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Resumo

Evolução do software é um processo natural do ciclo de vida do software que consiste
em adaptar, manter e atualizar os sistemas de software. Esta tese proposta se concentra
em investigar como sistemas de software evoluem ao longo do tempo. Muitos estudos
têm investigado este tópico, contudo, não existe até o momento uma visão geral e
consolidada do estado da arte da pesquisa em evolução de software. Devido a esse fato,
o primeiro passo desta pesquisa foi conduzir uma Revisão Sistemática da Literatura
(RSL) abrangente a fim de compilar o conjunto de conhecimentos sobre a evolução de
software e entender como esse tópico está sendo investigado. Esta RSL encontrou 130
artigos neste assunto, publicados de 1979 a 2019. A análise desses estudos revelou que
a evolução de software tem sido estudada sob cinco perspectivas: (i) verificação da
aplicabilidade das leis de Lehman; (ii) proposta de aplicações; (iii) análise da evolução
com foco na qualidade; (iv) análise da evolução estrutural do software; e (v) proposta de
modelos para evolução de software. Além disso, os estudos em Engenharia de Software
têm confirmado que, à medida que os sistemas de software evoluem, eles se tornam
cada vez mais complexos e difíceis de manter. Entretanto, os estudos realizados até
o momento não detalham como ocorre essa degradação. Entender como a estrutura
interna do software evolui é essencial para ajudar desenvolvedores a melhor planejar,
gerenciar e executar tarefas de manutenção de software.

Este trabalho visa fornecer um conhecimento refinado de como a estrutura in-
terna dos sistemas de software orientados por objetos evolui. Foram consideradas três
características internas de sistemas de software orientado por objetos: acoplamento,
tamanho das classes e hierarquia de herança. Foi definido um novo método baseado
em análise de séries temporais, técnicas de regressão linear e testes de tendência para
analisar a evolução de sistemas orientado por objetos. Aplicando essa abordagem,
identificou-se as funções que melhor explicam como o acoplamento, o tamanho das
classes e a árvore de herança evoluem. Para avaliar essas características, utilizaram-se
métricas de software definidas na literatura e consideraram-se dados de 10 projetos de
código aberto baseados em Java. Os dados compreendem um período de 2001 a 2011
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e consideram de 72 a 248 releases de projetos. Os principais resultados deste trabalho
até o momento são:

1. um novo método para analisar evolução de software baseado na análise de séries
temporais;

2. a identificação das funções que explicam a evolução do acoplamento, do tamanho
de classes e da hierarquia de herança;

3. a identificação de um conjunto composto por 15 propriedades relacionadas à
evolução dessas características internas do software orientado por objetos.

Na sequência deste projeto de tese, objetiva-se definir e avaliar um método de
predição para evolução de software orientado por objetos em termos de acoplamento,
tamanho de classes e hierarquia de herança. O método será baseado nos resultado
encontrados na primeira parte desta pesquisa. Será construído uma abordagem au-
tomática para identificar um modelo de predição para um dado sistema. A entrada
deste método será um conjunto de dados evolucionários de métricas de software refer-
entes a um sistema de software, ou seja, séries temporais de métricas. O resultado do
método será um modelo que prevê como o sistema de software evolui em termos dos
atributos que as métricas medem. Para avaliar o método proposta, o dataset utilizado
na primeira parte deste projeto de tese será ampliado. Em cenários reais da Engenharia
de Software, os resultados da tese proposta podem ajudar os desenvolvedores a planejar
suas estratégias para acomodar mudanças e novos recursos no sistema, de modo que a
degradação da arquitetura do software possa ser mitigada ou evitada.

Palavras-chave: Evolução de Software, Métricas de Software, Qualidade de Software,
Séries Temporais, Análise de Tendência.
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Abstract

Software evolution is a natural process of the software life cycle. It consists of adapting,
maintaining, and updating software systems. This thesis proposal concentrated on
investigating how software systems evolve along time. Many studies have been carried
out on this topic. However, we do not have a general view of the state-of-the-art
of software evolution research. Due to this fact, our first step was to carry out a
comprehensive Systematic Literature Review (SLR) to compile the body of knowledge
on software evolution and understand how the literature investigated this topic. Our
SLR identified 130 papers in this subject, published from 1979 to 2019. The analysis of
those studies revealed that software evolution has been studied from five perspectives:
(i) verification of the applicability of Lehman’s laws; (ii) proposal of applications, (iii)
analysis of the evolution with a focus on quality, (iv) analysis of the software structure
evolution, and (v) proposal of models for software evolution. Besides, the studies
on software engineering have confirmed that as software systems evolve, it becomes
increasingly complex and challenging to maintain. Nevertheless, the studies carried out
so far have not detailed how such degradation occurs. Understanding how the internal
software structure evolves is essential to help developers to better plan, manage, and
perform software maintenance tasks.

This work aims to provide a fine-grained knowledge of how the internal structure
of object-oriented software systems evolves. We consider three internal characteristics
of object-oriented software systems: coupling, size of classes, and inheritance hierarchy.
We defined a novel method based on time series analysis, linear regression techniques,
and trend tests to analyze the evolution of object-oriented systems. Applying such
an approach, we identified the function that better explains how the coupling, classes’
size, and the inheritance tree evolve. To assess these characteristics, we used software
metrics defined in the literature and considered data from ten Java-based open-source
projects. The data comprises a period from 2001 to 2011 and consider s 72 to 248
releases of the projects. The main results of this work until now are the following:
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1. a novel method to analyze software evolution based on time series analysis;

2. the creation of a function that explains the evolution of coupling, size of classes,
and inheritance hierarchy;

3. a set of 15 properties regarding the evolution of these internal characteristics of
object-oriented software.

In the sequel of this thesis project, we aim to define and evaluate a prediction
method for object-oriented software evolution in terms of coupling, size of classes, and
inheritance hierarchy. We will base the method on the results found in the first part of
this research. We will construct an automatic approach to identify a prediction model
for a given system. Our method’s entry is a set of evolutionary data of software metrics
of a given software system, i.e., the metric time series. The result of the method will be
a model that predicts how the software system will evolve in terms of the attributes the
metrics measure. To evaluate the proposed method, we will extend the data set we used
in the first part of this thesis project. In real software engineering scenarios, the results
of the proposed thesis may support developers to plan their strategies to accommodate
changes and novel features in the system, so that the software architecture degradation
may be mitigated or avoided.

Palavras-chave: Software Evolution, Software Metrics, Software Quality, Time Series,
Trend Analysis.
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Chapter 1

Introduction

Software evolution is a general term employed in Software Engineering for describing
one of the phases of the software life cycle. Usually, it defines the process of devel-
oping, maintaining, and updating software systems for various reasons [Mens et al.,
2010]. These reasons may be a correction of an error in the system, an inclusion or
a change in the system requirements. Mens et al. [2010] consider software evolution
and maintenance synonyms since they are related over the software life cycle and deal
with similar activities, such as updating and fixing the system after its first release.
Software evolution and the changes caused by them are essential because they allow
including and enhancing novel features in a system to meet the demands required by its
users or clients. However, the continuous changes generate, in most cases, an increase
of the complexity of the system’s internal structure, which may lead to high costs to
accommodate changes and the features.

Most of the total cost of a software system is due to its maintenance [Lientz
and Swanson, 1980; Nosek and Palvia, 1990; Meyer, 1997; Sommerville, 2012]. It
comprises from 85% to 90% of the total expenses that an organization spends with
software [Erlikh, 2000; Sommerville, 2012]. Then, the way how dealing with changes
in the software structure during this phase is a practice that requires much attention
from developers and software engineers. Any change needs to be carefully planned
and studied before being implemented so that there is no degradation of the system’s
architecture and, consequently, further increase software costs.

The way software systems evolve has been a subject of research in Software En-
gineering for decades. As a starting point, Lehman et al. [1997] carried out a set of
empirical studies aiming to better understand the software evolution characteristics.
They describe the evolutionary nature of the software and conclude that, in general,
software grow and undergo maintenance continuously, have increasing complexity and

1



2 Chapter 1. Introduction

decreasing quality over its evolution. They summarize their findings as eight laws,
which are widely known as Lehman’s laws. Table 1.1 presents the eight software evo-
lution laws proposed by Lehman et al. [1997].

Table 1.1: Lehman’s laws of software evolution. Source: Adapted from Lehman et al.
[1997].

No
¯ Name Description
I Continuing Change Systems must be continually adapted else they become

progrssively less satisfactory
II Increasing Com-

plexity
The complexity of a system increases over its evolution
unless work is done to maintain or reduce it

III Self Regulation The system evolution process is self regulating with dis-
tribution of product and process measures close to nor-
mal.

IV Conservation of Or-
ganizational Stabil-
ity

The average effective global activity rate in an evolving
system is invariant over the product lifetime.

V Conservation of Fa-
miliarity

As an E-type system evolves all associated with it, devel-
opers, sales personnel, users, for example, must maintain
mastery of its content and behaviour to achieve satisfac-
tory evolution. Excessive growth diminishes that mas-
tery. Hence the average incremental growth remains in-
variant as the system evolves.

VI Continuing Growth The functional content of the software systems must be
continually increased to maintain user satisfaction over
their lifetime.

VII Declining Quality The quality of the systems will decline, unless they
through by rigorous maintenance and adaptation to op-
erational environment changes.

VIII Feedback System The evolution processes constitute multi-level, multi-
loop, multi-agent feedback systems and must be treated
as such to achieve significant improvement over any rea-
sonable base.

Lehman’s laws are one of the landmarks on software evolution, and they have
inspired other works to investigate this topic in the last years. A large part of the studies
existing in the literature aim to check and validate the presence of the Lehman’s laws in
the software development contexts, such as open-source systems [Lee et al., 2007b; Mens
et al., 2008; Xie et al., 2009; Businge et al., 2010; Israeli and Feitelson, 2010; Alenezi
and Almustafa, 2015], mobile applications [Zhang et al., 2013; Li et al., 2017; Gezici
et al., 2019], proprietary software [Barry et al., 2007] and C library [Gonzalez-Barahona
et al., 2014]. Besides, other works have aimed to characterize software evolution under
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some software dimensions, especially regarding software size [Godfrey and Tu, 2000;
Capiluppi et al., 2004a,b; Capiluppi and Ramil, 2004; Robles et al., 2005; Herraiz
et al., 2006; Izurieta and Bieman, 2006; Capiluppi et al., 2007; Herraiz et al., 2007;
Koch, 2007; Gonzalez-Barahona et al., 2009; Hatton et al., 2017].

The studies on the evolution of size have diverged in their results and, con-
sequently, it has not yet a clear and precise conclusion about the evolution of this
dimension in software systems. Therefore, there is still a gap in the comprehension
on how the internal software dimensions, such as size, coupling, inheritance hierarchy,
among others, evolve. For instance, it is widely known that the internal quality de-
clines, and the complexity increases in a software system when it evolves. However, so
far, there is not a pattern explaining how software systems’ internal structure degrades
in a fine-grained view about.

This thesis project aims to provide a detailed view of the evolution of some
internal dimensions in software systems. Besides, this work has as goal using this
knowledge to build prediction models for software evolution. For this purpose, we
divided this thesis project into three parts. In the first one, we carried out a Systematic
Literature Review (SLR) aiming to compile the works on software evolution done so far.
In this first part, we (i) provided an overview of the state-of-the-art regarding software
evolution, (ii) found the main research lines about this topic, (iii) characterized the
main software evolution datasets, and (iv) identified the main gaps existing in the
literature.

In the second part of this thesis project, we aim to study and characterize object-
oriented software systems’ evolution from the perspective of some dimensions, such as
coupling, size, and inheritance hierarchy. Coupling is a dimension that describes the
level of dependence between the modules of a software system [Myers, 1975]. Size is a
software aspect that defines a system as large or small, considering its number of lines
of code, number of files, and modules [Sommerville, 2012]. Inheritance hierarchy is a
mechanism of organizing the components within a system into a rooted tree structure
so that the characteristics of a particular object may be extended by others [Tupper,
2011].

To characterize these dimensions, we used time series with data of six software
metrics. We considered fan-in and fan-out to represent coupling, NOA (Number of
Attributes) and NOM (Number of Methods) to represent class size, and DIT (Depth of
Inheritance Tree) and NOC (Number of Children) to characterize inheritance hierarchy.
Fan-in indicates the number of references made to a given class by other classes, while
fan-out reflects the number of calls made by a given class to other classes [Sommerville,
2012]. NOA and NOM are the numbers of attributes and methods of a class [Lorenz
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and Kidd, 1994]. DIT indicates a class’s position in its inheritance hierarchy, and NOC
is the number of immediate subclasses of a given class [Chidamber and Kemerer, 1994].
We define a novel method based on time series analysis, linear regression techniques,
and trend tests to analyze object-oriented systems’ evolution. We applied this method
in a dataset, composed of evolution data regarding ten object-oriented software systems,
and identified 15 properties that describe the behavior of the analyzed dimensions over
software evolution.

In the third part of this thesis project, we intend to use the software evolution
properties identified in the first part as a background in the definition of a prediction
method for object-oriented software evolution. Our method will build models that
predict and project the evolution of a specific system in terms of coupling, size of
classes, and inheritance hierarchy. To propose this method, we will define an automatic
approach to identify a prediction model for a given system. Then, our method’s input
will be a set of evolutionary data regarding software metrics from a given software
system, i.e., the metric time series. The result of the method will be a model that
predicts how the software system will evolve in terms of the attributes the metrics
measure. Our objective with these models is to provide developers a way to monitor
and track their software evolution. They will then be able to plan their strategies
better to accommodate changes and novel features in the software and avoid software
architecture degrading over their evolution.

We will extend the software evolution dataset used in the first part of this thesis
project. The resulting dataset will be applied to evaluate our prediction method we will
design in the next steps of this research. The dataset is called COMETS and comprises
data of software metrics regarding the evolution of ten object-oriented software. We
considered this dataset in this research because it is the largest dataset in the literature
regarding software metrics and the number of systems. However, the most recent
information that it stores is from December 11st, 2011. Therefore, we intend to update
it by adding values of metrics regarding recent releases from their software systems and
use these data to support us to assess our prediction models.

This first and second parts of this Ph. D. research are concluded. The results are
reported throughout this document. The bluethird part of this research will be carried
out over the next year of the Ph. D. course.

1.1 Goal

The goals of this thesis research are:
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1. Carry out a Systematic Literature Review to compile the corpus of knowledge on
software evolution.

2. Define an analysis method to study the evolution of internal dimensions regarding
the software structure.

3. Investigate how the internal structure of object-oriented systems evolve from the
perspective of coupling, size of classes, and inheritance hierarchy.

4. Extend a software evolution dataset containing software metrics’ time series.

5. Build prediction models of the following software dimensions: size, coupling, and
inheritance.

1.2 Contributions

This research provides the following contributions so far:

1. A Systematic Literature Review that compiles the knowledge on software evolu-
tion existing and reveals the need for further research.

2. A novel method to analyze software evolution based on time series analysis. The
technique consists of two phases. The first phase uses linear regression to model
the evolution pattern of the data and to identify the type of model that better
represents their behavior. The second one applies trend tests in the time series
to analyze the classes’ evolution, which mainly has the measures increased or
decreased over time.

3. A set of properties that details in a fine-grained view the evolution of object-
oriented software systems from the perspective of coupling, size, and inheritance
hierarchy.

In the final Ph.D. thesis, we aim to achieve additional contributions:

1. An extended dataset with recent data regarding the evolution of the object-
oriented software systems.

2. A prediction method that extracts forecast models from the evolutionary data
regarding software metrics for object-oriented software systems.
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1.3 Publications

The research reported in this thesis project has generated the following publications
and papers submitted that are under review:

1. Sousa, B.L.; Ferreira, M.M.; Ferreira, K.A.M.; Bigonha, M.A.S. Software Engi-
neering Evolution: The History Told by ICSE. In proceedings of the XXXIII
Brazilian Symposium on Software Engineering (SBES 2019), Salvador, BA,
Brazil, pages 17–21, 2019. (Published). Although not presented in this docu-
ment, the work on Software Engineering evolution provided an overview to the
author of this work on how software evolution research has increased.

2. Sousa, B.L.; Bigonha, M.A.S; Ferreira, K.A.M. Analysis of Coupling Evolution
on Open Source Systems. In proceedings of the XIII Brazilian Symposium on
Software Components, Architectures, and Reuse (SBCARS ’19), Salvador, BA,
Brazil, pages 23–32, 2019. (Published and awarded as the 2nd best paper from
the symposium)

3. Sousa, B.L.; Bigonha, M.A.S; Ferreira, K.A.M.; Franco G.C. Evolution of Size
and Inheritance in Object-Oriented Software – A Time Series Based Approach.
Submitted to an international journal, pages 1–11, 2020. (Under Review)

4. Sousa, B.L.; Bigonha, M.A.S; Ferreira, K.A.M.; Franco G.C. A Comprehensive
Systematic Literature Review of Software Evolution. Submitted to an interna-
tional journal, pages 1–35, 2020. (Under Review)

1.4 Organization of the Thesis Project

The remainder of this thesis project is organized as follows.
Chapter 2 describes the main concepts that support this work, such as software

quality, object-oriented software metrics, and time series. Besides, we define and dis-
tinguish the concepts of measurement, metrics, and measure. We present and detail
the leading and most known suites of object-oriented software metrics existing in the
literature.

Chapter 3 describes the systematic literature review (SLR) on software evolution
we carried out to compile the knowledge existing in the literature about this topic.

Chapter 4 presents and describes the novel method for analysis of software evo-
lution based on time series.
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Chapter 5 reports the main observations and results we found about the evolution
of coupling, size, and inheritance hierarchy in object-oriented software systems.

Chapter 6 summarizes the evolution properties we extracted, considering the
observation exhibited in Chapter 5.

Chapter 7 shows the next steps to conclude this thesis research and gives direc-
tions to achieve the objectives proposed for the second part of this Ph. D. work.

Chapter 8 concludes this thesis project and presents some proposals for future
works.





Chapter 2

Background

This chapter presents the main concepts applied in this thesis project. They are object-
oriented software metrics (Section 2.1) and time series (Section 2.2).

2.1 Object-Oriented Software Metrics

In the context of software internal structure, metrics are used to evaluate software
dimensions such as modularity, complexity, size, coupling, and cohesion. Our recent
study analyzed a large number of articles published in the International Conference
on Software Engineering (ICSE), a relevant Software Engineering conference. The
conclusion is that software metrics are the study’s object comprising the ten most
explored topics of the area [Sousa et al., 2019]. Since the 1990s, the literature has
provided many novel units of measure to support the software’s internal structure
analysis. Among the object-oriented software metrics proposed so far, the ones that
stand out due to their high use are the sets proposed by Chidamber and Kemerer [1994].
They are widely known as CK, representing the landmarks of this field of knowledge.

There are several object-oriented software metrics proposed in the literature. As
this study is based on object-oriented software metrics, we surveyed the main ones
described in the literature. In this section, we present the CK and and the MOOD
metrics in Sections 2.1.1 and 2.1.2, respectively. In Sections 2.1.3 and 2.1.4 we present
the Martin’s metrics [Martin, 1994] and some complexity indicators. Sections 2.1.5
discusses the set of classes proposed by Lorenz and Kidd [1994]. We present in Sec-
tions 2.1.6, 2.1.7, and 2.1.8 the group of metrics proposed by Li [1999], Malik and
Chhillar [2011], and Mishra [2012], in this sequence. Finally, we conclude our discus-
sion about object-oriented software metrics by presenting and detailing some dynamic
metrics suites in Section 2.1.9.

9
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2.1.1 CK Metrics

The CK metrics consist of a group of object-oriented metrics proposed by Chidamber
and Kemerer [1994], aiming to assess the following software aspects: coupling, in-
heritance hierarchy, and cohesion. This group is composed of six metrics. They are
Weighted Method per Class (WMC), Depth of Inheritance Tree (DIT), Number of
Children (NOC), Coupling between Objects (CBO), Response For Class (RFC), and
Lack of Cohesion of Methods (LCOM). We detail each one of these metrics as follows.

• WMC (Weighted Methods per Class) measures the complexity of a given
class by considering the sum of all complexity of the methods that compose it. To
compute WMC is necessary to assign weights for each class’ method, which may
be inferred by a secondary metric. Chidamber and Kemerer [1994] do not define
a specific complexity indicator for using together with this metric, and then, the
weights may be defined both via lines of code and cyclomatic complexity of each
method. According to the authors, WMC indicates efforts of development and
maintenance of a respective class. Therefore, the higher the number of methods
in a class, the higher the tendency of that class to be less specific, limiting its
reuse and harms its cohesion aspect.

• DIT (Depth of Inheritance) is related to the inheritance hierarchy in object-
oriented software. It represents the level in which we positioned a given class
in an inheritance hierarchy within an object-oriented software system, i.e., the
distance between its current position and the root of its inheritance tree. Then,
the farther a class is from the root of the inheritance tree, the higher the value of
these metrics. According to Chidamber and Kemerer [1994], intense inheritance
hierarchy trees are indicators of complex structures, and consequently, impair the
comprehension of the module and make it more prone to error.

• NOC (Number of Children) also refers to the inheritance hierarchy and indi-
cates the number of immediate subclasses that a particular class has. Chidamber
and Kemerer [1994] highlight that the higher the value of this metric for a class,
the higher its reuse level. Besides, components with high values of NOC require
more attention in terms of tests to avoid that errors introduced into the superclass
propagate over its subclasses.

• LCOM (Lack of Cohesion Of Methods) is related to cohesion in object-
oriented software. It uses the notion of degree of similarity of methods to measure
the level of cohesion of a class and how complex it has been designed. According
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to Chidamber and Kemerer [1994], methods that access one or more attributes
inside their respective class are considered similar methods. They - then defined
the calculation of LCOM as the difference between the similar and non-similar
methods in a class. In this way, if all possible pairs of methods existing in the
class share the attributes, the value of LCOM will be 0. On the other hand, if
none pair of methods have common attributes, the LCOM of that class will be 1.
Therefore, the range values of this metric vary from 0 to 1. The higher its value
in a class, the less the cohesion degree of this respective class.

• CBO (Coupling Between Object) measures the number of classes that it
calls through an association relationship. The association between two classes
may occur when one of them accesses a variable or method defined in the other.
This metric reflects the coupling of a component and establishes its degree of
dependency inside a software system. Chidamber and Kemerer [1994] indicate
that classes with a high level of coupling have a low potential of reuse and are
more prone to change when other parts of the system are modified.

• RFC (Response For Class) indicates the number of methods that may execute
in response to a message received by an object of the class. RFC gives its result
considering the class methods sum and the set of methods triggered by each
method belonging to the analyzed class. Chidamber and Kemerer [1994] point
out that the higher the RFC in a class, the more complex and challenging it will
be to test and maintain it. Like CBO, RFC also indicates the coupling of a class.

2.1.2 MOOD Metrics

The MOOD metrics were proposed by Abreu and Carapuça [1994] to measure the
following aspects of the object-oriented software: inheritance hierarchy, encapsulation,
coupling, polymorphism, and software reuse. An essential aspect of the MOOD metrics
is that the ratio always computes them. The numerator reflects the quantity of a par-
ticular aspect extracted in the software, and the denominator represents the maximum
possible value of that aspect. Therefore, this group of metrics will always vary between
0 and 1. The following metrics composes this group:

• MIF (Method Inheritance Factor) consists of the ratio between the sum of
the number of inherited methods in all system classes by the total number of
methods existing. Its result indicates the use of inheritance in the systems, and
a high value for this metric implies that the system has a high level of reuse.
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• AIF (Attribute Inheritance Factor) is similar to MIF, but it considers at-
tributes instead of methods. To compute AIF, we have to divide the number of
inherited attributes of the system by the total number of attributes existing in
the system. As well as to MIF, AIF values close to 1 indicate a high degree of
reuse of data.

• COF (Coupling Factor) evaluates the coupling of the system as a whole. Abreu
and Carapuça [1994] consider this metric as a client-server relationship, where
there is a class responsible for providing services and the other type responsible
for consuming services. To compute COF, we have to divide the number of real
connections in the systems, considering the sum of the class connections, by the
largest possible number of connections for the software. When a software system
is completely connected, the value of this metric is 1.

• PF (Polymorphism Factor) defines the ratio between the number of poly-
morphism cases identified in the system and the maximum number of possible
polymorphism cases in the system. Values close to 1 indicate a great use of poly-
morphism, while values close to 0 show that the system has a low consumption
of this resource.

• MHF (Method Hiding Factor) indicates the percentage of methods hidden
in the system. It is a metric computed to the system level that consists of
dividing the number of hidden methods by the total number of methods from the
systems. Abreu and Carapuça [1994] indicate that this metric reflects the level of
encapsulation applied in a software system, i.e., how hidden the implementation
details are. The higher the number of methods hidden, the closer this metric will
be to 1. The closer to 0 the value of this metric, the more the number of public
methods to the system’s users. Such a scenario is an indication of a low degree
of encapsulation of the system.

• AHF (Attribute Hiding Factor) is similar to MHF, but it considers hidden
attributes rather than hidden methods. We compute this metric by the ratio
between the number of hidden attributes in all classes of the system and the
total number of attributes defined in the system. AHF values close to 1 show
that the system is well hidden concerning its internal data. On the other hand,
values close to 0 indicate that the system has a high quantity of public attributes.
Ferreira [2006] suggests that attribute hiding is essential to ensure the indepen-
dence of classes in object-oriented software and force the system to establish a
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communication channel based on the class interface and not on their internal im-
plementation. Therefore, for software quality, the ideal scenario is that systems
have values equal or as close to 0 as possible.

2.1.3 Martin Metrics

This section brings the metrics proposed by Martin [1994]. To propose these metrics,
Martin [1994] defined a concept that he labeled of class category. A class category is
a cohesive group of classes in which: if one class existing in this category is changed,
the other classes also have a high chance of being changed; classes are reused together;
classes have a common goal or perform interdependent functions. This group is com-
posed of five metrics, and we describe them as follows.

• AC (Afferent Coupling) indicates the number of external classes that consume
the classes services of the classes belonging to a particular category. According
to Martin [1994], the higher the value of AC, the higher the coupling level.

• EC (Efferent Coupling) measures the number of internal classes to a given
category that depends on external classes to this category. According to Martin
[1994], this metric is another indicator of coupling. The higher its value, the
higher the level of coupling in the group.

• I (Instability) depends on the value of afferent and efferent coupling to be
extracted. Its computation appears in Equation 2.1.

I = EC

AC + EC
(2.1)

According to Martin [1994], this metric ranges from 0 to 1. The values of I close
to 1 indicate that the analyzed category of classes is more unstable, while close
to 0 shows that the analyzed category of classes is more stable.

