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Resumo

A modificação de artefatos de software para inserção novas funcionalidades ou correção

de erros é algo inerente ao ciclo de vida de software. Somente por meio dela o software

poderá continuar a atender às necessidades de seus usuários. No entanto, realizar uma

modificação de software pode ser uma tarefa desafiadora. Ao alterar um artefato de

software, o desenvolvedor deve analisar o impacto que essa modificação terá em outros

artefatos e, se necessário, modificá-los para que o comportamento do software permaneça

consistente. A esse processo damos o nome de Análise de Impacto de Modificação (Change

Impact Analysis - CIA). Alguns métodos para CIA, particularmente para ńıvel de classe,

têm sido propostos. No entanto, esses métodos não são práticos para serem aplicados

no dia-a-dia dos desenvolvedor, uma vez que são muito complexos. Portanto, analisar o

impacto que a modificação de uma classe tem em um sistema de software ainda é um

desafio a ser superado. Sendo assim, o objetivo desta tese de doutorado é definir um novo

método para CIA em ńıvel de classe para software orientado por objetos. Para funda-

mentar nossa proposta, realizamos uma série de estudos. (i) Investigamos o estado da

prática de desenvolvimento, buscando identificar o ńıvel de conhecimento e aplicação dos

conceitos de manutenção de software por parte dos desenvolvedores. (ii) Investigamos o

estado da arte por meio de um mapeamento sistemático da literatura (Systematic Mapping

Review - SMR) sobre CIA. Entre os resultados do SMR, identificamos o uso emergente

de dados históricos de commits. No entanto, tais abordagens apresentam vieses significa-

tivos porque não consideram as caracteŕısticas dos commits. (iii) Realizamos um estudo

emṕırico para caracterizar commits em sistemas open-source desenvolvidos em Java. Com

base nos resultados desse estudo emṕırico, propusemos uma nova heuŕıstica baseada em

commits para CIA, visando superar as principais fragilidades das abordagens baseadas

em commits propostas anteriormente na literatura. Em seguida, comparamos a heuŕıstica

proposta com outra abordagem baseada em commits para CIA previamente proposta na

literatura. Baseamos essa análise em dados de 237.366 commits de 38 sistemas de soft-

ware open-source em Java. Essa análise mostrou que o uso exclusivo de commits para

análise de CIA não é uma abordagem precisa. Assim, levantamos a hipótese de que os

dados extráıdos do grafo de dependência de um software também devem ser considerados

na análise de impacto de modificação. Portanto, propomos o uso de grafo de dependência

ponderado para estimar o impacto da modificação de uma classe em sistemas orientados

a objetos. Os pesos aplicados no gráfico de dependências serão definidos tanto com base

nos dados históricos de commits quanto nas caracteŕısticas estáticas do software.
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Abstract

The modification of software artifacts to insert new functionalities or correct errors is in-

herent to the software life cycle. Only through it can a software system continue to meet

the user’s needs. However, making a software modification may be a challenging task.

When changing a software artifact, a developer must analyze the impact this modification

will have on other artifacts and, if necessary, modify them so that the software system

remains consistent. This analysis is called Change Impact Analysis (CIA). Some methods

for change impact analysis, particularly for class-level, have been proposed over the years.

However, these methods fail to be impractical for the day-to-day developer since they are

very complex methods. Therefore, analyzing the impact that modifying a class has on a

software system is still a challenge to overcome. Hence, this Ph.D. dissertation aims to

define a new class-level CIA method for object-oriented software. To base our proposal,

first, we conducted a series of studies. (i) We investigated the state of the development

practice, seeking to identify developers’ level of knowledge and application of software

maintenance concepts. (ii) We investigated the state-of-art through a systematic map-

ping review (SMR) on change impact analysis. Among the SMR results, we identified

the emerging use of historical commit data in the CIA. However, such approaches present

significant biases because they do not consider the commits’ characteristics. (iii) We con-

ducted an empirical study to characterize commits in open-source systems developed in

Java. Based on the results of this empirical study, we proposed a new commit-based

heuristic for the CIA, aiming to overcome the main fragilities of the commit-based ap-

proaches previously proposed in the literature. Then, we compared the proposed heuristic

with another commit-based approach for CIA previously proposed in the literature. We

based this analysis on data from 237,366 commits from 38 Java open-source software

systems. This analysis showed that the exclusive use of commits to the CIA is not an

accurate approach. Therefore, we hypothesize that the data extracted from the software

dependency graph should be also considered in CIA. Hence, we propose to use a weighted

dependency graph to estimate the impact of modifying a class in object-oriented systems.

The weights applied in the dependency graph will be defined both in historical commits

data and the software system’s static characteristics.

Keywords: software maintenance, change impact analysis, commits
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Chapter 1

Introduction

Software maintenance is the most expensive activity in the software life cycle; about 50%

of the effort related to software development is used in the execution of this task [120].

To serve the purpose it was developed, the software system must evolve, adapting to the

users’ needs [98]. This adaptation is made through the insertion of modifications that

seek to insert new functionalities into the system, correct errors, improve computational

performance, and improve usability.

Among the various artifacts used in developing a software system, the most com-

monly used is the source code. The punctual modification in a part of the system’s source

code may generate a chain reaction, causing other parts to be modified. When inserting

a modification in the system, it is up to the developer to identify which different parts of

the system were impacted and must be altered so that the expected behavior remains and

new errors are not inserted in the system. We call this process Change Impact Analysis

(CIA).

When performing CIA, the developer needs to understand the scope of the mod-

ification performed and have a broad command over the system’s structure. They need

to understand the relationships between system components, and these relationships are

only sometimes explicit - this could cause the CIA to introduce a high cost and time de-

velopment of the system. In addition, software evolution makes its structure increasingly

complex, which increases the possibility that CIAs performed manually miss essential

changes to the system. These unfinished modifications can make the software no longer

present satisfactory results for the user and lose its development purpose.

Over the years, researchers have developed methods that seek to reduce the chal-

lenges encountered by developers in performing CIA in various software artifacts [167,

141, 76, 29, 45, 2, 135, 166, 123]. These methods present a range of data sources and

techniques for change analysis. Given the importance of object orientation, many specific

change impact analysis methods have been proposed in recent years for this paradigm

[85, 111, 127, 5]. These methods are diverse concerning the technique employed and

the artifacts analyzed. Kchaou et al. [85] used information retrieval and the structural

dependencies derived from UML models to identify the change impact analysis. Based

on traceability between requirements, architectural models, and source code, Nemr and
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Elzanfaly [127] constructed a flow control graph to develop a framework for CIA detec-

tion. Ferreira et al. [111] developed a stochastic model to estimate the number of classes

changed during the modification process. Agrawal and Singh [5] proposed a model to iden-

tify structures that changed together using source code metrics and the system version

history.

Despite the important advances of research in change impact analysis, the com-

plexity of the application of the proposed methods and the lack of support tools makes

difficult the use of these methods in the daily life of developers. Hence, developers still

deal with the challenges of analyzing change impact in a rudimentary way, having as

main support tools for browsing the source code and the prior knowledge they have about

software systems. Therefore, effective methods for change impact analysis are a practical

need for software engineering.

1.1 Aim

Given this scenario, this Ph.D. dissertation aims to define, implement and evaluate

a new method for change impact analysis. Our proposal is based both on change history

and source code static analysis since we consider that these approaches are complementary

and, then, may lead to better results.

To achieve this general aim, we define the following specific aims:

1. Investigate the state of the practice on software maintenance, specifically to identify

how the practitioners deal with the problem of change impact analysis.

2. Investigate state of the art on change impact analysis.

3. Define a method for change history analysis.

4. Define a method for change impact analysis by applying change history and static

analysis.

1.2 Publications

The following publications are outcomes of the Ph.D. dissertation in progress.
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Ferreira. Characterizing Commits in Open-Source Software. In Proceedings of

the XXI Brazilian Symposium on Software Quality (SBQS), 2022, pp. 1–10.

Submitted papers:

• Mı́vian M. Ferreira, Diego S. Gonçalves, Yuri B. Carvalhais, Kecia A. M. Fer-

reira, and Mariza A. S. Bigonha. Detecting Co-Change Using Categorized Com-

mit Data. pp. 1–9. Submitted to an international conference.

• Mı́vian M. Ferreira, Kecia A. M. Ferreira, and Mariza Bigonha. What Changed?

A Systematic Mapping on Change Impact Analysis. pp. 1–20. Submitted to

an international journal.

1.3 Proposal Organization

We organized the remaining of this Ph.D. dissertation proposal as follows. Chap-

ter 2 describes the workflow we applied for developing this Ph.D. dissertation proposal.

Chapter 3 discusses the main related works. Chapter 4 presents the study we performed
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to investigate the state of the practice of maintenance concepts and techniques, including

change impact analysis. Chapter 5 brings the systematic literature mapping about change

impact analysis. Chapter 6 presents the study we performed on commit characterization.

Chapter 7 presents the heuristic we propose to co-change detection in object-oriented

software systems. Chapter 8 describes the proposal of the hybrid method to change im-

pact analysis in object-oriented software systems. Chapter 9 brings the conclusions of

this Ph.D. dissertation proposal and describes the next steps.
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Chapter 2

Dissertation Method

In this chapter, we describe the workflow executed for the development of the Ph.D.

dissertation proposal. Figure 2.1 summarizes each workflow’s stage objectives, applied

methods, outcomes, and current status. The workflow’s stages are described as follows.

General studies on Software Engineering. The first stage consisted of a study to

understand how Software Engineering research has evolved and, specifically, to asses

the general status of software maintenance research. We analyzed data from papers

published at the two main venues of Software Engineering: the International Con-

ference on Software Engineering (ICSE) and the IEEE Transactions on Software

Engineering (TSE). From TSE, we retrieved data from papers published from 1975

to 2018, accomplishing 3,357 papers. From ICSE, we gathered data from 1988,

the first year IEEE Xplore provides data on the conference, to 2018, accomplishing

3,300 papers. We identified the main topics investigated in Software Engineering

and how the investigation of those topics has evolved. Besides, we constructed a

web-based portal1 providing visualization of the publications’ data. The results

brought a compilation of Software Engineering evolution that may be of value to

the software community. We identified the main topics investigated by the research

community and concluded that software maintenance is a major problem that has

been investigated. As this stage is not specifically related to change impact analysis,

we do not describe this study in this document. However, the study was published

in two papers [148, 64].

State of the practice. After identifying, in the previous stage, that software mainte-

nance is a major area of interest for researchers, we sought to identify how software

maintenance has been conducted in practice. For this, we surveyed 112 practition-

ers from 92 companies and 12 countries. We concentrated on analyzing if and how

practitioners understand and apply the following subjects: bad smells, refactoring,

software metrics, and change impact analysis. This study’s results show a large gap

between research approaches and industry practice in those subjects, especially in

1https://mivianferreira.github.io/docs/TheSoftwareEngineeringObservatoryPortal
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change impact analysis and software metrics. Chapter 4 presents the study on the

state of the practice.

State of the art. Having analyzed the practical aspect of the CIA, the next stage of

this Ph.D. dissertation proposal was to assess the state of the art of the subject.

For this, we conducted a literature review through a systematic mapping review of

the CIA. In this mapping, we collected data from methods and tools proposed in

the literature since 1978. The search in the digital libraries found 2006 documents.

After analyzing them, we identified 141 papers related to the CIA. Among other

conclusions, we concluded that the CIA is a relevant subject that has been studied

by academia; however, there is a lack of methods with practical application in the

developers’ daily work. Chapter 5 presents the systematic mapping review.

Dissertation Aim. Based on the results of the studies produced in the last two

stages, we define the objective of the Ph.D. dissertation: define a new hybrid

approach to CIA based on code change history and static code analysis. We

defined a hybrid approach because we identified that previous main studies

had applied code change history or static analysis. Despite being promising

approaches, they present basic problems that inhibit their practical application.

The change history analysis demands collecting and analyzing historical data

of software systems, which may be highly costly. Moreover, change history

analysis cannot be applied when the software system is in the early stages

of its life. Static analysis, such as dependency analysis, is applicable since

the early stages of software development; however, it may fail in identifying

the dependencies that are indeed prone to change propagation. Therefore, we

consider that historical analysis and static analysis are complementary. Hence,

the central idea of this Ph.D. dissertation is to define an approach that explores

the benefits of change history and static analysis. We focused our studies on

object-oriented software systems, specifically Java-based software systems. The

rationale for this decision is that Java is one of the most popular programming

languages, both in practice and in research on software engineering. Besides,

Java has been considered in most previous works on change impact analysis,

which may aid comparison between the results of these works and our proposal.

Commits’ characterization. Based on studies of state of the art, we defined that one

of the software elements used in our approach would be the commit since com-

mits’ data provide information on how software systems are changed over time.

Understanding this element’s structure is necessary for this purpose. Therefore, we

carried out a commit characterization study. In our analysis, we considered the

following characteristics that may guide the definitions of our approach: categories
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of activities performed in the commits, co-occurrences of activities in commits, the

size of commits in the total number of files, the size of commits in the number of

source-code files; the size of commits by category; and the time interval of com-

mits performed by a contributor. The results showed that the commits have several

factors that must be considered when analyzed in research and that ignoring them

may lead to biased results. Chapter 6 presents the study we performed on commits’

characterization.

Change history analysis. This Ph.D. dissertation proposes defining a change impact

analysis based on change history and static analyses. We analyzed the change

history using the detection of co-change. A co-change occurs between two artifacts

that are changed together. We proposed a new commit-based heuristic for co-change

analysis by considering the commits’ characterization explored in the previous study.

When analyzing the commit data, our heuristic discards commits that have more

than ten files, group commits related to the same issue, and group commits of

the same author registered in the time interval of eight hours. To evaluate the

heuristic, we compare its results with a heuristic that considers “pure commit”, i.e.,

without optimizations. We use the systems’ graph dependency as an oracle of the

actual dependency between the classes. Thus, the heuristics’ detection of co-change

between two classes, A and B, is considered valid if there was a path from A to

B or vice versa in the dependency graph. We analyzed data from 32 open-source

Java systems hosted on GitHub. The results indicate that our heuristic has better

accuracy than heuristics that do not consider the commit’s characteristics, leading

to results nearer to the actual dependencies among the classes. Chapter 7 presents

our heuristic and its evaluation.

The hybrid CIA proposal. This item is the last step in developing this Ph.D. disserta-

tion. In this step, we will describe, propose and implement a new model for change

impact analysis for Java systems. This model will be based on data from the sys-

tem’s change history and data extracted through static analysis of the source code.

Chapter 8 describes the change impact analysis proposal.

