and A. Mesbah, “JSNose,” in Proc. of the 13th

SCAM, 2013, pp. 116–125.

[7] T. Fawcett, “An Introduction to ROC Analysis,” Pattern

Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006.

[8] W. Fenske and S. Schulze, “Code Smells Revisited,” in

Proc. of the 9th VaMoS, pp. 3-10, 2015.

[9] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E.

Figueiredo, “A Review-based Comparative Study of Bad

Smell Detection Tools,” in Proc. of the 20th EASE, 2016.

[10] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U.

Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan, F.

Castor Filho, and F. Dantas, “Evolving Software Product

Lines with Aspects,” in Proc. of the 30th ICSE, pp. 261–

270, 2008.

[11] T. Filo, M. Bigonha, and K. Ferreira, “A Catalogue of

Thresholds for Object-Oriented Software Metrics,” Proc.

of the 1st SOFTENG, pp. 48–55, 2015.

[12] F. Fontana, P. Braione, and M. Zanoni, “Automatic

Detection of Bad Smells in Code,” Journal of Object

Technology (JOT), vol. 11, no. 2, pp. 5–1, 2012.

[13] M. Fowler, Refactoring: Improving the Design of

Existing Programs. Addison-Wesley Publishing, 1999.

[14] M. Lanza and R. Marinescu, Object-Oriented Metrics in

Practice. Springer Science & Business Media, 2007.

[15] M. Lorenz and J. Kidd, Object-Oriented Software

Metrics: A Practical Guide. Prentice-Hall, 1994.

[16] T. McCabe, “A Complexity Measure,” Transactions on

Software Engineering (TSE), no. 4, pp. 308–320, 1976.

[17] B. Miller, P. Hsia, and C. Kung, “Object-Oriented

Architecture Measures,” in Proc. of the 32nd HICSS, pp.

8069–8086, 1999.

[18] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le

Meur, “DECOR,” Transactions on Software Engineering

(TSE), vol. 36, no. 1, pp. 20–36, 2010.

[19] T. Paiva, A. Damasceno, J. Padilha, E. Figueiredo, and C.

Sant’Anna, “Experimental Evaluation of Code Smell

Detection Tools,” Proc. of the 3rd VEM, pp. 17–24, 2015.

[20] K. Pohl, G. Böckle, and F. van der Linden, Software

Product Line Engineering. Springer Science & Business

Media, 2005.

[21] G. Vale and E. Figueiredo, “A Method to Derive Metric

Thresholds for Software Product Lines,” in Proc. of the

29th SBES, 2015, pp. 110–119.

[22] S. Vidal, C. Marcos, and J. Díaz-Pace, “An Approach to

Prioritize Code Smells for Refactoring,” Automated

Software Engineering (ASE), pp. 1–32, 2014.