• A (Abstractness) is the ratio between the number of abstract classes within a
category and the total number of classes belonging to this category.

• RMD (Normalized Distance) measures the distance of instability (I) and
abstraction (A) by using the Equation 2.2.

RMD = |A + I + 1| (2.2)
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Martin [1994] defined a region of balance between instability (I) and abstrac-
tion (A) that he labeled as Main Sequence. Then, by extracting RMD, we may
measure how far the relationship between these two concepts is from the Main Se-
quence region. The higher this distance, the lower the degree of balance between
instability and abstraction.

2.1.4 Complexity Metrics

This section presents some metrics often used in the literature as indicators of software
complexity.

• Fan-in measures the number of classes that reference a particular class, for in-
stance, given a class X, the fan-in of X would be the number of classes that call
X by referencing it as an attribute, accessing some of its attributes, or invocating
some of its methods. Fan-in is a metric at the class level. According to Som-
merville [2012], high values of fan-in mean that the class is strongly coupled to
the remainder of the project. Then, changes in this class will impact extensive
repercussions and changes in other parts of the program.

• Fan-out is the number of other classes referenced by a particular class. In other
words, given a class X, the fan-out of X is the number of classes called by X
via attributes reference, method invocations, or object instances. As well as fan-
in, fan-out is also a metric at the class level. According to Sommerville [2012],
high value for this metric suggests high complexity for the analyzed component
arising from the complexity of the control logic necessary to coordinate the called
elements.

• MLOC (Method Lines of Code) defines the number of lines of code existing
in a method from a particular class.

• SIX (Specialization Index) aims to evaluate how much a particular class
overwrites the superclass behavior [Lorenz and Kidd, 1994]. SIX is a secondary
metric that requires three other primary metrics for its computation. We extract
SIX by the ratio between the number of overwritten methods (NORM), weighted
by the level of the class in an inheritance hierarchy (DIT), and the total number
of methods (NOM). Equation 2.3 shows how to compute SIX in a given class.

SIX = NORM ×DIT

NOM
(2.3)
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• NBD (Nested Block Depth)measures the depth of nested blocks in a method.
Nested blocks occur when control structures, such as conditional (if) and repeti-
tion loops (for and while), are inserted one inside each other. NBD is indicative
of complexity since the increased nested block in the source code makes it harder
to understand.

• VG (McCabe Cyclomatic Complexity) evaluates the complexity of methods
in object-oriented software [McCabe, 1976]. VG aims to measure the number of
independent execution paths in source code. For this purpose, a graph models
the source code’s execution flow, where the nodes consist of the command blocks,
and the directed edges indicate the execution flow from a block to another. For
instance, suppose that there is a source code with two command blocks, A and B,
and its execution flow goes from A to B. Modeling this code as a graph, we would
have two nodes, A and B, and a directed edge that connects them in the direction
from A to B. After modeling the source code by a graph, the computation of VG
metric appears in Equation 2.4.

V G = N − C − E (2.4)

In equation 2.4, N consists of the number of nodes, E indicates the number of
edges, and C is the number of connected components in the graph.

2.1.5 Lorenz and Kidd’s Metrics

This section brings the set of metrics defined by Lorenz and Kidd [1994]. This group
of metrics aims to evaluate some static aspects of a software system, e.g., inheritance
hierarchy, size, and the classes’ internal properties. A total of ten metrics composes
it, and all of them, except PAR, is at the class level. We present and discuss each of
them, except SIX already described in Section 2.1.4, as follows:

• NCA (Number of Afferent Connections) refers to the coupling aspect; it
measures the number of classes using a particular class’s services.

• NMP (Number of Public Methods) computes the number of public methods
that a particular class has. With NMP, we may characterize the size of a class
and the number of services it provides.
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• NAP (Number of Public Attributes) measures the number of public at-
tributes existing in a class. As well as NMP, NAP expresses the size aspect of
the software.

• NOA (Number of Attributes) computes the total number of attributes be-
longing to a particular class. NOA considers the public, private, and protect
attributes at the moment of its calculation. The literature also refers to this
metric as the number of fields (NOF).

• NOM (Number of Methods) computes the total number of methods belong-
ing to a class. NOM considers public, private, and protect attributes in its count.

• NORM (Number of Overridden Methods) refers to the inheritance hierar-
chy. It measures the number of methods of a particular class overwritten by its
subclasses.

• NSF (Number of Static Attributes) computes the number of attributes
declared as static in the classes.

• NSM (Number of Static Methods) computes the number of methods de-
clared as static in the classes.

• PAR (Number of Parameters) measures the total number of parameters
regarding each method belonging to the analyzed project.

2.1.6 LI’s Metrics

According to Li [1999], the set of metrics proposed by Chidamber and Kemerer [1994]
has shortcomings and does not cover some relevant aspects of the software during the
measurement process. Li [1999] proposed six object-oriented software metrics aiming
to fill the gaps left open by the CK metrics. The metrics defined by Li [1999] evaluates
the inheritance hierarchy, size, complexity, and coupling aspect in the software. We
present and describe each of them as follows:

• NAC (Number of Ancestor Classes) DIT inspired this metric. As described
in Section 2.1.1, DIT aims to identify the number of classes that influence a
particular type by computing the distance of that component to the root of the
inheritance tree. Li [1999] argues that in software developed in a programming
language that does not provide support to multiple inheritances, e.g., Java, DIT
provides efficient measures. However, the same does not occur in software built-
in languages that provide this resource, e.g., C++, since DIT could not discern
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if, at a particular level, a class inherits from one or more classes. Then, DIT
may not return the correct quantity of ancestral types in this situation. Due to
this, Li [1999] proposed NAC that aims to measure the number of classes that
precede a particular class in an inheritance hierarchy, and not only the number
of levels. With this metric, the author believes that supplied this deficiency of
DIT for software developed with the support of multiple inheritances.

• NDC (Number of Descendent Classes) is similar to NOC, but with a little
change in its purpose. NOC measures the number of immediate subclasses of
a particular class in an inheritance hierarchy. Then, considering that class A
has a class B as its direct child and class B has many subclasses as successors
in the inheritance tree, the children of B are not considered in the NOC value
of the class A. The NDC metric also measures the number of descendants of a
given class. However, it analyzes all posterior levels of the analyzed type in the
inheritance hierarchy and not only its immediate posterior level.

• NLM (Number of Local Methods) captures the number of methods belong-
ing to a class accessible for others, e.g., public methods. According to Li [1999],
NLM refers to the size aspect. However, high values of this metric may indicate
that the software has a low cohesion and a high degree of coupling.

• CMC (Class Method Complexity) aims to summarize the internal complex-
ity of all methods existing in the class. This metric concept is very similar to the
WMC, but they differ in the way how they express complexity in the methods.
While the classic implementation of WMC attributes the value 1 to each method
in a class and makes WMC equal to the number of methods (NOM), CMC at-
tributes each method’s complexity as its lines of code (MLOC). According to Li
[1999], CMC provides a better view of the development and maintenance costs
of a class than the WMC.

• CTA (Coupling Through Abstract Data Type) determines the coupling
level of a particular class in terms of data. According to this metric, class A has
a data coupling with a class B when A uses B to define its attributes. Class A is
coupled through abstract data type with B because it instantiates B as one of its
objects. Therefore, CTA reflects the total number of classes that were defined as
attributes in a particular class.

• CTM (Coupling Through Message Passing) aims to provide a view of
the coupling in a class regarding the level of services that it consumes from
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another. With this metric, class A has a service coupling with a class B when A
invokes one or more methods defined in B. Therefore, CTM indicates the total
of messages that a particular class shares with other types through the method
call mechanism.

2.1.7 Malik & Chhillar Metrics

Malik and Chhillar [2011] proposed four software metrics at the class level to assess
the object-oriented software quality. These metrics express the complexity, coupling,
and cohesion aspects.

• CMCM (Class Member Complexity Measure) reflects the sum of the total
number of attributes and methods public and protected in a particular class.
According to Malik and Chhillar [2011], the high values of this metric indicate
that the component has a low encapsulation level.

• CICM (Class Inheritance Complexity Measure) considers that C is a class
in the system, and Ai, such as 1 ≤ i ≤ n, consists of the set of parents classes of
C. Then, we extract CICM by the following way:

CICM(C) = n +
n∑

i=1
CICM(Ai) (2.5)

• CALM (Class Aggregation Level Measure) measures the level of coupling
in the class. It is expressed by the ratio between the number of attributes defined
as types in other classes and the total number of attributes defined in the classes.
The higher the value of this metric, the more coupled the class is.

• CCOM (Class Cohesion measure) evaluates cohesion and is very similar to
the LCOM. Equation 2.6 exhibits the computation of CCOM.

CCOM = N1 + N2 + ... + Nm

m× (n− 1) (2.6)

In Equation 2.6, Ni = N1 + N2 + ... + Nm consists of the total number of meth-
ods that use the same attribute in the class, m consists of the total number of
attributes, and n is the total number of methods in the class.
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2.1.8 Mishra’s Metrics

Mishra [2012] proposed two metrics for evaluating the inheritance hierarchy in object-
oriented software systems. We present and detail them as follows.

• CCI (Complexity of Class by Inheritance) expresses the complexity of a
particular class by taking into account the complexity of its antecedents in a
inheritance hierarchy. Mishra [2012] defined the current metric, considering that
when we include a class in an inheritance hierarchy with other entities, it takes
on the characteristics of its antecedents. To compute this metric, consider that
C is a class in a system, and Mi, such as 1 ≤ i ≤ n, consists of the set of methods
in this class. Besides, consider that C is a subclass of the set of superclasses
denominated by Aj, such as 1 ≤ j ≤ m. Then, to compute CCI(C), we would
have to apply Equation 2.7:

CCI(C) =
n∑

i=1
complexity(Mi) +

m∑
j=1

CCI(Aj) (2.7)

CCI is the sum of the complexity of the methods existing in the analyzed class,
plus the sum of the CCI values of all its superclasses. According to Mishra [2012],
high values for this metric indicate class more complex and prone to fail.

• ACI (Average Complexity by Inheritance) consists of an arithmetic average
of the CCI values regarding all classes of the software. It is measured at the
system level and provides a global view of the complexity level of the software
systems..

2.1.9 Dynamic Metrics

The metrics presented in the previous section are static. Static metrics characterize
some software properties, such as coupling and cohesion, by analyzing the software’s
static aspects, e.g., source code. However, they may not assess the dynamic behavior
of an application at runtime since the execution environment influences it. Because of
this, another category of software metrics, labeled as dynamic metrics, was created to
solve this problem.

Dynamic metrics consist of a category of software metrics that consider the ex-
ecution traces of the software code or its executable models to capture the dynamic
behavior of the software system [Chhabra and Gupta, 2010]. For a better understanding
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of the difference between dynamic and static metrics, Table 2.1 provides a comparison
between these two categories of metrics.

Table 2.1: Comparison between static and dynamic metrics. Source: Chhabra and
Gupta [2010]

Static Metrics Dynamic Metrics
Simpler to collect Difficult to obtain
Available at the early stages of software
development

Accessible very late in software develop-
ment lifecycle

Less accurate than dynamic metrics in
measuring qualitative attributes of soft-
ware

Suitable for measuring quantitative as
well as qualitative attributes of software

Deal with the structural aspects of the
software system

Deal with the behavioral aspects of the
system also

Inefficient to deal with dead code and
OO features such as inheritance, poly-
morphism and dynamic binding

Dynamic metrics are capable to deal with
all object-oriented features and dead code

Less precise than dynamic metrics for the
real-life systems

More precise than static metrics for the
real-life systems

This section enlists and discusses the leading and most relevant suites of dynamic
metrics existing in the literature. For better comprehension, we describe the dynamic
metrics suites according to their analyzed properties as follows.

2.1.9.1 Coupling

We describe here the dynamic metrics suites proposed to measure the coupling dimen-
sion.

• Yacoub’s Metrics refer to two dynamic metrics, Export Object Coupling
(EOC) and Import Object Coupling (IOC) [Yacoub et al., 1999]. These metrics
measure the coupling property in object-oriented software systems. The main
goal of these metrics is to express the intensity of the interactions between two
objects at the runtime in a given scenario, i.e., during the execution of a software
feature. Then, considering two objects oi and oj in a scenario x, the EOCx(oi, oj)
is computed by dividing the number of messages sent from oi to oj by the total
number of messages exchanged during the execution of the scenario x. Similarly,
the IOCx(oi, oj is extracted by dividing the number of messages that oi received
from oj by the total number of messages exchanged during the execution of the
scenario x.



2.1. Object-Oriented Software Metrics 21

• Arisholm’s Metrics extend the concepts of import and export couplings defined
by Yacoub et al. [1999]. Besides that, Arisholm et al. [2004] propose a suite of 12
different dynamic coupling metrics. They consider three orthogonal dimensions:
direction, mapping, and strength to define these metrics, and each dimension
establishes a different characteristic in their concept.

To facilitate understanding the concept of these metrics, Arisholm et al. [2004]
defined their nomenclature considering the orthogonal dimensions. Each dynamic
metric starts with EC or IC to indicate its direction and discern between im-
port coupling and export coupling. In this suite, import coupling indicates that
the metric will measure the messages sent from an object or class, whereas export
coupling will compute the messages received by an object or class. The next letter
in the metrics nomenclature indicates the mapping of the metric. It may be O,
which designates that the metric refers to an object, or C, which specifies that it
refers to a class. The last letter in the metric name associates its strength, which
may assume three possibilities: D (Dynamic messages), M (Distinct method in-
vocations), and C (Distinct classes). The strength of the metric defined as D
expresses that the object or class is sending or receiving a dynamic message. The
M strength shows that the metric is computing invocations of methods. The C
indicates that the metric is measuring the use of a class.

An example of a dynamic metric proposed by Arisholm et al. [2004] is IC_OC.
By the name of this metric, we may infer that it computes the number of distinct
server classes used by the methods of a particular object.

• Mitchell’s Metrics evaluate the coupling between objects at different levels.
However, according to Mitchell and Power [2005, 2006], these metrics defined by
Arisholm et al. [2004] do not measure the degree of the coupling. Then, Mitchell
and Power [2005, 2006] tried to fill this gap by proposing a suite composed of
seven dynamic metrics, of which three were based on the CBO metric and aim
to measure the class coupling level at the runtime. The other four metrics aim
to characterize the dynamic coupling at the object level.

• DCM (Dynamic Coupling Metric) measure the influence of one object on
others over some time. Hassoun et al. [2004a,b, 2005] proposed this metric. It is
important to highlight that the authors defined this metric for assessing software
built on declarative control languages that allow the writing of specifications
of the program behavior. To extract this metric, it is necessary to observe the
history of the object, i.e., the sequence of its states in time. Then, during a period
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provided before starting to collect this metric, DCM is extracted by the sum over
all program execution steps and the sum over the total number of objects coupled
to the analyzed object.

2.1.9.2 Cohesion

We describe here the dynamic metrics suites proposed to measure the cohesion dimen-
sion.

• Gupta’s Metrics involve two dynamic cohesion metrics: Strong Functional
Cohesion (SFC) and Weak Functional Cohesion (WFC). Gupta and Rao [2001]
based on the concept of dynamic slicing to propose these metrics and consider
both the definition and uses of the class attributes in the methods, instead of only
use as occurring in the static cohesion metrics. Dynamic slicing is an approach
that computes the set of statements, the program slice, whose execution may
affect the value of a given variable at some point of interest [Weiser, 1984]. The
authors define SFC as that measure arising out of def-use pairs of each common
type to the dynamic slices of all the outputs variables. Similarly, the WFC
consists of the measure arising out of def-use pairs of each type found in dynamic
slices of two or more output variables.

• Mitchell’s Metrics refer to Runtime Simple LCOM (RLCOM) and Runtime
Call-Weighted LCOM (RWLCOM) dynamic cohesion metrics. Mitchell and Power
[2003, 2004] based on the concept of LCOM to propose these two metrics. RLCOM

computes the cohesion in a class by the same way that the static LCOM, but
it uses the variable instances that have been accessed at runtime instead of con-
sidering the pairs of methods that use common variables in their source code.
RWLCOM is an extension of RLCOM , and it weights each accessed variable in-
stance by the number of times that it is accessed at runtime.

2.1.9.3 Complexity

We describe here the dynamic metrics suites proposed to measure complexity.

• Munson’s Metrics measure the complexity of a particular component by ex-
tracting the product of its static relative complexity and its probability of execu-
tion. Khoshgoftaar et al. [1993]; Munson and Khoshgoftaar [1996] defined these
dynamic metrics. The relative complexity of a module consists of classifying the
components’ various complexity metrics in a few independent complexity domains
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and then mapping these domains to a single metric Munson and Khoshgoftaar
[1992]. The probability of execution of an element implies the actual traces of
execution of the software obtained using profiling tools.

• Yacoub’s Metrics measure the operational complexity of objects. Yacoub et al.
[1999] proposed this dynamic complexity metric. It uses the McCabe Cyclomatic
Complexity (VG), which is computed at the object level. To extract it, we have
to identify all possible scenarios of the software, i.e., the states that it may assume
at runtime, and compute the cyclomatic complexity for the analyzed object in
each scenario, as well as the probability of each scenario being executed. We
summarize the final value of the dynamic complexity metric proposed by Yacoub
et al. [1999] by the sum of the products between the cyclomatic complexity of
an object in each scenario and the probability of that scenario occurs at software
runtime. Equation 2.8 illustrates the computation of this metric.

OCPX(oi) =
|X|∑
x=1

PSx × ocpxx(oi) (2.8)

In Equation 2.8, |X| is the total of scenarios that the software may assume, x is
a specific scenario, PSx consists of the probability of a given scenario xi occurs
at runtime, ocpxx(oi) indicates the cyclomatic complexity of an object in the
scenario xi.

2.2 Time Series
In statistics and econometrics, a time series consists of a collection of observations made
sequentially over time [Morettin and Toloi, 2006; Bowerman and O’Connell, 1993]. In
general, the observations in a time series are serially correlated, and the main concern
when working with this kind of data is to identify the pattern that better describes their
behavior. Time series are often used in several areas, such as economy, meteorology
and medicine, to describe the phenomenon of interest over time and build forecasts for
future values to support the decision-making in certain situations [Morettin and Toloi,
2006].

Formally, we write a time series (Z) as Zt = {z1, z2, ..., zT}, where T indicates
the size of the time series [Morettin and Toloi, 2006]. According to Morettin and Toloi
[2006], time series may be discrete and continuous. A discrete time series consists of
observations made in fixed time intervals, i.e., observation intervals that belongs to a
discrete set, e.g., the number of failures per software release. In contrast, a continuous
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time series consists of observations continuously made over a specific time, e.g., daily
temperature values.

In Software Engineering, there are works in which time series is applied as se-
quence of values regarding software metrics with the purpose to support the defect
prediction [Couto et al., 2014] and analysis of the internal structures of software over
the evolution process [Herraiz et al., 2006; Koch, 2007; Israeli and Feitelson, 2010].

During the creation of a time series, the observation intervals must be equally
spaced out over the total time period in both continuous and discrete series. In cases
where the time series interval is not equally spaced out, the final analysis of this data
may lead to erroneous conclusions if specific forms of modeling able to deal with this
problem are not chosen.

2.3 Final Remarks
There are many software metrics proposed in the literature, especially metrics for
measuring object-oriented software. Among the several suites available, the ones most
known and used are the CK Chidamber and Kemerer [1994]. In this study, we focused
on investigating coupling, cohesion, size, and inheritance evolution. Due to this, we
applied the following software metrics: fan-in and fan-out for coupling, DIT and NOC
for inheritance hierarchy, and NOA and NOM for size.

Time series consists of a collection of observations made sequentially over time.
In this work, we apply time series of software metrics to track how a particular software
aspect evolves.

Chapter 3 presents a Systematic Literature Review (SLR) that aims to provide
an overview of the state-of-the-art on software evolution. It also details the main lines
of research on this topic by showing its main findings from the studies and gaps that
have not yet been covered.
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Systematic Literature Review

This chapter presents a systematic literature review (SLR) aiming to identify and ana-
lyze relevant primary studies on software evolution, and compile the content produced
on this topic in a broader view. We considered in this SLR studies that focus on
the evolution of the source code and structure of software systems to: (i) provide an
overview about the state-of-the-art regarding software evolution; (ii) identify the main
research lines existing within this topic; (iii) extract and characterize the main types
of the datasets on software evolution provided in the literature; and (iv) identify the
main findings and gaps in the literature.

According to Kitchenham and Charters [2007], a systematic literature review
(SLR) consists of a vehicle of identifying, evaluating, and interpreting all the relevant
evidence of a specific topic, issue, or phenomenon of interest. Besides, the goals and
motivations of an SLR presented by Kitchenham and Charters [2007] are:

• summarizing the technology or studied area to understand its limitations and
benefits

• identifying gaps that were not yet covered by studies in a particular area

• providing new structures, directing new areas of research

• studying technologies and theories to validate theses or raise new hypotheses for
studies.

A SLR differs from the non-systematic process because it is carried out formally
and rigorously [Biolchini et al., 2005]. This formalism and rigor of the SLR force the
process of conduction of this study to follow a well-defined protocol and establish a
precise sequence of steps.

25
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According to Biolchini et al. [2005], we must define the systematic literature
review by a central research question that reflects its primary goal, and express it via
terms and concepts regarding the proposed question. One of the main advantages
of a SLR is to support other researchers to reproduce the defined methodology and,
consequently, judge the steps and decisions taken in the research.

The studies that contribute to the conduction of the SLR and answer the defined
research questions are known as primary studies [Kitchenham and Charters, 2007]. A
secondary study is the one that reviews and analyzes the primary studies to identify
and establish conclusions via results that are common between them. Due to this, the
systematic literature review is considered a secondary study.

A systematic literature review protocol may be summarized into three steps:
planning, execution, and analysis of the results. The planning consists of establishing
the SLR goal and defining protocol with the steps that will be followed during the
execution of the process. The execution consists of applying the protocol described in
the planning phase. This phase is responsible for seeking the primary studies, filtering
them using inclusion and exclusion criteria, and extracting the relevant information to
answer the research questions. Finally, the analysis of the results is the phase where
the data obtained from the primary studies will be analyzed and summarized to answer
the research questions and publish the results.

Biolchini et al. [2005] proposed a model composed of five steps to guide researchers
in conducting systematic literature reviews as follows.

1. Definition of research questions. It consists of clearly defining the research
question of the SLR, considering the goal of the research.

2. Selection of sources. It aims to determine the search repositories where the
primary studies will be sought. Besides, it specifies other decisions regarding the
primary studies’ language and definition of the search string for finding papers
in electronic databases.

3. Selection of the studies. It consists of defining the inclusion and exclusion
criteria and how the studies will be selected.

4. Data extraction. It aims to apply the inclusion and exclusion criteria in the
primary studies and detail the selection process.

5. Summarization of the results. It consists of analyzing the relevant informa-
tion extracted from the primary studies and presenting their main findings.
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We organize the remainder of this chapter as follows. Section 3.1 presents the
planning phase of the SLR. Section 3.2 describes the execution phase by presenting the
steps and results obtained during the selection process of primary studies. Section 3.3
presents the main findings of this SLR by answering the proposed research questions.
Section 3.4 shows the main threats to the validity of this study and discusses the
main decision we have taken to mitigate them. Section 3.5 concludes this chapter by
highlighting the main findings and contributions provided by this SLR.

3.1 Planning
The planning phase describes the protocol used for conducting the SLR. The activities
carried out in this phase are (i) definition of the research questions; (ii) selecting the
databases to search the primary studies; (iii) construction of the search string; (iv)
applying the inclusion and exclusion criteria.

3.1.1 Research Questions

The research questions (RQ) aim to investigate the state-of-the-art of software evolution
and understand how the researchers have stated this topic in the literature.

Initially, we defined two general-purpose research questions.

RQ1: How has the literature approached studies on software evolution?

RQ2: What are the main features of the datasets used in studies on software evolution?

During the execution of this SLR, we realized that researchers had approached
software evolution in different ways. Therefore, we classified the studies based on
their focus and identified five research lines that we named as categories in this study.
They are (i) applications; (ii) applicability of Lehman’s laws; (iii) evolution of quality
attributes; (iv) evolution of software structure; and (v) model. To detail these cat-
egories, we defined some specific research questions for each one of them. Table 3.1
summarizes the specific research questions of the present study.

3.1.2 Electronic Databases

Table 3.2 lists the electronic databases we used in this work. We chose them because
they are virtual libraries with an extensive collection of full works and metadata from
published researches at conferences and journals of great importance to the academic
community.
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Table 3.1: Specific Research Questions.

Categories Research Questions (RQ)
Applicability of
Lehman’s Laws

RQA.1: Which Lehman’s Laws have been validated?
RQA.2: In which application contexts the Lehman’s laws
have been analyzed?

Application RQB.1: What are the software evolution applications pro-
posed or used in literature?
RQB.2: What are the main features of these applications?

Evolution of
Quality Attributes

RQC.1: Which quality attributes have been analyzed in
studies on software evolution?
RQC.2: Which software metrics have been considered to
analyze the evolution of software quality attributes?

Software Structural
Evolution

RQD.1: Which dimensions of software structure have
been evaluated in the literature?
RQD.2: What are the main insights reported in the liter-
ature regarding software structure evolution?

Models
RQE.1: What are the types of models on software evolu-
tion proposed in the literature?
RQE.2: Which techniques have been used in the models
of software evolution?
RQE.3: Which metrics have been defined in the literature
to assess the accuracy of software evolution models?
RQE.4: Which software aspects have been considered in
software evolution models?

Table 3.2: Electronic digital libraries.

Databases Addresses
ACM Digital Library http://dl.acm.org/
Compendex (Engineering Village) https://www.engineeringvillage.com
IEEE Xplore http://ieeexplore.ieee.org/
Scopus http://scopus.com/
Web of Science http://webofknowledge.com/

3.1.3 Search String

To identify relevant papers about the evolution of software structure and code, we
formulated a search string with terms related to the topic stated in this SLR. Initially,
we defined the keywords “software evolution”, “software structure”, and “source code”
as the main terms of our expression. After that, we searched for synonyms of these
terms to refine this expression and identify relevant and coherent studies able to answer
the proposed research questions. The final search string is defined as follows.

http://dl.acm.org/
https://www.engineeringvillage.com
http://ieeexplore.ieee.org/
http://scopus.com/
http://webofknowledge.com/
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(“software evolution” OR “system evolution” OR “program evolution” OR
“structural evolution”) AND (“architecture” OR “software structure”
OR “system structure” OR “program structure”) AND (“code” OR “software
code” OR “source code” OR “system code”)

3.1.4 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria allow classifying each primary study as a candidate
to be included or excluded from the SLR [Kitchenham and Charters, 2007]. As an SLR
may involve many studies, we limited the scope of selecting only complete papers and
ignoring short papers or documents classified as theses or dissertations. We decided
to do so because the authors usually publish as full papers the studies regarding dis-
sertations and theses. Besides, a short paper usually presents emerging results. It is
essential to highlight that we consider full papers as being documents containing six
pages or more. Table 3.3 presents the inclusion and exclusion criteria we have defined
in this study.

