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Abstract—A Software Product Line (SPL) is a 

configurable set of systems that share common 

and varying features. SPL requires a satisfactory 

code modularity for effective use. Therefore, 

modularity anomalies make software reuse 

difficult. By detecting and solving an anomaly, 

we may increase the software quality and ease 

reuse. Different detection strategies support the 

identification of modularity anomalies. However, 

we lack an investigation of their effectiveness in 

the SPL context. In this paper, after an 

evaluation of existing strategies, we compared 

four strategies from the literature for two 

modularity anomalies that affect SPLs: God 

Class and God Method. In addition, we proposed 

two novel detection strategies and compared 

them with the existing ones, using three SPLs. As 

a result, existing strategies showed high recall 

but low precision. In addition, when compared to 

detection strategies from the literature, our 

strategies presented comparable or higher recall 

and precision rates for some SPLs. 
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I.  INTRODUCTION 

Software reuse consists of using existing code to 
develop new systems [20]. Reuse requires a 
satisfactory code modularity for its effective 
application [4][20]. Since existing software 
components may contain problems that should not 
be propagated to new systems, modularity anomalies 
may make reuse difficult. The literature also 
references modularity anomalies as bad smells [13]. 
Therefore, by detecting and solving an anomaly 

before reusing a component, we may increase the 
component quality and decrease time and efforts 
spent on maintenance, for instance [12][18]. 

In this context, we need effective methods to 
support the detection of modularity anomalies and, 
consequently, reuse [3]. Different detection 
strategies have been proposed to support the 
identification of anomalies [1][8][14]. Besides that, 
although several anomalies may affect reuse [8], we 
lack an investigation on the effectiveness of the 
existing strategies for detecting anomalies in 
Software Product Lines (SPL). An SPL is a set of 
systems that share common and varying features [4]. 
By combining features, we generate different SPL 
products [4]. SPL aims to support reuse with 
decreasing maintenance efforts to developers [20]. 

In this paper, we investigate modularity 
anomalies in SPL, since anomalies affect negatively 
the SPL modularity and makes reuse difficult. After 
an ad hoc literature review, we compared four 
detection strategies from the literature for two well-
known modularity anomalies that may affect SPLs: 
God Class [13] and God Method [14]. In addition, 
we proposed novel detection strategies to support 
the identification of both anomalies. We designed 
the novel strategies given the small amount of 
strategies from the literature that are based on 
traditional, well known, and ease to compute 
software metrics. We analyzed three SPLs. 

As a result, we presented a novel detection 
strategy for each anomaly, i.e., God Class and God 
Method. Through the comparison of our strategies 
with the ones from the literature, we observed 
positive results with respect to our strategies. For 
MobileMedia, our strategies obtained comparable 
recall and the highest precision results for both 



anomalies. In the case of Berkeley DB, we obtained 
the best and second best recall when compared to 
the existing strategies. Finally, our strategy for God 
Class obtained the best recall and precision rates, in 
comparison with the others, in the case of TankWar.  

II. BACKGROUND 

Modularity anomalies are symptoms of deeper 
problems in the modularity of systems [13]. Several 
types of anomalies may affect the modularity of a 
system, such as Lazy Class, Feature Envy, and Long 
Parameter List [13][14]. In this study, we 
investigated two types of anomaly: God Class [13] 
and God Method [14]. We chose these anomalies 
because (i) they have different detection strategies in 
the literature for comparison and (ii) although both 
are general-purpose anomalies, they can affect 
negatively the SPL design. God Class is a class that 
contains excessive knowledge of the system and 
responsibilities [13]. God Method is a large method 
with high complexity and many responsibilities [14]. 

Two approaches may support the detection of 
modularity anomalies [18]. Manual detection relies 
on code inspection. Automated detection counts on 
the support of detection strategies, i.e., compositions 
of metric-based rules that define when a specific 
software component, e.g., class, method, or package, 
is prone to contain a modularity anomaly [14]. In 
turn, tools aim to support the automated detection of 
anomalies. These tools apply some type of detection 
strategy or equivalent techniques [6][18][22]. 

A Software Product Line (SPL) is a configurable 
set of systems that share common and varying 
features [20]. There are four types of features in a 
product line: mandatory, optional, alternative 
inclusive (OR), and alternative exclusive (XOR) 
[20]. Each product from an SPL is composed by 
general features that define the SPL basis 
(mandatory features) and specific features that differ 
a product from others (optional, OR, or XOR 
features) [4]. Artifacts of an SPL may contain 
modularity anomalies like in other types of software 
systems. However, there are few studies to 
investigate anomalies in this specific context [4].  