Chapter 3 discusses the previous main related works to this Ph.D. dissertation.
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Figure 2.1: Ph.D. dissertation workflow.
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Chapter 3

Related Work

This chapter discusses the previous main works related to this dissertation. We organized

the related work according to the phases of this dissertation. First, we describe studies

concerned with investigating the state of the practice of software maintenance. Secondly,

we describe previous literature reviews on change impact analysis. In the sequel, we

discuss works related to commit characterization. Finally, we discuss the main approaches

for co-change detection related to the heuristic for co-change we propose.

3.1 State of the Practice

In this Ph.D. dissertation, we carried out a survey aiming to assess the state of

the practice regarding a set of topics on software maintenance, including change impact

analysis. The survey is presented in Chapter 4. Here, we discuss the related works

investigated the software maintenance state of practice.

The interest of researchers in the effectiveness of knowledge transfer from academia

to industry is not recent. One of the first articles on this subject, in the mid-’80s, Redwine

and Riddle [137] indicated that the process of maturation technology, in which knowledge

is transferred from theory to practice, may take 15 to 20 years to happen. Also, they stated

that for this transition, there must be “a recognized need, a receptive target community

and believable demonstrations of cost/benefit”. Pfleeger [133] highlights the difficulties

researchers face in evidencing the effectiveness of knowledge transfer from academia to

industry. Diebold and Vetrò [59] investigated how this transfer occurs and the possible

ways to measure it. The results show that, on average, technology transfer may happen

faster in three years.

Another aspect studied of Software Engineering was presented by Lo et al.[109].

The authors surveyed software practitioners to understand how relevant some topics pre-

sented in publications of ICSE, ESEC/FSE, and TSE1 were to these practitioners. Ac-

1ICSE: International Conference on Software Engineering; ESEC/FSE: Joint European Software
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cording to the authors, practitioners consider that empirical studies are not realistic and

present problems of generalization. Carver et al. [36] replicated the study of Lo et al. and

applied the same methodology to the works presented in ESEM2. Besides, the authors

suggested an orientation section for researchers based on the opinion of practitioners.

Maintenance was one of the aspects analyzed. According to Carver et al., practitioners

consider relevant studies that make the software more maintenance-friendly, specifically

those that address legacy code, code maintenance, and technical debt.

According to Brodin and Benitti [32], over 70% of software developers work with

maintenance. However, they point out that this is still a topic that academics have

not researched. They studied, through a survey, whether practitioners in the industry

use the subjects taught in faculties about software maintenance. By contrasting these

two aspects, they identified that engineering, reverse engineering, software processes, and

software measurement are widely considered by academia and rarely used in the industry.

According to the authors, the topics that are little discussed in academia and widely used

in industry are legacy systems, modification impact analysis, tools related to testing,

and configuration management. In the results reported, Brodin and Benitti state that

refactoring is the only topic widely studied by academia that practitioners extensively

use. They consider that the software engineering courses should be restructured to better

prepare practitioners for the industry.

In our work, we also applied surveys to comprehend practitioners’ perceptions of

software engineering while focusing on software maintenance practice. Our work differs

from previous ones as we aim to identify how practitioners understand and apply concepts

related to maintenance, specifically: software metrics, refactoring, bad smells, and change

impact analysis. Moreover, we identified the most significant challenges practitioners face

when performing software maintenance. Another difference between our study and the

related ones is that we extended the vision of software practice since the participants of

our survey work in 92 companies from 12 countries around the world.

3.2 State of the Art

To obtain a deep and broad knowledge of state of the art on change impact analysis,

we performed a Systematic Mapping Review on this subject, presented in Chapter 5. This

section discusses previous studies that performed a literature review on change impact

Engineering Conference and Symposium on the Foundations of Software Engineering; FSE: Joint Meeting
on Foundations of Software Engineering

2ESEM: International Symposium on Empirical Software Engineering and Measurement
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analysis.

In 2012, Li et al. [105] presented a systematic literature review on change impact

analysis techniques based explicitly on source code analysis. The authors analyzed 30 ar-

ticles published between 1997 and 2010. After analyzing the articles, the authors reported

the mapping of 23 techniques for change impact analysis and performed their evaluation.

To evaluate these techniques, the authors developed a framework for comparing CIA tech-

niques. The framework considers approaches based on the following aspects: what is the

impact set - the type of report presented to the user after applying the method; the type

of analysis performed on the source code - static or dynamic; intermediate kind of repre-

sentation, if any; supported programming paradigm; existence of a tool that implements

the technique and if there was an empirical study to evaluate the method. Our work used

this framework as a basis for structuring the characterization of the studies analyzed in

this work.

De Luca et al. [55] present a literature review of works related to artifact trace-

ability management in the context of change impact analysis. The authors also showed

a framework for the characterization of the approaches found. They categorized each

paper into three dimensions. The 1st dimension is the Vertical ability to track depen-

dent artifacts within a model and the Horizontal ability to track artifacts across different

models. The 2nd dimension is Structural, which considers the nature of the data used to

derive traceability between the artifacts analyzed, derived from the analysis of artifacts

related to syntax and semantics, versus Knowledge-based, which refers to the dependency

between artifacts that cannot be obtained automatically. The 3rd dimension identifies

the Implicit Traceability links retrieved during system execution. And the Explicit Trace-

ability of statically retrieved links. Besides that, they present works related to the main

challenges for traceability and connection evolution between the artifacts involved in a

modification.

The study developed by AlSanad and Chkih [11] presents a review of works related

to the impact of modifying requirements in software development projects. For this, the

authors evaluated articles published between 1972 and 2014. The results were divided

into a timeline according to the focus presented by each evaluated article. This timeline

was divided into four periods. The initiation (1972 to 1999) was the period whose main

objective was discovering resources related to requirement change. The second period

described by AlSanad and Chkih was Analyzing the Requirement Change (2000 to 2003)

time frame, where the research had as its primary focus the analysis and evaluation of

the modification of requirements. Discovering the impact (2004 to 2009), the third period

established by the authors, researchers were interested in finding the effects of modifying

a condition during software development. And finally, the fourth period Reducing the

Impact (2010 to 2014), was a period in which the research aimed to propose strategies

to reduce the impact of modifying requirements during software development. After the
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analyses, the authors indicated that there are still open questions in the area, such as the

impact that changing conditions requirements can have on software quality; and the need

to develop techniques and tools capable of helping to support the evolution of requirements

specifications in large systems.

Dhamija and Sikka [57] conducted a systematic literature review to report the

current status of studies, techniques, and tools related to change impact analysis. For this,

33 articles were analyzed and separated into three categories: CIA based on traceability,

Dependency-based CIA, and Experimental CIA - used to group informal methods such as

protocol review, knowledge, and personal judgment, that is, articles that do not fit into

the first two categories. In addition, the study presented an analysis of the latest tools

for the CIA. After analyzing the articles, Dhamija and Sikka indicated the following main

findings of the survey: analyses based on dependency and traceability are the most used;

techniques based on graph, dependency, method of execution, and the trace of execution

are commonly used by authors who develop strategies for CIA. Finally, they identified a

gap concerning CIA techniques that explore the issue of hidden dependencies.

Unlike our systematic mapping review, these works cover specific aspects of meth-

ods and tools related to CIA. They do not provide a comprehensive view of the state

of the art of CIA. Besides, the most recent literature review [57] analyzed 33 studies,

whereas our SMR found 141 studies.

3.3 Commits Characterization

In this Ph.D. dissertation, we aim to define a hybrid method to change impact

analysis based on change history and static analysis. Defining a reasonable heuristic to

detect co-change was necessary to perform the change history. Before defining the heuris-

tic, we performed an empirical study to characterize commits, presented in Chapter 6.

Here, we discuss the main related work on commit characterization.

We identified three previous works that characterize commits regarding the aspects

we consider in our approach: commits’ size and time interval of commits by author.

Hatorri and Lanza [78] did the first work before the GitHub advent. They sought

to relate the activities performed by developers and the number of files modified in a

commit. They investigated three activities: bug fixing, insertion of new features, and

management tasks. The inclusion of a commit in one of these categories was performed

by analyzing the commit message. The authors also ranked commits according to the

number of files they modified. For this, they established four categories: tiny (1 to 5

files), small (6 to 25 files), medium (26 to 125 files), and large (up to 126 files). The
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analysis results of nine open source systems identified that tiny and small commits are

associated with bug fixes, and large commits are associated with management activities,

such as source code review. They concluded that activities of inserting new features in

the system are heterogeneously related to the size of commits.

Based on the work by Hatorri and Lanza [78], we also characterized Java system

commits, however, considering GitHub repositories. The authors categorized the activities

registered by a commit in Reengineering, Forward Engineering, Corrective Engineering,

Merge, and Management. The results indicated that the activities most performed by

developers are related to Reengineering, insertion of new features (Forward Engineering),

and fault correction (Corrective Engineering). Furthermore, the reported results indicate

that 30% of commits register more than one activity. Our previous study identified that

the number of files modified in a commit follows a long-tail distribution - meaning that

few commits change many files, and most of the commits modify few files - this value

becomes between one and ten files. Also, the average time a developer performs a commit

is eight hours. We used these characteristics in our heuristic.

3.4 Heuristics for Co-change

In Chapter 7, we proposed a heuristic for co-change detection that applies commits

characteristics. This section discusses the main works related to our proposed heuristic.

The Software Engineering research community widely uses data mining of commits

from software repositories. In recent years, several works have used these data to detect

co-change between software artifacts.

Geipel and Schweitzer [67] analyzed whether the structural dependence of classes

in a system is linked to co-change. They considered that the files involved in a commit

are co-changed. The authors used a dependency matrix to represent the dependencies

between modules. In their analysis, they evaluated data from 35 Java systems. The re-

sults indicated positive evidence that the changes propagate between the modules through

structural dependence. Besides, modifications are not concentrated in a subset of depen-

dencies, i.e., they are distributed highly unequally.

In their work, Modal et al. [126] sought to identify whether it is possible to detect

software entities that are highly coupled by analyzing the history of software modifica-

tions. They made the investigation at the method level and presented a technique to

detect MMCGs - Method Appearing in Multiple Commit Groups. Modal et al. devel-

oped a tool to identify and rank the methods coupled to each method that underwent

co-change. Through an investigation considering data from seven software systems, the
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authors identified that MMCGs detected by the technique are generally logically coupled

to more methods and are more prone to change. The authors indicate that methods seen

as MMCGs should have a higher priority in carrying out maintenance.

Oliveira and Gerosa [128] conducted an empirical study to identify the influence

of structural dependence on change propagation. They based their study on a qualitative

analysis of the relationship between structural dependencies and co-change occurrence

based on commits. The dataset of the study had four Java systems. They concluded

that the fact that two artifacts co-change in a commit is not linked to the structural

dependence of these artifacts. However, the authors found that the rate at which artifacts

co-changed is even more significant when one is structurally dependent on the other. In

addition, the authors also observed several cases of co-change that could not be explained

by structural dependency, thus indicating that relationships of another nature may have

induced co-change.

In their work, Jaafar et al. [81] present a study on modification patterns based

on data mining of software repositories and the time between these modifications. They

proposed identifying two modification patterns: macro co-change and dephase co-change.

Macro co-change occurs with a significant time interval, and Dephase co-change occurs

in the same period. They used the K-nearest Neighbor machine learning technique to

identify these patterns. To evaluate their proposed approach, the authors conducted two

empirical studies: a quantitative and a qualitative study. In the quantitative research,

the authors compared their proposed technique (Mococha) with UMLDiff and association

rules. They evaluated seven systems, and the results showed that Mococha obtained

better precision and recall. The authors used external information and static source code

analysis in the qualitative study, and the results showed that the two co-change patterns

exist.

Rolfsnes et al. [139] proposed an approach based on the evolutionary coupling

to detect relationships between source code structures and point out possible co-change

between system files. The authors established these relationships by analyzing the history

of system modifications. The technique proposed by them indicates that for a given

set X of files modified in a specific commit, a set Y will also be modified in the same

commit. The authors analyzed six systems and compared their proposed technique’s

results with two others. The results demonstrate that the proposed approach presents

the best performance among the evaluated scenarios.

Our approach is similar to these previous ones because we also consider historic

commits’ data. However, the main difference between our approach and the previous ones

is that we consider commits’ characteristics. Specifically, we consider: commits’ size in

the number of files, issue number, commit’s author, and the time-frame between com-

mits. Besides, in our analysis, we consider a higher number of software systems than the

previous works. We plan to apply our heuristic to perform change history analysis and
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use the results to define our proposal for a hybrid method to change impact analysis.

Chapters 4 to 7 present the studies we carried out in this Ph.D. dissertation.

Chapter 8 describes our proposal for a hybrid approach to change impact analysis.
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Chapter 4

State of the Practice

Boehm [30], in his mid 70’s article “Software Engineering”, defined Software Engineer-

ing as “the practical application of scientific knowledge in the design and construction

of computer programs and the associated documentation required to develop, operate and

maintain them”. This classical 40 years old definition demonstrates the nature of the

practical application of the area. Software Engineering research aims to offer solutions

to real problems related to crafting and maintaining software systems. In this context,

this chapter presents a study that investigates the applicability in real software develop-

ment scenarios of concepts and techniques proposed in the literature regarding software

maintenance.

We organized this chapter as follows. Section 4.1 presents the method applied to

conduct the study. Section 4.2 characterizes the survey participants. Sections 4.3 and

4.4 present and discuss the results of this study. Section 4.6 presents the final remarks.

4.1 Study Design

This section describes the method used to survey practitioners. The following

aspects are detailed: the construction and validation of the questionnaire, the participants’

selection, and the applied method to analyze the data and answer the research questions.

4.1.1 Questionnaire Construction

To collect the information provided by the survey participants, we made a ques-

tionnaire based on the guideline of Kitchenham and Pfleeger [90]. The questionnaire

comprises seven sections: Term of Consent, Participants’ Characterization, Challenges to
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performing software maintenance, Metrics, Refactoring, Bad smell, and Change Impact

Analysis. In the sequel, we describe these sections. Table 4.1 exhibits the survey questions

and their answer options.

Term of consent. In this segment, we introduce the purpose of the study to participants

and request their endorsement to use the data collected. The term also presents the

researchers’ affiliation and the description of participants’ anonymity assurance.

Participants’ characterization. In this section, we collect data about the participants’

professional lives: name and country of the company where they work; what po-

sition they hold in the company; their academic background; years of professional

experience; programming languages that the participant currently use in their jobs,

and the methodology they use in the software development process of the company.

Challenges to perform software maintenance. This section contains only one ques-

tion in which we requested the participants to describe the main challenges and

difficulties they face in performing maintenance activities.

Metrics. In this section, we asked the participants if they were familiar with metrics and

if they considered them useful. Also, we asked if they use metrics to measure the

code quality, which tools they use to do it, and which are the most common metrics

they apply.

Refactoring. About refactoring, we asked if the participants were familiar with the term

“refactoring” and if they usually perform code refactoring. We also asked them to

name the types of refactoring techniques they apply and the tools used to perform

such activity.