Table 3.3: Inclusion and Exclusion Criteria.

Inclusion Criteria
Papers published in English
Full papers
Papers published in Computer Science
Papers available in electronic format
Papers published in conferences and journals
Papers related to the topic investigated in this study

Exclusion Criteria
Duplicate studies
Documents classified as tutorials, posters, panels, talks, lectures, round
tables, theses, dissertations, book chapters and technical report
Papers that cannot be found

3.2 Execution

The execution phase consists of applying the search string to the electronic databases
to identify candidate studies to be analyzed, as well as filtering the studies by using
the inclusion and exclusion criteria to select only the relevant studies.
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3.2.1 Search Process

We performed the search process from June 20th, 2019 to June 25th, 2019. We did not
define any constraint during the search, and therefore, considered all studies returned
by non-filter databases per publication year. Table 3.4 presents the results regarding
the number of papers found in each electronic database. We obtained a total of 5,709
documents at the end of this process.

Table 3.4: Studies obtained after the search process.

Database Studies Returned
ACM Digital Library 101
Compendex (Engineering Village) 246
IEEE Xplore 150
Scopus 5,117
Web of Science 95
Total 5,709

3.2.2 Papers Selection Process

As we identified a large number of papers in the search phase, the selection process
consisted of five steps. The steps focused on the inclusion and exclusion criteria,
including the concern with each study according to its content. We describe these
steps used as follows.

Step 1 - Exclusion of duplicate studies. In this step, we removed duplicate
studies, ensuring that only one register of a given paper remains. To do so, we analyzed
the title and authors of the documents and discarded the duplicate entries. This step
removed 129 papers, resulting in 5,580 to Step 2 analyze.

Step 2 - Exclusion of documents that are not papers. It consisted of
removing documents that not classified as complete papers. Therefore, this step dis-
carded the ones classified as tutorials, posters, panels, lectures, round tables, theses,
dissertations, book chapters, technical reports, and short papers. It is essential to
highlight that we consider a complete paper as being the one with six pages or more.
Articles under six pages were considered short papers and removed here. This step
removed 411 documents, resulting in 5,169 studies to Step 3 analyze.

Step 3 - Metadata Reading. In this step, we analyzed the title and the ab-
stract of the 5,169 papers obtained in Step 2 to select the ones relevant to this SLR.
Although the papers’ title and abstract provide an idea about the subject treated in
the paper, it is sometimes necessary to make a more in-depth reading of the paper to
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identify whether it is relevant. To avoid hasty decisions and exclude relevant docu-
ments, we classified as “dubious” the studies we were not able to select by reading the
metadata. Step 4 analyzed such papers. At the end of Step 3, we identified 34 relevant
papers already selected for this SLR, and 70 “dubious” ones.

Step 4 - Diagonal reading of dubious papers. This step aimed to review
the “dubious” documents found in Step 3 to be included or not in this SLR. To identify
these occurrences, we performed a diagonal reading of the papers. The diagonal reading
consisted of analyzing the introduction, topics, and conclusion of the papers to find
more details. At the end of this step, we concluded that 26 out of the 70 “dubious”
studies were relevant and therefore, we included them in this SLR.

Step 5 - Snowballing. Searching in the electronic database does not guarantee
that all relevant studies related to a particular topic would be retrieved. To mitigate
this limitation, we carried out a snowballing procedure. Snowballing is a search ap-
proach that uses paper citations as a reference list to identify additional studies that
are not found in the search process [Wohlin, 2014]. We may perform the snowballing
process in two different ways: backward and forward. Backward snowballing refers to
using the reference list of the papers to identify other studies. Forward snowballing
refers to identifying new articles by analyzing the studies that cite a given study. We
adopted the backward snowballing strategy and analyzed the reference list of 34 papers
selected after Step 3, and 26 papers selected after Step 4. In total, we reviewed 2,104
references and selected 70 new studies in this step.

In summary, Steps 1 - 4 received as input the following quantity of primary
studies, respectively: (i) 5,709; (ii) 5,580; (iii) 5,169; and (iv) 70 primary studies. At
the end of Step 4, we identified 60 relevant studies being 34 after Step 3 and 26 after
Step 4. Finally, Step 5 received 2,104 references from 60 papers already selected from
the previous steps. This step recovered 70 studies, resulting in 130 papers selected for
this SLR. Figure 3.1 summarizes the selection process. The selected primary studies
were analyzed and summarized to answer the research questions

3.2.3 Data Extraction

We found 130 papers about the evolution of software structure and source code. The
publication of these selected documents goes from 1979 to 2019. We read and summa-
rized them to extract their primary information that answers the research questions.
We made the data extracted from the primary studies selected to the SLR available
on the website of our research group1.

1http://llp.dcc.ufmg.br/Publications/indexPublication.html

http://llp.dcc.ufmg.br/Publications/indexPublication.html
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Figure 3.1: The filtering process carried out for selecting the primary studies.

3.3 Results

This section presents the results of this SLR. We report the results in seven sections
according to the subject of the research questions investigated in this work:

• how the literature has approached research on software evolution;
• which characteristics of the datasets the studies on software evolution have used;
• details of studies that have investigated the applicability of Lehman’s Laws;
• applications developed for software evolution analysis;
• studies on the evolution of quality attributes;
• studies on software structure evolution, and models for software evolution.

3.3.1 Approaches on Software Evolution

This section answers RQ1: How has the literature approached studies on software
evolution?

With RQ1, we aim to identify the way the literature approached research on
software evolution. To answer this research question, we analyzed each primary study’s
goal and classified them as some particular categories according to their content. We
found five categories of studies on software evolution: (i) applicability of Lehman’s laws;
(ii) application; (iii) evolution of quality attributes; (iv) software structure evolution;
and (v) model.

Applicability of Lehman’s laws is a category that involves studies, which analyze
if systems from different contexts have been developed to follow the laws of software
evolution proposed by Lehman [1996]. We identify a total of 11 studies regarding this
category. Lehman’s laws, proposed in the mid ’90s, are based on the evolution of large
systems. The main objective of studies in this category is to check and validate the
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presence of these laws in other systems and contexts and identify novel insights and
systems’ behavior over their evolution.

The application category consists of studies that propose and develop ways or
environments, such as tools, strategies, techniques, plugins, among others, that support
users’ analysis and exploration of the evolution of software systems across multiple
dimensions or versions. It comprises 34 studies and is the one that presented the
most significant number of studies in this SLR. There are several input forms used
by software evolution applications, such as source code, class diagram, and commit
history. However, the source code is the most used input form.

The evolution of the quality attributes category covers studies investigating how
internal quality attributes behave over the software systems’ evolution. Internal quality
attributes are properties, such as size, coupling, and cohesion, among others related
to the development of the process or product [Sommerville, 2012]. This category is
composed of 26 papers. Most studies of this category have analyzed the behavior of
the quality attributes in terms of growth or decrease. Those studies’ primary purpose
is to identify alternatives and strategies that help developers improve the quality of
the software systems.

The software structure evolution category consists of studies that explore the
evolution of a particular dimension of the software system. Dimension refers to aspects
such as architectural design, bad smells, code vulnerabilities, software quality, technical
debt, among others. Out of the 130 papers identified in this SLR, 27 refer to this
category.

The model category covers studies that analyze evolution data from particular
properties of software systems and propose models to describe, represent, or predict
how these properties evolve. Although there are some different software evolution
models, several studies have proposed models to predict the defects in later software
releases [Krishnan et al., 2011b; Ratzinger et al., 2007; Raja et al., 2009; Ohlsson et al.,
2001; Khoshgoftaar et al., 1999; Arisholm and Briand, 2006; Shatnawi and Li, 2008].
Such models intend to allow developers and researchers to understand how software
evolution occurs and serve as a powerful tool for monitoring possible problems that
may arise in the software life cycle. This category consists of 32 studies and is the
second in number of studies in this SLR.

Summary of RQ1: We conclude, in response to RQ1, that software evolu-
tion has been studied in five different approaches: (i) applicability of Lehman’s
laws, (ii) application, (iii) evolution of quality attributes, (iv) software structure
evolution, and (v) model.
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3.3.2 Software Evolution Datasets

This section answers RQ2: What are the main features of the datasets used in studies
on software evolution?

RQ2 aims to identify and characterize the datasets the researchers have used
to study software evolution. The response to this question is crucial as it can point
out datasets that may be used in future studies and depict how diverse the samples
considered are. We describe the datasets in three characteristics: (i) number of systems
that compose them; (ii) type of dataset, i.e., if the dataset was proposed by the authors
of the paper or the papers’ authors used dataset made available by third-parties in the
literature; and (iii) the time frame considered by the dataset.

Initially, we investigated the distribution of the number of systems that compose
the datasets. We summarize the results by category in Figure 3.2 and Table 3.5. By
Figure 3.2 and Table 3.5, we conclude that the datasets are not composed of a large
number of systems. We identified that, in the median, datasets had been composed
of 1 to 6 systems, and in 75% of the cases, they presented not more than 14 systems.
Regarding the Application and Applicability of Lehman’s Laws categories, the largest
dataset is composed of 23 systems.
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Figure 3.2: Distribution of the number of systems considered by the software evolution
datasets. APP: Application; ALL: Applicability of Lehman’s Laws; EQA: Evolution
of Quality Attributes; SSE: Software Structure Evolution; MOD: Model.

Although our results show that, in general, the datasets on software evolution
are not composed of a large number of systems, we also identified some outliers that
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Table 3.5: Descriptive analysis of the distribution of the number of systems existing in
the software evolution datasets.

Category 0% 25% 50% 75% 100%
Application 1.00 1.00 1.00 3.00 23.00
Applicability of Lehman’s Laws 1.00 1.75 5.50 7.75 23.00
Evolution of Quality Attributes 1.00 1.00 2.00 13.25 8,621.00
Software Structure Evolution 1.00 1.00 3.00 6.50 403,097.00
Model 1.00 1.00 1.00 8.00 8,621.00

indicate the existence of some datasets with a large sample of systems. For instance, in
the Evolution of Quality Attributes, Software structure Evolution, andModel categories,
we found datasets with 8,621 [Koch, 2007]; 403,097 [Kikas et al., 2017]; and 8,621
[Koch, 2005] systems, respectively. These values do not appear in the box plot chart in
Figure 3.2, because we limited its y-axis at 150 for better visualization. However, when
we present the statistics of the complete set in Table 3.5, we may observe these broadly
significant values. Among these three found datasets, two of them [Koch, 2005, 2007]
are not available online. However, the one proposed by Kikas et al. [2017] contains data
about package dependency networks regarding the evolution of systems developed in
JavaScript2, Ruby3, and Rust4. It is publicly available5 for access and use by other
studies.

We classified the dataset used by each study as “own” or “third-party”, i.e., a
dataset that was created by the respective paper’s authors, and a dataset that was not
created by the paper’s authors. We identified that the vast majority of the studies used
a dataset created by their authors, 115. Only ten studies used a third-party dataset.
We also found five papers that did not mention any information about the origin of
the dataset in their study. The “third-party” datasets found in this SLR are:

• SourceForge [Koch, 2005; Stewart et al., 2006; Koch, 2007];

• Apache ecosystem [Bavota et al., 2013; Digkas et al., 2017];

• GitHub [Kikas et al., 2017; Fernandez and Bergel, 2018];

• Helix [Yazdi et al., 2014];

• PROMISE [Alenezi and Zarour, 2015];
2https://www.javascript.com/
3https://www.ruby-lang.org/
4https://www.rust-lang.org/
5https://github.com/riivo/package-dependency-networks

https://www.javascript.com/
https://www.ruby-lang.org/
https://www.rust-lang.org/
https://github.com/riivo/package-dependency-networks
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• Qualitas Corpus [Singh and Ahmed, 2017]

Qualitas Corpus6, PROMISE7, and Helix8 are software evolution repositories built
to support studies on software evolution, while GitHub9, SourceForge10 and Apache
ecosystem11 are source code hosting platforms with a version control system. Although
they do not provide structured information about software evolution, it is possible to
retrieve such information by creating scripts or tools.

Finally, we analyzed the data time frame that the studies have defined in their
analysis. Initially, we collected the time frame regarding the information extracted
from each system that composes the datasets. Then, for each specific date composed
by year and month (YYYY-MM), we counted the monthly number of systems whose
information refers to the respective date. For instance, suppose that a paper analyzed
information about a system “A” from 2010-01 to 2012-12. In this case, we increment
one in the number of papers for 2010-01, 2010-02, 2010-03, until 2012-12, since the time
frame has covered all these specific times. It is essential to highlight that we included
only the time frame of studies, which specified year and month. We excluded from our
analysis the time frame that did not follow this pattern. Then, in total, this analysis
considered the systems’ time frame from 47 out of the 130 primary studies identified
in the SLR. Figure 3.3 summarizes our analysis by a heat map chart where the lines
represent the months, and the columns, the years.

Figure 3.3: Number of systems considered in the studies by month/year.

6http://qualitascorpus.com/
7https://code.google.com/p/promisedata/
8http://www.ict.swin.edu.au/research/projects/helix/
9https://github.com/

10https://sourceforge.net/
11http://archive.apache.org/dist/

http://qualitascorpus.com/
https://code.google.com/p/promisedata/
http://www.ict.swin.edu.au/research/projects/helix/
https://github.com/
https://sourceforge.net/
http://archive.apache.org/dist/
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Analyzing Figure 3.3, we observe that the datasets consider data from 1981 to
2018. However, the period from 2001 up to 2010 concentrates most of the data collected
from the systems. Although there are evolution data collected between 2016 and 2018,
this period covers a low number of systems. Therefore, this finding reveals the need to
build datasets with more current data on software evolution.

Summary of RQ2: We identified that the software evolution datasets are
composed of a small number of systems in general. We also found that the
researchers usually define their software evolution datasets to carry out their
studies on software evolution instead of using third-party datasets. Finally, we
identified that most of the datasets are composed by data collected from 2001 to
2010.

3.3.3 Applicability of Lehman’s Laws

This section answers RQA.1 and RQA.2 based on the 11 studies found for this category.
RQA.1: Which Lehman’s Laws have been validated?
RQA.1 aims to identify the laws, proposed by Lehman [1996], the ones considered

in studies of software evolution. Figure 3.4 summarizes the number of studies that have
considered each Lehman’s Law. The graphic shows the number of studies that have
found results, which validate the law, did not validate it, and the inconclusive ones.
The graphic also indicates the number of studies that did not consider the respective
law.
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Figure 3.4: Frequency of validation of the Lehman’s laws.
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Analyzing Figure 3.4, we observed four Lehman’s laws that have mostly attracted
attention from researchers in the literature. They are:

1. continuing change (1st law)
2. increasing complexity (2nd law)
3. stability, conservation of familiarity (5th law)
4. continuing growth (6th law)
5. declining quality (7th law).

In contrast, the other four laws are less investigated. They are:

1. self-regulation (3rd law);
2. conservation of organizational (4th law)
3. feedback system (8th law).

1st Lehman’s law indicates that systems need to be in progressively change and
adaptation over the software evolution to be more satisfactory [Lehman, 1996]. The
6th Lehman’s law conjectures that due to the need to maintain user satisfaction, a
software system needs to grow along the software lifetime [Lehman, 1996]. Among
the most investigated laws, the 1st and the 6th laws have been validated. All papers
that analyzed these laws have confirmed them. Few studies have considered the 3rd

Lehman’s law; however, most of them confirmed its occurrence. This law indicates that
the system evolution process is self-regulating, and the maintenance process controls
the growth rate [Lehman, 1996].

The 2nd and 7th Lehman’s laws state that unless a system has never been sub-
mitted to maintenance work, its complexity tends to increase, and its quality tends to
decline over time [Lehman, 1996]. Regarding the 2nd law, although studies have pointed
out that it tends to occur over time, there is some evidence that the occurrence of this
law may be sensitive to some contexts. For instance, three studies analyzed in this
SLR checked the occurrence of the 2nd Lehman’s law in the evolution of mobile ap-
plications [Gezici et al., 2019; Zhang et al., 2013; Li et al., 2017], and none of them
was able to confirm it. Besides, one of them compared the increasing complexity in
two different contexts, mobile and desktop applications, and identified that the growth
trends in these contexts are different. The studies analyzed in this SLR show results
that contradict what the 7th law says since 44% of the works that considered that law
have pointed out that the software quality does not tend to decline over time, and
therefore, they did not confirm this law.
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4th Lehman’s law defines that the average global rate of activity in an evolving
system is invariant over the product’s lifetime [Lehman, 1996]. The 5th Lehman’s law
suggests that the familiarity with evolving software systems is conserved, i.e., their
content of successive releases is not statistically invariant [Lehman, 1996]. Observing
Figure 3.4, we may see that a large number of papers, around 55% and 45%, do not
investigate these laws, respectively. This fact is due to the difficulty of measuring
activity rate and content familiarity. The studies that considered those laws have not
found evidence of their occurrences.

Finally, the 8th Lehman’s law conjectures that the evolution process depends on
feedback systems to achieve significant improvement [Lehman, 1996]. This law has
not been much analyzed in the literature, and its occurrence is inconclusive. We may
observe in Figure 3.4 that only three papers investigated it, and all of them disagreed
with each other about the occurrence of this law into the software evolution process.
Therefore, the investigation of this law is still open in the literature.

Summary of RQA.1: In response to RQA.1, we conclude that the literature
has confirmed the 1st, 3rd, and 6th Lehman’s laws. On the other hand, the results
found so far do not confirm the 4th, 5th, and 7th laws. The 2nd law is partially
supported since it seems to be sensitive to some applications context. Finally,
the results of 8th Lehman’s law are inconclusive, and its confirmation is open in
the literature.

RQA.2: In which application contexts the Lehman’s laws have been analyzed?
Table 3.6 shows the application contexts investigated in each study analyzed in

this SLR. We identified five different types of contexts that investigated Lehman’s laws.
They are: (i) mobile application (MA); (ii) open-source software (OSS); (iii) eclipse
third-party plugins (ETPP); (iv) proprietary software (PS); and (v) C library (CLIB).

In most cases, the studies about the Lehman’s laws have chosen open-source
systems in their analysis. A total of 45% of those studies have considered OSS projects,
while 27% considered the mobile application of the papers. Just a small number of
studies have considered the other three contexts. Each of them was investigated by
only one paper, which corresponds to 9% of the sample.

Summary of RQA.2: Lehman’s laws have been investigated in five contexts:
(i) mobile application; (ii) open-source software; (iii) eclipse third-party plugins;
(iv) proprietary software; and (v) C library. It also indicates that open-source
software and mobile application are the most scenarios in the literature to inves-
tigate Lehman’s laws.
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Table 3.6: Contexts in which the Lehman’s laws have been investigated.

Paper[Ref.] MA OSS ETPP PS CLIB
Gezici et al. [2019] •
Israeli and Feitelson [2010] •
Businge et al. [2010] •
Alenezi and Almustafa [2015] •
Barry et al. [2007] •
Lee et al. [2007a] •
Gonzalez-Barahona et al. [2014] •
Mens et al. [2008] •
Zhang et al. [2013] •
Li et al. [2017] •
Xie et al. [2009] •
Total 3 5 1 1 1

3.3.4 Application on Software Evolution

This section answers RQB.1 and RQB.2 based on the 34 studies found for this category.
RQB.1: What are the software evolution applications proposed or used in liter-

ature?
RQB.1 aims to identify the software evolution applications that the papers have

proposed. Although we identified 34 works regarding the application category, two of
them report the same application. Due to this, we identified a total of 33 applications
and summarized them in Table 3.7 with their respective references.

We grouped the applications into two categories. The first one consists of tech-
niques, approaches, or tools for online use, download, or replication. In this category,
we found 16 applications. The second category consists of 17 applications proposed
in the literature, but they are not available online for use or download. Although we
identified a set of 33 applications, their authors did not define any name for six of
them. In these cases, we labeled them as “Application name not mentioned”.

Summary of RQB.1: We identified 33 applications, of which 16 are available
online for use or download, and 17 are unavailable.

RQB.2: What are the main features of these applications?
RQB.2 investigates the software evolution applications’ main features by consider-

ing their application types and the programming languages used for their development.
Initially, we answer this research question by discussing the type of software evolution
applications proposed in the literature. We identified six types: (i) visualization; (ii)
technique; (iii) framework; (iv) metric; (v) plugin; and (vi) desktop tool. Figure 3.5
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Table 3.7: List of software evolution applications found in this SLR.

Applications Available Online or for Download
Dominance Relation [Burd and Munro, 1999]; Similarity [Merlo et al., 2002];
EvoLens [Ratzinger et al., 2005]; CVSscan [Voinea et al., 2005]; Churrasco
[D’Ambros and Lanza, 2008]; Changing lines of code method (CLOC) [Baer
and Zeidman, 2009]; egypt [Terceiro et al., 2009]; Chronos [Servant and Jones,
2012]; Product Evolution Tree [Kanda et al., 2013]; ETGM algorithm [Kpod-
jedo et al., 2013]; Mervin [Zoubek et al., 2018]; Application name not men-
tioned [Kemerer and Slaughter, 1999; Nikora and Munson, 2004; Xing and
Stroulia, 2004; Stopford and Counsell, 2008; Sangwan et al., 2010]
Applications Proposed in Literature but Unavailable Online or for Download
Evolution Matrix [Lanza and Ducasse, 2002]; BEAGLE [Tu and Godfrey,
2002]; Gevol [Collberg et al., 2003]; Evolution Spectrograph [Wu et al.,
2004b,a]; RelVis [Pinzger et al., 2005]; JDEvAn [Xing and Stroulia, 2005];
Evolution Storyboard [Beyer and Hassan, 2006]; Evolution Radar [D’Ambros
et al., 2006]; EvoGraph [Fischer and Gall, 2006]; YARN [Hindle et al., 2007];
VERSO [Langelier et al., 2008]; Code Flows [Telea and Auber, 2008]; Replay
[Hattori et al., 2013]; AniMatrix [Rufiange and Melancon, 2014]; IHVis [Rufi-
ange and Fuhrman, 2014]; MultiPile [Fernandez and Bergel, 2018]; Application
name not mentioned [Chevalier et al., 2007]

ranks the types of the main features found in this SLR, considering the number of
applications proposed for each of them.
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Figure 3.5: Types of applications that have been proposed in the literature.

Analyzing the available data from the 34 papers regarding the application cate-
gory, we observed that 50% of the studies, 17 in total, proposed software visualization
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tools. These tools aim to provide information about the internal structure or architec-
ture of the software system via static, interactive, animated, or 3-D representations. In
software evolution, the data have been extracted by versions, and representation has
been projected for each of them. Such tools help monitor the changes in the software
structure and help developers decide how to improve it. Another type of software evo-
lution application proposed is technique. We identified that 17% of the papers, six in
total, developed new techniques to support analysis and assessment in the evolution of
a particular system. We consider as a technique in this study any approach, evaluation
method, or algorithm proposed in the analyzed papers.

A framework is a type of application proposed in less quantity than software
visualization tools and techniques. We found that 12% of the studies, four in total,
developed frameworks to support software evolution. The studies have also proposed
some metrics to help developers to measure the quality of evolution of software sys-
tems. We identified three works, 9% of the analyzed papers, that designed this type
of application. The proposed metrics are (i) dominance relation, (ii) changing lines
of code method (CLOC), and (iii) similarity. Dominance relation aims to assess the
code maintainability from the software over time [Burd and Munro, 1999]. Changing
lines of code method consists of analyzing lines of code that are modified, added, or re-
main constant over the software lifetime [Baer and Zeidman, 2009]. Similarity aims to
quantify the similarities of code fragments between the software releases [Merlo et al.,
2002].

The other two types of applications proposed in the literature are plugins and
desktop tools. Plug-in is an application with some particular functionalities which run
together with more extensive programs. Usually, the plugins have been developed to
run with Eclipse12. The Desktop tool is an application that we may download, and in
some cases, installs on a computer so that it may run locally. Figure 3.5 shows that
6% of the analyzed studies, two in total, produced plugins and desktop tools.

Furthermore, we investigated the programming languages the studies have used
to develop the proposed applications. Figure 3.6 summarizes those programming lan-
guages, as well as the number of applications that used them. For the studies that
proposed applications, but did not implement them, we labeled the programming lan-
guages as “Not mentioned” in Figure 3.6.

We observed that, in many cases, the studies propose applications, but do not
implement them. We identified five programming languages used to develop the appli-
cations. In this sequence, Java and C++ have been predominant in the researchers’

12https://www.eclipse.org/

https://www.eclipse.org/
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Figure 3.6: Programming languages used to develop software evolution applications.

preference and choice. The other three programming languages, C, Smalltalk, and SWF
(Shockwave Flash), are less popular. SWF is a light file format for web applications
that allow inserting multimedia content on websites [Schaeffer, 2009].

Summary of RQB.2: We identified six types of applications: visualization,
technique, framework, metric, plugin, and desktop tool. The literature points
out the software visualization tools as the most common type of application
developed. Most of the studies proposed an application but did not implement it.
Among the studies that proposed and implemented their applications, Java and
C++ are the programming languages that have been most used by researchers
to develop their applications.

3.3.5 Evolution of Quality Attributes

This section analyzes the evolution of quality attributes to answer RQC.1 and RQC.2
based on the 26 studies found for this category.

RQC.1: Which quality attributes have been analyzed in studies on software evo-
lution?

As stated in Section 3.3.3, the systems continually change and adapt over their
evolution to become more satisfactory and meet all the needs required by their users.
1st Lehman’s law describes this behavior, and the studies have confirmed it. Because
of this phenomenon, many studies on software evolution have concentrated on investi-



44 Chapter 3. Systematic Literature Review

gating how the software quality has evolved via some properties denominated internal
quality attributes. This investigation line is one of the most explored in software evo-
lution literature. Therefore, our goal with RQC.1 is to identify all the internal quality
attributes considered in studies on software evolution. We identified 14 internal quality
attributes that have been studied in this context. Table 3.8 summarizes the findings.