III. STUDY SETTINGS 

Sections III-A, III-B, and III-C present the study 
goal and research questions, steps, and artifacts. 

A. Goal and Research Questions 

In this study, we were specifically concerned 
with detection strategies to identify modularity 
anomalies that hinder reuse in SPL. We then 
designed new strategies for these anomalies. We 
also conducted a comparative study of detection 
strategies in the SPL context. To guide our study, we 
designed two research questions as follows. 

RQ1. Are the existing detection strategies for 
modularity anomalies effective in the SPL context? 

RQ2. Are the novel detection strategies more 
effective than the existing ones in the SPL context? 

B. Study Steps 

We designed seven study steps discussed as 
follows. Steps 1-5 composed the study phase called 
Selection of Artifacts. In Step 1, we selected the 
SPLs for analysis. Step 2 consisted of the selection 
of modularity anomalies, based on anomalies that 
we were able to detect in the chosen systems from 
Step 1. Step 3 encompassed the selection of 
strategies from the literature for comparison. Step 4 
was dedicated to the creation of new strategies for 
the anomalies chosen from Step 2. Our strategies 
relied on well-known anomaly definitions [13][14] 
and the SPL characteristics [4]. In the same step, we 
compared such strategies with strategies from the 
literature provided by Step 3. Step 5 consisted of 
selecting detection tools for modularity anomalies. 
This step was essential to support the definition of 
reference lists of anomalies for SPLs, collected from 
Step 1, without a previously computed reference list 
of anomalies. A reference list of anomalies is an 
itemization of anomalies that occur in a given 
system. Experts in a system can generate reference 
lists [19]. Otherwise, such lists may rely on the 
detection results provided by a detection tool.  

The remaining steps, Steps 6 and 7, composed the 
last phase called Comparative Study. Step 6 
comprised the comparison of existing detection 
strategies from the literature to answer RQ1. Finally, 
Step 7 targeted on RQ2 through the comparison of 
novel detection strategies with the existing ones. 

C. Selected Artifacts 

In Steps 1 and 2, we chose three SPLs extracted 
from a repository [21]: MobileMedia [10], Berkeley 
DB, and TankWar. These systems are implemented 



in AHEAD or FeatureHouse and have from 2 K to 
42 K number of lines of code (LOC) [15]. We 
selected MobileMedia based on the availability of 
reference lists for God Class and God Method. We 
selected Berkeley DB and TankWar because of the 
three following reasons. First, Berkeley DB is one of 
the largest systems in the SPL catalog. Second, we 
are able to import the code of these systems in 
FeatureIDE for automated anomaly detection and 
generation of reference lists. Third, there are at least 
two occurrences of God Class and God Method in 
each system. Details in the discussion of Step 5.  

A set of 11 pre-computed software metrics are 
provided by the SPL repository. Coupling between 
Objects (CBO) [5], Lines of Code (LOC) [15], 
Number of Attributes (NOA) [15], Number of 
Constant Refinements (NCR) [1], Number of 
Methods (NOM) [15], and Weighted Methods per 
Class (WMC) [5] are class-level metrics. McCabe's 
Cyclomatic Complexity (Cyclo) [16], Method Lines 
of Code (MLOC) [15], Number of Method 
Refinements (NMR) [2], Number of Operations 
Overrides (NOOr) [17], and Number of Parameters 
(NP) [15] are method-level metrics. 

In Step 3, we selected strategies for each 
anomaly. After an ad hoc literature review, we 
selected two strategies for God Class and two for 
God Method. Although we have found other 
strategies, our selection relied on the metrics 
provided by the SPL catalog. To adapt each strategy, 
we discarded clauses with metrics that are 
unavailable in the SPL catalog. We derived 
thresholds for the metrics – i.e., values that support 
the characterization of a given metric [21] – based 
on the selected SPL repository and Vale’s Method 
[21]. We chose Vale’s method because it provided 
us sufficient flexibility to define detection strategies. 
To derive thresholds, we used the R statistical 
environment1 and the entire SPL repository [21], 
with 33 SPLs, as target systems. Table I presents 
each strategy adapted from the literature. In Step 4, 
we proposed a new strategy for each modularity 
anomaly (details in Section V).  