Bad smells. In the section, we asked if the participants were familiar with the term “bad

smell” and if they used to verify the presence of bad smells in the software code.

If so, we requested them to list which bad smells they use to search in software

systems.

Change impact analysis. In the last section, we asked the participants: if they used to

observe the need to change other pieces of code when they carried out a change in the

code, if they were familiar with the terms “change impact analysis” or “dependency

analysis”; if they use to search other pieces of code that need to be modified when

they correct a bug or insert a new feature in the code, what kinds of techniques they

use to perform such analysis; and, finally, if they use any tool to perform change

impact analysis.
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Subject Question Reply Options

Challenges to Perform Maintenance 1 Describe the main difficulties you face
when performing maintenance on soft-
ware.

Open Field

2 Are you familiar with software metrics
concept?

Yes or No

3 What is your opinion about the use of
software metrics to ensure the quality
of the source code?

‘Very important’, ‘Important’, ‘Little important’,
‘Unnecessary’ or ‘I don’t have background to give
an opinion.’

Software Metrics 4 Do you use software metrics to evaluate
the quality of the source code at your
work?

Yes or No

5 If you use software metrics to evaluate
the quality of the source code at your
work, please name them.

Open Field

6 If you use metrics to evaluate the qual-
ity of the source code at your work,
which measurement tool(s) do you use?

Open Field

7 Are you familiar with the concept of
refactoring ?

Yes or No

8 Have you ever applied code refactoring
at your work?

Yes or No

Refactoring 9 If you have ever used code refactoring
at your work, what kind (s) of refactor-
ing did you use?

Open Field

10 If you have ever used code refactoring
at your work, have you used a tool for
this?

Yes or No

11 If you have ever used code refactoring
at your work and have used a tool to
do so, which tool (s) did you use?

Open Field

12 Are you familiar with the concept of
bad smell?

Yes or No

Bad Smell 13 When developing or maintaining a sys-
tem at work, do you usually check bad
smells in the source code?

Yes or No

14 If you answered ’yes’ to the previous
question, what are the bad smells most
commonly detected by you?

Open Field

15 Have you ever noticed whether a
change performed in a software system
by you had caused the need to make
other changes not initially foreseen?

‘Never’, ‘Few times’, ‘Oftentimes’ or ‘Always’

16 Are you familiar with the term
”Change Impact Analysis ”?

Yes or No

Change Impact 17 When correcting a bug (error or fail-
ure), performing a change or creating
a new functionality in the system, do
you usually analyze the impact of the
change in the rest of software system?

Yes or No

18 What kind of technique do you apply to
analyze parts of the software that need
to be modified?

‘I explore the code manually and intuitively, not
always with prior knowledge about it.’, ‘I explore
the code manually guided by the prior knowledge
I have about it.’, ‘I use a tool for this.’, or ‘I do not
analyze all the parts that need to be modified, I
make the modifications as I identify the problems.’

19 If you use a tool to analyze which parts
of the software need to be modified,
please name them.

Open Field

Table 4.1: Questions and response options of the questionnaire.

4.1.1.1 Validation of the Questionnaire

Before sending the questionnaire to the participants, we made a pilot survey to

test the questionnaire and identify its improvement needs. For this purpose, we sent the
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questionnaire to two developers from different companies.

We identified the following main improvements needed from the first version. (1)

Observing the answers, we notice that the questions we asked before the challenge section

may influence the answer of the participants about the main challenges they face in

software maintenance. This happened because we asked about refactoring, dependency

analysis, bad smells, and metrics before the section ‘Challenges to Perform Software

Maintenance’, which may induce the participants to include problems related to such

subjects in their answers. We then decided to put the section ‘Challenges to Perform

Software Maintenance’ as the first in the questionnaire. (2) We reformulated the answer

options that involve ranges: number of employees and years of professional experience.

(3) We divided some long questions into two or more to be clear and to facilitate the data

analysis.

We sent the second version of the questionnaire with such improvements to less

than ten developers in a second round. We made a previous analysis of the responses

to ensure that the questionnaire was more precise and could gather the information we

needed. Then, we sent the survey to the entire list of selected participants.

4.1.2 Participants Selection

The contact with practitioners was done in two ways: directly or indirectly. Some

participants were contacted directly via email, LinkedIn, or Facebook and were chosen

by convenience since the authors had their contact previously. The authors randomly

selected other participants via LinkedIn and StackOverflow. To motivate the practitioner

to answer the questionnaire, we sent a particular message to each participant explaining

the survey’s aim and inviting them to participate in the research. In this message, we

asked them to forward the email to other colleagues, aiming to invite more participants

indirectly.

We received 112 responses. We directly contacted 204 practitioners; out of this

amount, 77 answered the questionnaire, achieving a response rate of 37.8%. The other 35

practitioners that answered the questionnaire were contacted indirectly.

As we aimed to have a global assessment of the perceptions and practices of prac-

titioners worldwide, we contacted professionals from different countries. We also aimed to

include participants from a large number of companies. The practitioners that answered

the questionnaire were from 92 companies.
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4.1.3 Research Questions

The research questions aim to elucidate if and how some of the main concepts

and techniques proposed by the research community for software maintenance are applied

in practice. This section describes how we analyzed the data to answer these research

questions.

RQ1. Are developers familiar with software metrics, bad smells, refactoring,

and change impact analysis?

RQ1 aims to investigate if the participants know the concepts of software metrics,

refactoring, bad smells, and change impact analysis. To answer this question, we cal-

culated the percentage of participants who answered ‘yes’ to the familiarity-related

questions - which appears in Rows 2, 7, 12, and 16 of Table 4.1.

RQ2. Do practitioners apply software metrics, refactoring, bad smells, and

change impact analysis in practice?

With this research question, we intend to identify if the participants apply these

concepts in practice. To answer this research question, we calculated the percentage

of participants who answered ‘yes’ to questions described in Rows 4, 8, 13, and 17

of Table 4.1.

RQ3. Is the background of practitioners associated with the familiarity and

application of the concepts and techniques of software maintenance?

This research question aims to investigate if there are associations of participants’

backgrounds with familiarity and application of metrics, refactoring, bad smell, and

change impact analysis. Therefore, we verified the following:

• if familiarity with software metrics/refactoring/bad smell/change impact anal-

ysis is associated with the following categories of participants’ background:

– academic background;

– years of professional experience;

– company size.

• if the practical application of software metrics/refactoring/bad smell/change

impact analysis is associated with those same categories of participants’ back-

grounds.

To test each of these associations, we applied Fisher’s exact test, a statistical hypoth-

esis test, to check if there is independence or any association between categorical
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data regardless of the size or distribution of the sample. Therefore, we verified

the hypotheses described in the sequel. Here, we are generically presenting the

hypotheses so that they may be applied to all investigated associations.

• H0: the variables analyzed are independent.

• Ha: there is association between the variables analyzed.

RQ4. Which are the most used tools by practitioners in software mainte-

nance?

This research question aims to identify which tools are used in practice to support

the activities related to software measurement, detection of bad smells, refactoring,

and change impact analysis. The participants answered the questions associated

with RQ4 in a text field. To analyze the data, we read all the answers and tabulated

the tools described by the participants.

RQ5. How do practitioners perform change impact analysis?

This research question aims to investigate whether and how practitioners analyze

the impact of changes they need to perform in software systems, such as fixing

a bug, inserting new features, or any other type of maintenance. To answer this

research question, we summarized and reported the practitioners’ answers in Item

18 of Table 4.1.

RQ6. Which metrics, refactoring techniques, and bad smells do practitioners

apply in their activities?

With RQ6, we aim to identify the most used software metrics, the bad smells most

considered, and the refactoring techniques most applied by the participants. To

answer this research question, we read all the answers to the questions described in

Rows 5, 9, and 14 of Table 4.1 and summarized the data.

RQ7. What are the biggest challenges practitioners face when carrying out

software maintenance? This research question aims to identify the most signif-

icant challenges developers face when performing software maintenance. For this,

two authors tabulated e labeled, separately, the answers to the question shown in

the first row of Table 4.1; then, comparing the labels, if they found different labels

for the same answers, the final label is determined by a consensus between these

two authors.



4.2. Participants Characterization 32

4.2 Participants Characterization

This section describes the characteristics of the participants. From such charac-

terization, we observe that the sample is diverse in most aspects.

Academic Background. Participants with an undergraduate degree, specialization course,

and master’s degree correspond to the majority of the sample, 95.5%, as shown in

Figure 4.1. Only 4.5% of participants are high school graduates, technicians, or

Ph.D.

Figure 4.1: Distribution of participants’ academic background.

Programming Languages. The programming languages used by the participants are

Java, C#, C++, Python, JavaScript, PHP, Scala, Kotlin, TypeScript, ShellScript,

Delphi, Swift, Objective C, Golang (Go), Groovy, Pearl, Dart, Ruby, Visual FoxPro,

VB.NET, and ASP.NET.

Methodologies. Agile methodologies are the most widely used - Scrum and XP are the

most cited. Only one participant informed the company uses a Waterfall process.

Professional Experience. Most participants, 63.4%, have between two and ten years

of professional experience, and 25.9% of the participants are experienced profes-

sionals with more than ten years of career. Junior practitioners are 10.7% of the

participants. Figure 4.2 shows the distribution of this data.
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Figure 4.2: Distribution of participants’ professional experience.

Companies Characterization. Among the participants, 69.7% work in medium-sized

or large companies, and 30.3% work in micro and small companies. Figure 4.3

presents the distribution of participants according to their company size.

Figure 4.3: Distribution of participants’ companies size by the number of employees.

Companies Sector. 71% of the companies are from the IT area. The other companies

are in the following areas: trade, financial, banking, industry, marketing, health,

education, and government.
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4.3 Results

This section presents the data analysis and the answers to the research questions.

RQ1. Are developers familiar with software metrics, bad smells, refactoring,

and change impact analysis?

To answer this question, we considered the number of participants who declared

familiarity with the subjects investigated in this study. Figure 4.4 shows the percentage of

participants who answered ‘yes’ to questions regarding familiarity with software metrics,

refactoring, bad smells, and change impact analysis, respectively (see Rows 2, 7, 12, and

16 of Table 4.1).

Figure 4.4: Percentage of participants who declare to be familiar with refactoring, software
metrics, bad smell, and change impact analysis.

Refactoring is the most popular subject among participants; 94.6% of them claim

to be familiar with this subject. Metrics is the second best-known subject; 68.8% of par-

ticipants are familiar with it. Bad Smell is a term known by 60.7% of the participants.

Change Impact Analysis is the least familiar term to the practitioners who answered the

survey; however, a large part of the participants, 43.2%, stated they are familiar with this

concept.

RQ2. Do practitioners apply software metrics, refactoring, bad smells, and

change impact analysis in practice?

To answer RQ2, we calculated the number of participants that answered ‘yes’

to questions regarding the practical application of metrics, refactoring, bad smells, and
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change impact analysis (Rows 4, 8, 13, and 17 of Table 4.1). Figure 4.5 shows the results.

Figure 4.5: Percentage of participants who declared to apply the refactoring, software
metrics, bad smell, and change impact analysis.

Although it is the least known concept among survey participants, change impact

analysis is the most applied concept; 91.1% of the participants affirmed that they perform

impact analysis when making modifications in software code. Refactoring is the second

most commonly used concept in practice; 79.5% of participants perform code refactor-

ing. Bad smell is the concept that has more balance between theoretical knowledge and

practice: 60.7% declared to know the concept of bad smell, and 52.7% of the partici-

pants affirmed verifying the presence of bad smells in software code. Software metrics are

the least applied concept in practice. Only 33% of participants claimed to use software

metrics. However, 68.8% of the participants consider software metrics important or very

important, contrasting with the 9.8% who believe that it is of little importance; 21.4%

said that they do not have the background to manifest their opinion about such a subject.

RQ3. Is the background of practitioners associated with the familiarity and

application of the concepts and techniques of software maintenance?

This research question investigates if academic background, professional experience

(years), or company size are associated with familiarity and practical application of the

concepts analyzed in this study. To answer this research question, we assembled 16

contingency tables and applied them to Fisher’s exact test. The test was performed with

the significance level of α = 0.05 e α = 0.1.
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Participants’ Background

Familiarity
Academic
Background

Professional
Experience

Company
Size

Software Metrics 0.84 0.65 0.51
Refactoring 0.43 0.48 0.21
Bad Smell 0.18 0.09 0.06
Change Propagation
Analysis

0.07 0.71 0.27

Table 4.2: p-values of Fisher’s test for the association between familiarity and participants’
background

Table 4.2 presents the p-values obtained as a result of Fisher’s test to verify if there

is an association between familiarity with software metrics, refactoring, bad smell, and

change impact analysis. None of the associations’ analyses resulted in a p-value less than

α = 0.05, which means one cannot reject the null hypothesis H0 (The variables analyzed

are independent). Thus, the tests show that familiarity with software metrics, refactoring,

bad smell, and change impact analysis is not associated with the participants’ academic

background, years of professional experience, or company size.

Nevertheless, when performing the analysis considering α = 0.1, one should re-

ject the null hypothesis H0 and accept the alternative hypothesis Ha. Therefore, with

a 90% confidence interval, is possible to state that there is an association between aca-

demic background and familiarity with change impact analysis. In the same way, there

is an association between professional experience and familiarity with bad smells and an

association between company size and familiarity with bad smells.

Participants’ Background

Practical application
Academic
Background

Professional
Experience

Company
Size

Software metrics 0.99 0.99 0.95
Refactoring 0.33 0.04 0.62
Bad Smell 0.90 0.16 0.49
Change Propagation
Analysis

0.42 0.25 0.32

Table 4.3: p-values of Fisher’s test for the association between practical application and
participants’ background

The Fisher’s test indicated a strong association between the application of refac-

toring and years of professional experience since the p-value for this association, presented

in Table 4.3, is less than α = 0.05, the level of significance used in this analysis. Therefore,

with a 95% confidence interval, it is possible to affirm that the application of refactor-

ing is associated with participants’ professional experience. Among the participants who

declared to perform refactoring, 56% have at least five years of experience. It is worth
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noting that the p-value of the association between bad smell and professional experience

is 0.16, not far from the α = 0.1, which makes sense, as refactoring and bad smells, though

different concepts are related to improving code structure: bad smell is the symptom of

a structural problem, and refactoring aims to overcome such problems.

RQ4. Which are the most used tools by practitioners in software maintenance?

We asked participants whether they use tools to assist in collecting metrics, check-

ing refactoring, and change impact analysis. In the sequel, we present the results for each

subject covered in this study.

Software Metrics. Only 33% of participants affirmed to use of a software measurement

tool. The participants pointed out 62 tools. Figure 4.6 shows the citation percentage

of the most used tools. SonarQube is the most used tool, 32.8% of practitioners used

this platform to collect metrics. 6.6% of the participants cited ESLint and Jira. 3.3% of

practitioners pointed out CodeFactor, Excel, FindBugs, and NewRelic. Other tools were

mentioned just once.