As we may observe in Table 3.8, the evolution of systems’ size (SI) is the mostl
investigated, possibly due to the high variability of metrics available to measure this
attribute, such as lines of code and number of files. These studies aim to understand
how the system size behave over time and identify a pattern to characterize size evolu-
tion. All studies have found that systems’ size grows over time, although there is still
no conclusion regarding this growth pattern. For instance, Godfrey and Tu [2000]; Her-
raiz et al. [2006]; Koch [2007]; Gonzalez-Barahona et al. [2009] argue that open-source
systems grow super-linearly, whereas Capiluppi and Ramil [2004]; Izurieta and Bieman
[2006]; Capiluppi et al. [2007] indicate that both open-source and proprietary software
follow a sub-linear growth. Robles et al. [2005] suggest that open-source software follow
a linear growth pattern, and both super-linearity and sub-linearity occur exceptionally.
Herraiz et al. [2007] identified that the distribution of size values over time follows a
Pareto distribution and, then, this type of distribution may be a candidate method
to represent the size evolution pattern of the software. Given that there is no clear
growth pattern that explains the evolution of the size, future work should explore this
subject more.

Complexity (CP) has also been widely investigated in the literature. Studies re-
garding the complexity evolution have diverged about the complexity growth pattern.
For instance, Antinyan et al. [2013] indicated that the complexity increases fastly,
whereas Stewart et al. [2006] found that software complexity decreases as the soft-
ware grows in size. Some studies have aimed to identify these divergences analyzing
factors that impact the complexity of growth or decrease to explain these two phenom-
ena. Stewart et al. [2006]; Terceiro et al. [2012]; Capiluppi and Ramil [2004]; Herraiz
et al. [2007] identified the existence of a relationship between the size and complexity
attributes. Consequently, the system growth in size directly impacts the complexity
increase or decrease over time. Terceiro et al. [2012] also present evidence that other
variables, such as developer experience and change diffusion, affect the complexity
growth over time. Besides, concerning the relationship between size and complexity,
Capiluppi et al. [2007] found that the use of the agile method in the software devel-
opment process smoothes the evolution, and avoids problems of increasing complexity
over the lifetime.

Some internal quality attributes had a little investigation in the literature of
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Table 3.8: Summary of internal quality attributes extracted from the papers regarding
the evolution of the quality attributes category.

Paper[Ref.] CH CO ST MD CP SI DS ACT ARW SE IH DW RE MT
Singh and
Ahmed [2017]

• •

Yu and Ra-
maswamy
[2009]

•

Alenezi and
Zarour [2015]

•

Antinyan et al.
[2013]

•

Grigorio et al.
[2015]

•

Stewart et al.
[2006]

•

Capiluppi
et al. [2004b]

• •

Thomas et al.
[2014]

•

Capiluppi and
Ramil [2004]

• • • •

Al-Ajlan [2009] •
Terceiro et al.
[2012]

•

Nasseri et al.
[2008]

•

Capiluppi
et al. [2007]

• •

Vasa et al.
[2009]

•

Herraiz et al.
[2006]

•

Krishnan et al.
[2011a]

•

Robles et al.
[2005]

•

Godfrey and
Tu [2000]

•

Darcy et al.
[2010]

• •

Thomas et al.
[2009]

• •

Gonzalez-
Barahona
et al. [2009]

•

Koch [2007] •
Izurieta and
Bieman [2006]

•

Capiluppi
et al. [2004a]

•

Hatton et al.
[2017]

•

Herraiz et al.
[2007]

• •

Total 2 2 1 1 8 13 1 1 1 1 1 1 1 1
CH: change; CO: coupling; ST: stability; MO: modularity; CP: complexity; SI: size; DS:
directory structure; ACT: activity; ARW: anti-regressive work; SE: software evolution in
general; IH: inheritance hierarchy; DW: distribution of wealth; RE: reliability; MT: main-
tainability.
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software evolution. We found no more than two works that have studied the evolution
of each of these attributes; Table 3.8 shows them. In the following we describe their
central insights. Singh and Ahmed [2017] identified that coupling (CP) and change
(CH) are correlated over time, and classes with high coupling in systems may be less
fault-prone and may not lead to more changes. They consider change as the likelihood
of this event occur in parts of a software system and characterize this aspect by using
public interface change (PIC) and implementation changes (IMC) metrics. Thomas
et al. [2014] also investigated change and found that there are some ways to analyze
this property over time via change activities, such as corrective evolution, internal
improvements, and new features. Thomas et al. [2009] investigated the evolution of
coupling (CO) in the Linux system and if this attribute impacts the maintainability
(MT) evolution. They concluded that coupling grows linearly, and its growth does
not affect the Linux maintainability. Yu and Ramaswamy [2009] pointed out that the
evolution of software stability (ST) is more affected by the types of functions existing in
the software than by the system environment. Alenezi and Zarour [2015] investigated
the evolution of modularity (MD) considering two systems and identified evidence that
this quality attribute does not improve over time. Capiluppi et al. [2004b] analyzed
the evolution of directory structure (DS) and found that the number of folders has an
increasing trend, and the number of files per level increases continuously. They also
identified that the depth of the directories tree tends to stabilize over time, whereas
the directories tree’s width tends to increase. Capiluppi and Ramil [2004] investigated
the evolution of activity (ACT) and anti-regressive work (ARW). They define activity
as the support and modifications that the systems receive from their developers and
maintainers. Anti-regressive work is the portion of the software which has gone through
refactoring activities to reduce the complexity. They identified that both activity and
anti-regressive work attributes present ripples and cyclic trends.

Al-Ajlan [2009] studied the evolution of Eclipse metrics in open-source software.
Since the author did not specify any attribute, we called their analysis software evolu-
tion in general (SE). Al-Ajlan [2009] concluded that software systems grow in modules
and lines of code. Nasseri et al. [2008] investigated the evolution of inheritance hier-
archy (IH) and identified a strong tendency of classes to be added at the levels 1 and
2 of the hierarchy. Vasa et al. [2009] analyzed the distribution of wealth (DW) over
time. They defined wealth as high concentrations of values in specific locations of the
system. The distribution of wealth consists of a comparison of metric values regarding
several components of the software. They identified that the distribution of wealth,
in terms of the Gini coefficient, changes little between subsequent releases. Krishnan
et al. [2011a] studied the evolution of reliability (RE) in the software product line. In
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their work, they define reliability as continuity of correct service. They were not able
to identify if the reliability has improved as the product line matures. However, they
found that the reliability may be impaired when on-going change stays higher than
commonly supposed in software. Finally, Merlo et al. [2002] examined the evolution
of similarity (SM) in the Linux Kernel, in terms of code fragments or modules. They
describe the similarity as similar code fragments shared by different systems.

Summary of RQC.1: We identified 14 quality attributes studied in the context
of software evolution. Table 3.8 summarizes all identified quality attributes and
shows the papers that investigated each one of them. Although we identified a
large number of quality attributes that have been investigated in studies on soft-
ware evolution, little is known about the pattern of evolution of these properties
and how they evolve.

RQC.2: Which software metrics have been considered to analyze the evolution
of software quality attributes?

With RQC.2, we aim to compile the software metrics that have been used to
measure and analyze the evolution of the quality attributes identified in RQC.1. For
this purpose, we identified the metrics described in the works that considered the evo-
lution of quality attributes. We identified a set of 72 software metrics and summarized
them in Tables A.1 and A.2, located in the Appendix of this paper. Figure 3.7 shows
the mapping between quality attributes and software metrics that we found. The cases
in which the mapping between an attribute of quality and a software metric has been
filled with gray in the table indicate that none of the analyzed papers reported a metric
for that attribute. On the other hand, if the mapping between an attribute of quality
and a software metric is filled with another color, the papers pointed relation between
them. The more to the right the color is in the color scale, the higher the number of
papers that reported the mapping.

Figure 3.7: Mapping between software metrics and quality attributes.
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As shown in Figure 3.7, there is a large quantity and diversity of metrics used
to measure the quality attributes in software evolution works. Among all quality at-
tributes, complexity (CP) was the one that presented the most substantial quantity
of software metrics. We identified 22 software metrics for it. Size (SI), distribution of
wealth (DW), and modularity (MO) have been measured by 12, 10, and 9 metrics.

In general, the studies define their own metrics to measure the quality attributes
over time. Only one primary study mentioned most of the relations between quality
attributes and metrics. Figure 3.7 also reveals patterns regarding the use of some
software metrics of size and complexity quality attributes. The lines of code (LOC) is
the most used metric to measure the size in studies on software evolution. The number
of files (NOFL) is another essential size metric, but it is less used than LOC. We also
identified that number of comment lines (CMTL) and total size in KB (SIZKB) are
size metrics, which have been used as a complement to LOC and NOFL. Regarding
complexity, the primary studies have used McCabe’s complexity (VG) as the primary
complexity metric. CplXLCoh and Halstead’s volume (HVOLU) had been rarely used.

Summary of RQC.2: We identified 72 software metrics used in the literature
to analyze internal quality attributes’ evolution. Tables A.1 and A.2 show the
complete set of metrics we found, and Figure 3.7 represents the mapping between
the software metrics and the quality attributes. Some popular metrics, such
as lines of code and number of files, frequently appear in studies on software
evolution. However, those works do not present a pattern for measuring internal
quality attributes.

3.3.6 Software Structure Evolution

This section analyzes how software structure evolution has been studied, answering
RQD.1 and RQD.2 based on the 27 studies found for this category.

RQD.1: Which dimensions of software structure have been evaluated in the lit-
erature?

RQD.1 consists of identifying the dimensions related to software structure ana-
lyzed by studies on software evolution. Table 3.9 summarizes the dimensions we iden-
tified in this SLR, followed by the number of studies in parentheses that investigated
them, and the reference of each work.

We identified ten subjects in the context of software evolution. The studies have
often chosen to investigate the evolution of systems’ internal structure, the occurrence
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Table 3.9: Software structure dimensions investigated in studies about software struc-
ture evolution.

Software Structure Dimensions
Internal Structure (8) [Gall et al., 1997; Barry et al., 2003; Li et al., 2008;
Wang et al., 2009; Savić et al., 2011; Wang et al., 2012, 2013; Kikas et al.,
2017]; Bad smell (7) [Antoniol et al., 2002; Olbrich et al., 2010; Saha et al.,
2013; Chatzigeorgiou and Manakos, 2014; Rani and Chhabra, 2017; Kanwal
et al., 2018, 2019]; Architectural design (5) [Tahvildari et al., 1999; Ferreira
et al., 2012; German et al., 2013; Decan et al., 2019; Spinellis and Avge-
riou, 2019]; Co-evolution between types of coupling (1) [Yu, 2007]; Faults
(1) [Ostrand and Weyuker, 2002]; Function side effects (1) [Alnaeli et al.,
2016]; Internal quality (1) [Longo et al., 2008]; Project inter-dependencies
(1) [Bavota et al., 2013]; Technical debt (1) [Digkas et al., 2017]; Vulnera-
bilities (1) [Massacci et al., 2011]

of bad smells, and architectural design. In total, eight, seven, and five papers report
results about these three dimensions, respectively. For the other seven dimensions, we
found only one paper that analyzed each one of them.

Summary of RQD.1: The literature has studied the software structure evolu-
tion via ten dimensions of software structure. The dimensions more frequently
investigated are the internal structure, bad smell occurrence, and architectural
design. Co-evolution between types of coupling, faults, function side effects,
internal quality, project inter-dependencies, technical debt, and vulnerabilities
have also been considered, however, on a smaller scale.

RQD.2: What are the main insights reported in the literature regarding software
structure evolution?

RQD.2 investigates the main findings reported in the literature regarding software
structure evolution. To organize our discussion, we grouped the papers according to
the dimension they consider.

Most papers have investigated the evolution of the internal organization of soft-
ware systems. Gall et al. [1997] analyzed the internal structure of proprietary software
over its historical development and found that the system’s internal structure and its
subsystems differ over time. Barry et al. [2003] analyzed the internal structure of 23
systems and identified four groups of volatility patterns that they tend to follow over
their lifetime. They consider volatility as a multi-dimensional phenomenon, which
involves:

• change in the software size (amplitude)
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• frequency with which systems are changed (periodicity), and
• variation of the system behavior considering amplitude and periodicity (disper-

sion).

They concluded that not all systems follow the same volatility patterns. Kikas
et al. [2017] studied the package dependency networks of some ecosystems to under-
stand their main characteristics over the evolution. They concluded that the analyzed
ecosystems are alive and growing. They also found that the ecosystems have become
less dependent on a single popular package over time, and the vulnerability to the
removal of the most popular package is increasing.

Moreover, several studies have identified some rules about the evolution of the in-
ternal software structure using complex networks theory. Those studies have concluded
that the evolution of open-source software projects follows scale-free and small-world
properties [Li et al., 2008; Wang et al., 2009; Savić et al., 2011; Wang et al., 2012,
2013]. The preferential attachment property has also been pointed out as a feature
followed by these systems and a valuable property to explain how the networks evolve
into a scale-free state [Wang et al., 2009; Savić et al., 2011; Wang et al., 2013]. Besides,
Li et al. [2008] identified the other two essential rules. They found that the growth of
nodes and links in the object-oriented software network is harmonic, and the clustering
coefficient of late and old nodes are close over time.

Bad smells are symptoms existing in the structure or source code of a system that
reflects poor design quality [Fowler et al., 1999]. The studies have analyzed how some
types of bad smells have evolved over the software lifetime and extracted insights about
their evolution. Olbrich et al. [2010] identified that the occurrences of the God Class
and Brain Class bad smells over the software evolution have a negative effect regarding
change and defects. They also found that God Class has a significant and positive
correlation with the system size, and the emergence of this smell becomes more likely
when a system grows. Rani and Chhabra [2017], and Chatzigeorgiou and Manakos
[2014] analyzed the impact of Feature Envy, Switch Statements, Long Method, and
God Class bad smells on the software evolution. In both studies, the authors concluded
that these bad smells increase over the system evolution, and they accumulate as the
system matures. Chatzigeorgiou and Manakos [2014] also found that these bad smells
disappear because of the side effects of adaptive maintenance and not due to targeted
refactoring activities. Antoniol et al. [2002] analyzed the evolution of Duplicated Code
in the Linux kernel and concluded that this bad smell has not increased and deteriorated
the Linux structure. Kanwal et al. [2018, 2019] studied and compared the evolution of
structural clones and simple clones. According to them, simple clones are textual of
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syntactically similar code fragments, whereas structural clones are recurring patterns of
simple clones in software systems. Besides, although structural clones frequently change
less than simple clones, structural clones have more inconsistent changes. Therefore,
structural clones require more intelligent management than simple clones.

Some papers had been based on a high level of systems granularity, such as ar-
chitectural design, to extract new insights about their evolution. Tahvildari et al.
[1999] investigated the best way to characterize the evolution patterns of open-source
systems at the architectural level. They classified the evolution patterns in three cat-
egories: interface evolution, implementation evolution, and structure evolution. They
concluded that these three patterns had been better characterized by using software
metrics. Fan-in and fan-out are the metrics that best characterize the evolution of
an interface. McCabe’s complexity, Halstead effort, and the number of comments best
characterize implementation evolution. The overall distance best characterizes software
structure evolution. Ferreira et al. [2012] evaluated the evolution of software systems in
a macroscopic view using the Little House model. They identified that classes within
two components of Little House, called LSCC and Out, suffer substantial degradation
over evolution. German et al. [2013] studied the evolution of the R ecosystem’s core
and user contributions packages. They concluded that:

(i) R ecosystem is growing super-linearly over time with a robust set of core packages

(ii) user-contributed packages typically are smaller and contain less documentation
than core ones

(iii) the size of a package remains stable over time, and

(iv) the packages have few dependencies.

In the same line, Decan et al. [2019] detailed the evolution of package dependency
networks regarding some relevant ecosystems. They identified that the networks tend
to grow over time both in size and in the number of package updates. They also found
that complexity does not decrease and tends to remain stable or increase over time.
Spinellis and Avgeriou [2019] studied the evolution of Unix from a software architec-
ture perspective. They identified that Unix growth, in terms of size, has happened
uniformly. Regarding complexity, they found that Unix grew at the beginning of its
development, but reduced and controlled over its lifetime.

Finally, studies have investigated other dimensions, such as faults, technical debt,
internal quality, among others, to identify novel patterns and insights about software
evolution. For instance, Yu [2007] studied the correlation between evolutionary and
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reference couplings, and he concluded that there is a linear correlation between these
two types of coupling. Ostrand and Weyuker [2002] investigated the distribution of
faults over the evolution of an extensive industrial software system. They found that
faults concentrate in a small number of files and a small percentage of code mass, and as
the system evolves, the faults become increasingly concentrated in smaller portions of
the code. They also identified a small number of post-releases that presented faults over
the system evolution. Alnaeli et al. [2016] examined the prevalence and distribution
of function side effects over software evolution to determine the main factors that
have caused this problem. The authors concluded that modification of global variables
and passing parameters by reference are the main actions that have resulted in side
effects in functions. Longo et al. [2008] investigated how software quality has been
impacted by corrective evolution, refactoring, and new functionalities. They found that
corrective evolution, the addition of new functionalities, and one type of refactoring
called coding convention adoption have not impacted the quality of the systems. On
the other hand, another type of refactoring called adoption of new frameworks and
libraries is the factory that has a significant impact on the software’s internal quality.
Bavota et al. [2013] observed some ecosystems’ evolution to analyze how the project
inter-dependencies behave and change over time. They identified that the projects and
their dependencies increase continuously, and the dependencies follow different trends.
Besides, they found that some projects tend to upgrade their dependencies when some
critical changes are released, and the impact of the upgrade is usually low. Digkas
et al. [2017] analyzed the evolution of technical debt in some open-source projects
and concluded that the technical debt has increased with the growth of the size, the
number of issues, and complexity metrics. They also identified that some frequent and
time-consuming types of technical debt are related to improper exception handling and
code duplication. Massacci et al. [2011] investigated the interplay of the source code
from Firefox and some known vulnerabilities over time. They identified that many
vulnerabilities of Firefox versions had been discovered when people in their after-life
well use these versions. They also found that a possible explanation to the after-life
vulnerabilities in Firefox is slow code evolution, that is, much code retained between
released versions.

Summary of RQD.2: We compiled the main insights the studies have found
about the software structure evolution. For a better understanding, we guided
our discussion by considering the dimensions identified in RQD.1.
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3.3.7 Model

This section analyzes the papers regarding the model category to answer RQE.1,
RQE.2, RQE.3, and RQE.4 based on the 32 studies found for this category.

RQE.1: What are the types of models on software evolution proposed in the
literature?

To answer this research question, we initially analyzed the papers presenting
models to identify the proposed models and their primary goals and features. We
identified the following types of software evolution models: (i) characterization; (ii)
descriptive; (iii) prediction; and (iv) simulation. Figure 3.8 ranks the types of software
evolution models identified in this SLR, considering the number of papers obtained for
each one of them.

Characterization: it is a category of models that aims to build a general abstrac-
tion that may represent the internal structure of a software system and provide an
overview of how it evolves. It contains eight studies in total and was the one that
presented the second largest number of studies. The structure of this type of model
is composed of unambiguous components, which may provide a sufficiently precise
representation of particular properties and their relationship. For instance, some soft-
ware properties that are frequently defined and modeled by characterization models
are classes, methods, and packages. Due to this, many studies have used graph-based
approaches to build this type of model.

Descriptive: it consists of a category that aims to describe, understand, or explain
how internal phenomena or events regarding the system behave over time. It contains
six studies in total and was the one that presented the third largest number of studies.
Besides, it allows developers and researchers to characterize the evolution pattern of
systems and extract properties or insights that may help them to improve the structure
and quality of the systems. The studies have usually applied statistical or mathematical
methods to analyze the data and generate the model.

Prediction: the models of this category aim to predict the occurrence or presence
of a particular system event in the future. These models consider the evolution pat-
tern of one or more predictor variables in trying to determine the probability of some
phenomena occurs, such as the presence of defects, increasing system size, co-change,
among others. This category is the one that presented the most number of studies, 15
in total.

Simulation: this category consists of mathematical business models that try to
reproduce a real-life system via software by combining mathematical and logic concepts.
The simulation model contains entities and activities. The entities refer to roles played
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within the model, such as developers, software modules, and machines. The activities
consist of tasks, such as processing, code implementation, and refactoring. This type
of model has been very little explored in the literature. In this SLR, we identified
only three studies published in sequence by the same authors. In the first studies,
they used simulation methods and techniques to compare the size evolution between
open-source and proprietary software and understand how the main characteristics
from the evolution pattern in these two contexts differ over time [Smith et al., 2004,
2005]. Later, they proposed an agent-based simulation model to study how software
properties, such as size, complexity, and effort, relate to each other over the evolution
of open-source software systems [Smith et al., 2006].

Summary of RQE.1: We identify four types of models on software evolution.
They are: (i) characterization; (ii) descriptive; (iii) prediction; and (iv) simula-
tion.

Simulation

Descriptive

Characterization

Prediction

Number of papers

0 5 10 15 20

Figure 3.8: Number of papers by type of model.

RQE.2: Which techniques have been used in the models of software evolution?
Several approaches have been used to build prediction models, which we sum-

marized in Table 3.10. We detected seven techniques: (i) regression; (ii) ARIMA; (iii)
machine learning; (iv) Bayesian networks; (v) principal component analysis (PCA);
(vi) Markov chain; and (vii) CART algorithm. Although they have been employed
with the same purpose, there are some differences between them. For instance, re-
gression techniques and ARIMA are strategies that have been most used to design
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Table 3.10: Techniques used for designing the models on software evolution

Paper[Ref.] Type of model Used techniques
Khoshgoftaar et al. [1999]

Prediction

CART algorithm
Graves et al. [2000] Regression techniques
Ramil and Lehman [2000] Regression techniques
Antoniol et al. [2001] ARIMA
Caprio et al. [2001] ARIMA
Ohlsson et al. [2001] Principal component analysis (PCA)
Arisholm and Briand [2006] Regression techniques
Ratzinger et al. [2007] Regression techniques and machine learning algorithm
Shatnawi and Li [2008] Regression techniques
Zhou et al. [2008] Bayesian network
Raja et al. [2009] ARIMA
Krishnan et al. [2011b] Machine learning algorithm
Yazdi et al. [2014] ARMA
Chaikalis and Chatzigeorgiou
[2015]

Complex networks

Trindade et al. [2017] Markov chain
Chen et al. [2008]

Characterization

Complex networks
Zheng et al. [2008] Complex networks
Ferreira et al. [2011] Complex networks
Pan et al. [2011] Complex networks
Bhattacharya et al. [2012] Graph-based model
Li et al. [2013] Complex networks
Wang et al. [2014] Complex networks
Liu and Ai [2016] Complex networks
Woodside [1979]

Descriptive

Mathematical methods
Capiluppi [2003] Regression techniques
Koch [2005] Regression techniques
Turnu et al. [2011] Yule process
Feitelson [2012] Not mentioned
Kirbas et al. [2014] Regression techniques
Smith et al. [2004]

Simulation
Qualitative reasoning technique

Smith et al. [2005] Qualitative reasoning technique
Smith et al. [2006] NetLogo multi-agent simulation tool

prediction models because of their power to estimate the relationship between inde-
pendent and dependent variables. However, ARIMA uses the past value of a given
variable to predict its future values, whereas regression techniques already allow using
one or more independent variables to predict future values for a different dependent
variable. It is important to highlight that ARMA, reported in Table 3.10, is a vari-
ation of ARIMA methodology. Machine learning algorithms, specially tree-based and
classifier algorithms, such as J48, C4.5, and M5, are other types of techniques that also
have been applied to design prediction models. According to Ratzinger et al. [2007]
and Krishnan et al. [2011b], these algorithms are very efficient in defining excellent and
relevant predictors to the proposed models.

Bayesian networks, CART algorithm, complex networks, Markov chain, and prin-
cipal component analysis (PCA) have also been used as alternative strategies for pre-
dicting the occurrence of future events. A Bayesian network is a strategy that represents
conditional independence between a set of variables via a directed acyclic graph model
[Pearl, 2014]. It allows us to identify causality between variables via a cause-effect
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analysis and then build prediction models. PCA consists of a mathematical procedure
that helps to reduce complex datasets with a high number of correlated variables to
identify the central relationship between the variables [Kachigan, 1991]. Markov chain
is a memoryless, homogeneous, stochastic process with a finite number of states that
allows change from one state to another considering only the current state and not
the sequence of events that previously happened [Häggström et al., 2002]. Therefore,
besides modeling the prediction of events as states, it uses distribution probability to
model changes from one state to another. CART algorithm aims to build a parsimo-
nious tree from continuous, ordinal predictors by first building the maximal tree, and
after that, performs a pruning in it to obtain an appropriate level of detail [Breiman,
2017]. Complex networks consist of using the graph concepts to model the software
structure as a network in which the nodes represent the internal software components,
and the relationships between the components are the edges [Newman, 2003]. The
properties extracted from the software networks have been used to predict trends in
software evolution.

Graph-based strategies have been predominantly used by studies that propose
Characterization models. More specifically, they have been based on complex network
concepts. As we mentioned above, graph-based techniques allow modeling the internal
structure of the software system as a network where the nodes refer to the internal
components, such as classes, methods, or packages, and the edges refer to the relation-
ship between the nodes, such as method calls. In this way, this modeling helps the
users visually observe how the software structure has evolved. Besides, the complex
networks provide metrics and properties that are an additional device in the assessment
of the software evolution networks. Therefore, such facts explain why the researchers
have chosen complex networks and graph-based approaches instead of other strategies
to build characterization models.

Mathematical methods, regression techniques, and the Yule process have defined
Descriptive models. Yule process is a technique that allows modeling many phenomena
by using the Yule-Simon as the limiting distribution [Mitzenmacher, 2004]. Although
they differ from each other regarding how they have been applied, the authors point out
that these strategies are efficient for extracting unambiguous patterns that characterize
the evolution of a given event of a software system.

Finally, qualitative reasoning techniques have supported the definition of Sim-
ulation models. Qualitative reasoning (QR) is a branch of artificial intelligence that
automates reasoning about continuous aspects of the physical world to solve prob-
lems by using qualitative instead of quantitative information [Bredeweg and Struss,
2003]. The primary purpose of the techniques based on qualitative reasoning is to
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apply representation and reasoning methods that allow computer programs to learn
about physical systems’ behavior without qualitative information. Besides, a NetLogo
multi-agent simulation tool was also used by one of the studies when its purpose was
to build an agent-based simulation model.

Summary of RQE.2: Table 3.10 summarizes the identified techniques we have
found to build models on software evolution for each category of model. As the
main strategies, we highlight the use of regression techniques and ARIMA for
building Prediction models. Regression techniques are also relevant for producing
Descriptive models. Graph-based techniques have been used in the Characteri-
zation model with an emphasis on complex networks. Finally, Simulation models
have been defined by qualitative reasoning techniques.

RQE.3: Which metrics have been defined in the literature to assess the accuracy
of software evolution models?