In Step 5, we extracted the reference lists of God 
Class and God Method for MobileMedia from a 
previous work [19], with 7 instances per anomaly. 

                                                           
1 https://www.r-project.org 

Experts from the MobileMedia development team 
composed these lists. For Berkeley DB and 
TankWar, we did not find reference lists. Therefore, 
we generated them based on the results of JSpIRIT 
[22], a plug-in tool for Eclipse IDE. The automated 
detection in BerkeleyDB and TankWar supported 
the composition of reference lists. Based on a SLR 
[9], we chose JSpIRIT because of its availability for 
download and sufficient recall and precision. The 
tool found 35 God Class and 37 God Method 
instances for Berkeley DB, and 2 and 3 instances, 
respectively, for TankWar. After the validation of 
the results by the paper’s authors, we obtained (i) 17 
and 12 instances for God Class and God Method, 
respectively, for Berkeley DB and (ii) 1 and 2 
instances for the same anomalies, for TankWar. The 
study artifacts are available in the research website2. 

TABLE I.  DETECTION STRATEGIES FROM THE LITERATURE 

God Class 

GC1 [21]: [(LOC > 77) AND (WMC > 17) AND (CBO > 0)]  

OR (NCR > 1) 
GC2 [11]: (WMC > 34) AND (NOM > 14) AND (NOA > 8) 

God Method 

GM1 [6]: (MLOC > 50) 

GM2 [14]: (MLOC > 13) AND (Cyclo > 2) 

IV. COMPARISON OF EXISTING STRATEGIES 

This section aims to answer RQ1. Table II 
presents recall and precision, per SPL, for both God 
Class and God Method. TP is the number of true 
positives (correct identification of real anomalies). 
FP is the number of false positives (incorrect 
identification of real anomalies). TN is the number 
of true negatives (correct non-identification of 
anomalies). Finally, FN is the number of false 
negatives (incorrect non-identification of anomalies) 
[7]. The used formula are Precision = TP / (TP + 
FP) and Recall = TP / (TP + FN) [7]. 

In general, we observed a mean and median 
recall of 66% and 90%, respectively, i.e., a 
significant result. However, regarding precision, we 
observed mean and median of 16% and 9%, 
respectively, a low result. Therefore, our data 
suggests that the existing detection strategies were 
not sufficiently effective in the SPL context. GC1 
presented the highest recall rate for all SPLs and a 
slight highest precision for two of them. Therefore, 
our data suggests that GC1 was more effective than 

                                                           
2 http://labsoft.dcc.ufmg.br/doku.php?id=about:itng17-detection-strategies 



GC2. In turn, both GM1 and GM2 performed 
similarly in terms of recall for two of the three SPLs, 
although precision was slightly higher for GM1. We 
provide a discussion per SPL as follows. 

TABLE II.  RESULTS FOR EXISTING STRATEGIES 

SPL Strat. TP FP TN FN Recall Precision 

MobileMedia 

GC1 5 10 126 2 71% 33% 

GC2 0 0 7 136 0% 0% 

GM1 0 1 365 7 0% 0% 

GM2 3 30 336 4 43% 9% 

Berkeley DB 

GC1 17 80 524 0 100% 18% 

GC2 15 21 583 2 88% 88% 

GM1 11 53 5618 1 92% 17% 

GM2 11 441 5230 1 92% 2% 

TankWar 

GC1 1 11 76 0 100% 8% 

GC2 0 2 85 1 0% 0% 

GM1 2 10 297 0 100% 17% 

GM2 2 66 241 0 100% 3% 

MobileMedia. Regarding God Class, GC1 was the 
only strategy able to detect code anomaly instances, 
with recall and precision rates of 71% and 33%, 
respectively, against 0% for both measures in the 
case of GC2. The low percentages for GC2 may 
relate to the high threshold for WMC, computed 
based on MLOC that is generally low for the 
analyzed SPLs. Regarding God Method, we 
observed similar behavior, in which GM1 was 
unable to detect anomalies, although GM2 provided 
43% and 9% of recall and precision, respectively. 
Again, the justification for the non-effectivity of 
GM1 relies on the high threshold for MLOC. 