Figure 4.6: Tools most used by practitioners to collect metrics.

Refactoring. Only 36.6% of participants declared they use tools to perform refactoring.

They mentioned 68 tools. Figure 4.7 shows the distribution of the citations of the tools.

The most commonly used tools for refactoring are the Eclipse (19.1%), IDE Visual Studio
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(14.7%), and IntelliJ IDEA (11.8%), or an extension of an IDE, such as ReSharper (2.9%),

an extension of the Visual Studio platform. SonarQube is used by 5.9% of the participants

to perform code refactoring. The other tools were mentioned just once.

Figure 4.7: Tools most used by practitioners to perform refactoring.

Change Impact Analysis. The participants pointed out 13 tools they apply to perform

this task. Figure 4.8 exhibits the percentage of the most used change impact analysis tool.

The following IDEs are the most cited tool in this case: Eclipse, IntelliJ IDEA, and Visual

Studio. It is essential to mention that 14.3% of the participants informed that “search and

replace” is the tool they apply to perform change impact analysis, making it the second

most cited tool.

RQ5. How do practitioners perform change impact analysis?

In this research question, we aim to investigate whether and how practitioners

perform change impact analysis. Figure 4.9 shows the rank of participants’ answers.

Most of the participants, 46.4%, informed that they analyze parts of the code

that need to be modified by exploring the code manually and intuitively, guided by prior

knowledge about the software source code. Another significant part of the participants,

32.1%, declared that they explore the code manually and intuitively, only sometimes based

on prior knowledge about the system. The use of tools to assist in change impact analysis

is pointed out by only 10.7% of the participants. A small part of the participants, 5.4%,

declared that they do not analyze all the elements that need to be modified and make
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the modifications as they identify the problems. Other ways of performing change impact

analysis correspond to 3.6% of the responses.

Figure 4.8: Tools most used by practitioners to perform change impact analysis.

Figure 4.9: How practitioners perform change and impact analysis.
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RQ6. Which metrics, refactoring techniques, and bad smells do practitioners

apply in their activities?

We asked the participants to point out the software metrics they use the most, the

common refactoring techniques performed by them, and the bad smells they use to find.

We describe the results in the sequel.

Refactoring. The most common refactoring techniques applied by the participants are

the following: Extract Method (21.43%), Rename Method (13.39%), and Extract Class

(12.5%).

Metrics. As found in the analysis of the RQ1: Are developers familiar with software

metrics, bad smells, refactoring, and change impact analysis?, software metrics is the

second most well-known subject. However, just a few software metrics were pointed out

by the participants. The most cited terms regarding software metrics were: Number of

Bugs (9.9%); Test Coverage (8.91%); and Cyclomatic Complexity (7.92%). Many software

metrics have been proposed in the literature in the last decades. The survey results show

that the software metrics proposed in the literature have not been widely applied in the

industry. In particular, it is noticed that practitioners do not mention the widely known

software metrics in the academy, such as those proposed by Chidamber and Kemerer [49].

Bad Smell. The most cited bad smells were Duplicated Code (23.21%), Long Method

(19.64%), and Long Class (9.82%), indicating that the main concerns of developers when

analyzing code structure quality are: code duplication, method size, and class size.

RQ7. What are the biggest challenges practitioners face when carrying out

software maintenance?

In an open text field, we asked the participants to write the main difficulties they

face when performing maintenance on the software systems. The participants indicated

several challenges in software maintenance, and we reported them in Figure 4.10.

Lack of documentation is the most cited challenge; 22.3% of the survey participants

have this perception. In general, they described this problem as more critical due to the

high turnover, which is very common in IT companies.

Lack of standard for software development is cited by 18.8% of participants and,

then, is the second biggest challenge. The participants mentioned that the development

patterns established by the companies are not always followed by developers, which makes

the code difficult to understand and change.

Legacy system is cited by 18% of participants as a challenge in software maintenance.

In this context, the participants refer to the legacy system as being “long-standing codes

in which several people have already worked.”.

Bad coding practices are cited by 17% of participants. According to the participants,

this problem mainly involves low code readability, poorly structured functions, replicated

methods in various parts of the code, and non-explanatory comments.
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Figure 4.10: Developers’ main challenges when performing software maintenance.

Time is also mentioned in participants’ responses (12.5%). The main issues pointed out

by participants are the short deadlines for performing maintenance-related activities and

little time to understand the code and implement the change.

Lack of automated testing (8.9%), difficulty in Replicating Bugs (3.6%), and Low

Code Testability (2.7%) are also challenges raised by the participants. Regarding auto-

mated testing, the participants described that the absence of unit, regression, and integra-

tion tests could negatively affect software code. The participants associate the difficulty

in code testability with the maintenance of monolithic and poorly structured systems.

Estimating change impact is pointed out as a challenge by 5.4% of participants. Ac-

cording to them, not knowing how a change in the code will impact the software system

raises the “fear” of side effects in the system.

Lack of business knowledge (2.7%) and Communication problems (1.8%) also

appeared as challenges for software maintenance. Participants report that when the cus-

tomer does not have a solid knowledge of the business, they demand more changes in the

system. Practitioners also pointed out that communication problems with customers and

coworkers negatively impact software maintenance.
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Summary of Results:

• Refactoring is the best-known concept among practitioners. However, just a few

refactoring techniques - the simpler ones - have been used in practice.

• The most applied refactoring techniques are Extract Method, Rename Method, and

Extract class.

• Change impact analysis is the most applied technique. However, without proper

tools.

• Manual inspection is commonly used to perform change impact analysis.

• IDE is the tool most used by participants to apply refactoring and change impact

analysis.

• The most popular bad smells are Duplicated Code, Long Method, and Long Class.

• Sonar is the most commonly used tool for collecting software metrics.

• The most used metrics are the number of bugs, test coverage, and cyclomatic

complexity.

• There is an association (considering α = 0.1) between the familiarity with change

impact analysis and participants’ academic background, bad smells and profes-

sional experience, and bad smells and company size.

• The practical application of refactoring is associated with the participants’ profes-

sional experience (considering α = 0.05).

• The biggest challenges to performing maintenance on code are the following: lack

of documentation, standard software development, legacy systems, and bad coding

practices.

4.4 Discussion

Change impact analysis is not properly performed in practice. The research ques-

tions RQ1:Are developers familiar with software metrics, bad smells, refactoring, and

change impact analysis? and RQ2:Do practitioners apply software metrics, refac-

toring, bad smells, and change impact analysis in practice? investigate if developers
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know the concepts considered in this work and if they applied them in practice.

The results concerning change impact analysis showed that participants know the

term and its meaning, but not widely. On the other hand, it is the most applied

concept. This result suggests that even not knowing the term used in the literature,

the practitioner applies it. A possible cause is that change impact analysis is an

intrinsic and indispensable activity in software maintenance. Most of the developers

(78.5%) perform change impact analysis manually, guided or not by the previous

knowledge they have about the code analyzed, as described in the results of RQ5.

In addition, the results reveal that they do not use specific tools to support change

impact analysis. The participants mentioned IDE to perform change impact anal-

ysis, which is not a specific tool for such activity. A worrying finding in this study

is that participants reported they still use inadequate mechanisms such as “find

and replace” to perform change impact analysis, as described in the results of RQ4.

Additionally, participants pointed out change impact analysis as an important chal-

lenge in software maintenance. These results indicate the need for creating proper

techniques to aid change impact analysis.

Refactoring is a popular concept. Different from other subjects, refactoring is a well-

known concept in the industry: 94% of participants are familiar with the refactoring

concept, 79.5% declared to apply the refactoring, but only 36% affirmed they use

tools to perform refactoring. Nevertheless, the refactoring techniques performed

in practice are simple and provided by IDE: Extract Method, Rename Class, and

Extract Class. It is essential to notice that 93.7% of participants indicated that their

companies use an agile methodology or a mix of agile methodologies. Among those

methodologies, the participants indicated XP (eXtreme Programming), which has

refactoring as the main practice. Therefore, the popularity of agile methodologies

might be the cause of the popularity of refactoring. Moreover, agile methodologies

emerged from the industry and not academia [26], which may explain its popularity.

Bad smell is also prevalent, but not at the same level as refactoring, despite being

very close concepts. A possible reason for that may be the lack of tools of practical

use to detect bad smells. Therefore, it is essential to create techniques and tools to

aid the application of more complex refactoring and the detection of bad smells.

Do companies apply the principles of agile methodologies? Analyzing the main

challenges described by participants, it seems that the industry lives in a vicious

circle: maintenance in legacy systems must be performed, but there is a lack of doc-

umentation about these systems. Therefore, with restricted deadlines, the developer

tries to solve the problem in the way that is possible, but not always in the best

way: they possibly abandon standards and good development practices, as well as

generate complex and unreadable codes, in which another developer, at some point,
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will need to do maintenance. This code will probably be undocumented, the soft-

ware structure will be more complex, and the maintenance will become increasingly

complex.

In the survey, 99.1% of respondents stated that the company where they work

applies agile methods. However, the Agile Manifesto does not prescribe the total

abandonment of documentation. Moreover, standards and good practices are highly

recommended in agile methodologies. Therefore, further investigation is essential to

assess the actual application of agile practices by organizations and to identify to

which extent organizations still follow the premise of “responding to change over a

plan” [26].

Software metrics are not yet widely applied in the industry. The results of this

survey show that software metrics are considered important by most participants:

68.8 % declared they consider software measurement important or very important,

and also 68,8% of participants affirm they know the concept of software metrics.

However, a relevant part of the participants, 21,4%, reported they do not have

the background to give their opinion about the importance of software metrics.

Moreover, the survey also shows that software metrics are not widely applied in the

industry yet: only 33% declared applying software metrics in practice and using

tools for collecting software metrics.

These results are exciting because many software metrics have been proposed and

evaluated in the literature. For instance, the work of Chidamber and Kemerer,

known as CK metrics, was published 25 years ago and is widely known by software

engineering researchers [49]. However, none of the participants mentioned these

metrics. Therefore, this finding suggests that software metrics research might fail

in proposing techniques and tools of practical use and/or making their proposals

known to the industry.

Another point of discussion in this context is that, as stated by CMMI (Capabil-

ity Maturity Model Integration), measurement and analysis are characteristics of

organizations in Level 2 of maturity. Still, quantitative project management is a

characteristic of highly mature organizations in Level 4 [153]. Therefore, another

possible explanation for software metrics is not widely applied might be the low

maturity of most organizations.
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4.5 Threats to Validity

The survey data was based on the responses collected by a questionnaire, and

therefore, it is susceptible to the participants’ interpretation. To mitigate this issue and

to ensure that the questions would be clear to the participants, providing accurate data

for our analysis, we ran a pilot questionnaire. Based on the answers collected in this

preliminary round, we constructed a final survey reducing or removing ambiguities and

biases.

In this study, we present results based on the responses given by 112 participants.

Aiming representativeness, we just considered exclusively participants that are profes-

sionals in software development and maintenance. Besides, the sample used in this study

comprises participants from 92 companies and 12 countries, with a wide range of years

of professional experience, with all kinds of academic backgrounds, and using many pro-

gramming languages. Even though, as occurs in this kind of study, it is not possible to

claim that the results can be generalized. Nevertheless, the results are of value both to

academia and industry because it reveals how software maintenance has been practiced.

To identify the main challenges participants face when performing software main-

tenance, we asked them to describe them in an open text field. The answers to this

question were manually categorized; therefore, they are subject to interpretation by those

who performed this categorization. To mitigate this threat to validity, we standardize

the labels used in the categorization, i.e., we identified the keywords mentioned in the

participants’ responses, such as documentation, legacy system, readability, and standard,

among others. Besides, the label assigned to each answer was made separately by two

authors of this study. After this, the classifications were compared to obtain the final

classification of each answer. If there were any divergence in the categorization, it was

analyzed by both authors to obtain a consensus.

4.6 Final Remarks

We surveyed software practitioners to investigate whether and how software main-

tenance techniques have been applied in practice. In particular, we investigated the usage

of the following concepts and techniques: software metrics, refactoring, bad smells, and

change analysis impact. For this purpose, we surveyed 112 software development prac-

titioners from 92 companies and 12 countries. The results showed that change impact
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analysis is the most applied technique among the ones considered in this work. How-

ever, there is a lack of proper tool support to perform change impact analysis. Although

refactoring is widespread, only some refactoring techniques have been applied in practice.

Moreover, refactoring is mainly provided by IDE. Bad smells and software metrics are the

less known and applied concepts.

This study also revealed that participants considered the lack of system documen-

tation, development patterns, and legacy software as the leading software maintenance

challenges. The results indicate that software maintenance demands even more commu-

nity effort to develop and provide proper tools and methods for software maintenance,

especially in change impact analysis and software measurement.

This chapter described the study we performed to identify the state of the prac-

tice on software maintenance, including change impact analysis. Chapter 5 presents a

systematic mapping review we carried out to identify the state-of-art on change impact

analysis.
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Chapter 5

Systematic Mapping Review

Change impact analysis (CIA) allows for identifying the pieces of the software system

affected by an initial set of changes. Therefore, CIA is an imperative activity to ensure

software quality since it aids in guaranteeing that new faults will not be inserted in the

software system. Given the importance of this activity for software development and

maintenance, several researchers have proposed, over the years, methods and tools to

assist developers in performing CIA. Some works sought to present the CIA state-of-

the-art through systematic reviews [55, 105, 11, 57]. However, they consider specific

aspects of methods and tools and do not comprehensively analyze the works related to

CIA. Therefore, we conducted a Systematic Mapping Review (SMR) on change impact

analysis as part of this Ph.D. dissertation. The mapping aims to carry out a broad

characterization of the methods and tools proposed for the CIA.

This chapter presents the SMR on CIA and is organized as follows. Section 5.1

describes the method we applied to perform the SMR. Section 5.2 presents the framework

we defined to classify the CIA studies. Section 5.3 describes the characteristics of the

studies analyzed in this SMR: the number of studies published by year and venues. Sec-

tion 5.4 presents the results of the SMR. Section 5.5 discusses the results, and Section 5.6

brings the conclusions of the SMR

5.1 Study Design

This section describes the method we applied to this study. First, we justify

why this study is characterized as a systematic mapping review. Then, we describe the

planning phase, involving the research question statements, the digital libraries considered

in the search, the search string definition, and the criteria to include and exclude the

documents. Finally, we describe the SMR execution phase.