Some metrics have been used to measure the quality of the models’ parameters
and how effective the models are. We identified 29 assessment metrics. Table 3.11
reports these metrics by type of model.

In Table 3.11, we show references following each metric to indicate the pa-
pers that have chosen each of them and display the metrics that have been more
employed to evaluate the type of model. Besides, we also included a label “Not
mentioned”, followed by references of papers that did not indicate the use of any
assessment metric to evaluate their proposed models. In the Simulation models,
we did not identify any type of assessment metric since the studies did not re-
port any. For the Characterization model, although many papers did not report
the metrics used in the study, we still identified one type of metric. On the other
hand, the studies have used a large variety of metrics to assess the accuracy of
Prediction and Descriptive models. Among the ones presented in Table 3.11, we
may point out some of them with significant relevance since they have been chosen
by more than one paper. They are: R-square, Akaike information criterion
(AIC), false-positive rate (FPR), mean absolute percentage error (MAPE),
mean squared error (MSE), and recall. Considering Prediction and Description
models, R-squared is the most used metric. Four papers chose it to assess the mod-
els. Three papers mentioned Akaike information criterion (AIC), and two papers
used the metrics as mentioned above.
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Table 3.11: Assessment metrics used to evaluate the accuracy of the models on software
evolution.

Prediction
Akaike information criterion (AIC) [Antoniol et al., 2001; Caprio et al.,
2001; Yazdi et al., 2014]; False-positive rate (FPR) [Krishnan et al., 2011b;
Arisholm and Briand, 2006]; Mean absolute percentage error (MAPE)
[Caprio et al., 2001; Raja et al., 2009]; Mean squared error (MSE) [Ratzinger
et al., 2007; Raja et al., 2009]; Recall [Zhou et al., 2008; Krishnan et al.,
2011b]; Absolute prediction error (APE) [Caprio et al., 2001]; Classification-
rule parameter [Khoshgoftaar et al., 1999]; Correlation coefficient (CC)
[Ratzinger et al., 2007]; Error measure [Graves et al., 2000]; F-measure
[Zhou et al., 2008]; Likelihood ratio test (LRT) [Shatnawi and Li, 2008];
Mean absolute deviation (MAD) [Raja et al., 2009]; Mean absolute error
(MAE) [Ratzinger et al., 2007]; Mean magnitude of relative error (MMRE)
[Ramil and Lehman, 2000]; Median magnitude of relative error (MdMRE)
[Ramil and Lehman, 2000]; Misclassification rate [Khoshgoftaar et al., 1999];
Normalized mean squared error (NMSE) [Yazdi et al., 2014]; Normalized
relative error (NRE) [Yazdi et al., 2014]; Observations with MMRE equal
or lower than 10% (PRED(10)) [Ramil and Lehman, 2000]; Observations
with MMRE equal or lower than 25% (PRED(25)) [Ramil and Lehman,
2000]; Percentage of correctly classified instances or accuracy (PC) [Krish-
nan et al., 2011b]; Percentage of false-negative [Arisholm and Briand, 2006];
Percentage prediction error (PPE) [Antoniol et al., 2001]; Precision Zhou
et al. [2008]; Prediction error of estimation [Trindade et al., 2017]; R-squared
[Ohlsson et al., 2001]; Not mentioned [Chaikalis and Chatzigeorgiou, 2015]

Characterization
Power law distributions [Li et al., 2013]; Not mentioned [Chen et al., 2008;
Zheng et al., 2008; Ferreira et al., 2011; Pan et al., 2011; Bhattacharya et al.,
2012; Wang et al., 2014; Liu and Ai, 2016]

Descriptive
R-squared [Capiluppi, 2003; Koch, 2005; Kirbas et al., 2014]; Estimated
Yule distribution [Turnu et al., 2011]; Maximum likelihood (MLE) [Turnu
et al., 2011]; Not mentioned [Woodside, 1979; Feitelson, 2012]

Simulation
Not mentioned Smith et al. [2004, 2005, 2006]

Summary of RQE.3: Table 3.11 presents the 29 assessment metrics that
the studies have used to evaluate the models. For Simulation models, we did
not identify assessment metrics, and for Characterization models, we found
only one type of metric. For Prediction and Descriptive metrics, we found a
large number of metrics. The most used are: R-square, Akaike information
criterion (AIC), false-positive rate (FPR), mean absolute percentage
error (MAPE), mean squared error (MSE), and recall.
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RQE.4: Which software aspects have been considered in software evolution mod-
els?

Table 3.12: Object of analysis from the software evolution models

Prediction
Defects [Khoshgoftaar et al., 1999; Graves et al., 2000; Ohlsson et al., 2001; Arisholm
and Briand, 2006; Ratzinger et al., 2007; Shatnawi and Li, 2008; Raja et al., 2009;
Krishnan et al., 2011b]; Change [Zhou et al., 2008; Yazdi et al., 2014]; Architecture
evolution [Trindade et al., 2017]; Clone Evolution [Antoniol et al., 2001]; Effort
[Ramil and Lehman, 2000]; Size [Caprio et al., 2001]; Trends in the evolution of
Java systems [Chaikalis and Chatzigeorgiou, 2015]

Characterization
Evolution of software structure [Chen et al., 2008; Zheng et al., 2008; Ferreira et al.,
2011; Pan et al., 2011; Bhattacharya et al., 2012; Li et al., 2013; Liu and Ai, 2016];
Evolution of software robustness [Wang et al., 2014]

Descriptive
Explain the evolution of internal properties of the software [Woodside, 1979; Koch,
2005; Turnu et al., 2011; Kirbas et al., 2014]; Detail the evolution development
activities over the software life time [Feitelson, 2012]; Compare the evolution trends
between traditional and open environments [Capiluppi, 2003]

Simulation
Compare the size evolution between in open and property systems [Smith et al.,
2004]; Understand the evolution patterns of size and complexity in open-source
software [Smith et al., 2005]; Study the evolution of size, complexity and effort in
open-source software [Smith et al., 2006]

Table 3.12 summarizes the main objects of study of the proposed models. Re-
garding Prediction, models mostly concentrate on the prediction of defects. There are
also prediction models for changes, architecture evolution, clone evolution, effort, size,
and trends in the evolution of Java systems. However, they have not been explored as
much as defect prediction. The Characterization models have been designed, in a vast
majority, to represent the evolution of the internal structure of the software systems.
Some studies have investigated how the internal components or type of them grow over
time, and how the connection between them changes and increases the system.

The Descriptive models proposed in the literature have aimed to explain the
evolution of intrinsic properties of software systems, such as size [Woodside, 1979;
Koch, 2005], defects [Kirbas et al., 2014], names of instance variables [Turnu et al.,
2011], names of methods [Turnu et al., 2011], calls to methods [Turnu et al., 2011], and
sub-classes [Turnu et al., 2011]. Moreover, some other studies have designed descriptive
models to detail how development activities evolve and compare the evolution patterns
and trends between different environments.
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The Simulation models found in the literature are based on the evolution of
software systems’ internal quality attributes in different contexts. The models were
proposed by the same authors and consider the evolution of size [Smith et al., 2004],
complexity and size patterns that usually happen in the evolution of open-source soft-
ware systems [Smith et al., 2005], and size, complexity, and effort [Smith et al., 2006].

Summary of RQE.4: Prediction models had considered mostly the evolution
of defects. Characterization models have focused on providing an overview of the
evolution of the internal structure of the systems. Descriptive models have been
mainly designed to explain how the software systems’ intrinsic properties behave
over time. Finally, Simulation models have been built to study and compare the
evolution of software systems’ internal quality attributes.

3.4 Threats to Validity

This section reports the threats to the validity of this study and the decisions we took
to mitigate them.

Definition of the Search String. The search string’s definition is one of
the main threats in an SLR since it defines the studies that will be analyzed. If a
search string is poorly defined, relevant studies may not be returned. To mitigate this
threat and avoid missing relevant studies, we searched several synonyms regarding our
research’s main terms and made several variations of the search string. We compared
them and chose the one that returned the most significant number of relevant studies
in software evolution. Therefore, we believe that this threat to validity was mitigated,
and the defined search string returned as many relevant papers as possible.

Choice of the Electronic Libraries. The choice of electronic libraries is an-
other factor that may impact the results of an SLR. Not all Software Engineering
conferences are indexed in electronic libraries, and therefore, we may miss relevant
studies published in such conferences. To mitigate this threat, we chose five electronic
libraries of great importance to the academic community. We believe that the choice
of these libraries reduced much the chance of missing relevant studies. Besides, we
ran a snowballing process during the selection phase of this SLR, i.e., we revisited the
reference lists of the selected papers to recover studies that were not retrieved by the
SLR.

Selection Process. The selection process is a phase in an SLR where the studies
retrieved by the search string are analyzed to remove the ones that are not related to
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the research topic. The way we carried out this process may be a threat to the validity
of an SLR because relevant studies may be discarded. To mitigate this threat, we
defined a sequence of five clear and strict steps, where the decision on discard a paper
involved analysis of the three authors from this study. Therefore, we believe that the
way we defined the steps in this process and the analysis was crucial to mitigate this
threat.

Generalization of the Results. The generalization of results is a troublesome
threat to mitigate. We may not claim that our results may be generalized because
we considered only papers written in English. There may be other relevant studies
written in other languages. However, the primary vehicles of scientific publication in
software engineering require papers written in English. For this reason, we believe that
the choice of English was a decision that mitigates this threat.

Data Extraction. The author of this thesis project was responsible for analyzing
the selected papers and extracting the information that supported the answers to the
research questions. One may consider this situation as a threat to the validity of this
study. To mitigate this threat, the data gathered from the papers and the decision
of discarding a paper were discussed with the advisor and co-advisors from this thesis
project.

3.5 Final Remarks

This chapter presented an SLR on software evolution. In particular, the study focused
on software structure and source code evolution. This SLR had as purpose to compile
the knowledge on software evolution produced so far in these topics.

This SLR comprised the analysis of 130 works. We identified five categories
of studies on software evolution. They are (i) applicability of Lehman’s laws; (ii)
application; (iii) evolution of quality attributes; (iv) software structure evolution; and
(v) model. This SLR provided the compilation of the main insights and rules defined
by the software structure evolution studies. The results of this study lead us to the
following main conclusions:

• There is a lack of large datasets with software evolution data.
• Usually, the researchers define their dataset with a low number of systems, and

not always they made the dataset available.
• The literature validated the 1st, 3rd, and 6th Lehman’s laws. The 2nd law has

been partially validated, and the 4th, 5th, and 7th laws have not been validated.
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The 8th law has been little analyzed, and the results about its validation are not
conclusive.
• The Lehman’s laws have been investigated in five contexts: (i) mobile applica-

tion; (ii) open-source software; (iii) eclipse third-party plugins; (iv) proprietary
software; and (v) C library.
• A set of 33 software evolution applications were identified in this SLR. However,

only 16 of them are available for download or on-line use.
• Software visualization is the primary type of tool produced by studies. Java and

C++ are the programming languages most used to develop software evolution
applications.
• The studies on software evolution considered 14 quality attributes. Size and

complexity are the most common ones.
• In total, we found 72 software metrics considered to analyze the evolution of

internal quality attributes. Among these metrics, LOC, NOFL, CMTL, and SIZKB
are the most used to measure size; and VG, CplXLCoh, and HVOLU are often used
to evaluate complexity.
• There is a set of 10 software system dimensions that have been objects of study

on software evolution. They are the internal structure, bad smell, architec-
tural design, coupling, faults, function side effects, internal quality, project inter-
dependencies, technical debt, and vulnerabilities.
• There are four types of software evolution models proposed in the literature:

characterization, descriptive, prediction, and simulation. The prediction model
is the prevalent type.
• Many techniques and strategies have been used to build software evolution mod-

els. Regression techniques and ARIMA are the most used in prediction models.
Regressions techniques are also used in descriptive models. Characterization
models usually apply graph-based techniques. Simulation models used qualita-
tive reasoning for its definition.
• We identified 29 metrics used to evaluate the software evolution models.

The most used metrics to evaluate prediction and descriptive models are:
R-square, Akaike information criterion (AIC), false-positive rate
(FPR), mean absolute percentage error (MAPE), mean squared error
(MSE) and recall.
• Prediction models mostly concentrate on predicting defects. Characterization

models have considered the evolution of the internal software structure. Descrip-
tive models have been designed to explain how the intrinsic properties of software
systems evolve. We found only three simulation models, however, they are sub
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sequential works done by the same authors. These simulation models are focused
on the evolution of internal quality attributes.

Chapter 4 describes the novel method we propose for analysis of software evolu-
tion based on time series.





Chapter 4

Study Design

In this chapter, we present the method we defined to analyze software evolution data
considering coupling – fan-in and fan-out –, inheritance hierarchy – DIT and NOC –,
and size – NOA and NOM – metrics. The method comprises two phases: behavior
analysis presented in Section 4.1 and trend analysis described in Section 4.2. Our
method uses some statistical tests. Therefore, it is essential to mention that in all the
statistical analysis, results are considered significant on a 5% level.

4.1 Behavior Analysis

In the first phase of our method, we investigate and identify the type of model that
best fits the times series and, consequently, explains their behavior pattern. This phase
consists of six steps.

Step 1 - Time series normalization. The metrics considered in this thesis
project are measured at the class level. The dataset has a time series of the metrics for
all classes within a system. Therefore, there are many time series in a single system.
This step aims to normalize them and extract a global time series for each system.
This normalization allows us to model and analyze how the dimensions evolve globally.

As we aim to analyze how the dimensions evolve for the system, we decided to
represent the global coupling and size by taking the sum of the values of their metrics
regarding the system’s classes for each version. Previous works have shown that the
values of metrics for coupling and size do not fit a distribution in which the mean value
is representative. Such metrics follow a heavy-tailed distribution [Louridas et al., 2008;
Filó, 2014; Filó et al., 2015]. For this reason, we chose the sum to represent the global
measure of the fan-in, fan-out, NOA, and NOM metrics of a system.
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Regarding DIT and NOC, studies in the literature have pointed out that these
metrics do not have a high variation in the software systems. DIT usually ranges from
1 to 4, while NOC, also called NSC, often varies between 1 and 3. Moreover, such
metrics follow a distribution in which the mean value is representative [Filó, 2014;
Filó et al., 2015]. Using the sum for representing the global values of these metrics
would not reflect their reality in the systems and could bias our results. Due to this,
we decided to describe the general DIT and NOC by taking the arithmetic average of
these metrics for each systems’ versions. Therefore, we worked with ten global time
series, extracted of each system existing in the dataset, for each metric regarding the
evolution of the average DIT/NOC.

Step 2 - Application of linear regression method. It consists of applying
the linear regression methods [Draper and Smith, 1981] to model the global time series.
Other studies have used different approaches, such as autoregressive moving average
models (ARIMA), to model the evolution of software metrics [Antoniol et al., 2001;
Caprio et al., 2001; Raja et al., 2009; Yazdi et al., 2014]. The ARIMA technique
requires that the observations in time series be collected over a well-defined time scale,
such as days, months, or years [Box and Jenkins, 1976]. In contrast, linear regression
does not require that the time series observations are equally spaced over the total time
period. As COMETS dataset was built in terms of system versions, we chose the linear
regression approach, which it is more flexible and appropriate to our data. Considering
that standard linear regression is not efficient with autocorrelated data, which is the
case of time series, we also implemented some adjustments. We modeled the metrics
of coupling – fan-in and fan-out –, inheritance hierarchy – DIT and NOC –, and size –
NOA and NOM – using the following types of model:

(i) linear;
(ii) quadratic (polynomial at Degree 2);
(iii) cubic (polynomial at Degree 3);
(iv) logarithmic at Degree 1;
(v) logarithmic at Degree 2;
(vi) logarithmic at Degree 3.

We based on all these types of model to evaluate and identify which of them
better describes the evolution patterns of the analyzed metrics. It is worth noting
that although we used linear regression to model the metrics evolution pattern, our
purpose in this part of this thesis project is not to provide a prediction model but to
characterize their behavior over the software evolution process.



4.1. Behavior Analysis 67

Step 3 - Intervention analysis. Time series may be frequently affected by
external factors or events, such as holidays, strikes, policy changes, promotions, weather
disasters, and other events. The occurrence of these factors in time series may change
the evolutionary behavior of an analyzed phenomenon or even affect its prediction.
In the software context, this is not different. A system usually goes through several
modifications and refactoring processes over its lifetime. Such processes may change
the system’s time series pattern over its evolution. To treat this characteristic of time
series, we have used intervention analysis [Wei, 2006], a technique that evaluates and
measures the effects these external factors cause in the time series. In general, the
use of this technique involves dummy variables to point out where the intervention
occurred and indicate how this occurrence will impact the following time series values.
Hence, this step consists of checking the presence of change points that may impact
the time series behavior and carrying out an intervention analysis at the systems time
series to adjust the model to the new pattern. This process allows us to improve the
representation quality of the models.

Step 4 - Residuals autoregression analysis. Regression methods require
that the assumption of independence be satisfied to ensure the validity of the models
[Bowerman and O’Connell, 1993]. Using linear regression to model time series may lead
to autocorrelated error terms. If we do not treat this autocorrelation, the estimates of
the coefficients and their standard errors may be wrong, and the model will not correctly
represent the time series [Bowerman and O’Connell, 1993]. Autocorrelation consists
of a serial dependence between their values [Cowpertwait and Metcalfe, 2009]. This
step aims to evaluate the models’ errors and remove autocorrelation by modeling them
via autoregression. Autoregression is a process that uses observations from previous
time steps to model the value at the next time [Cowpertwait and Metcalfe, 2009].
After modeling the residuals, we included the autoregressive error coefficient into its
respective model.

Step 5 - Assessment metric. To assess the models adequacy, we computed
their adjusted determination coefficient (R2). Both the determination coefficient (R2)
and the adjusted determination coefficient (R2) are metrics extracted from the analysis
based on linear regression. They measure the adjustment of a model to the data so that
we may understand to which extent the model explains the variability of analyzed data
[Miles, 2014]. However, we decide to choose the (R2) instead of R2 because it considers
the number of parameters introduced in the model and penalizes the inclusion of less
critical parameters.

Step 6 - Model evaluation. It aims to compare the best models obtained for
the systems time series regarding each type and select the type that better describes
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the metrics’ behavior. As we are using intervention and autoregression analysis to
improve the models’ fit, we may get R

2 values very high and close to each other. Then,
we defined an evaluation protocol to compare the values and choose the best model.
Our protocol is composed of three stages, and each of them evaluates a different aspect
in the model:

1. Relevance: it analyzes all generated models and select those with values of R
2

higher than or equal to 90%.

2. Coverage: among the models chosen in the previous stage, coverage selects the
ones that cover the most significant number of systems.

3. Simplicity: if we pick more than one model in Stage 2, we opt by the simplest
model considering the order: (i) linear, (ii) quadratic, (iii) cubic, (iv) logarithmic
at Degree 1, (v) logarithmic at Degree 2, and (vi) logarithmic at Degree 3.

4.2 Trend Analysis
This section presents the second phase of our method, the trend analysis. This phase
aims to analyze the percentage of classes that directly affect the growth and decrease
of a given dimension in software systems. It consists of seven steps, and we describe
them as follows.

Step 1 - Data organization. In the original dataset used in this part of the
thesis project, COMETS [Couto et al., 2013], when a given class is not present in a given
version of the system, its metrics are set to -1 in the data corresponding to that version.
In the context of our analysis, -1 values are not representative and may bias the results.
Hence, in this step, we remove them from the time series and reorganize the time series
by moving the representative values for the classes’ first versions.

Step 2 - Removal of ghost classes. Over the evolution process of object-
oriented software, classes may be included and removed at any moment. These changes
may introduce a phenomenon in some classes that we named ghost classes, and we
may identify it in the systems time series. This phenomenon consists of breaks in
the time-series observations of the classes, dividing them into several small sub-series.
Figure 4.1 illustrates this event using the DIT time series representation of a class
extracted from Eclipse JDT Core. Observing this example, we may see that the class
SourceRefElementInfo was removed before the 100th system’s version and reintro-
duced again after the 150th. This break in the middle of the time series observation
makes the trend analysis unfeasible in these cases. Then, we decided not to analyze
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them in this part of our analysis. Therefore, this step aims to identify and remove
series with this phenomenon from our analysis. Nevertheless, in this step, no more
than 2% of the time series was removed from the application of the trend tests. Hence,
ignoring those data will not introduce bias in our analysis.
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Figure 4.1: Time series of a ghost class.

Step 3 - Application of trend tests. It consists of applying the trend tests
in the time series to identify whether it has a growth or a decreasing trend. We used
three different tests based on hypothesis analysis to define the presence of trends in
time series:

(i) Mann-Kendall [Kendall, 1975];
(ii) Cox-Stuart [Morettin and Toloi, 2006];
(iii) Wald-Wolfowitz [Morettin and Toloi, 2006].

We chose these tests because the literature has pointed them as useful and effi-
cient. We consider the following hypotheses:

• H0: there is no trend in the time series.
• H1: there is a trend in the time series.

Even though we chose relevant and useful tests to identify trends in time series,
statistical tests may contain weaknesses and, consequently, be prone to errors. Due
to this, we defined an approach based on three statistical trend tests, and defined the
following criteria to determine the presence of trend:
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“time series has a trend if, and only if, the null hypothesis is rejected at least in
two of the three tests”.

It is essential to highlight that the removal of -1 values from the time series may
substantially reduce the number of observations in some of them. Therefore, we decided
to analyze and apply the trend tests only in time series with ten or more continuous
observations. Times series with less than ten measures were disregarded and classified
as having no trend.

Step 4 - Identification of autocorrelated time series. Although the three
tests applied in Step 3 are useful for detecting trends, the Mann-Kendall test is sensitive
to the presence of autocorrelation. According to Hamed and Rao [1998], when we run
the original version of the Mann-Kendall test in an autocorrelated time series, it may
generate false-positives or false-negatives. This step aims to avoid this problem by
analyzing the times series to identify the ones with autocorrelation. To facilitate our
analysis, we designed and developed an automatic checking approach for this purpose.
This approach analyzes the autocorrelation (ACF) and partial autocorrelation (PACF)
plots of the time series. ACF consists of a correlation of any series with its lagged values
plotted along with the confidence band [Box and Jenkins, 1976]. It describes how well
a given value is related to its past observations. PACF consists of a plot of the partial
correlation of the series with its own lagged values, regressed at shorter lags.

Even though the PACF is relevant to identify autocorrelation in time series, it
requires attention. A high value at lag 1 (one) of the PACF chart may not indicate
autocorrelation, but other time series characteristics, e.g., non-stationarity. A non-
stationary time series is the one whose statistical properties change over time, while a
stationary time series is the one in which its properties are constant over time [Moret-
tin and Toloi, 2006]. As the non-stationary property of a time series obscures the
autocorrelation, it is necessary to apply transformations in the time series to remove
non-stationarity. The most common transformation is to take successive differences
from the original time series until it becomes stationary. We defined that time series
with a value at the lag 1 at the PACF chart between 0.80 and 1 are non-stationary and
need be transformed to treat this problem and standardize our approach. Therefore,
we defined our automatic checking approach as follows.

Initially, we compute the PACF of the analyzed time series. If the value obtained
for that at lag 1 (one) is greater than 0.80, we apply the difference in this time series
until it becomes stationary, i.e., its value at lag 1 from the PACF chart be less than
0.80. After removing the non-stationarity of the time series, we plot the ACF and
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PACF charts for the analyzed time series. If the value of the lag 1 in the ACF or
PACF is greater than the confidence interval generated by the charts, the time series
is autocorrelated. However, if the value at the lag 1 is inside the confidence interval
in both ACF and PACF charts, the time series are not autocorrelated. Algorithm 1
illustrates the main steps of our automatic checking approach.

Algorithm 1: Checking of autocorrelation in time series.
Result: Presence of autocorrelation in the time series,

1 initialization;
2 calculate the PACF from the time series;
3 while lag 1 is greater than 0.80 do
4 apply the difference in the time series;
5 end
6 verify lag 1 in the ACF and PACF extracted from the time series;
7 if lag1 from ACF or PACF is greater than the limit then
8 there is autocorrelation;
9 else
10 there is no autocorrelation;
11 end

Step 5 - Application of the modified Mann-Kendall test. It aims to
apply a modified approach of the Mann-Kendall test to deal with autocorrelated time
series. Hamed and Rao [1998] studied the effect of the autocorrelation on the mean and
variance of the Mann-Kendall test and derived a theoretical relationship to calculate
the variance of the original test for autocorrelated data. Based on these theoretical
results, they modified the value of the variance from the original test and proposed a
modified approach more suitable and powerful for autocorrelated data. Therefore, we
used this approach to analyze the autocorrelated time series.

Step 6 - Identification of trends. It consists of applying the criteria defined
in Step 3 and identifying the time series with a trend. For the time series in which we
identify autocorrelation, we analyzed the p-values resulting from the modified Mann-
Kendall test, Cox-Stuart, and Wald-Wolfowitz. For the time series in which we do
not identify autocorrelation, we analyze the p-values resulting from the original Mann-
Kendall test, Cox-Stuart, and Wald-Wolfowitz.

Step 7 - Classification of trends. It consists of evaluating the type of trend
in the time series. To do this, we plot the chart of each time series from the systems.
We, then, visually analyze the behavior of the time series identified in Step 6. After
that, we manually classify them by considering the type of trend as follows.



72 Chapter 4. Study Design

• Upward trend: it is a pattern whose distance between the trend line and x-axis
increases over the x-axis.
• Downward trend: it is a pattern whose distance between the trend line and

x-axis decreases over the x-axis.
• Undefined trend: cases that do not follow a clear pattern. We also include here

trends of times series whose values of the first and last observations are equal.

4.3 Final Remarks
In this chapter, we described our two-phase method to analyze the metrics times series
of the software systems. The first phase consists of extracting global time series of
the metrics values obtained from the systems and modeling them by applying linear
regression techniques. It aims to identify which type of model better describes the
evolution of the systems’ internal characteristics. Using only the standard linear re-
gression to model autocorrelated data and time series with structural breaks does not
provide good results and efficient models. Therefore, as a differential of our method,
we defined some adjustments, such as intervention and autocorrelation analyses (steps
3 and 4), to treat these problems and ensure functional model production.

The second phase of our method consists of applying statistical trend tests to
the classes’ time series from the software systems. This phase aims to identify the
components with growth and decrease trends and, consequently, the ones that directly
impact the increase and decrease of an internal dimension in a software system over its
evolution process.