Berkeley DB. Regarding God Class detection 
strategies, GC1 presented 100% of recall (a result 
12% higher than GC2), but a low precision of 18% 
(70% lower than for GC2). Considering the 
significant difference between precision rates, we 
observed that GC2 was more effective than GC1. 
Although such results differ from the previous ones, 
they reinforce our assumptions that MLOC for the 
SPLs affected the results, since the methods from 
classes of Berkeley DB are significantly larger than 
MobileMedia. With respect to God Method, both 
GM1 and GM2 presented the same recall, but GM1 
provided 15% more precision than the other 
strategy, probably for the same reason discussed in 
the case of MobileMedia. Therefore, we assume that 
GM1 was slightly more effective than GM2. 

TankWar. Regarding God Class, GC2 was unable 
to detect anomalies, while GC1 presented 100% and 
8% of recall and precision, respectively. Besides the 
considerations valid for MobileMedia and Berkeley 

DB, NCR contributed to the high recall observed for 
GC1. On the other hand, NRC contributed to low 
precision, by causing an increase in the number of 
FP, mainly because the threshold is very low. Note 
that, in SPL, several methods tend to have more than 
1 refinement, due to the modularization of features. 
We conclude that GC1 was more effective than the 
other strategy. However, regarding God Method, 
both GM1 and GM2 obtained the same recall. In 
turn, GM1 presented a precision only 14% higher 
than the other strategy, due to the higher, stricter 
threshold for MLOC. We conclude that GM1 was 
slightly more effective than GM2. 

V. COMPARISON WITH NOVEL STRATEGIES 

 This section aims to answer RQ2. Table III 
presents the novel strategies for God Class (GC3) 
and God Method (GM3). We took into account the 
findings from Section IV to design each strategy 
aiming better recall and precision. For CG3, we used 
LOC because a high number of code lines may 
indicate excessive responsibilities of the class. We 
also used NOA and NOM because a high number of 
attributes (NOA) and methods (NOM) suggests 
excessive knowledge of the class (attributes) and 
responsibilities (methods). Finally, we used WMC 
because a high weight of the class indicates that the 
class is doing more than it should do. For GM3, we 
used MLOC because a high number of code lines is 
a symptom of complex method. We also used NP 
because a large list of parameters may point that the 
method requires too much knowledge of the current 
or external classes. Finally, we used Cyclo because 
it indicates too many responsibilities of the method. 

TABLE III.  NOVEL STRATEGIES PROPOSED IN THIS STUDY 

God Class 

GC3: (LOC > 77) AND (NOA > 4) AND (NOM > 10) AND (WMC > 17) 

God Method 

GM3: (MLOC > 13) AND (NP > 2) AND (Cyclo > 3) 

Table IV presents recall and precision for the 
novel strategies, per SPL. We observed moderate 
rates of recall, but low precision – we obtained 
moderate-to-high rates only for MobileMedia. For 
God Class, GC1 presented the highest rates of recall 
for Berkeley DB and TankWar, and the highest 
precision for MobileMedia and TankWar. However, 
with respect to God Method, we observed a 
significant rate of precision for MobileMedia. 



TABLE IV.  RESULTS FOR THE NOVEL STRATEGIES 

SPL Strat. TP FP TN FN Recall Precision 

MobileMedia 
GC3 2 0 136 5 29% 100% 

GM3 1 1 365 6 14% 50% 

Berkeley DB 
GC3 17 51 553 0 100% 25% 

GM3 6 139 5532 6 50% 4% 

TankWar 
GC3 1 4 83 0 100% 20% 

GM3 0 10 296 3 0% 0% 

MobileMedia. Regarding God Class, our strategy 
GC3 presented the highest precision (100%), 67% 
higher than for the second highest (GC1). This 
positive result relates to the discard of metrics that 
generated high FP in the other strategies (e.g. NCR). 
However, GC1 presented recall of 71%, a result 
42% higher than for GC3, probably because GC3 is 
stricter since it has more metrics to compare. 
Regarding God Method, GM3 presented the highest 
precision rate (50%), a result 41% higher than for 
GM2. This positive result relates to lower threshold 
for MLOC combined with two metrics that support 
the identification of Long Method even in SPL (i.e. 
NP and Cyclo). However, the precision for GM2 
was 29% higher than for GM3. This result may 
relate to the very low thresholds for NP and Cyclo, 
although such metrics tend to be low in SPL. We 
conclude that GC3 and GM3 were more precise. 