5.1. Study Design 48

5.1.1 Why a Systematic Mapping Review?

According to Wohlin et al., [162], researchers can perform the aggregation of em-

pirical studies through a Systematic Literature Review (SLR) or a Systematic Mapping

Review (SMR) (a.k.a Mapping Study). In an SLR, researchers respond, similarly to em-

pirical studies, to specific research questions on a given topic. This type of review presents

a vertical deepening in a particular aspect of the analyzed theme and aims to aggregate

the studies according to their research outcomes [89]. On the other hand, an SMR seeks to

present an overview of state of the art related to the theme, i.e., it is based on broader re-

search questions. According to Kitchenham et al. [89], “the categories used in a mapping

study are usually based on publication information (authors’ names, authors’ affiliations,

publication source, publication type, publication date, etc.) and or information about the

research methods used”. Since we aim to characterize various aspects of the proposed

methods and tools for the CIA, we concluded that performing an SMR is more appro-

priate to our purposes. To perform the SMR, we followed the guidelines proposed by

Kitchenham and Charters [88].

5.1.2 Planning

This section describes the planning phase’s steps, which are the following:

• formulating the research questions

• selecting the search databases

• constructing the search string

• defining the criteria to select the studies.

5.1.2.1 Research Questions

This SMR aims to provide an analysis of the state-of-art on software change impact

analysis. For this purpose, we define the following research questions:

RQ1. Which approaches and tools are proposed for CIA?

RQ2. Which are the characteristics of these approaches and tools?
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RQ3. Which methods and metrics did the studies use in evaluating these approaches

and tools?

5.1.2.2 Electronic Databases

We considered the main digital libraries and electronic databases of software en-

gineering publications for collecting the studies. Table 5.1 exhibits the chosen databases,

their respective websites, and the number of documents we retrieved from each database.

DataBase Address #Documents

ACM dl.acm.org 87
Engineering Village (Compendex) www.engineeringvillage.com 259
IEEE Xplore ieeexplore.ieee.org 294
Science Direct www.sciencedirect.com 300
Scopus www.scopus.com 323
SpringerLink link.springer.com 621
Web of Science www.webofscience.com 122

Total 2006

Table 5.1: The electronic databases used in the SMR.

5.1.2.3 Search String

The search string was built to be as comprehensive as possible. For that, we

conducted a pilot study with search strings composed of the most usual terms regarding

change impact analysis. Then, we applied them in each database, evaluating the results

and aiming to identify which search string has reached as many studies as possible in the

literature. At the end of this process, we defined the following search string and retrieved

2,006 documents, as shown in Table 5.1:

Search String

(“change impact” OR “change propagation” OR “modification impact” OR “modifi-

cation propagation” OR “ripple effect” OR “co-change” OR “software modification”)

AND “software maintenance”
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5.1.2.4 Inclusion and Exclusion Criteria

A search made in a digital library usually returns documents not related to the

search string keywords. Therefore, establishing inclusion and exclusion criteria is neces-

sary to guarantee that we will include and analyze only relevant studies related to change

impact analysis. For this reason, we defined the inclusion and the exclusion criteria to

select the primary studies, reported in Table 5.2.

Inclusion Criteria Exclusion Criteria

Papers written in English Conferences Proceedings
Papers available online Round tables/Lectures
Papers about methods and tools
related to CIA in software

Duplications

Table 5.2: List of the inclusion and exclusion criteria.

5.1.3 Execution Phase

The execution phase consisted of three steps: the search, the studies selection, and

the studies’ analysis. In the search process, we applied the search string in the selected

databases to identify the primary studies. In selecting the studies, we used the exclusion

and inclusion criteria. At the end of these two steps, we identified 141 papers presenting

methods and tools related to change impact analysis. Then, we analyzed and summarized

these studies to answer the research questions.

5.1.3.1 Search Process

With the search string described in Section 5.1.2.3, we retrieved a total of 2006

studies from the seven electronic databases, including duplicates. We searched for all

studies published from 1978 to 2021 since the first year allowed by the databases is 1978,

and we carried out the search process in December 2021.
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5.1.3.2 Selection of the Studies

This section describes the five stages of the selection process, aiming to select

relevant papers according to their contents. Table 5.3 shows the number of studies selected

in each stage.

Stage 1: Grouping all the studies. As the first step of the selection step, we

grouped all the documents retrieved in our search in the databases.

Stage 2: Removing duplicates and non-English documents. We removed

all the duplicate files and any paper not written in English. As the final result of

this step, we obtained 1.444 documents.

Stage 3: Inclusion and exclusion criteria. We applied the inclusion and ex-

clusion criteria defined in Section 5.1.2.4, removing from our results: the conference

proceedings, lecture notes, and round tables, thus ensuring that we considered only

papers.

Stage 4: Reading titles and abstracts. We excluded papers whose titles and

the content of the abstracts did not present elements related to methods or tools

for change impact analysis in software systems.

Stage 5: Complete reading. We proceed with the reading of the papers. In our

final set of papers, we only included those that present a well-established method or

tool related to change impact analysis in software systems written in any program-

ming language. As a final result, we selected 141 papers.

Stage Description #Documents

1 All files returned from all database 2006
2 Removing duplicate and non-English documents 1444
3 Application of inclusion/exclusion criteria 1082
4 Reading title and abstract 277
5 Complete reading 168

Final Result 141

Table 5.3: Number of documents after applying each stage of the selection process.
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5.2 Framework for CIA Studies Characteristics

After reading the 141 papers selected in this systematic mapping, we use a frame-

work proposed by Li et al. [105] as the basis for structuring the characterization of the

studies analyzed in this work. Figure 5.1 exhibits this framework. We identified the

primary characteristics of CIA studies, which are divided into other features: method,

change impact analysis approach, data source, technique, analyzed elements, evaluation

method, and supported language. We applied this framework to describe the results of

this systematic mapping. This section presents the framework.

5.2.1 Method

As stated by Wohlin et al. [162], software engineering is a broad field in computer

science that ranges from operational issues, such as databases and program languages, to

human aspects. Therefore, researchers need to apply the correct method when developing

their studies. We use the following four methods described by Wohlin et al. to classify

the analyzed papers according to their software engineering research context:

Scientific Method: is used when the researchers aim to propose a model or theory

based on the observation of the real world. The model/theory needs to be validated

thru measurement and analysis.

Analytical Method: is based on the principle that researchers propose a formal the-

ory or a set of axioms, develop them, derive the results, and compare them with

observations from the real world.

Empirical Method: is based on statistical or qualitative methods to validate a pro-

posed model. These methods are applied to study cases, and then measures and

analyses are performed to validate the proposed model.

Engineering Method: is used when a previous solution is studied and, based on this,

a new and better solution is proposed. Then, the proposed solution is developed,

and measurement and analysis to validate it are performed.
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Figure 5.1: Framework for CIA studies characteristics.
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5.2.2 Change Impact Analysis Approaches

We may categorize a CIA approach into traceability and dependency, described as

follows.

Traceability: is applied in studies that analyze relationships among several software

artifacts from different levels of abstraction. For instance, Lehnert et al. [99, 100]

proposed an approach to change impact analysis that combines UML models, Java

source code, and JUnit Tests. There is no pattern concerning the types of artifacts

used by the researchers, i.e., we identified several types of artifacts considered in the

studies.

Dependency: is applied in studies that analyze software artifacts on the same level of

abstraction, e.g., studies that only use source code to predict change impact analysis

as in Chaumun et al. [42] model. This approach is usually based on source code

analysis.

5.2.3 Data Source

The data analyzed by a CIA approach are of four types, described as follows.

Source Code: in this study, we classified the data source as source code when the

model and tools used elements related to the source code, i.e., source code snippets,

the source code as a whole, the execution path, and the byte code of the software.

There are three types of source code analysis: static, which considers only static

information about the source code; dynamic, which considers only information about

the execution of the code; and hybrid, which considers both types of information.

Change History: in software development, using versioning and code management

tools is very common. Code versioning consists of storing the history of modifica-

tions made to system files and other information related to this modification, such

as the modification date, author, and description, among additional metadata.

Change Request: in addition to file modifications, versioning, and code management,

systems can also store the description of the reason for the modification, which we

call a change request. Unlike the source code modification description - which

only describes the modification performed, a change request contains a high-level
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description of what should be added or modified in the system. The term ‘bug

report’ is also considered a change request in this work.

UML and other Management Artifacts: in this study, we classified UML and Man-

agement Artifacts as a source of data related to the description or specification of the

software architecture; design templates, domain; requirements specification; UML

artifacts. Therefore, works labeled in this category have artifacts describing the

system’s structure to be analyzed as a data source.

5.2.4 Technique

The CIA approaches apply several techniques, among which four are more present

in the evaluated works: graph analysis, data mining, machine learning, and metrics.

5.2.5 Analyzed Elements

The analyzed elements in a CIA approach represent the inputs used by the methods

to detect change propagation, i.e., they refer to which type of modification is interpreted

by the CIA method. As main analyzed elements, we identified the following categories:

textual change requests, file changes, class changes, field changes, method changes, state-

ment changes, module changes, variable changes, and code changes.

5.2.6 Evaluation Method

The studies on CIA have applied different methods to evaluate their results, such

as empirical evaluation, case study, comparative analysis, and examples of usage. They

have also used several metrics in the evaluation, such as accuracy, precision, recall, and

correlation.
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5.2.7 Supported Language

A CIA approach may be independent of a programming language when the CIA

approach is for a level that does not involve programming or when the CIA approach

is generic, i.e., it is defined in such a way it may be implemented for any programming

language. However, a CIA may be defined considering a specific programming language.

5.3 CIA Studies Characteristics

In this section, we present the number of papers published by year and venue. We

also describe the framework we defined to characterize CIA studies.

5.3.1 Change Impact Analysis thru the Time

The first conference paper we could retrieve about change impact analysis was

published in 1978 by Yau et al.[167] at the Computer Software and Applications Confer-

ence (COMPSAC’78). In 1980, the authors of the first paper, Yau and Collofello [168],

published in the IEEE Transactions on Software Engineering their first journal article

about the same subject. Since then, the general interest in this topic has continued. In

subsequent years, the scientific community has counted on at least one article per year on

this subject.

Figure 5.2 exhibits the distribution of publications related to change impact anal-

ysis in software systems over time. The results of our research show that starting in 2006,

a significant increase in the number of publications related to change impact analysis ap-

peared. Between 1994 and 2021, the average of relevant publications related to the topic

was five. The apex of publications on this topic occurred in 2009, with 12 publications in

that year. Furthermore, the graph in Figure 5.2 shows that change impact analysis is a

topic under researchers’ discussion. However, despite the practical importance of change

impact analysis, the number of publications on this topic is not high, which shows the

need for further research.
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Figure 5.2: Number of published papers per year.

5.3.2 Change Impact Analysis Publication Venues

The publications analyzed in this systematic mapping were published by well-

known and established vehicles in the academic scenario. We identified publications in 61

conferences and journals.

Analyzing which conferences and journals published the most studies on change

impact analysis in software systems, we found that 20 venues have published 78 pub-

lications (55.3%). The other venues have only one publication each. Figure 5.3 shows

the number of publications by venue. To improve the data visualization in the chart, we

omitted the publication vehicles with only one publication. The changes in the confer-

ences’ names are worth noting over the years. The International Conference on Software

Analysis, Evolution, and Reengineering (SANER) is the result of the merger of the Eu-

ropean Conference on Software Maintenance and Reengineering (CSMR) with another

venue called the Working Conference on Reverse Engineering (WCRE). Besides, the In-

ternational Conference on Software Maintenance and Evolution (ICSME) was previously

named as International Conference on Software Maintenance (ICSM).

Among the conferences, the one that stands out the most is ICSME (previously

named ICSM), which published 22 papers (15.6% of the analyzed studies). Regarding

the journals, the one with the higher number of publications on change impact analysis

is the Journal of Systems and Software (JSS), with six articles related to change impact

analysis.
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Figure 5.3: Number of papers published by venues.

5.4 Results

In this section, we answer the RQs thru the classification of the studies related to

change impact analysis according to the framework we defined in Section 5.2.

5.4.1 Models and Tools

Seeking to answer the research question RQ1 - Which approaches and tools are

proposed for CIA?, during our review, we found works of three natures: (i) works that

present models for software propagation analysis (model); (ii) works that, in addition to a

model, also present tools that researchers built to support the execution of the proposed

model (model and tool), and (iii) works that present tools for previously proposed models

(tool). Table 5.4 presents the results of this classification. Works presenting models are

the most common among the analyzed data, 76%. Works presenting models and tools

are the second category, representing 17.7% of the works. Works that present only tools

correspond to 4,3% of the studies.
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Work Nature Papers

Model [167], [168], [7], [156], [102], [42], [96], [43], [56], [141], [31], [76],
[21], [54], [171],[33], [174], [118], [3], [154], [145], [50], [165], [121],
[41], [68], [144], [8], [117], [66], [40], [138], [18], [107], [163], [2], [44],
[135], [77], [39], [87], [108], [150], [47], [17], [116], [114], [75], [61],
[131], [92], [84], [140], [132], [23], [69], [104], [35], [93], [151], [86],
[103], [124], [83], [53], [106], [147], [149], [60], [125], [119], [19], [48],
[13], [164], [62], [1], [129], [70], [139], [110], [130], [14], [158], [112],
[24], [16], [159], [72], [85], [161], [127], [111], [9], [79], [74], [10], [12],
[146], [115], [160], [122], [123], [5], [6], [101]

Model and Tool [95], [82], [136], [73], [65], [97], [28], [91], [173], [155], [157], [152],
[170], [172], [29], [22], [45], [80], [38], [134], [52], [166], [169], [20],
[100], [143], [142], [51]

Tool [27], [46], [71], [34], [4], [113]

Table 5.4: Nature of the works.

5.4.2 Methods and Tools Characteristics

In this section, we answer RQ2 - Which are the characteristics of these approaches

and tools?, showing the results of the following characteristics of the analyzed studies:

scientific method, change impact analysis approach, data source, technique, elements

analyzed, and supported languages.

5.4.2.1 Method

The empirical method is the most commonly used by the studies: 114 out of 141

analyzed papers applied this method. The scientific method was applied in 21 studies,

and only three studies applied the analytical method. None of the researched papers

presented characteristics categorized as an engineering method. Table 5.5 reports the

studies by the scientific method they applied.
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Method Papers

Empirical [156], [95], [82], [102], [136], [73], [42], [27], [97], [43], [56], [141],
[28], [46], [91], [173], [71], [76], [34], [155], [21], [33], [152], [121],
[41], [170], [172], [68], [29], [144], [22], [117], [45], [66], [40], [138],
[18], [107], [163], [2], [80], [44], [38], [135], [39], [150], [17], [134],
[116], [114], [75], [52], [131], [92], [166], [140], [132], [23], [69], [104],
[35], [169], [93], [20], [151], [86], [103], [124], [83], [100], [53], [106],
[147], [149], [60], [125], [119], [19], [48], [13], [164], [62], [1], [143],
[142], [139], [110], [130], [14], [158], [112], [24], [16], [159], [72], [85],
[161], [111], [9], [79], [4], [74], [10], [12], [146], [115], [160], [51], [122],
[113], [123], [5], [6], [101]

Scientific [65], [96], [31], [157], [54], [171], [174], [118], [3], [154], [145], [50],
[165], [8], [77], [87], [47], [61], [129], [70], [127]

Analytical [7], [108], [84]

Table 5.5: Scientific methods applied by the works.