Chapter 5

Empirical Analysis of Software
Evolution

This chapter reports the empirical analyzes we performed to investigate how the object-
oriented software systems evolve from the perspective of coupling, size, and inheritance
hierarchy. To represent these dimensions, we examined the time series regarding six
software metrics. We considered fan-in and fan-out, to represent coupling, NOA (Num-
ber of Attributes) and NOM (Number of Methods), to measure size, and DIT (Depth of
Inheritance Tree) and NOC (Number of Children), to represent inheritance hierarchy.

Fan-in indicates the number of references made to a given class by other classes,
while fan-out reflects the number of calls made by a given type to other classes [Lee
et al., 2007b; Sommerville, 2012]. As we showed in Section 2.1, there are many static
and dynamic software metrics in the literature that allow measuring coupling in object-
oriented software. We decided to use fan-in and fan-out because they consider the
method invocations and class attributes as coupling, provide measure at the class level,
and analyze the coupling in both input and output aspects.

DIT indicates a class’s position in its inheritance hierarchy, and NOC is the num-
ber of immediate subclasses of a given class [Chidamber and Kemerer, 1994]. Moreover,
NOA and NOM are size metrics, and they refer to the number of attributes and meth-
ods of a class, respectively [Lorenz and Kidd, 1994]. We chose using these metrics
for representing inheritance hierarchy and size because they are well-known. Conse-
quently, it is available in the literature many tools for supporting their collection and
datasets with values regarding these metrics already extracted from the evolution of
some software systems. Besides, concerning size metrics, many previous studies used
LOC (Lines of Code) to measure this dimension [Godfrey and Tu, 2000; Capiluppi
et al., 2004a,b; Robles et al., 2005; Herraiz et al., 2006; Izurieta and Bieman, 2006;
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Capiluppi et al., 2007; Herraiz et al., 2007; Koch, 2007; Gonzalez-Barahona et al.,
2009; Darcy et al., 2010; Hatton et al., 2017]. Using NOA and NOM to analyze the
size evolution in software allows us to provide an evolutionary view of this dimension
from the perspective of data and features delegated to the systems.

Therefore, we organize this chapter as follows. Section 5.1 presents the research
questions we proposed to investigate throughout these empirical analyzes. Section 5.2
details COMETS, the software evolution dataset we used to carry out our empirical stud-
ies. Section 5.3 details the evolution of the coupling dimension. Section 5.4 shows the
main results regarding the evolution of the inheritance hierarchy. Section 5.5 analyzes
the evolution of the size dimension and discusses the main observations obtained from
it. Section 5.6 enlists the main potential threats to validity in this part of our research
and discusses the decision we took to mitigate them. Section 5.7 concludes this chapter.

5.1 Research Questions

This empirical analysis aims to study the evolution of the software dimensions in
open-source systems and extract properties that characterize their behavior over the
software life cycle. To guide our investigation, we defined three research questions
presented as follows.

RQ1. Which model better describes the evolution pattern of the dimensions in software
systems?

This research question aims to analyze how the software dimensions evolve and
identify patterns that better describe their behavior. We have applied the behavior
analysis phase of our method, Section 4.1, into the global time series of the software
dimensions metrics to model and extract the best evolution pattern that represents
them. We carry out this analysis for each dimension studied in this work.

RQ2. How does the relation between dimension metrics behave throughout the evolu-
tion of software systems?

This research question aims to analyze how the metrics’ relationship impacts
the internal dimension over software evolution. For this purpose, we established new
measures using the dimension metrics to explain the evolution of some aspects of the
software. For instance, we divided fan-in by fan-ou and vice-versa to measure the
rate of necessary and unnecessary coupling in the software systems. We also divided
NOA by NOM to identify the rate that the proportion of these two metrics evolves.
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Regarding the inheritance hierarchy dimension, we have used DIT and NOC metrics
to characterize its depth and breadth in the software systems. However, although
these metrics express well these aspects of the inheritance hierarchy separately, the
relation between them does not provide a direct and well-defined interpretation as
those provided by the coupling and size metrics. Therefore, we decided to ignore RQ2
to analyze the inheritance hierarchy and investigate only the RQ1 and RQ3 research
questions to this dimension.

RQ3. What set of classes within the software system affects the dimensions of
growth/decrease and how these classes evolve?

This research question aims to identify the classes responsible for increasing and
decreasing the measures of the internal dimensions over the software evolution. Iden-
tifying these set of classes, we may quantify the systems’ percentage that contributes
to the growth and decrease of an aspect in their internal structure. We have applied
the trend analysis, reported in Section 4.2 as the second phase of our method, into the
original time series of each class of the analyzed software systems to map the ones that
have a growth trend and the ones that have a decreasing trend.

5.2 Dataset

We used a public dataset, COMETS (Code Metrics Time Series), composed of time
series from 17 well-known software metrics regarding ten open-source Java sys-
tems[Couto et al., 2013]. Table 5.1 summarizes the main characteristics of COMETS.

There are three other datasets of evolution data: D’Ambros dataset [D’Ambros
et al., 2010], Helix [Vasa et al., 2010], and Qualitas Corpus [Tempero et al., 2010].
However, all these datasets have some drawback. For instance, Qualitas Corpus does
not provide time series from object-oriented metrics, Helix does not include time series
on coupling metrics, and D’Ambros dataset even provides time series on coupling
metrics, but it has a smaller number of systems and versions than the COMETS dataset.
Therefore, we chose COMETS because it is the largest and most recent dataset with time
series of software metrics. Besides, this dataset comprises all software metrics we apply
in this work.

The COMETS dataset’s time series are sequences of metric values collected from
classes of a system over their versions. Each version corresponds to an interval of bi-
week, i.e., 14 days. As a system is composed of several classes, the dataset contains
many time series. The size of the systems’ time series existing in the COMETS ranges
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Table 5.1: Systems of the COMETS dataset.

# System Name Description Time Frame # Versions
1 Eclipse JDT

Core
Compiler and other
tools for Java

2001-07-01 – 2008-06-14 183

2 Eclipse PDE
UI

Set of tools to cre-
ate, develop, test, debug
and deploy Eclipse plug-
ins, fragments, features,
update sites and RCP
products

2001-06-01 – 2008-09-06 191

3 Equinox
Framework

OSGi application imple-
mentor

2005-01-01 – 2008-06-14 91

4 Hibernate
Core

Database persistence
framework

2007-06-13 – 2011-03-02 98

5 JabRef Bibliography reference
manager

2003-10-14 – 2011-11-11 212

6 Lucene Search software and
document indexing API

2005-01-01 – 2008-10-04 99

7 Pentaho Con-
sole

Software for business in-
telligence

2008-04-01 – 2010-12-07 72

8 PMD Source code analyzer 2002-06-22 – 2011-12-11 248
9 Spring

Framework
Java application devel-
opment framework

2003-12-17 – 2009-11-25 156

10 TV-Browser Electronic TV guide 2003-04-23 – 2011-08-27 221

between a total of 72 and 248 number of versions. The data are available in the COMETS
dataset as CSV files.

Each CSV file corresponds to a specific metric collected from a specific system.
The CSV has the following format: given a metricM and a system S, the lines represent
the set of classes from S, and the columns represent the versions from S. Therefore,
each cell (c, x) of this file has the value of the metric M extracted for the class c in
the version x.

It is essential to highlight that since this dataset has metric values of evolving
systems, there are cases in which classes existing in a given version are not present in
the next version. Therefore, to treat these cases and avoid inconsistencies, the CSV
creation considered the following restrictions:

(i) when a class c does not exist in a version x from a system S, the value attributed
in the cell (c, x) from the respective CSV is -1

(ii) when class c exists in a version x from a system S, the value attributed in the
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cell (c, x) from the respective CSV is the value resulting from the measurement
process.

5.3 Coupling Evolution

This section presents the main observations we extracted regarding the coupling evo-
lution to answer the specific research questions for this dimension.

5.3.1 Coupling Evolution in the System Level

In this section, we investigate RQ1. Which model better describes the evolution pattern
of the dimensions in software systems?1

Coupling is a relevant measure of complexity. Analyzing its behavior over software
evolution is essential because the more it increases, the more maintenance effort the
system requires. Hence, modeling this dimension may aid developers to understand how
it evolves over the software life cycle and allows them to design strategies that control
the growth of this characteristic in the systems. We applied regression techniques on
the global time series regarding the ten systems from COMETS to answer RQ1. We also
computed the adjusted determination coefficient (R2) to evaluate and compare the
resulting adjustment of these models and to identify the one that better describes the
pattern of coupling growth.

Before modeling the global time series and evaluating the R
2 extracted from the

generated models, we analyzed fan-in and fan-out metrics’ behavior over the software
evolution. We plotted the global time series extracted from the software systems as
chart lines to analyze if they increase or decrease over time. Figure 5.1 shows the global
time series charts regarding fan-in and fan-out.

Analyzing the plots of the global time series regarding fan-in and fan-out, we
identify, in all analyzed systems, that both metrics have a growth pattern, and then,
tend to increase over the software evolution. Moreover, we observe that fan-out has a
growth higher than fan-in in all systems. At the beginning of the PMD life cycle, fan-in is
slightly higher than fan-out, but this scenario changes quickly in some versions ahead.
Fan-out surpasses fan-in and continues to grow at a high frequency throughout the
evolution of PMD.

After identifying the evolution pattern of fan-in and fan-out, we modeled the
global time series of these metrics by using regression techniques and applied our eval-
uation protocol, Section 4.1, in the R

2 values obtained from the generated model to
detect which type of model better describes and characterizes their global evolution.
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Figure 5.1: Global fan-in/fan-out time series of the analyzed systems.
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Tables 5.2 and 5.3 summarize the R
2 scores computed for the models fitted to fan-in

and fan-out metrics, respectively, in each system. The “lin.”, “quad.”, “cub.”, “log.
1”, “log. 2” and “log.3” columns indicate the R

2 values extracted from the linear,
quadratic, cubic, logarithmic at degree 1, logarithmic at degree 2, and logarithmic at
degree 3 models, in this sequence.

Table 5.2: R
2 values computed from the fan-in models.

System lin. quad. cub. log. 1 log. 2 log. 3
Eclipse JDT Core 99.84% 99.84% 99.84% 99.82% 99.82% 99.77%
Eclipse PDE UI 99.72% 99.72% 99.73% 99.55% 99.57% 99.57%
Equinox Framework 98.58% 98.57% 98.57% 98.44% 98.44% 98.44%
Hibernate Core 98.55% 98.58% - 98.71% 98.73% -
JabRef 99.88% 99.88% 99.88% 99.86% 99.86% 99.86%
Lucene 97.65% 97.63% 97.61% 97.28% - 97.24%
Pentaho Console 92.64% 93.66% 95.11% 85.70% 89.40% 94.94%
PMD 99.25% 99.24% - 99.27% 99.30% -
Spring Framework 99.87% 99.88% 99.83% 99.86% 99.86% 99.87%
TV-Browser 99.94% 99.94% - 99.89% 99.66% 99.87%

Table 5.3: R
2 values computed from the fan-out models.

System lin. quad. cub. log. 1 log. 2 log. 3
Eclipse JDT Core 99.85% 99.85% 99.83% 99.83% - 99.85%
Eclipse PDE UI 99.84% 99.84% 99.74% 99.75% 99.76% 99.85%
Equinox Framework 99.39% 99.42% 99.31% 99.38% 99.37% 99.41%
Hibernate Core 98.63% 98.68% 98.78% 98.79% - -
JabRef 99.84% 99.84% 99.68% 99.70% 99.78% 99.85%
Lucene 98.67% 98.69% 99.05% 99.09% 99.09% 98.68%
Pentaho Console 98.27% 98.25% 97.52% 97.50% 97.58% 98.28%
PMD 99.55% 99.55% 99.03% 99.04% 99.06% 99.57%
Spring Framework 99.92% 99.92% 99.89% 99.89% 99.89% 99.92%
TV-Browser 99.89% 99.90% 99.61% 99.75% 99.86% 99.90%

To improve our discussion of the obtained results, we adopted a color scheme
highlighting the models selected in each stage of our protocol. Green color indicates the
models selected at Stage 1. Yellow shows the ones chosen in Stage 2, and Red specifies
the only model type selected at Stage 3, which is the one that better characterizes the
pattern evolution of the metrics by following the parsimonious criteria.

Observing the obtained results for fan-in in Table 5.2, we identify that most
models produced good R

2 scores, generally higher than 90%. We find some exceptions,
such as models not generated and values less than 90%. We did not select these
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exceptions in Stage 1 of our protocol, and consequently, did not highlight them with
the green color. For the initially selected models, we observed that two types of models,
linear and quadratic, attended our Stage 2 since both of them produced good fits for
all analyzed systems. However, although both linear and quadratic models are efficient
in describing the evolution of fan-in, applying the parsimonious criteria, we conclude
that the linear model is the one that better explains the growth evolution pattern of
fan-in since it has attended all aspects of our evaluation protocol.

When analyzing the results of the fan-out in Table 5.3, we also observe that most
of the returned models produced good R

2 values. We had only three cases not selected
at Stage 1 since our method was not able to find models that represent them. Due
to this, we did not highlight these exceptions in green. Among the selected models at
Stage 1, linear, quadratic, cubic, and logarithmic at degree 1, attended the coverage
criteria. All of them produced models for all analyzed systems with R

2 values higher
than 90%. However, by the simplicity criteria in Stage 3, we conclude that the linear
model is the one that better describes the pattern evolution of fan-out.

Summary of RQ1 - Coupling. In response to RQ1, we identified that fan-in
and fan-out have a growth pattern that may be better explained by a linear
model. However, although the same model better explains fan-in and fan-out
growth patterns, we identified a difference between these two metrics since the
fan-out values are much higher than those of fan-in values.

5.3.2 Evolution of Fan-in/Fan-out Relation

This section answers RQ2. How does the relation between dimension metrics behave
throughout the evolution of software systems?

Berard [1993] categorizes coupling at the package level in two types: necessary
and unnecessary. Necessary coupling consists of high fan-in and low fan-out, and
unnecessary coupling consists of high fan-out and low fan-in. Moreover, according to
Lee et al. [2007b], a high fan-in may represents a good object design and high reuse,
since classes at the same package are reused together. In contrast, a high fan-out is
not desirable in software because it is an indication of complexity, and low reusability
[Booch, 1991; Berard, 1993; Henderson-Sellers, 1996; Martin, 2003].

In this work, we use the necessary and unnecessary coupling to refer to the relation
between fan-in and fan-out of a class. In this context, the necessary coupling is the
ratio of fan-in by fan-out. A high necessary coupling of a class indicates that the class’s
primary role is as service provider. On the other hand, the unnecessary coupling is the
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ratio of fan-out by fan-in. A high unnecessary coupling of a class indicates that the
main role of the class is as service user. We analyzed which type of coupling stands
out during the system’s evolution. For this purpose, we computed the necessary and
the unnecessary coupling ratios for each version of the systems. Figure 5.2 summarizes
the behavior of these two types of coupling. The acronyms “UNCP” and “NCP” in
this figure refer to “unnecessary coupling” and “necessary coupling”, respectively.

Analyzing Figure 5.2, we observe that the unnecessary coupling is much higher
than the necessary coupling in all systems. This behavior is because fan-out grows
quickly and fan-in grows slowly, as shown Figure 5.1. This finding shows that using
service from other classes is the prevalent role of the classes within a system. Although
this conclusion is not surprising, this analysis shows how prevalent using services is and
how it evolves. In 50% of the systems, both necessary and unnecessary couplings do not
suffer relevant changes over time. This fact happens with Eclipse JDT, Eclipse PDE
UI, Equinox, Hibernate, and JabRef. In Pentaho, the necessary coupling slightly
decreased; however, the unnecessary coupling had a different behavior: it decreased
over the first releases, continuously increased for many releases, and is stable in the
last releases. This fact means that, in the beginning, the new classes inserted in the
system were more service users than providers. After, for a long time, the classes
inserted in the system were increasingly more service providers, or the other classes
turned to provide more services. In the last versions, the inclusion of new classes kept
unnecessary coupling stable. In 20% of the systems, Lucene, and PMD, the unnecessary
coupling slightly increased. There was decreasing in the unnecessary coupling only
in 20% of the systems, Springer and TV-Browser. However, in these systems, the
necessary coupling remained stable.

Summary of RQ2 - Coupling. The unnecessary coupling is much higher than
the necessary coupling since the first releases of a system. This means that the
rate of classes behaving as service users is higher than the service providers. In
most cases, the evolution of the system does not change the relation between
fan-in and fan-out in the systems.

5.3.3 Coupling Growth/Decrease Analysis

This section answers RQ3. What set of classes within the software system affects the
dimensions of growth/decrease and how these classes evolve?

To answer RQ3, we identified the classes responsible for increasing and decreasing
the coupling in the systems. Then, we carried out a trend analysis in the time series
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Figure 5.2: Evolution of unnecessary and necessary coupling.
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of the systems’ classes and computed the percentage of classes whose fan-in and fan-
out have increased/decreased over time. Figure 5.3 presents the distribution of the
percentage of classes with fan-in growth, fan-in decrease, fan-out growth, and fan-out
decrease. In the chart, each box was generated with ten values, i.e., one percentage
value per system. Table 5.4 provides a descriptive analysis in terms of percentiles of
the boxplot in Figure 5.3. In the next sections, we present the analysis the results
regarding coupling growth and decrease.

fan−in growth fan−out growth fan−in decrease fan−out decrease
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Figure 5.3: Percentage distribution of classes within the systems that impact on cou-
pling growth/decrease.

Table 5.4: Descriptive Analysis of the Percentage Distribution of Classes in the Systems
that Impact on Coupling Growth/Decrease.

Event 0% 25% 50% 75% 100%
Fan-In Growth 5.00 12.00 13.50 16.75 29.00
Fan-Out Growth 9.00 12.50 18.50 25.25 32.00
Fan-In Decrease 1.00 2.25 3.00 4.00 4.00
Fan-Out Decrease 3.00 6.25 8.00 8.75 9.00

5.3.3.1 Classes Responsible for Coupling Growth

Figure 5.3 and Table 5.4 show that the median percentages of classes in the systems
responsible for “fan-in growth” and “fan-out growth” are 13.50% and 18.50%, respec-
tively. The maximum percentages we have found were 29% and 32% for fan-in and
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fan-out, respectively. Nevertheless, it is essential to highlight that 29% is an outlier in
Figure 5.3 because only one of the systems presents this value.

The results for fan-in and fan-out couplings show that although they have a
growth pattern that is better described by a linear model, their growth is directly
influenced by a small group of classes, corresponding to no more than 35% of the
classes within a system. We also analyzed how these classes over the versions of the
systems. We identified that in 50% of the systems, more than 25% of the classes that
contribute to fan-in and fan-out growth are introduced in the first version of the system
and remain over the system evolution.

5.3.3.2 Classes Responsible for Coupling Decrease

Observing the results shown in Figure 5.3 and Table 5.4, we note that the median
of the percentages of classes responsible for “fan-in decrease” and “fan-out decrease”
is 3% and 8%, respectively. The maximum percentages are 4% and 9% for fan-in
and fan-out, respectively. This result shows that a low percentage of classes, no more
than 10%, impact the coupling decrease. Besides, there is a significant discrepancy
between the results obtained for the growth and decrease of coupling. We also analyze
the distribution of the classes that impact on coupling decrease. Just as in coupling
growth analysis, we identified that in 50% of the systems, legacy classes represent more
than 25% of the classes that impact on coupling decrease.

5.3.3.3 Growth versus Decrease from the System Perspective

We analyzed the percentage of classes that have the following behaviors: (i) fan-in and
fan-out grow, (ii) fan-in and fan-out decrease, (iii) fan-in grows and fan-out decreases,
and (iv) fan-in decreases and fan-out grows. We analyze these cases considering two
different perspectives: system and trend classes. Firstly, we analyzed these behaviors
from the system perspective as a whole. Table 5.5 presents the percentages obtained
in these cases. We computed the percentages in Table 5.5 by dividing the number of
intersections by the total classes from the software systems.

The behavior of Case (i) has the highest chance to occur since it has the maximum
percentages, 18%, and 14%, respectively, and presents a higher percentage than the
other cases in all systems. Even though, analyzing the distribution of the percentages
in the Case (i), we note that both 18% and 14% are outliers, and the median and
maximum values are 5.5% and 8%, respectively, by disregarding these two outliers.

Analyzing the percentages of the four behavior aforementioned, considering only
the trend classes, we found the results shown in Table 5.6. We computed the table’s
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Table 5.5: Intersection of the trend results for fan-in and fan-out from the system
perspective.

System i ii iii iv
Eclipse JDT Core 18% 1% 3% 1%
Eclipse PDE UI 7% 1% 1% 1%
Equinox Framework 7% 0% 1% 2%
Hibernate Core 4% 0% 1% 0%
JabRef 8% 0% 1% 1%
Lucene 4% 0% 1% 1%
Pentaho Console 1% 0% 2% 0%
PMD 4% 1% 1% 1%
Spring Framework 7% 1% 2% 1%
TV-Browser 14% 1% 1% 1%

values by dividing the number of intersection by the number of classes that presented
any type of trend for fan-in or fan-out.

Table 5.6: Intersection of the trend results for fan-in and fan-out from the trend class
perspective.

System i ii iii iv
Eclipse JDT Core 35% 2% 6% 2%
Eclipse PDE UI 21% 2% 4% 2%
Equinox Framework 20% 1% 3% 5%
Hibernate Core 15% 1% 2% 2%
JabRef 19% 1% 3% 3%
Lucene 15% 1% 3% 4%
Pentaho Console 4% 0% 7% 0%
PMD 15% 2% 2% 2%
Spring Framework 15% 2% 4% 3%
TV-Browser 29% 2% 3% 3%

Considering the percentages from the trend class perspective in Table 5.6, we
observed that they increased compared to the percentage from the system perspective.
However, the values are still not too high. The Case (i), as in Table 5.5, is the
one whose percentages stand out concerning the other cases. While Cases (ii), (iii)
and (iv) have percentages that do not exceed 10%, the percentages of Case (i) are
all higher 10%, except in Pentaho Console. Therefore, in general, there is a low
percentage of classes that follow the patterns analyzed for the cases in both system
and trend class perspectives. Although Case (i) has stood out in both system and
trend class perspectives, such results suggest evidence that most of the classes that
directly impact the coupling evolution do not tend to follow a combined pattern in
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terms of growth and decrease of fan-in and fan-out.

Summary of RQ3 - Coupling. Coupling evolution is affected by a small
group of classes in a system. There is a strong influence of legacy classes on the
coupling growth and decrease in 50% of the analyzed systems. We consider a
legacy class in this analysis as the one introduced in the first version of a system,
and not removed during its evolution. Moreover, the growth/decrease of fan-in
and fan-out of the classes that directly impact the coupling evolution do not
evolve in an associated way during the software evolution.

5.4 Inheritance Hierarchy Evolution

This section presents the results we found regarding the inheritance hierarchy evo-
lution by answering the specific research questions for this dimension. Considering
inheritance, RQ2 does not apply because there is no intuitive relation between the
DIT and the NOC of a class.

5.4.1 Inheritance Evolution in the System Level

This section presents the results of the investigation of RQ1. Which model better
describes the evolution pattern of the dimensions in software systems?

The analysis presented in this section aims to investigate how the inheritance hier-
archy evolves over the software evolution and identify the pattern that better describes
this behavior.

We applied our method based on regression techniques to the global DIT and
NOC time series from COMETS’ systems. For each release of a system, the DIT’s
global value is given by the average of DIT classes. The same occurs with NOC.
After modeling the evolution of the metrics, we computed the adjusted determination
coefficient (R2).

Before analyzing the adjusted determination coefficient (R2) of the generated
models, we observed these metrics’ behavior. We plotted the global metrics time series
from the systems as line charts. In these charts, we evaluated if the metrics increase or
decrease over time. Figure 5.4 shows the global time series charts regarding DIT and
NOC.

Given the DIT evolution shown in Figure 5.4, we observed that, for five systems,
the global average of DIT increases over the software evolution. More specifically, the
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Figure 5.4: Global DIT/NOC time series of the analyzed systems.



88 Chapter 5. Empirical Analysis of Software Evolution

systems where this phenomenon happens are Eclipse PDE UI, JabRef, PMD, Spring
Framework, and TV-Browser. Eclipse JDT Core and Hibernate Core DIT decrease
slowly and smoothly. Pentaho Console presents an increase of DIT at the beginning,
then DIT decreases along some releases and, then, such decreasing became slow and
smooth over time. We noted a high decrease of the global DIT in Eclipse JDT Core
between the 100th and 120th versions, which might be the result of a refactoring or
restructuring process in this system. However, the global behavior of DIT in this
software, before and after this event, decreases very smoothly and is almost stable.
Moreover, we observed that the global average of DIT in the Equinox Framework and
Lucene’s life cycle is practically constant, although there were some smooth variations
in the time series of these systems. Then, we can infer that the global average of DIT
tends to increase slightly over the software evolution in the majority of the systems.

Concerning the NOC evolution, we analyzed the charts in Figure 5.4 and identified
that, in 60% of the systems, NOC decreases over time and, in some cases, such decreas-
ing is very small. The systems presenting this pattern are Eclipse JDT Core, Equinox
Framework, Hibernate Core, Lucene, Pentaho Console, and PMD. In Eclipse JDT
Core, the series starts with a high value and has a drop shortly after that. Then, the
global average of NOC follows a decreasing pattern very smooth, remaining almost
stable over the whole system life cycle. On the other hand, in some systems, the global
NOC has a growth behavior over their life cycle. The systems that presented this pat-
tern are Eclipse PDE UI, JabRef, and TV-Browser. In Spring Framework, although
the global NOC time series has smooth variations over time, it follows a stable pattern
and remains practically constant over this system’s life cycle.

Therefore, we conclude by this analysis that the global average of NOC decreases
over the software evolution, tending to achieve zero. This result suggests that classes do
not have many children in the software context, and they tend to reduce this number.

After identifying the evolution pattern of DIT and NOC, we modeled the global
time series of these metrics. We applied our evaluation protocol, Step 7 (Section 4.1),
in the R

2 extracted from the generated models to find the best way to represent and
characterize their global evolution pattern. Tables 5.7 and 5.8 show the results of DIT
and NOC, respectively. As described before, the labels “lin.”, “quad.”, “cub.”, “log.
1”, “log. 2” and “log. 3” indicate, respectively, the R

2 scores extracted for linear,
quadratic, cubic, logarithmic at degree 1, logarithmic at degree 2, and logarithmic at
degree 3 models.

For a better comprehension of our discussion, we used the same color scheme of
Section 5.3.1 to highlight the models selected at each stage of our evaluation protocol.
Analyzing Table 5.7, we observe that most of the produced models has an R

2 score
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Table 5.7: R
2 values computed from the DIT models.