Berkeley DB. Regarding God Class, our strategy 
GC3 presented the highest recall (100%), similarly 
to GC1. Note that GC2 obtained 88% of recall, a 
result only 12% lower than our strategy. Regarding 
precision, GC3 presented the second highest rate, 
although it is 63% lower than for GC2. Therefore, 
our data suggests that GC2 was the most effective 
strategy, in general. For God Method, GM3 obtained 
the second highest recall, against 92% for both GM1 
and GM2. In addition, GM3 had low rates of recall 
(50%) and precision (4%) when compared to the 
highest rates obtained by GM1 (92% and 17%, 
respectively). Therefore, GM2 was the most 
effective strategy. Overall, our findings for Berkeley 
DB have similar justification than in the case of 
MobileMedia, for both GC3 and GM3. 

TankWar analysis. Regarding God Class, we 
observed the highest recall and precision (100% and 
20%, respectively) for our strategy GC3. Although 
GC1 and GC3 presented the same recall of 100%, 
our strategy presented a 12% higher precision. The 
justification is similar to the MobileMedia case. We 
conclude that GC3 was more effective than the GC1. 
For God Method, GM3 did not find anomalies, and 

the highest results were obtained by GM1 (100% of 
recall and 17% of precision). In this case, an 
anomalously low NP (even for SPLs) for most of the 
methods affected significantly GM3. 

VI. THREATS TO VALIDITY 

We discuss threats to validity as follows. 

Construct and Internal Validity. We designed our 
study with steps for replication. The study settings 
relied on the literature. We also provided the study 
artifacts in the research website. These treatments 
aim to minimize problems with study replication and 
reliability. Moreover, we conducted a careful data 
collection to prevent missing data, incorrect 
selection of metrics, and inappropriate use of 
threshold derivation methods. We double-checked 
the collected data. Therefore, we expect that our data 
collection is reliable for analysis. Regarding the 
automatically generated reference lists of anomalies, 
we chose an effective tool from a previous work [9]. 

Conclusion and External Validity. We carefully 
performed the data analysis to minimized problems 
with data interpretation. We based the choice of 
mathematical computation (recall and precision) on 
previous studies. Finally, some factors may prevent 
the generalization of our research findings, since we 
proposed strategies based on the authors’ 
background and subjective perceptions of 
anomalies. To minimize this problem, we carefully 
chose metrics from the available metric set, and we 
defined each strategy in details. 

VII. RELATED WORK 

Fontana et al. (2012) [12] conducted a literature 
review and a comparison of detection tools for 
modularity anomalies. They concluded that the tools 
provide significantly different results for a same 
anomaly, some results are redundant, and the tools’ 
agreement is high for anomalies as Large Class. 
Moha et al. (2010) [18] also evaluated tools. The 
authors compared a set of tools with a new one 
proposed by them. By relying on reference lists of 
anomalies built after manual code inspection, they 
computed recall and precision of the tools. However, 
their study did not compare an extensive set of tools, 
and there was no agreement computation. 

In a previous work [9], we conducted a 
systematic literature review on detection tools for 



modularity anomalies. We found 84 tools, 29 of 
them available for download. We also compared 
tools by computing recall, precision, and agreement. 
We observed that most of the tools rely on detection 
strategies based on metrics. We also observed 
redundant results of the tools, and conclude that  
new detection strategies may be explored to improve 
the detection effectiveness. In the present study, we 
aimed to contribute by filling the gap observed in 
our previous work [9] focused on the SPL context.  

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we evaluated detection strategies 
for modularity anomalies in SPL. We compared 
detection strategies from the literature, for two well-
known anomalies that may affect the SPL 
modularity: God Class and God Method. This 
comparison aimed to assess if they are effective in 
the SPL context. We then proposed novel strategies, 
one for each anomaly, and compared them with the 
existing strategies. Our study analyzed three SPLs.  

 As a result, when comparing existing detection 
strategies, we have observed high recall, with 
respective mean and median of 66% and 90%. 
However, we observed low precision with respective 
mean and median of 16% and 9%. We concluded 
that the existing strategies were not effective for 
SPLs. In turn, when comparing our novel strategies 
with the existing ones, we observed higher recall for 
our strategies, but low precision as observed for the 
other strategies. As future work, we suggest the 
investigation a larger amount of anomalies, new 
detection strategies, and the analysis of other SPLs. 
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