5.4.2.2 Change Impact Analysis Approaches

Regarding the relationship between the elements of change, we categorized the

studies into two groups: those based on traceability between software entities and those

based on dependency between them.

Table 5.6 presents the obtained results. We found that, among the returned works

in our search, most researchers (69.7%) use dependency as an abstraction level when

developing models and tools for change impact analysis. We found that traceability is an

abstraction level in 30.3% of the analyzed works.

Abstraction Level Papers

Dependency [167], [168], [7], [95], [102], [73], [96], [27], [43], [141], [28], [46], [91],
[173], [71], [76], [34], [155], [21], [171], [33], [174], [118], [154], [170],
[172], [29], [144], [22], [8], [66], [138], [18], [163], [2], [135], [77], [39],
[87], [150], [47], [17], [116], [114], [52], [61], [131], [92], [166], [140],
[132], [23], [104], [35], [169], [93], [20], [151], [86], [103], [124], [83],
[53], [106], [147], [149], [119], [19], [48], [13], [164], [62], [1], [129],
[70],[143], [139], [110], [130], [14], [159], [72], [85], [161], [111], [9],
[79], [4], [74], [10], [12], [146], [115], [51], [122], [123], [6]

Rastreability [156], [82], [136], [65], [42], [97], [56], [31], [157], [54], [3], [152],
[145], [50], [165], [121], [41], [68], [117], [45], [40], [107], [80], [44],
[38], [108], [134], [75], [84], [69], [100], [60], [125], [142], [158], [112],
[24], [16], [127], [160], [113], [5], [101]

Table 5.6: Change Impact Analysis approaches applied by the works.
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5.4.2.3 Data Source

The data source is the basis for developing an approach for change impact analysis.

During our investigation, we identified 50 types of data sources used in works on change

impact analysis. We reported the results in Tables 5.7 and 5.8.

Source code is the most used data source - present in 56.33% of the papers, and the

change history is the second most used data source (30.3%). It is worth noting that the

works frequently use two or more data sources - 29 out of 50 methods and tools (58%).

Besides UML diagrams and change requests presented in Section 5.2.3, other examples of

data sources applied in studies on change impact analysis are: architectural descriptions,

design models and information, requirements descriptions, and bug reports.

Data Source Papers

Architecture Description [77]

Architecture Description and Design Model [61]

Architecture Description and Change History [9]

Change History [174], [93], [124], [147],
[119], [48], [139], [161],
[146], [123], [6], [39], [17],
[170], [144], [2], [23], [1],
[129], [130], [83]

Change History and Source Code [122], [68], [95], [82], [5],
[76], [157], [121], [125],
[164], [16], [112]

Change History and UML [163], [75]

Change History, Change Request and Source Code [69], [60]

Change History, Source Code and Design Information [101]

Change History, Source Code and Bug Report [38]

Change History, Source Code, Architecture Design and Byte Code [108]

Design Documents, Requirements Description, and Software Components [50]

Design Information [54]

Domain Model [18], [19]

Feature Model [132]

Formal Architecture Specification [173]

History Modification Metadata [160]

Requirements Specification [7], [47], [171]

Requirements Specification, and Design Elements [80]

Requirements Specification and UML Diagrams [44]

Software Artifacts [73], [65], [96]

Requirements Artifacts and Execution Path [84]

Table 5.7: Data source used to perform change impact analysis. (Part I)
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Data Source Papers

Software Documentation [156]

Software Life-cycle objects [31]

Source Code [14], [159], [167], [168], [102],
[136], [42], [27], [43], [141], [28],
[46], [91], [71], [34], [155], [21],
[33], [118], [172], [29], [22], [117],
[138], [135], [150], [114], [52],
[166], [140], [104], [20], [151],
[103], [53], [149], [13], [62], [70],
[143], [72], [74], [12], [115], [51],
[87]

Source Code (Bytecode) [111], [35]

Source Code, and AST [79]

Source Code, and Business Process [40],[165], [41]

Source Code, and Call History [131]

Source Code, and Configuration Artifacts [169]

Source Code, and Database Schema [56]

Source Code, and Software Documentation

Source Code, and Software Release [110]

Source Code, Requirements Artifacts, and Test cases [142]

Source Code, Requirement Specification, and Architectural Models [127]

Source Code, Requirement Specification and System Design [24]

Source Code, UML Diagrams, Requirements Specification, and System Database [45]

Source Code, UML Diagrams, and JUnit tests [100]

System Artifacts ,and Metrics [134]

System Call Graph [106]

System Components [8]

System Entities [107]

UML Artifacts [66], [86], [3], [85],[154], [145], [10]

UML Diagrams, Architecture Elements, and Architecture Rationales [152]

Table 5.8: Data source used to perform change impact analysis. (Part II)

Source Code Analysis When using the source code as the data source in the studies,

we investigated the nature of the source code analysis. It may be dynamic, static,

or hybrid. Dynamic analysis is used to capture data thru the source code run-time

execution. The static analysis collects data when the source code is not executed,

and the hybrid approach occurs when the model or tool uses both analysis types

to perform source code analysis. Table 5.9 shows the categorization result. static

analysis is the most used source code analysis - 91.6% of the works apply it. The

hybrid analysis is the second type most used - nine papers (6.3%) applied it. The

dynamic analysis was applied in only three works (2.2%).
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Source Code Analysis Papers

Dynamic [69], [117], [53]

Hybrid [84], [46], [33], [138], [114], [140], [20], [131], [24]

Static [116], [92], [95], [82], [5], [76], [157], [121], [125], [164], [16], [112],
[60], [158], [101], [38], [108], [73], [65], [96], [14], [159], [167], [168],
[102], [136], [42], [27], [43], [141], [28], [91], [71], [34], [155], [21],
[118], [172], [29], [22], [135], [150], [52], [166], [104], [151], [103],
[149], [13], [62], [70], [143], [72], [74], [12], [115], [51], [87], [111],
[35], [79], [40], [165], [41], [169], [56], [97], [127], [142], [100], [45],
[107], [86]

Table 5.9: Type of source code analysis applied by the works.

5.4.2.4 Technique

We analyzed which techniques were applied by researchers when developing meth-

ods and tools for change impact analysis. Tables 5.10 and 5.11 exhibit the results.

We track 55 different techniques among the analyzed works. The most common

technique researchers use is Graph Analysis - 61 works (42.6%). Data Mining is the second

most used technique - 17 works (12.7%). The use of Metrics for change impact analysis

is also relevant - 11 works (7.9%).

Observing the results, we saw that research usually only applies one technique

when developing methods for change impact analysis. Apart from Graph Analysis, Data

Mining, and Metrics, the researchers have used various techniques, which show how vast

the change impact analysis field is.

Graph Analysis As shown in Section 5.4.2.4, Graph Analysis is extensively used in

research related to change impact analysis. Aiming to understand such a technique

better, we analyzed which type of graph was used in these studies. Table 5.12 shows

the results. We identified 27 types of graphs. The dependency graph and call graph

are the most used, corresponding to 27 (44.3%) and 17 (28%), respectively.
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Technique Papers

Architecture Graph [173]
Architecture Reflection [87]
Association Rule Mining [139]
Association Rules [124] [123]
AST and Control Dependence Graph [159]
Belief Desire Intention (BDI) and Object Con-
straint Language (OCL)

[54]

Breadth First Search [86]
Breadth First Search and Method Execution
Path

[20]

Change Proximity [4]
Components Linkage and Graph Analysis [50] [45]
Contextual Information [161] [160]
Data Mining [9] [130]
Data Mining - Association Rules [17] [116] [48] [122]
Data Mining - Clustering [147] [23] [146]
Data Mining and Co-change [170]
Data Mining and Information Retrieval [69] [60]
Data Mining and Machine Learning - Random
Forest

[119]

Data Mining and Metrics [16] [6]
Dependency Analysis [115] [145] [134]
Dependency Matrix [27] [31] [132] [28]
Dynamic mapping feature [3]
Execution Traces [53]
Formal Concept Analysis (FCA) [149] [103]
Genetic Algorithm and Mining Execution Trace [110]

Graph Analysis [168] [156] [95] [102] [136]
[73] [65] [96] [97] [56] [141]
[46] [34] [155] [21] [171] [33]
[174] [152] [165] [121] [172]
[68] [29] [8] [40] [138] [107]
[44] [38] [77] [150] [47] [114]
[52] [131] [92] [166] [104]
[169] [93] [151] [106] [19] [13]
[143] [14] [158] [79] [12] [71]

Graph Analysis and AST [157] [22]
Graph Analysis and Lexical analysis [167]
Graph Analysis and Metrics [18]
Impact Rules [100]
Information Retrieval [135] [83]
Information Retrieval, Execution Trace and
Graph Analysis

[35]

Table 5.10: Techniques applied by the works. (Part I)
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Technique Papers

Information Retrieval and Graph Analysis [85]
Logical Prediction [163]
Machine Learning [164] [144]
Machine Learning - Association Rules [39]
Machine Learning - Bayesian Networks [2] [1]
Machine Learning - Random forest classifier [112]
Metrics [41] [75] [129] [51] [5] [101]

[43]
Metrics and Matrix Dependency [118]
Model Slicing [113]
Predicate Logic (Horn clause) [7]
Program Slicing [70] [154]
Program Slicing and Graph Analysis [140]
Reverse Engineering [91] [84]
Semantic Analysis [74]
Semantic Analysis and Information Retrieval [125]
Semantic Analysis and Trace Execution [62]
Semantic Trace [72]
Semantic Analysis and Version Comparison [82]
Heuristics set [117] [76]
Simulation [108]
Stochastic model [111]
Trace Model [66]
Trace Model [80]
Traceability Analysis [24]
Traceability Links and Graph Analysis [127]
Traceability Matrix [142]
Traceability-based algorithm and Rule-based in-
ference engine

[61]

User Requirements Notation [10]
Version Comparison [42]

Table 5.11: Techniques applied by the works. (Part II)

5.4.2.5 Analyzed Elements

The analyzed elements cover which elements of the artifacts were used by the

methods when performing changing impact analysis. We identified 47 elements considered

by the works on change impact analysis. Tables 5.13 and 5.14 exhibits the results.

For most papers (43.67%), the analyzed element is related to the source code

change. The methods and tools analyzed have at least one of these elements: Class, Field,

Method, Function, Variable, Module, Code - any change in the source code, Statement

- any command in a procedural language. Among these elements, the use of Classes

as the only data source for the change analysis is the most common, 33.9%. Another
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element that showed a relevant percentage (10.6%) of use were the changes made to the

files. We observed that 8.5% of the papers analyzed elements related to the change in

the requirements and features of the software. Among the mapped studies, we found

the following keywords related to the system’s requirements: requirement changes, system

requirement change, feature changes.

Graph Type Papers

Abstract Semantics Graph [42]
Abstract System Dependency Graph [46]
Annotation graph [174]
Architectural Software Components Model
Graph

[77]

AST and Dependency Graph [108]
Bayesian Belief Networks [121]
Call Graph [172] [40] [141] [34] [104] [50]

[45] [76] [116] [79] [106] [140]
[131]

Call and Dependency Graph [114]
Call, Dependency and Propagation Graphs [165]
Change Guide graph [93]
Conceptual Dependency Graph [171]
Conditional Probability graph [157]
Conditional system dependence Graph [12] [13] [14]
Conceptual Graph [33]
Control Flow Graph [21] [95] [22] [29] [38] [127]

[155] [173]
Dependency Graph [97] [102] [86] [35] [150] [138]

[8] [156] [136] [71] [96] [92]
[167] [47] [169] [152] [166]
[56] [65]

Dependency and Change Impact Graph [68]
Dependency and Execution Path Graph [20]
Domain-based Dependency Graph [18]
Domain-based Coupling Graph [19]
Reachability Graph [85]
Impact Graph [73] [151]
Intra-agent Dependency Graph [52]
McCabe’s complexity measure [168] [28]
Random walk on a graph - a special case of a
Markov chain

[158]

Relationship Graph [44]
Simulation in Oriented Dependency Graph [107]
Unified Dependency Graph [143]

Table 5.12: Types of graphs used to perform change impact analysis when the applied
technique is graph analysis.
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Analyzed Elements Papers

Artifact Change [73]
Atomic Change [38], [172]
Atomic Change in Aspect J [38], [172]
Business Task Change [40], [165], [41]
Change Request [69], [60], [134], [3], [43],

[142]
Change Set [102], [103]
Class Change [2], [138], [163], [86], [20],

[4], [130], [48], [147], [16],
[6], [118], [149], [34], [104],
[71], [35], [75], [5], [101],
[111], [42]

Class and Method Change [62], [22]
Class, Method and Fields Change [141]
Class, Method, Statement or Expression Change [159]
Class, Method and Field Change [150], [151] [159]
Class, Requirement and Code Change [158]
Class, Requirement and Design Change [24]
Classes Coupling [135] [51]
Code Change [169], [110], [74], [72]
Commit [164]
Component Change [173], [9], [77], [19], [21], [8],

[154]
Data Modification [97]
Data, Class or Method Modification [95]
Diagram Change [44]
Documentation Changes [156]
Entity Change [122], [123], [65], [136],

[114], [143], [107], [50], [45],
[100], [85], [117], [76], [127]

Feature Change [132], [10]
File Change [146], [23], [161], [160],

[157], [83], [112], [129],
[170], [144], [17], [39], [139]

File and Method Change [93]
Function Change [116], [68], [33]
Function, Arguments, Type and Global variables
modification

[46]

Line Change [174]

Table 5.13: Analyzed elements used to perform change impact analysis (Part I).
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Analyzed Elements Papers

Method Change [155], [79], [106], [125],
[124], [1], [140]

Method, Class, Data, Design Documentation,
Network Chanel Change

[96]

Method, Class and Field Change [131]
Method Change and Variable Change [115]
Model Change [54]
Module Change [92], [14], [168], [167]
Package Change [121]
Procedure Modification [82]
Requirement Change [145], [47], [108], [80], [66],

[61], [171], [7]
Software Components [56]
Software Life-cycle objects [31]
Source Code and Test Code Change [119]
System Change Request [113]
System Specification Change [18]
Textual Change Request, Method and Class
Changes

[84]

UML elements [152]
Variable Change [70],[28],[27]
Variable and Function/Method Change [29], [87]
Variable and Statement Change [166], [12]
Variable, Method and Class changes [91]

Table 5.14: Analyzed elements used to perform change impact analysis (Part II).

5.4.2.6 Supported Languages

We categorized the works according to the programming language or paradigm they

considered in their respective method or tool proposal. Table 5.15 reports the results.