System lin. quad. cub. log. 1 log. 2 log. 3
Eclipse JDT Core 98.00% 97.41% 98.28% 98.07% 97.48% 98.35%
Eclipse PDE UI 97.81% 97.87% 97.83% 97.45% 97.53% 97.52%
Equinox Framework 86.89% 85.01% 86.49% 86.95% 85.10% 86.54%
Hibernate Core 96.54% 96.67% 96.58% 96.58% 96.71% 96.59%
JabRef 98.69% 98.69% 98.79% 98.68% 98.67% 98.64%
Lucene 92.23% 92.21% 89.52% 92.13% 92.11% 89.42%
Pentaho Console 75.49% 83.43% 90.92% 77.50% 85.05% 91.62%
PMD 97.61% 97.64% 96.52% 97.79% 97.82% 96.84%
Spring Framework 97.21% 97.04% 97.08% 97.09% 96.98% -
TV-Browser 98.24% 98.09% 97.94% 98.11% 97.97% 97.81%

Table 5.8: R
2 values computed from the NOC models.

System lin. quad. cub. log. 1 log. 2 log. 3
Eclipse JDT Core 88.99% 91.61% 91.99% 89.08% 91.72% 92.11%
Eclipse PDE UI 97.13% 96.69% 97.16% 96.92% 96.46% 96.95%
Equinox Framework 86.05% 67.85% 85.70% 86.68% 68.08% 86.28%
Hibernate Core 94.67% 94.93% - 94.80% 95.12% -
JabRef 94.81% 94.79% 95.05% 94.71% 94.70% 94.99%
Lucene 96.07% 92.03% - 95.86% 91.43% -
Pentaho Console 76.80% 76.83% 78.40% 79.45% 81.35% 82.52%
PMD 93.83% 93.83% 93.43% 93.86% 93.84% 93.83%
Spring Framework 90.57% 90.67% 91.48% 90.76% 90.91% 91.63%
TV-Browser 96.57% 96.74% 96.74% 95.08% 94.79% 95.26%

higher than 90%. In the case of Equinox Framework, there is no model with R
2 higher

than or equal to 90%. Figure 5.4 shows that the evolution of Equinox Framework
is very stable with minimal variations in the DIT time series. This chart shows that
the Equinox Framework contains a very smooth trend in the global DIT time series,
and therefore, the models were not able to capture this trend and generate suitable
adjustments to this particular time series. For the initially selected models, we identify
that linear, quadratic, cubic, logarithmic at degree 1, and logarithmic at degree 2
attend Stage 2 of our evaluation protocol. However, by applying the simplicity criteria,
we conclude that the linear model is the one that better explains the growth evolution
pattern of the DIT global average since it attends all aspects of our evaluation protocol.

Observing Table 5.8, we realize that most of the generated models have R
2

values higher than 90%. However, in the cases of Equinox Framework and Pentaho
Console, there is no model with R

2 higher than or equal to 90% for the global NOC.
Analyzing the chart of the NOC global time series of these systems in Figure 5.4, we
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observe many occurrences of interventions and change points in the Pentaho Console
time series, what avoid to define a function to model it with a satisfactory R

2 value.
Concerning Equinox Framework, the trend in the global NOC time series is very
smooth, almost constant, then the models were not able to capture this tendency to
generate proper adjustments for this system. Two models, quadratic and logarithmic
at degree 2, attend Stage 2 of our evaluation protocol. By applying the simplicity
criteria, we conclude that the quadratic model better describes the decrease pattern of
NOC. Besides, considering that the global average of NOC does not decrease fast, and
there are several fluctuations between the system’s versions, the quadratic function is
the one that best adjusts to them.

Summary of RQ1 - Inheritance. The results show that the inheritance
hierarchy slightly grows in depth and decreases in breadth over the evolution.
We conclude that a linear model better explains the DIT growth pattern, and a
quadratic-order model better describes the decrease pattern of NOC.

5.4.2 Inheritance Growth/Decrease Analysis

This section describes the analysis of the inheritance hierarchy to answer RQ3. What
set of classes within the software system affects the dimensions of growth/decrease and
how these classes evolve?

To answer this research question, we initially identified the classes existing in
the analyzed systems that are responsible for increasing and decreasing the depth or
the breadth of their inheritance hierarchy. Then, we carried out the trend analysis
considering the time series regarding the systems’ classes and extracted the percentage
of classes that had growth/decrease in DIT and the classes with growth/decrease in
NOC. Figure 5.5 presents the distribution of percentages obtained by DIT growth, DIT
decrease, NOC growth, and NOC decrease. Table 5.9 details Figure 5.5 by presenting a
descriptive analysis of the data. Following, we discuss the results regarding the growth
and the decrease of the inheritance hierarchy separately.

5.4.2.1 Classes Responsible for Inheritance Hierarchy Growth

Figure 5.5 and Table 5.9 show that a tiny percentage of classes in the systems contribute
to the growth of DIT and NOC. The median percentages of classes responsible for
“DIT growth” and “NOC growth” are 3.00% and 2.00%, respectively. The maximum
percentages are 21.00% and 8.00%, respectively. Therefore, the results indicate that a
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Figure 5.5: Distribution of classes that affects the inheritance hierarchy growth/de-
crease.

Table 5.9: Descriptive analysis of the distribution of classes that affects the inheritance
hierarchy growth/decrease.

Event/Percentile 0% 25% 50% 75% 100%
DIT Growth 0.00 3.00 3.00 4.00 21.00
NOC Growth 1.00 2.00 2.00 2.75 8.00
DIT Decrease 0.00 0.00 1.00 1.00 17.00
NOC Decrease 0.00 0.00 0.00 1.00 2.00

small group of classes in a system affects the inheritance tree’s growth directly, in depth
and breadth. Regarding DIT, which tends to increase over time, this group represents
no more than 21.00% of the system’s classes. For NOC, which tends to decrease over
time, this group is even less and represents no more than 8.00% of the system’s classes.
Moreover, these values are outliers, as shown in the boxplot of Figure 5.5.

5.4.2.2 Classes Responsible for Inheritance Hierarchy Decrease

Analyzing the decrease of DIT and NOC in Figure 5.5 and Table 5.9, we note that a
small percentage of classes within a system directly influence these metrics to decrease
over time. The median of the portion of classes within the systems with a decreasing
DIT is 1.00%. For NOC, 50% of the analyzed systems do not present classes with
decreasing trends. Besides, the maximum percentages for “DIT decrease” and “NOC
decrease” are 17.00% and 2.00%, respectively.
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These results show that just a tiny group of classes directly contributes to de-
creasing the depth and breadth of their inheritance tree. As we identified that DIT
tends to increase over time, we expected that the percentage of classes with decreasing
DIT would be less than the percentage of classes with increasing DIT patterns. In
contrast, NOC has a decreasing trend, but the percentage of classes with a decreasing
NOC in a system is less than that with a growing NOC. The possible explanation is:
(1) if the number of classes in the system has not grown, decreasing in NOC values
of the classes within the system is more intense than the increasing; (2) if the number
of classes in the system has grown, most of the new classes will not have children. As
usual, the number of classes increases; the second hypothesis is more likely.

5.4.2.3 Growth versus Decrease

In this part of our study, we analyzed the intersection of trend results about DIT and
NOC together to identify the percentage of classes with the following behaviors: (i) DIT
and NOC growth, (ii) DIT and NOC decrease; (iii) DIT growth and NOC decrease; (iv)
DIT decrease and NOC growth. As we did for fan-in/fan-out, we investigated these
behaviors from the perspective of system and trend classes. Table 5.10 summarizes
the results obtained for these cases considering the system perspective. We computed
the percentages reported into it by dividing the number of intersections by the total
number of classes existing in the systems.

Table 5.10: Intersection of the trend results for DIT and NOC from the system per-
spective.

System i ii iii iv
Eclipse JDT Core 1% 0% 0% 3%
Eclipse PDE UI 0% 0% 0% 0%
Equinox Framework 0% 0% 0% 0%
Hibernate Core 0% 0% 0% 0%
JabRef 0% 0% 0% 0%
Lucene 0% 0% 0% 0%
Pentaho Console 0% 0% 0% 0%
PMD 0% 0% 0% 0%
Spring Framework 1% 0% 0% 0%
TV-Browser 0% 0% 0% 0%

Observing Table 5.10, we do not identify high percentages for these cases. In
cases (ii) and (iii), the percentages of classes are too small that they did not even
represent 1% of the classes within the systems. In cases (i) and (iv), although some
systems had values greater than 0, most of them have minimal percentage of classes.
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When analyzing the intersection percentages from the perspective of the trend
classes, we found the results reported in Table 5.11. To compute the values in this
table, we divided the number of intersections by the number of classes that presented
any trend for DIT or NOC.

Table 5.11: Intersection of the trend results for DIT and NOC from the perspective of
trend classes.

System i ii iii iv
Eclipse JDT Core 3% 1% 1% 15%
Eclipse PDE UI 4% 0% 0% 5%
Equinox Framework 0% 0% 0% 0%
Hibernate Core 0% 0% 0% 3%
JabRef 0% 0% 0% 0%
Lucene 4% 0% 0% 0%
Pentaho Console 0% 0% 0% 0%
PMD 1% 0% 0% 0%
Spring Framework 6% 0% 1% 0%
TV-Browser 0% 0% 1% 0%

Analyzing Table 5.11, we observe that, as in Table 5.10, the percentages are
too small. Despite some exceptions, such as the Case (iv) in Eclipse JDT CORE and
Case (i) in Spring Framework, the other cases did not present relevant percentages.
These results brings evidences that DIT and NOC of a class evolve separately over
the software life cycle and do not tend to follow a combined pattern or establish any
relation over the software evolution.

Summary of RQ3 - Inheritance: The evolution of the depth and the breadth
of inheritance trees are directly affected by a small set of classes. Besides, we
also identified that the evolution of DIT and NOC of a class evolve in nonrelated
patterns.

5.5 Size Evolution
This section presents the analysis of size evolution by answering the specific research
questions for this dimension.

5.5.1 Size Evolution in the System Level

This section answers RQ1.Which model better describes the evolution pattern of the
dimensions in software systems?
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We evaluate the dimension size in the class level, in terms of number of attributes
(NOA) and number of methods (NOM). This analysis aims to identify the best type
of model that describes class size’s evolution pattern, given by the metrics NOA and
NOM. For each release of a system, the global value of NOA is given by the sum of the
NOA classes. The same occurs with NOM. Like the analysis described in Sections 5.3.1
and 5.4.1, we applied regression techniques on the global NOA and NOM time series.

However, before modeling the global NOA and NOM time series, we analyzed
these metrics’ behavior over the software evolution. Therefore, we plotted the global
time series extracted from the analyzed software systems as chart lines. Figure 5.6
shows the global time series charts regarding NOA and NOM.

Analyzing Figure 5.6, we realized that, in all the analyzed systems, NOA and
NOM have a growth behavior, i.e., the systems tend to increase their size in terms of
attributes and methods over their life cycle. Although NOA and NOM grow over the
software evolution, when comparing their global time series, we observed that NOM
values are hugely higher than NOA in all analyzed systems, considering the absolute
values in the time series. The exception is JabRef because NOA starts higher than
NOM and follows this configuration up to the 17th release. Then, NOM exceeds NOA
and continues to grow faster than NOA over the JabRef evolution.

After observing the evolution pattern of NOA and NOM, we modeled the global
time series of these metrics and assessed the generated models with our evaluation
protocol (Section 4.1). Tables 5.12 and 5.13 summarize the resulting R

2 of NOA and
NOM modeling, respectively. As in Sections 5.3.1 and 5.4.1, the “lin.”, “quad.”, “cub.”,
“log. 1”, “log. 2”, and “log. 3” columns indicate the R

2 scores extracted for linear,
quadratic, cubic, logarithmic at degree 1, logarithmic at degree 2, and logarithmic at
degree 3 models, respectively.

Table 5.12: R
2 values computed from the NOA models.

System lin. quad. cub. log. 1 log. 2 log. 3
Eclipse JDT Core 99.82% 99.82% 99.83% 99.77% 99.79% 99.79%
Eclipse PDE UI 99.73% 99.73% 99.73% 99.61% 99.56% 99.51%
Equinox Framework 98.25% 98.24% 98.22% 97.68% 97.86% 97.84%
Hibernate Core 98.75% 98.79% - 98.86% 98.88% -
JabRef 99.81% 99.81% 99.82% 99.70% 99.71% 99.77%
Lucene 99.30% 98.99% 99.29% 99.44% 99.03% 99.45%
Pentaho Console 98.11% 98.09% 98.25% 97.52% 97.49% 97.90%
PMD 99.51% 99.51% 99.53% 98.98% 98.92% 98.62%
Spring Framework 99.93% 99.94% 99.92% 99.91% 99.91% 99.91%
TV-Browser 99.90% 99.90% 99.90% 99.42% 99.58% 99.85%
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Figure 5.6: Global NOA/NOM time series of the analyzed systems.
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Table 5.13: R
2 values computed from the NOM models.

System lin. quad. cub. log. 1 log. 2 log. 3
Eclipse JDT Core 99.80% 99.81% 99.81% 99.76% 99.77% 99.77%
Eclipse PDE UI 99.85% 99.85% 99.85% 99.78% 99.80% -
Equinox Framework 99.29% 99.31% 99.31% 99.30% 99.33% 99.33%
Hibernate Core 98.61% 98.67% - 98.71% 98.73% -
JabRef 99.84% 99.84% 99.86% 99.67% 99.67% 99.70%
Lucene 99.09% 98.79% 99.08% 99.28% 98.90% 99.29%
Pentaho Console 98.41% 98.42% 98.52% 97.99% 97.98% 98.09%
PMD 99.23% 99.20% 99.16% 98.96% 98.96% 98.96%
Spring Framework 99.93% 99.94% 99.91% 99.88% 99.88% 99.89%
TV-Browser 99.92% 99.93% 99.93% 99.50% 99.69% 99.80%

Observing the obtained results for NOA in Table 5.12, we note that almost all
models presented R

2 scores higher than or equal to 90%. We identify only two excep-
tions to which there is no relevant model, the cubic and logarithmic at degree 3 models
for the global time series of Hibernate Core. Due to this, we did not highlight these
cases with green in Table 5.12. For the initially selected models, we observe that linear,
quadratic, logarithmic at degree 1, and logarithmic at degree 2 described well all the
systems’ global time series and attended to the Stage 2 of our protocol. However, ap-
plying the simplicity criteria, we conclude that the linear model is the one that better
explains the growth evolution pattern of NOA since it has attended all aspects of our
evaluation protocol.

In the case of NOM, reported in Table 5.13, we also identify that most of the
produced models had good R

2 values. Three cases were selected at Stage 1 because
our method could not find models representing them: cubic and logarithmic at degree
3 for Hibernate Core and logarithmic at degree 3 for Eclipse PDE UI. Due to this,
we did not highlight these cases with green in Table 5.13. Among the selected cases
at Stage 1, we realize that linear, quadratic, logarithmic at degree 1, and logarithmic
at degree 2 models represented well all systems’ global time series. However, following
Stage 3 of our evaluation protocol, we conclude that as well as for NOA, the linear
model is the one that better explains the global evolution pattern of NOM.
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Summary of RQ1 - Size: The number of attributes and methods of classes
increases over the software evolution by following a linear model. Tables 5.12
and 5.13 show that the linear model returned R

2 scores higher than 95% for
all analyzed time series in both metrics. Such values indicate that this type of
model is very efficient in describing the growth behavior of NOA and NOM over
time. Besides, the number of methods is usually much higher than the number
of attributes in terms of absolute values.

5.5.2 Evolution of NOA/NOM Relation

This section answers the RQ2.How does the relation between dimension metrics behave
throughout the evolution of software systems?.

With RQ2, we aim to analyze how the proportion between the number of at-
tributes (NOA) and the number of methods (NOM) occurs and evolves over the soft-
ware evolution. For this purpose, we divided NOA by NOM and computed the global
proportion in two ways: global and class-by-class. The global proportion consists of
summing the NOA and NOM values for the systems’ classes and extracting a global
value for each system’s version. After that, we divided the global NOA by the global
NOM, and then, we obtained the global proportion of these metrics. Figure 5.7 sum-
marizes the global proportion of NOA and NOM extracted from the systems.

Moreover, the class-by-class proportion comprises computing the proportion for
each class’s version from the systems by dividing their NOA by NOM measures. After
identifying the individual proportion, we computed the arithmetic average of each
systems’ version to find the average proportion of the classes in each systems’ version.
We show the class-by-class proportion of NOA and NOM of each system in Figure 5.8.

Analyzing Figure 5.7, we observe that the global NOA and NOM proportions at
the beginning of the analyzed systems’ life cycle are small, approximately 30%, and
have increased over the systems’ evolution. We identify this behavior in four systems:
Eclipse JDT Core, Equinox Framework, Pentaho Console, and PMD. This finding
shows that although the number of methods is remarkably higher than the number
of attributes in terms of absolute values, the proportion of attributes concerning the
number of methods tends to increase over time, i.e., the number of attributes grows in
a higher rate than the number of methods. We also identify three cases where these
proportions differ little over the evolution and remain visually stable. The systems with
this behavior are Hibernate Core, Lucene, and Spring Framework. On the other
hand, JabRef, Eclipse PDE UI, and TV-Browser had this proportion decreased over
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Figure 5.7: Global NOA/NOM proportion.
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Figure 5.8: Arithmetic average of class-by-class NOA/NOM proportion.
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time. Moreover, we identified that, in general, the global NOA and NOM proportion
has varied in a very common interval over the software evolution, which goes from 30%
to 60%.

The charts shown in Figure 5.8 indicate that the evolution of NOA/NOM in
the analysis class-by-class follows the same pattern of the global analysis, shown in
Figure 5.7. This finding reinforces the idea that the number of attributes grows at a
higher rate than the number of methods. However, although the charts in Figures 5.7
and 5.8 follow the same pattern, we may observe that for some systems such as
Eclipse PDE UI and Equinox Framework, the percentages obtained in Figure 5.8 are
higher than the ones identified in Figure 5.7. As Figure 5.8 refers to the arithmetic
average of class-by-class NOA and NOM percentages, we can conclude that, in
these systems, most of the classes have more attributes than methods, and there
is a low number of classes with more number of methods than the number of attributes.

Summary of RQ2 - Size: Although the number of methods is much higher
than the number of attributes in terms of absolute values, in general, the number
of attributes tends to increase in a higher rate than the number of methods over
the software evolution. The global proportion of NOA in relation to NOM grows
varies from 30% to 60%r over the software evolution.

5.5.3 Size Growth/Decrease Analysis

This section answers RQ3.What set of classes within the software system affects the
dimensions of growth/decrease and how these classes evolve?.

With RQ3, we aim to identify the percentages of classes existing in the systems
that directly affect the class size growth or decrease. We performed the trend analysis
considering the time series from the systems’ classes regarding the NOA and NOM
metrics. Besides, we computed the percentages of types responsible for increasing and
decreasing these metrics values and summarized them in Figure 5.9.

Table 5.14 shows the class percentages that interfere in the NOA growth and
decrease. We discuss the results obtained by growth and decrease of the size metrics
in the sequel.

5.5.3.1 Classes Responsible for Size Growth

Figure 5.9 and Table 5.14 show that the median of the class percentage responsible for
“NOA growth” and “NOM growth” is 12.50% and 16.50%, respectively. The maximum
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Figure 5.9: Distribution of classes that affects class size growth/decrease.

Table 5.14: Descriptive analysis of the distribution of classes that affects size
growth/decrease.

Event 0% 25% 50% 75% 100%
NOA Growth 7.00 9.00 12.50 19.25 27.00
NOM Growth 11.00 15.25 16.50 26.50 37.00
NOA Decrease 2.00 3.00 5.00 7.00 7.00
NOM Decrease 2.00 3.00 5.00 5.75 7.00

percentages indicate that 27.00% and 37.00% of the systems’ classes contribute directly
to increase NOA and NOM.

These results show that just a small group of classes in a system have their
number of attributes and methods increased over time. The classes with increasing
NOM correspond to no more than 37% of the system. Regarding NOA, this group is
even smaller, with no more than 27% of the systems’ classes.

5.5.3.2 Classes Responsible for Size Decrease

Figure 5.9 and Table 5.14 show that the median of the class percentages responsible
for “NOA decrease” and “NOM decrease” is 5.00%, and the maximum percentage is
7.00% for both. These results show that a tiny group of classes within the systems,
corresponding to no more than 7.00%, directly contributes to these metrics decreasing
over time. Although the class groups responsible for the growth and decrease of these
metrics are small, the high discrepancy between them is one reason for the growth
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trend identified for these metrics.

5.5.3.3 Growth versus Decrease

In this analysis, we verified the intersection trend results for NOA and NOM to identify
the percentage of classes that affects the following behaviors: (i) both NOA and NOM
growth, (ii) both NOA and NOM decrease, (iii) NOA growth and NOM decrease, and
(iv) NOA decrease and NOM growth. Initially, we analyzed these cases from the system
perspective. i.e., considering percentages based on the total number of classes from the
systems. Table 5.15 summarizes the results obtained for these cases.

Table 5.15: Intersection percentages of the trend results for NOA and NOM from the
system perspective.

System i ii iii iv
Eclipse JDT Core 22% 2% 1% 3%
Eclipse PDE UI 7% 3% 1% 2%
Equinox Framework 11% 1% 1% 0%
Hibernate Core 7% 1% 0% 0%
JabRef 10% 1% 0% 1%
Lucene 7% 1% 0% 1%
Pentaho Console 5% 1% 0% 1%
PMD 7% 1% 1% 0%
Spring Framework 18% 4% 1% 1%
TV-Browser 16% 3% 1% 1%

As shown by the data in Table 5.15, the cases (iii) and (iv) are too rare, and their
maximum percentages in the analysis are 1% and 3%, respectively. The Case (i) is the
one with the highest chance of occurring since its maximum percentage corresponds to
22% of the total systems’ classes. In Case (ii), the maximum percentage is 4%.

Analyzing the intersection percentages from the perspective of the trend classes,
we found the results from Table 5.16. To calculate these percentages, we divided the
number of intersections by the number of classes that presented any trend for NOA or
NOM.

Observing Table 5.16, we identify high percentages of Case (i), which vary
from ≈25% to ≈45%. These percentages had a significant increase in comparison to
Table 5.15. For cases (ii) and (iv), as in Table 5.15, Table 5.16 also indicates very low
percentages. Such values show that these cases tend not to occur frequently during
the evolution of the software. Therefore, the results suggest evidence of the relation
between NOA and NOM over the software evolution. This evidence indicates that
these software metrics grow together and, consequently, follow a combined pattern



5.6. Threats to Validity 103

Table 5.16: Intersection percentages of the trend results for NOA and NOM from the
perspective of trend classes.

System i ii iii iv
Eclipse JDT Core 43% 5% 2% 5%
Eclipse PDE UI 28% 11% 2% 7%
Equinox Framework 38% 4% 3% 2%
Hibernate Core 35% 6% 2% 1%
JabRef 39% 4% 2% 6%
Lucene 31% 3% 1% 3%
Pentaho Console 24% 6% 1% 4%
PMD 33% 5% 3% 1%
Spring Framework 42% 9% 1% 3%
TV-Browser 40% 9% 2% 3%

over evolution.

Summary of RQ3 - Size: A small but not irrelevant percentage of classes in a
system has the attributes and methods increased over time. Decreasing methods
or attributes are rare events. Analyzing the systems as a whole, on average, just
≈10% of the classes in a system have methods and attributes growing together.
However, considering only trend classes, NOA and NOM grow together.

5.6 Threats to Validity

This section presents the threats to the validity of this empirical analysis and discusses
the main decision we made to mitigate them.

Statistical trend tests. To identify the percentage of classes that directly affect
the growth and decrease of the software metrics, we defined a trend analysis with some
statistical trend tests. If the choice of the trend tests is not well-planned, they may
be considered a threat to validity since they may be susceptible to errors and return
false-positives and false-negatives. We chose three relevant and useful trend tests to
integrate our analysis and analyzed each time series by applying them to mitigate this
threat. Besides, as a trend criteria, we defined that a trend exists in a time series when
it is identified by at least two out of the three trend tests.

Results generalization. We analyzed the evolution of coupling, size, and in-
heritance hierarchy in open-source Java systems. We used a dataset composed of 10
different systems in our analysis. Although our dataset has an appropriated amount of
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data, and reflect well the evolution of Java systems, we can not claim generalization of
the results to other domains and contexts of development, such as proprietary software
and systems written in any language other than Java.

Software metrics chosen. We chose software metrics proposed in the literature
to investigate the evolution of coupling, inheritance hierarchy, and class size. The
choice of these metrics may be considered a threat to validity if the selection is not
well-planned, and the ones chosen do not provide a good representation of the analyzed
characteristics. To mitigate this threat to validity, we used well-known metrics that
have been applied in other studies in the literature.

Ghost classes. We performed a step to detect the time series of “ghost” classes
during the trend analysis to avoid applying the trend tests in them. We did this because
“ghost” classes have time series with broken intervals and do not present values for some
observations. However, the removal of “ghost” classes may be considered a threat to
validity since they contain relevant information about the trends. To mitigate this
threat, we evaluated them separately to check if they do have relevant information.
After assessing them, we concluded that they made up a tiny part of the systems and
did not have significant trend patterns. Therefore, disregarding the application of the
trend tests in the time series of “ghost” classes would not introduce bias in the analysis.

Use of regression techniques. To model the global time series of the systems,
we defined a behavior analysis using linear regression techniques to define the models
that describe the time series pattern. Although regression techniques have been very
used to model time series [Graves et al., 2000; Ramil and Lehman, 2000; Capiluppi,
2003; Koch, 2005; Arisholm and Briand, 2006; Ratzinger et al., 2007; Shatnawi and
Li, 2008; Kirbas et al., 2014], the presence of interventions or autocorrelation in the
time series may bias the generated models. To avoid this problem, after generating the
models using regression techniques, we carried out intervention and residual analyses
to treat autocorrelation and, hence, ensure that the models have a good adjust to the
global time series of the analyzed systems.

5.7 Final Remarks

This chapter presented and discussed the main observations extracted from some empir-
ical analyzes about the evolution of object-oriented software systems from the perspec-
tive of coupling, size, and inheritance hierarchy. Our analysis considered a dataset com-
posed of software metrics time series regarding 10 Java open-source systems. To study
the evolution of these dimensions, we used fan-in/fan-out, DIT/NOC, and NOA/NOM
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for representing coupling, inheritance hierarchy, and size, respectively. After map-
ping the dimensions into software metrics, we applied our two-phase analysis method,
defined in Chapter 4, to analyze how these aspects evolve.

Based on these results, we depicted software evolution properties that we present
in Chapter 6.