The Object-oriented paradigm and the programming languages that apply this

paradigm - such as Java and C++ - are the most used among the works - 80 (56.7%).

Java is considered in 25 works (17.7%). We identified that 23 works (16%) present models

that do not depend on the programming language used in the studied software systems.

Also, we found works presenting models and tools for change impact analysis for other

paradigms and programming languages: three for the Agent-oriented paradigm; two for

the AspectJ; one for Java Script; one for MatLab, and one for Multi-language product

lines.
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Supported Language Papers

Agent-oriented [53], [52], [54]
AspectJ [38], [172]
C [68], [33], [46], [29], [28]
C/C++ [83]
C++ [142], [20], [24], [171], [91]
Java [40], [41], [69], [60], [103], [147], [16], [149],

[104], [71], [35], [62], [22], [159], [150],[151],
[72], [136], [100], [23],[157], [155], [79], [1],
[108]

Java Script [74]
Language Independent [156], [65], [7], [27], [134], [4], [130], [110],

[164], [19], [8], [122], [132], [129], [93], [139],
[106], [125], [131], [47], [119], [70], [87]

Multi-language - Product Lines [13]
Object Oriented Paradigm [95], [73], [165], [3], [43], [141], [86], [48], [6],

[118], [34], [75], [5], [101], [111], [158], [2],
[138], [163], [51], [42], [135], [77], [21], [154],
[97], [44], [114], [50], [45], [85], [117], [76],
[127], [10], [112], [144], [17], [116], [124], [96],
[92], [14], [145], [80], [66], [56], [169], [84],
[102], [166]

Simulink/MatLab [113]

Table 5.15: Programming languages supported by the CIA proposals.

5.4.3 Methods and Metrics Evaluation

In this section, we answer RQ3 - Which methods and metrics did the studies use

in evaluating these approaches and tools? - analyzing which methods were used by the

researchers when evaluating the methods and tools proposed by them. Tables 5.16 and

5.17 present the results.

Evaluation Methods. The most commonly applied evaluation method is Empirical

Evaluation and Empirical Studies (31%). Among these studies, we identified that

the sample of software systems they considered ranges from 1 to 13. Case Study is

the second most applied method, present in 29% of the works. Comparative Anal-

ysis and Usage Examples were the third evaluation method, used in 9.9% of the

analyzed studies. The remaining methods were applied in 6.4% of the studies.

Evaluation Metrics. When analyzing the data, we seek to identify the main metrics

used by researchers when evaluating their works. We identified metrics used in the

proposal evaluation in 68.3% of the analyzed papers. In 31.7% of them, we did not

locate evaluation metrics. Table 5.18 presents the findings. Recall and Precision
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are the primary set of metrics used by researchers when evaluating their results -

16.2% of the analyzed papers use these metrics. The second most used metrics set

is Recall, Precision, and F-measure, used in 8.5% of the works.

Evaluation Method Papers

Algorithm complexity [167]
Case Study - 1 System [163], [40], [145], [24], [19],

[93], [87], [165], [41], [142],
[20], [48], [2], [51], [132],[68],
[131], [80], [108], [152], [71],
[135], [73], [42], [82],[27],
[17], [46], [56], [91], [116],
[44]

Case Study - 2 Systems [52], [35], [138], [100], [18],
[106]

Case Study - 3 Systems [75]
Case Study - 4 Systems [119], [103]
Comparative Analysis with 2 approaches [70] [155]
Comparative Analysis with 4 approaches [70]
Comparative Study - 4 systems [129], [33], [1]
Comparative Study with another approach - 1
system

[158], [14]

Comparative study with CodeSurfer - 2 systems [169]
Comparative Study with HMS - 3 systems [151]
Comparative Study with two other techniques -
5 systems

[114]

Comparative Study with two other techniques -
3 pilot projects

[84]

Comparison with a previous approach - 1 system [96], [150]

Controlled Experiment - 1 embedded system [66]
Demonstration Example with a self-made sys-
tem.

[86]

Empirical Evaluation - 9 systems [29]
Empirical Evaluation - 3 Systems [170]
Empirical Evaluation [140]
Empirical Evaluation of 4 systems. Comparison
with previous heuristics.

[117]

Empirical Study [10], [53]
Empirical Study - 1 System [107], [22], [85], [121], [74]
Empirical Study - 2 systems [62], [21], [161], [92], [23]
Empirical Study - 3 systems [113], [147], [149], [110]

Table 5.16: Evaluation methods applied in the studies (Part I).
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Evaluation Method Papers

Empirical Study - 4 systems [115], [130], [104], [159],
[125],[101], [69]

Empirical Study - 4 systems and Comparative
Study - 2 approaches

[164]

Empirical Study - 5 systems [4], [16], [76], [83], [79]
Empirical Study - 6 systems [139]
Empirical Study - 7 systems [124]
Empirical Study - 8 systems [172], [122]
Empirical Study - 9 systems [12], [5]
Empirical Study - 10 systems [111], [123], [160], [112]
Empirical Study - 11 systems [28]
Empirical Study - 12 systems [72]
Empirical Study - 13 systems [6]
Example [38], [3], [77], [45], [54], [61],

[166], [168], [7], [102]
Proof of Concept for the tool [97]
Qualitative Study [146]
Quantitative Study - 2 Systems [9], [143]
Tool Evaluation - in situ [157]
Usage Example [60], [34], [144],[136]

Table 5.17: Evaluation methods applied in the studies (Part II).

5.5 Discussion

The analysis carried out in this SMR shows that change impact analysis is an area

with many demands, challenges, and opportunities, as discussed in the sequel.

Many models, fewer tools. Automation is indispensable for a proposal to be applied

in practice. Thus, one of the main challenges identified is the creation of appropriate

tools for change impact analysis. Among the evaluated tools, five were developed as

plug-ins for the Eclipse IDE and one as a JBuilder5 extension. The development of

tools linked to a specific IDE is a limitation since developers may prefer other types

of IDE and choose not to use those only available in a particular environment. In

other cases, the proposed tools are not available for use, only described in the paper.

In addition, the evaluations of these tools involved few systems, which impacts the

possibility of practical use.

The primary sources for change impact analysis are source code and change

history. Static source code analysis is the most used approach in the literature.

However, the main challenge in this approach is identifying dependencies not appar-
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ent in the source code. In this respect, analyzing the history of changes can help to

identify these dependencies. Although, a key limitation of change history analysis

is that it does not apply to software systems with few change records, for example,

the systems in their early life.

Graphs are a fundamental structure in change impact analysis. Graphs are the

primary technique for change impact analysis, especially dependency and call graphs.

However, software systems can have many elements and relationships, which makes

manipulating the graphs representing the systems challenging in terms of processing

time.

Software metrics have been timidly applied. Despite the large number of software

metrics proposed in the literature, the technique of using metrics to aid change

impact analysis has been little explored in the literature. One of the reasons for

this may be the lack of adequate software metrics collection and analysis tools. In

particular, it is worthwhile to note that, despite graphs having been used to aid

change impact analysis, network metrics have not been explored. Exploring such

metrics may improve the graph-based change impact analysis techniques.

Data mining and machine learning are emerging techniques. Data mining and

machine learning have been applied in some studies on change impact analysis and

have shown promise. However, it is not easy to apply these techniques because they

require a significant volume for good results, which does not apply to software in the

early stages of evolution. In addition, the processing time involved in approaches

that apply data mining and machine learning is also a problem to be overcome to

make the application of the technique viable in software development practice.

Other programming languages need to be explored. Object-oriented is the most

explored paradigm, and Java is the most considered language in studies on change

impact analysis. Creating approaches aimed at other programming languages, espe-

cially those widely applied in practice, such as Python and JavaScript, is essential.

Multilingual approaches are also of interest, given the existence of software that

applies more than one programming language.

Proper evaluation is challenging. Most of the works we analyzed use a few systems

to evaluate the effectiveness of the proposed method. In addition, the evaluated

systems are medium and small-sized, which means that the results obtained may be

different in large-sized systems, which are the systems that exist in the practice of

software development.
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Evaluation Metrics Papers

Accuracy [4], [122], [143], [10]

Accuracy and Impact set size [144]
Accuracy Predictors [170]
Accuracy and Scalability [169]
ANOVA [41]
ANOVA and Ducal [75]
Association Rules Confidence [17]
Average affected code lines, and classes [91]
Changeability Measures [48]
Completeness , Correctness and Kappa value [84]
Correlation Consistency [16]
Correlation Metrics and Linear Regression [130]
Magnitude of relative error (MRE)(MMRE) and
Prediction Percentage (PRED)

[24]

Paired t-test [110]
Pearson and JASP Correlation [6]
Pearson and Spearman Correlation [111]
Pearson Correlation [124]
Person Coefficient [29], [28]
Precision [35], [62], [21], [93], [33]
Precision and Performance [155]
Recall [74]
Recall and Precision [53], [52], [69], [103], [20],

[149], [104], [113], [22],
[159], [151], [123], [114],
[100], [85], [1], [76], [160],
[39], [139], [46], [79], [106],

Recall, Precision and Wilcoxon rank [117]
Recall, Precision, and F-measure [83], [5], [150], [158], [163],

[135], [164], [23], [112],
[116], [115], [92]

Recall, Precision, Accuracy, and Poit-Biserial
Correlation

[121]

Recall, Precision, F-measure, Area Under the
Curve and Mathews Correlation Coefficient

[161]

Recall, Precision, F-measure and Area Under the
Curve

[119]

Recall, Precision, F-measure and Feedback Met-
ric

[19]

Score, Focus, and Spread of Clusters [147]
Significance (correlation coefficient R2) [51]
Spearman Coefficient [101]
Support and target rules, and true positives. [125]
True, and False Positive [18]

Table 5.18: Evaluation metrics applied in the studies.
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5.6 Final Remarks

Since modifying the software systems and their artifacts is essential for its evolution,

the creation of methods and tools to support the execution of this task is necessary.

Over the past few years, some works related to change impact analysis have been

developed. In this chapter, we presented a systematic mapping review of the litera-

ture on change Impact analysis. A total of 141 studies published between 1978 and

2021 were analyzed.

We extended the framework proposed by Li et al. [105] and extracted data from

these publications as presented in the sequel. We categorized the studies according

to:

(i) the type of the proposed method;

(ii) the applied scientific method;

(iii) the level of abstraction used;

(iv) the data source;

(v) the kind of source code analysis;

(vi) the technique developed in the modification propagation evaluation method;

(vii) the type of graph analysis, when the graph was the technique used;

(viii) the type of the elements analyzed in the proposed method;

(ix) the method and the evaluation metrics;

(x) the programming language supported by the method.

The results of this systematic mapping study reveal that:

• The studies proposed more methods than tools for change impact analysis, so

the development of tools to support them is necessary.

• The scientific method most used by researchers is the empirical method.

• The methods and tools proposed for CIA are generally based on the analysis

of artifacts that are at the same level of abstraction, i.e., the dependency

abstraction level.

• Source code is the most common artifact used in methods and tools for CIA,

and the static analysis of the code is the most applied.

• The most commonly applied technique for CIA is graph analysis.

• The most used types of graphs are the dependency graph and the call graph.

• Most of the methods and tools for CIA support object-oriented software sys-

tems.

• Empirical evaluation methods are the most used by researchers

• Precision and Recall are the metrics most used to evaluate the proposal.
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The main conclusion we achieved from the results of this SMR and of the state of the

practice, presented in Chapter 4, is that there is a relevant demand for more practi-

cal and effective approaches for change impact analysis. From the results described

in the literature, we considered that change history analysis based on commits’

data and static analysis are complementary and promising approaches. Therefore,

in this Ph.D. dissertation, we propose a hybrid approach for change impact analysis

based on change history and static analysis. However, the commits’ data analysis

approaches have essential fragilities mainly because they do not explore commit

characteristics. For this reason, we conducted an empirical study on commits char-

acterization, presented in Chapter 6. Based on the results of this characterization,

we proposed a new heuristic to analyze co-changes in software systems, presented

in 7. This heuristic will be applied to the definition of a new approach to change

impact analysis, as described in Chapter 8.
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Chapter 6

Commits Characterization

In this chapter, we present a study that aims to characterize commits according

to the following aspects: categories of activities performed in the commits, co-

occurrences of activities in commits, the size of commits in the total number of

files, the size of commits in the number of source-code files; the size of commits by

category; and the time interval of commits performed by contributors.

We organized this chapter as follows. Section 6.1 presents the study design and the

creation of the dataset used in this work. Section 6.2 presents the study results, and

Section 6.3 discusses them. Section 6.4 reports the threats to validity. Section 6.5

brings the final remarks.

6.1 Study Design

This section presents the method we applied to construct the dataset analyzed in

this study, the data extraction, and the commits categorization process.

6.1.1 Dataset

As this work aims to characterize commits, we selected well-known open-source

software systems with many commits. To identify the corpus of systems to consider

in this work, first, we identified the 900 highest-rated Java repositories. We found

many repositories that do not contain source code among these projects. Those

repositories were mainly used as libraries - they have books, “how to”, and similar

files. Thus, we removed those repositories and obtained 846 repositories of Java

software. From these 846 repositories, we selected 24 open-source systems with the
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highest number of commits to be the subject of this study. We restricted the number

of systems to 24 due to the long time it takes to collect the data we analyzed in this

study.

We developed a Python script using GraphQL API to mine GitHub to retrieve the

projects. The data returned by this API contain the repositories’ name, owner,

age in years, URL, commits, forks, issues, and the number of stars. Java language

was used as the primary selection criteria to define the projects considered in the

analysis. We chose Java because studies on software engineering commonly consider

this language.

Table 6.1 shows the name, age, number of commits, and number of stars of the

systems analyzed in this study. The dataset comprises mature and well-known

systems aged between 3 and 11 years and rated between 52K and 2,6K stars. All

the systems have high commits, varying from 22.9K to 92K. Besides, the dataset is

diverse in terms of application domains.

6.1.2 Data Extraction

The first step of the data extraction was to create a copy of all the 24 systems’

repositories using the git clone command.1 We developed a Python script using

GitPython API to perform this cloning process. The script collects all the commits’

information for each repository: author, date, description message, and the modified

files, and exports all the data to a .csv file.2

In our analysis, we considered data from the first-parent line. We support our de-

cision with the findings of Kovalenko et al.’s study [94]. The results of their study

show that considering complete file histories, i.e., including branches, may modestly

increase the performance of reviewer recommendation, change recommendation, and

defect prediction techniques. On the other hand, collecting the entire file history

demands extra effort, e.g., the time to collect the data may be unreasonable. There-

fore, the increase in performance may not justify such an effort.