Chapter 6

Software Evolution Properties

This chapter compiles and discusses the results of the empirical analysis carried out in
this study. The results lead us to identify 15 software evolution properties related to
coupling, inheritance, and size. We organize this chapter as follows. Section 6.1 shows
the properties of coupling evolution. Section 6.2 presents the properties of inheritance
hierarchy evolution. Section 6.3 describes the ones of size evolution, and Section 6.4
concludes this chapter.

6.1 Coupling

This section presents seven evolution properties regarding coupling evolution. They
are:

1st - Coupling grows linearly over time. We have identified that the global
fan-in and fan-out time series are better modeled by a linear model. The increasing
level of coupling among classes may make the system harder to comprehend and main-
tain. Therefore, this property is under Lehman’s 2nd and 6th laws, which indicate that
the complexity tends to increase, and the quality tends to decline during the software
evolution. We consider the more likely cause of this property is the inclusion of new fea-
tures in the system without proper adjustments to keep coupling stable. Nevertheless,
this assumption needs investigation.

2rd - Unnecessary coupling is continuously higher than necessary cou-
pling. Necessary coupling consists of high fan-in and low fan-out, whereas unnecessary
coupling consists of low fan-in and high fan-out. Unnecessary coupling is much higher
than necessary coupling since the first releases of a software system. This fact means
that most classes in a system are service users. The consequence of this property is
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that, as a software system evolves, even more care should be given for classes that
provide services as the impact of changes on them tends to be higher over time.

3th - A small group of classes have high coupling. There is a small group
of classes in a system that have their coupling level increased or decreased. In our
analysis, we found that no more than 35% of classes in a system have their coupling
level increased, and no more than 10% of classes have their coupling decreased.

4th - Complexity is introduced since the first versions of a system. We
observe that since the first system versions, the unnecessary coupling is hugely higher
than the necessary coupling. Based on this analysis and the quality indication pointed
by the literature, we conclude that the system’s initial version is already complex. This
finding contradicts the assumption that complexity is inserted in software systems over
its evolution. However, this finding is accordance with the study of Tufano et al. [2015]
whose main conclusion is that bad-smells are introduced in software systems since
their first versions. This property indicates the need of developing refactoring tools
and techniques to be applied since the beginning of the systems’ life cycle.

5th - Legacy classes mainly contribute to coupling evolution. Legacy
classes are classes introduced in the first system version, which are not removed during
its evolution. Analyzing the the classes that influence the coupling growth/decrease,
we identified a strong presence of legacy classes. This property corroborates that
complexity is introduced in software systems since the beginning.

6th - There is no association between fan-in and fan-out. By analyzing
the percentages of four association cases, we do not identify a pattern in terms of
growth and decrease of fan-in and fan-out for the classes that impact the coupling
evolution. Such finding suggests that the growth/decrease of fan-in is not related to
the growth/decrease of fan-out. When a class becomes more or less dependent on
other classes, it does not necessarily imply that the other classes will demand more
or fewer services. However, to prove this property and the evidence obtained in it,
we will evaluate the relationship between these metrics by applying a statistical test.
With this test, we will be able to claim whether they are associated based on statistical
significance.

6.2 Inheritance Hierarchy

Results of this work suggest five properties of inheritance hierarchy evolution:
1st - Inheritance hierarchy tends to increase in depth and decrease in

breadth over time. We represent depth and breadth by the DIT and NOC metrics,
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respectively. Their global time series analysis indicates that the mean DIT of classes
within a system tends to increase, whereas the mean NOC tends to decrease.

2nd - Inheritance hierarchy depth grows according to a linear model.
An inheritance tree with many levels may introduce complexity in the system structure
and make it hard to understand and maintain. This fact is because the higher number
of superclasses a class has, the more difficult it is to understand the behavior of its
objects. Due to this, Gamma et al. [1994] define the principle “favor composition over
inheritance” that recommends implementing reusable software using class composition
rather than class inheritance to avoid such complexity.

3rd - Inheritance hierarchy breadth decreases according to a quadratic
model. A quadratic function better models the global behavior of the breadth evolu-
tion in the inheritance hierarchy. We used the NOC metric to evaluate breadth in the
inheritance hierarchy, and their global time series have several fluctuations between
the versions. Therefore, we believe the quadratic model adjusted better to these time
series since it has a curve more flexible than the other models. Decreasing the mean
number of children in a system may be due to two possible reasons: the new classes
added to the system do not have children classes in general and/or the inheritance
trees are refactored over time.

4th - A small part of the system influences the growth and the decrease
of the inheritance hierarchy. A small group of classes present in a system affects
the growth and decrease of depth and breadth in the inheritance hierarchy. Regarding
depth, no more than 21.00% of the system’s classes have their DIT increased, and no
more than 17.00% have their DIT decreased. Regarding breadth, this percentage is even
less. No more than 8.00% and 2.00% of the systems’ classes have their DIT increased
or decreased. Therefore, although the use of inheritance may introduce complexity in
the system, it will occur with a small portion of the system.

5th - There is no association between the depth and the breadth of
a class. A small percentage of classes within the systems presented an association
between depth and breadth in terms of growth/decrease. This finding shows that the
number of children and the number of superclasses of a class evolve independently, and
do not tend to relate or follow the combined pattern over time. We will re-evaluate this
evidence latter by applying a statistical test and, consequently, claim with a significance
level the presence of association or non-association between them.
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6.3 Size

We identified following properties of class size evolution:
1st - The size of classes grows according to the linear model. A linear

function better models the global pattern evolution of both the number of attributes
and number of methods of classes within the systems. This property is in accordance
of the Lehman’s 6th law, which indicates that the systems continually increase over
time. Our results indicate how such increases occur in the structure of classes.

2nd - The proportion of the number of attributes in relation to the
number of methods in a class grows over time We identified that both global
and class-by-class NOA/NOM ratio grows over time. The NOA/NOM proportion tends
to vary from 30% to 60%. This finding shows that although the number of methods
is higher than the number of attributes in terms of absolute values, the growth of the
number of attributes is higher than the number of methods in a system.

3th - A small group of classes affects the growth of system size. In
our study, there is a small group of classes in the systems with an increasing number
of attributes, no more than 27.00%. In the same way, few types have an increasing
number of methods, up to 37.00%. Rarely, a class has its size decreased. In our study,
7.00% is the higher percentage of classes with such behavior we found. Although the
percentage of types having attributes or methods added to them is not very high, it is
still relevant. Apart from refactoring, a class swelling means that more services were
introduced in the class. This fact may lead to non-focused and more complex classes
and, therefore, to a more complex software structure.

4th - The evolution of the number of attributes and the number of
methods are correlated. Our results suggest a positive correlation between NOA
and NOM evolution regarding growth and decrease. Such finding means that when we
include attributes in a class, methods are also included, or vice-versa. When removing
attributes, methods are also excluded. This finding details the way a class grows or
decreases over the software evolution. However, we evaluated the relation between NOA
and NOM by descriptive analysis and identified evidence of an association between
them. To confirm and prove this property, we will analyze it using a statistical test
and, then we will validate this relation based on a statistical significance.

6.4 Final Remarks

This chapter summarized and discussed the results of the empirical analyzes we carried
out in Chapter 5. Based in the results, we defined evolution properties for coupling,
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inheritance hierarchy, and size. The set of properties presented in this chapter describes
how software evolution occurs in object-oriented software systems from the perspective
of these dimensions.

Chapter 7 presents the next steps that we will follow to conclude this thesis
research and provides some directions about the methodology we will perform to achieve
the objectives of this work.





Chapter 7

Next Steps

This chapter presents the next steps to conclude this Ph.D. research, as well as the
methodology we will apply in the work. We organize this chapter as follows. Section 7.1
describes a proposal of methodology to create a dataset with data of software evolution.
Section 7.2 details a prototype of methodology for defining our prediction method for
metrics values over the software evolution. Section 7.3 enlists the tasks we planned to
achieve the proposed objectives and a schedule with the deadlines to meet each of the
defined tasks. Section 7.4 concludes this chapter.

7.1 Creation of a Dataset

This section presents a proposal of the methodology we defined to create our software
evolution dataset. It consists of six steps, which we describe as follows.

Step 1 - Definition of software systems. The first is to define the object-
oriented software systems from which we will collect the data about evolution. We
chose including only systems developed in Java in our dataset because this language
is one of the most popular object-oriented programming languages in the academy
and industry. Besides, there are many software systems developed in Java and many
software metrics tools support the collection of metrics from systems created in this
language.

Initially, we aim to start creating our dataset by extracting recent data from the
systems existing in COMETS. We will decide throughout the conduction of the dataset
extension if it is worth it to include data from other software systems and which new
systems may be incorporated. The resulting data set will be used in the sequence of
this work.
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Step 2 - Extract the software releases from their repository. We will
identify the repository of the systems in version control platforms, such as SVN and
Git, and extract versions of their source code within a period. During this versioning
process of the source code, we will stipulate a time frame of the systems life cycle that
we will extract. After that, we will space out it in intervals of bi-weeks, as well as
Couto et al. [2013] did in COMETS, to compose the many systems releases. Therefore,
each version of the systems will refer to a period of 14 days within the defined total
time frame.

Step 3 - Identify tools for collecting software metrics. This step aims to
define the software metrics that we will collect from the systems of our dataset and
search tools that support the collection of these metrics. After including the software
metrics existing in COMETS, we will search by tools that may provide measures for
them. However, during the dataset creation, we will decide if we will collect other
object-oriented metrics.

Step 4 - Collect the measures from the versions of the software systems.
In this step, we will run the chosen software tools to extract their from the systems’
versions obtained in Step 2.

Step 5 - Organize the collected metrics as time series. In this step, we
will to organize the metrics in CSV files for each metric and storing all metrics files
regarding a given system into a ZIP file. To create the CSV files, we will follow the
same pattern defined by Couto et al. [2013]. The metrics file lines will represent the
systems’ classes, whereas the columns will specify the releases we extracted from the
programs. Each cell (c, x) into a CSV file will indicate the value of a particular metric
M computed for the class c in a version x.

7.2 Prediction Method

This section describes the methodology to define our prediction method for software
evolution. Chapter4 described an approach to analyze the behavior of a software time
series (Section 4.1) as Phase 1 of our method of software evolution data analysis. This
approach used linear regression and other techniques, such as intervention analysis and
residuals autoregression, to improve the produced models’ adjustment and treat exter-
nal events that could distort the time series pattern and, consequently, influence the
time series representation. It allowed us to represent and model a particular time series,
but the evaluation protocol did not assess the produced models from the prediction
point of view.
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Therefore, the purpose here is to extend the approach described in Phase 1 of our
analysis method by including a prediction evaluation protocol. This protocol will allow
the method to only analyze the time series behavior up to the last available version, to
produce a forecast model for the specific time series. Our method’s input will take a
set of evolutionary data regarding software metrics from a given software system, i.e.,
the metric time series. The result of the method will be a model that predicts how
a software system will evolve in terms of the attributes measured by the metrics. To
achieve this goal, we will follow four steps described as follows.

Step 1 - Use of the behavior analysis approach as the foundation. This
step consists of reusing the steps 1 to 5 of the behavior analysis approach, proposed
in Section 4.1 (Chapter4), as the base to build the initial prediction models for the
analyzed time series. In the end, we will have a set of best models, each referring to
the following types: linear, quadratic, cubic, logarithmic at Degree 1, logarithmic at
Degree 2, and logarithmic at Degree 3.

Step 2 - Definition of a selection strategy for prediction models. It
consists of defining a protocol for evaluating the forecast provided by the prediction
models produced in Step 1 and selecting the best prognosis. To assess the models in
this step, we will divide the time series presented by the developer into two groups:
“training” and “test”. The “training” set is the one we will use in Step 1 to generate the
models, while we will consider the “test” set to analyze the models’ prediction quality.

Step 3 - Automation of the selection strategy. This step aims to automate
the production and choice of the best prediction model for the analyzed software time
series. At the current stage of this research, we have this method partially automated
in R programming language since we implemented the behavior analysis approach to
carry out the empirical studies presented in Chapter 5. To make our prediction method
completely automatic, we will incorporate the selection strategy for prediction models,
which we will define in Step 2, to the R scripts we have already created.

Step 4 - Evaluation of the prediction method. We will carry out empirical
studies aiming to evaluate the predicting model. For this purpose, we will consider in
this step the metrics time series of the software systems regarding the dataset that we
will also build as continuity of the current research described in this thesis project.

7.3 Schedule

This section presents a task schedule that we need to do to conclude this Ph.D. thesis.
We divided the task into the remaining period of the Ph.D. course, which goes from
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September 1st, 2020 to August 1st, 2021. We enlist the main tasks that still need to be
done as follows.

1. Define the software systems we will include in the dataset.

2. Identify the defined systems in the version control platforms and extract their
versioned source code.

3. Seek for software metrics tools in the literature that collects measure Java object-
oriented systems by their source code.

4. Collect the metrics values from the systems releases extracted from the version
control platforms.

5. Organize the collected metrics as time series in CSV files.

6. Construct a website for the dataset and make it available online for other re-
searchers.

7. Write a paper about the proposed dataset.

8. Refine the methodology for creating our prediction method.

9. Define a selection strategy that allows our method to choose the best prediction
models for each analyzed time series.

10. Implement our prediction method and make it completely automatic.

11. Evaluate the effectiveness of the models produced by our method.

12. Write a paper about the prediction model.

13. Write the Ph.D. thesis.

14. Present the final Ph.D. thesis.

Besides defining the task that still needs to be fulfilled, we stipulated deadlines
for finishing each of them. Table 7.1 shows these deadlines.
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Table 7.1: Task schedule for finishing the Ph.D. thesis.

Period

Task 2020 2021
09 10 11 12 01 02 03 04 05 06 07 08

1 X
2 X X
3 X
4 X X
5 X
6 X X
7 X
8 X
9 X

10 X X
11 X X
12 X
13 X X X X X X X X X X X
14 X

7.4 Final Remarks
This chapter presented the next steps that we proposed to conclude this Ph.D. thesis
and detailed a proposal of methodology for each one of the goals that we aim to achieve.
Besides, it also divided the next steps in a sequence of minor tasks and scheduled the
deadlines for meeting each of them, considering the remaining period for finishing the
Ph.D. course.

Chapter 8 concludes the thesis project by summarizing all content described in
this document, highlighting the main contributions of this research, and presenting an
overview of the next steps to conclude this research.





Chapter 8

Conclusion

The evolution process is one of the most critical phases in the software life cycle. It is
responsible for most of the total cost of a system that may comprise from 85% to 90%
of the total expenses that a company spends with software. Due to the relevance of
this phase, studies in the literature have made efforts to investigate this area aiming
to provide novel methods and strategies that aid companies to reduce software costs.
Lehman et al. [1997] carried out one of the first studies on this subject. They defined
eight laws that describe the evolutionary nature of the software systems and indicate
how it occurs. Since then, much work have been done aiming to extract more details
about the evolution process in software and validate the presence of these laws in the
development context. The present work is concerned with object-oriented software
evolution.

Initially, we carried out a Systematic Literature Review (SLR) to compile the
current state-of-the-art on software evolution. We also aimed to identify researches
opportunities that need to be performed to cover the still open points. Our analysis
identified a total of 130 papers published from 1979 to 2019. The SLR revealed that
software evolution has been studied from five perspectives:

(i) verification of the applicability of Lehman’s laws;

(ii) proposal for applications;

(iii) analysis of the evolution with a focus on quality

(iv) analysis of the software structure evolution;

(v) proposal of models for software evolution.
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Our SLR has also identified unusual characteristics of software evolution, such as
the confirmation of increasing complexity and challenging maintenance over the soft-
ware life cycle. However, we realized that the studies carried out have neither provided
patterns explaining how the structure of software systems degrades over time nor have
explained how it evolves from the perspective of the software’s internal dimensions.

This work aims to contribute with a solution to this problem in two directions.
First, we analyzed the evolution of the object-oriented software systems aiming to pro-
vide a fine-grained view of how software internal structure evolves from the perspective
of coupling, inheritance hierarchy, and size of classes. We defined a novel method based
on time series analysis, linear regression techniques, and trend tests to analyze the evo-
lution of object-oriented systems. This method consists of two phases. The first phase
models the evolutionary data extracted from the software using linear regression to
represent their behavior and evolution pattern. The second phase applies trend tests
in time series regarding the software measures for obtaining the internal components
that directly impact the increase or decrease of software measures.

Applying such an approach in evolutionary data from ten Java-based open-source
projects, we extracted a set of properties that describe and characterize the software
systems’ evolution behavior from the perspective of the internal dimensions. Some
of the properties we defined are: (i) the coupling, size of classes and the depth of
the inheritance hierarchy increase according to the linear model; (ii) the breadth of
the inheritance hierarchy decreases according to a quadratic model; (iii) systems are
designed with a high level of complexity; (iv) most of the systems’ classes do not change
their metrics values over time and, consequently, the increase or decrease of dimension
in the system is directly affected by a small group of classes.

In the second direction, we aim to define a prediction method for object-oriented
software evolution applying the software evolution properties identified in this thesis
project as a background in the. Our approach will build forecast models for particular
systems considering data of coupling, size of classes, and inheritance hierarchy. To
create this method, we will base on our analysis approach defined to analyze the evo-
lution of the software dimension and extend it to make the produced models predict
future values of the examined aspects. Our method will take a set of evolutionary data
regarding software metrics from a particular system as input. It will return a model
that project values for future releases of that software based on the behavior extracted
for its metrics history. By this approach, developers will be able to produce specific
prediction models for a particular software. These models will aid them to better plan
their strategies for making changes and new features in the system and, then, avoid or
mitigate the software architecture degrading over their evolution.
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To evaluate the proposal, we will extend the software evolution dataset, COMETS,
which we used in the empirical analysis in the first part of this research. It contains
a large quantity of evolutionary data of software metrics extracted from ten object-
oriented software. However, it is out of date. The most recent information existing in
it refers to December 11st, 2011. Then, we aim to mine the values of software metrics
from recent releases of their systems and use these data to assess our prediction method.
It is essential to highlight that the prediction method and the extended dataset will be
built in the next steps of this thesis research.

The results obtained so far in this thesis project have produced the following
contributions:

• A Systematic Literature Review that compiles the knowledge on software evo-
lution. The results of the SLR is important for industry and academy. In the
industry side, such knowledge will aid decision making in the software life cycle.
In the academy side, the results help to identify the need for further research
based on the knowledge the community has so far on software evolution.

• A novel method to analyze software evolution based on time series analysis. The
technique consists of two phases. The first phase uses linear regression to model
the data’s evolution pattern and identify the type of model that better represents
their behavior. The second one applies trend tests in the time series to analyze
the classes’ evolution, which mainly has the measures increased or decreased over
time.

• A set of properties that details in a fine-grained view the evolution of object-
oriented software systems from the perspective of coupling, size, and inheritance
hierarchy.

Besides, the research carried out until now in this thesis project has generated
the following scientific papers:

• Sousa, B.L.; Ferreira, M.M.; Ferreira, K.A.M.; Bigonha, M.A.S. Software Engi-
neering Evolution: The History Told by ICSE. In Proceedings of the XXXIII
Brazilian Symposium on Software Engineering (SBES 2019), Salvador, BA,
Brazil, pages 17–21, 2019. (Published)

• Sousa, B.L.; Bigonha, M.A.S; Ferreira, K.A.M. Analysis of Coupling Evolution
on Open Source Systems. In Proceedings of the XIII Brazilian Symposium on
Software Components, Architectures, and Reuse (SBCARS ’19), Salvador, BA,
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Brazil, pages 23–32, 2019. (Published and awarded as the 2nd best paper in the
symposium)

• Sousa, B.L.; Bigonha, M.A.S; Ferreira, K.A.M.; Franco G.C. Evolution of Size
and Inheritance in Object-Oriented Software – A Time Series Based Approach.
Submitted to an international journal, pages 1–11, 2020. (Under Review)

• Sousa, B.L.; Bigonha, M.A.S; Ferreira, K.A.M.; Franco G.C. A Comprehensive
Systematic Literature Review of Software Evolution. Submitted to an interna-
tional journal, pages 1–35, 2020. (Under Review)

As future works and the next steps for this Ph.D. research, we intend:

• Built a dataset with recent data regarding the evolution of object-oriented soft-
ware systems.

• Define a method that extracts prediction models from the evolutionary data
regarding software metrics for object-oriented software systems.

• Evaluate the proposed prediction method considering real data of software evo-
lution extracted from object-oriented software systems.
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Appendix A

Software Evolution Metrics

This appendix provides an overview of the 72 software evolution metrics identified in
this SLR. Tables A.1 and A.2 present a summary of the full set of metrics by includes
the metrics name, metrics acronym, and papers references that mentioned them.
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Table A.1: Part 1 - Overview of the software evolution metrics found in the SLR.

ID Name Acronym [Ref.]
1 Afferent coupling CA [Alenezi and Zarour, 2015]
2 Assignment ASGMT [Thomas et al., 2014]
3 Changed files CF [Terceiro et al., 2012]
4 Cohesion among

methods of class
CAM [Alenezi and Zarour, 2015]

5 Contribution period
before change

CPBF [Terceiro et al., 2012]

6 Coupling between
methods

CBO [Alenezi and Zarour, 2015]

7 CplXLCoh CPLXLCOH [Stewart et al., 2006; Darcy et al., 2010]
8 Cyclomatic complex-

ity
CC [Capiluppi and Ramil, 2004; Al-Ajlan, 2009]

9 Decrease in structural
complexity

∆SCd [Terceiro et al., 2012]

10 Depth of folder tree DFP [Capiluppi and Ramil, 2004]
11 Depth of inheritance

tree
DIT [Nasseri et al., 2008]

12 Efferent coupling CE [Alenezi and Zarour, 2015]
13 Fan-in FAN-IN [Singh and Ahmed, 2017]
14 Fan-out FAN-OUT [Vasa et al., 2009; Singh and Ahmed, 2017]
15 Halstead’s length HLENG [Herraiz et al., 2007]
16 Halstead’s level HLEVE [Herraiz et al., 2007]
17 Halstead’s volume HVOLU [Capiluppi and Ramil, 2004; Herraiz et al., 2007]
18 Halstead’s mental dis-

criminations
HMD [Herraiz et al., 2007]

19 Implementation
changes

IMC [Singh and Ahmed, 2017]

20 Improved variation of
the LCOM

LCOM3 [Alenezi and Zarour, 2015]

21 In-degree count IDC [Vasa et al., 2009]
22 Increase in structural

complexity
∆SCi [Terceiro et al., 2012]

23 Lack of cohesion in
methods

LCOM [Alenezi and Zarour, 2015]

24 Lines of code LOC [Godfrey and Tu, 2000; Capiluppi et al., 2004a,b; Robles et al.,
2005; Herraiz et al., 2006; Izurieta and Bieman, 2006; Herraiz
et al., 2007; Koch, 2007; Gonzalez-Barahona et al., 2009; Thomas
et al., 2009; Darcy et al., 2010; Grigorio et al., 2015; Hatton et al.,
2017]

25 Load instruction
count

LIC [Vasa et al., 2009]

26 Max function com-
plexity

MaxFC [Antinyan et al., 2013]

27 McCabe’s complexity VG [Capiluppi et al., 2007; Herraiz et al., 2007; Antinyan et al., 2013;
Alenezi and Zarour, 2015; Grigorio et al., 2015]

28 Method lines of code MLOC [Al-Ajlan, 2009]
29 Number of attributes NOA [Vasa et al., 2009]
30 Number of blank lines BLKL [Herraiz et al., 2007]
31 Number of children NOC [Nasseri et al., 2008]
32 Number of comment

lines
CMTL [Herraiz et al., 2007]

33 Number of commits NOCOM [Terceiro et al., 2012]
34 Number of designers NODSR [Antinyan et al., 2013]
35 Number of directories NODIR [Izurieta and Bieman, 2006]
36 Number of files NOFL [Capiluppi et al., 2004b; Herraiz et al., 2006; Izurieta and Bieman,

2006; Capiluppi et al., 2007]



143

Table A.2: Part 2 - Overview of the software evolution metrics found in the SLR.

ID Name Acronym [Ref.]
37 Number of files added NOFLA [Capiluppi and Ramil, 2004]
38 Number of files

deleted
NOFLD [Capiluppi and Ramil, 2004]

39 Number of files han-
dled

NOFLH [Capiluppi et al., 2007]

40 Number of files modi-
fied

NOFLM [Capiluppi and Ramil, 2004]

41 Number of files per
level

NOFLPL [Capiluppi et al., 2004b]

42 Number of files with
decreasing McCabe
index

NOFDVGI [Capiluppi and Ramil, 2004]

43 Number of folders NOFLR [Capiluppi et al., 2004b]
44 Number of function

returns
RETUR [Herraiz et al., 2007]

45 Number of functions FUNC [Herraiz et al., 2007]
46 Number of instances

of common coupling
NOICC [Thomas et al., 2009]

47 Number of methods NOM [Vasa et al., 2009]
48 Number of non-

commented lines
NONCL [Antinyan et al., 2013]

49 Number of packages NOP [Gonzalez-Barahona et al., 2009]
50 Number of post-

deployment failures
NOPDF [Krishnan et al., 2011a]

51 Number of revisions
per file

NORPF [Antinyan et al., 2013]

52 Number of state-
ments

NOSTM [Al-Ajlan, 2009]

53 Out-degree count ODC [Vasa et al., 2009]
54 Public interface

changes
PIC [Singh and Ahmed, 2017]

55 Public method count PMC [Vasa et al., 2009]
56 Relative level of com-

plexity control work
RLCPCW [Capiluppi et al., 2007]

57 Response for a class RFC [Alenezi and Zarour, 2015]
58 Reuse ratio RR [Nasseri et al., 2008]
59 Scattering SCAT [Thomas et al., 2014]
60 Size of packages SOP [Gonzalez-Barahona et al., 2009]
61 Source code distace SCDIST [Yu and Ramaswamy, 2009]
62 Specialization ratio SR [Nasseri et al., 2008]
63 Store instruction

count
SIC [Vasa et al., 2009]

64 Structural complexity
variation

∆SC [Terceiro et al., 2012]

65 Structure distance STRUCDIST [Yu and Ramaswamy, 2009]
66 Total size in KB SIZKB [Capiluppi et al., 2004a,b; Izurieta and Bieman, 2006]
67 Type construction

count
TYCC [Vasa et al., 2009]

68 Variation in size of
the project

∆LOC [Capiluppi et al., 2007; Terceiro et al., 2012]

69 Weight WGT [Thomas et al., 2014]
70 Weighted methods

per class
WMC [Vasa et al., 2009; Alenezi and Zarour, 2015]

71 Width of folder tree WFT [Capiluppi and Ramil, 2004]
72 Width of level WL [Capiluppi and Ramil, 2004]
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