1We cloned all repositories in January 2021.
2The data was exported as a .csv file and is available at https: // figshare. com/ s/

fab86b2522ded083f81c

https://figshare.com/s/fab86b2522ded083f81c
https://figshare.com/s/fab86b2522ded083f81c
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System Age #Commits #Stars
ballerina-lang/ballerina-platform 3 96,121 2,644
neo4j/neo4j 8 69,702 8,315
jdk/openjdk 2 62,947 6,553
elasticsearch/elastic 10 57,414 52,228
camel/apache 11 50,138 3,489
graal/oracle 4 53,665 13,950
languagetool/languagetool-org 7 46,224 4,114
vespa/vespa-engine 4 46,403 3,363
lucene-solr/apache 4 34,703 3,863
rstudio/rstudio 9 34,292 3,423
alluxio/Alluxio 7 31,587 4,805
hazelcast/hazelcast 8 30,936 4,033
jenkins/jenkinsci 9 31,136 16,463
sonarqube/SonarSource 9 30,480 5,272
beam/apache 4 30,519 4,362
spring-boot/spring-projects 8 30,671 51,678
bazel/bazelbuild 6 28,662 15,673
shardingsphere/apache 4 28,457 12,387
ignite/apache 5 27,401 3,518
selenium/SeleniumHQ 7 26,432 19,074
cassandra/apache 11 25,994 6,278
flink/apache 6 25,543 14,626
hadoop/apache 6 24,584 11,041
tomcat/apache 9 22,909 4,984

Table 6.1: Dataset systems sorted by number of commits.

6.1.3 Commits Categories

This work analyzes the main activities registered in the system’s commits to answer

the request question RQ3. For this purpose, we classified each commit into six

categories:

• Merge: specific GitHub activities of merge and pull requests.

• Corrective Engineering: changes performed in the code to correct bugs,

errors, or defects.

• Forward Engineering: inclusion of new features or requirements.

• Reengineering: changes performed in the code to enhance its quality.

• Management: activities not related to codification, such as documentation.

• Other: when the commit does not match any of the five categories.
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We used the same categories proposed by Hattori and Lanza [78] and included a

new one: Merge. In Hattori and Lanza’s work, “merge” was a keyword of the

Management category. We considered Merge a particular category because a merge

is a specific activity that differs from the other management activities in GitHub.

Unlike Hattori and Lanza’s approach, we do not use a hierarchy to set only one

category for a commit, i.e., in our approach, a commit may be classified in more

than one category. We did that to cover the cases in which a developer proceeds a

commit corresponding to more than one activity type, e.g., Corrective Engineering

and Reengineering. This type of commit is called tangled commit [58].

Similar to other works [78, 37], we based our approach to categorizing a commit

on the analysis of keywords extracted from the commit’s messages. We chose to

analyze the messages because it presents a complete description of the commits’ ac-

tivities. We developed a Python script to identify the commits’ activity categories

using the flashtext API. Given the vast number of commits (≈ 1M), we used this

API because its performance is better than the search using regex. The flashtext

API counts an instance of a word only if there is an exact match in the text with

the word. Therefore, it was necessary to build a dictionary containing the keywords

corresponding to the commits’ categories we considered and their variations, e.g.,

add, addition, adding, added, and adds. We started the construction of the dictio-

nary having as basis the keywords used by Hattori and Lanza [78]. Then, we ran

the classification and manually inspected the results considering a set of randomly

selected ≈ 500 commit messages. We included new keywords extracted from the

commits’ messages in the dictionary based on the manual inspection. We executed

such a process iteratively until we found a correct classification of the set of commits

selected for manual inspection. Table 6.2 exhibits the final primary keywords set.

It is worth noting that the complete dictionary contains variations of these words.

To assess the approach used to classify the commits’ activities, we calculated the

precision and the recall considering a random sample containing 500 commits. In

this evaluation, we manually analyzed each commit and tagged each categorization

result as:

• True positive (TP): when the script indicates that a commit belongs to a

category and this categorization is correct;

• False Positive (FP): when the script shows that a commit belongs to a category

and this categorization is wrong; and

• True Negative (TN): when the script indicates that a commit does not belong

to a category, this result is right.

Precision is given by TP/(TP+FP) and indicates how many positive classifications
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Category Keywords

Merge merge, pull request

Corrective
bug, fix, correct, miss, proper, broken, corrupted, failure,
fault, deprecate, throw/catch exception, crash, typo

Forward
implement, add, request, new, test, increase, expansion,
include, initial, create, introduce, launch, define, determine,
support, extend, set

Reengineering

parallelize, optimization, adjust, update, delete, remove,
expunge, cut off, refactor, replace, modification, improve,
is/are now, change, rename, eliminate, duplicate, obsolete,
enhance, restructure, alter, rearrange, withdraw, conversion,
revision, simplify, move, relocate, downgrade, exclude, reuse,
revert, extract, reset, redefine, edit, readd, revamp, decouple

Management

clear, license, release, structure, integration, copyright,
documentation, manual, Javadoc, migrate, review, polish,
upgrade, style, standardization, TODO, migration, organization,
normalize, configure, ensure, resolve conflict, bump, dump,
comment, format code, do not use

Table 6.2: Primary keywords used to identify the activity category of commits.

are correct. As shown in Table 6.3, all categories showed precision above 52%. Merge

is the category with the highest precision (96%). A Recall is given by TP/(TP+FN)

and indicates how many situations the script should detect as true positives were

correctly detected. The results show that the categorization’s recall reaches 99%.

Precision Recall

Merge 0,96 0,99
Bug 0,78 0,98
Reengeneering 0,84 0,79
Foward 0,59 0,93
Management 0,52 0,77
Others 0,74 0,70

Table 6.3: Categorization Results: Precision and Recall
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6.1.4 Research Questions

In this study, we seek to answer the following research questions:

RQ1. How often are the activity types performed in commits? With

this research question, we aim to assess the number of commits involving each

activity category identified in this study.

RQ2. How often do co-occurrences between the activity types appear in

commits? We analyze the frequency of co-occurrence between the different

types of activities a contributor may perform in a repository via a commit.

RQ3. What is the size of commits in software system repositories? This

question investigates the developers’ behavior regarding the number of files

they use to commit together. Such a result may guide establishing the granu-

larity of commits when carrying out research using commit data. For instance,

in research investigating co-changes, the files changed together in a commit

may be considered a co-change instance. However, the number of commits

involving many files may bias the research results.

RQ4. What is the size of commits involving only .java files in software

system repositories? In RQ3, we consider all types of files in the commits.

In RQ4, we aim to analyze only source-code files. As we focus on Java-based

software systems, we considered Java source-code files to answer this research

question.

RQ5. What is the size of commits according to their aims? We analyze

the number of files that usually are involved in different activities, such as

reengineering, managing, Corrective maintenance, and Forward maintenance.

Answering this RQ will bring insights into the proportion of each type of ac-

tivity performed along the software systems’ life cycle.

RQ6. What is the time interval a developer registers a commit in a repos-

itory? We analyze the interval of time the contributors usually perform com-

mits in a repository. The results of this analysis may aid studies that define

heuristics to co-change and change impact analysis.
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6.2 Results

This section presents the results of this study by answering the research questions.

RQ1. How often are the activity types performed in commits?

To answer this research question, we categorized the commits as described in Section

6.1.3. Figure 6.1 shows the percentage of commits corresponding to each category:

Merge, Corrective Engineering, Forward Engineering, Reengineering, Management,

and others, in the 24 software systems analyzed in this study, giving the percentage

values by (number of commits of a category) / (total number of commits registered

in the project).

Figure 6.1: Percentage of commits by category.

Reengineering is the most frequent activity, registered in 32.97% of the ≈ 1M

commits analyzed in this work. This category has the highest percentage of

commits in 13 out of the 24 systems. Besides, 83% (20/24) of the systems

have at least 1/4 of the commits to Reengineering activities. Cassandra is

the system with the lowest percentage of Reengineering activities (15%), and

elasticsearch has the highest one (51%).



6.2. Results 83

Forward Engineering is the second most frequent activity. The percentage of

commits labeled as Forward Engineering ranges from 15.6% (ignite and jdk)

to 47.7% (bazel). Forward Engineering comprises 28.2% of the commits. It is

the most frequent category in three systems: vespa, alluxio, and shardingsphere.

Corrective Engineering is the third main activity. This category corresponds

to 25% of the commits. Shardingsphere is the system with the lowest rate of

commits of Corrective Engineering - only 9%. Tomcat presents the highest

rate of commits tagged as Corrective Engineering and has this category as its

main activity (39.6%).

Management corresponds to 18.7% of the commits. The results show that 75%

(18/24) of the systems have less than 1/4 of their commits registering Man-

agement activities. The lowest number of Management activities is present in

the language tool (6.6%), and spring-boot presented the highest one (43.6%).

Merge corresponds to 16,49% of the commits. This category presents a consid-

erable disparity among the systems. The number of commits in the Merge

category ranges from 0.6% (selenium) to 43.4% (cassandra). Only five sys-

tems present a percentage higher than 25%: hazelcast (27.3%), spring-boot

(30%), vespa (33.47%), ballerina-lang (34.2%), and cassandra.

Others tag messages whose content could not be categorized with any other five

categories. This category corresponds to 16% of the commits, and the percent-

ages of commits in this category range from 4.7% (ballerina-lang) to 32.9%(rstu-

dio). Besides rstudio, only two systems have more than 25% of commits tagged

as Others - graal (25.7%) and hadoop (28%).

RQ2. How often do co-occurrences between the activity types appear in

commits?

A commit may involve more than one activity type. As described in Section 6.1.3,

our approach allows classifying a commit with more than one category. We found

that 30% of all commits analyzed in this work involve more than one activity type.

We calculated the percentages of all possible co-occurrence between the two cate-

gories. Table 6.4 shows the results.

Merge Corrective Forward Reengineering

Management 1.7% 4.6% 5.3% 6%
Reengineering 2.6% 8% 8%
Forward 2.3% 5%
Corrective 2.8%

Table 6.4: Percentage of co-occurrences of commits categories.
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The Merge category presented the lowest rate of co-occurrences, 1.6% to 2.8%.

The highest rates of co-occurrence among the activity types are Reengineering with

Corrective Engineering (8%), Forward Engineering (8%), and Management (6%).

Summary. A significant part of all commits involves more than one activity type,

30%. The highest percentage of co-occurrence of activity types are Reengineering

with Corrective Engineering (8%) and Reengineering with Forward Engineering

(8%).

RQ3. What is the size of commits in software system repositories?

The first step in answering this research question was to analyze the data distribu-

tion. Therefore, we calculated the number of files changed by each commit. Figure

6.2 shows the results, where a boxplot represents the distributions of the number of

files per commit for each system. We marked the distributions’ median as red dots

in the boxplots.

The result presents some standard behaviors. All systems, observing the boxplots’

shapes, show a long tail distribution because a high concentration of commits in-

volves few files. The boxes are placed on the chart bottom. The extensive lines

ranging from the third quartile to the outliers indicate that commits registering a

higher number of changed files are atypical events, i.e., there are few commits with

this behavior. The median ranges from 1 to 3, with two being the median in 58% of

the systems. The boxes’ height (i.e., the difference between the first and the third

quartiles) is not high and is very similar. They range from 1 to 3 in 41.67% of the

systems, from 4 to 6 in 41.67%, and from 7 to 9 in 16.67%. Table 6.5 presents the

first, median, and third quartile values.

We may take jdk as an example of the enormous data disparity in the number of

files per commit. In jdk, the 80th percentile is 14, i.e., 80% of the commits register

the modification of a maximum of 14 files. In contrast, Table 6.5 shows a commit

in this system that modified 56K files.

We detailed the analysis of the distributions’ tails to verify whether there is a pattern

of developers committing a high number of files in a single transaction. We consider

outliers’ values greater than the upper outer fence, i.e., values higher than Q3+ 3 ∗
IQR, where Q3 is the third quartile, and IQR is given by 3rd quartile - 1st quartile.

Figure 6.3 shows the distribution’s outliers. The outliers’ distribution is also heavy-

tailed. We can see that by observing the violin plots’ shape: the most significant

part of the plot is placed at the chart’s bottom, and as the y-axes increase, the plots’

shape becomes thinner. There is a big difference between the median values of the
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Systems Q1 Median Q3 80th % Max Files

alluxio 1 1 4 5 2448
ballerina-lang 1 3 10 13 21405
bazel 1 2 5 6 2733
beam 1 2 4 6 7206
camel 1 2 4 5 17925
cassandra 1 2 4 5 645
elasticsearch 1 2 6 8 14916
flink 1 3 8 10 11013
graal 1 2 5 6 11103
hadoop 2 3 6 8 5194
hazelcast 1 2 6 8 8674
ignite 1 3 10 15 9971
jdk 1 2 9 14 56923
jenkins 1 1 3 5 8949
languagetool 1 1 2 2 1266
lucene-solr 1 2 5 6 5570
neo4j 1 2 7 9 10716
rstudio 1 2 4 5 4624
selenium 1 2 4 5 3619
shardingsphere 1 2 6 8 5259
sonarqube 1 3 7 9 9263
spring-boot 1 1 3 4 4616
tomcat 1 1 3 3 1157
vespa 1 2 6 8 18589

Table 6.5: Percentiles of number of files per commit, where, Q1 = 1st quartile, Q3 = 3rd
quartile.

outliers. Unlike the distribution shown in Figure 6.2, the medians vary between 56

and 198, and the values contained in the interquartile are more dispersed.

Summary. In general, the total files per commit range between 1 and 10. Nev-

ertheless, some commits modify a very high number of files. Among the outliers,

the medians vary between 56 and 198.

RQ4. What is the size of commits involving only .java files in software

system repositories?

To answer this research question, we conducted the same analysis of RQ1; however,

observing only Java source-code files, i.e., files with the extension .java. Figure 6.4

exhibits the results. We observe that the number of .java files committed in a single

transaction also has a long tail distribution. The medians range between 0 and 2.

In 70.8% of the systems, the median is 1, 16.7% is 2, and 12.5% is 0. In 66.5% of the

analyzed systems, the first quartile is 0. The third quartile has the main values of

modified java files per commit: 4 files, 29.2% of the systems, and three files, 20.8%



6.2. Results 86

Figure 6.2: Distribution of files modified in commits.

Figure 6.3: Distribution of files modified in commits - upper outer fence outliers.

of systems.

We observed the same behavior found in the analysis of RQ1. The results show that
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Figure 6.4: Distribution of Java files modified in commits.

jdk also presents the most considerable disparity between the number of .java files

registered in a commit. The system’s 80th percentile is 182, and the third quartile

is 6.

Figure 6.5: Distribution of Java files modified in commits - Upper outer fence outliers.
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Figure 6.5 shows the analysis of the distributions’ tail of the number of .java files

modified in a commit. Among the outliers, the median ranges from 25 to 104. In the

same way as the previous distributions’ plots, jdk system shows a particular behav-

ior, with the highest median value, 104, and higher dispersion. Such characteristic

is essential to be considered when performing studies about this system.

Summary. The number of .java files modified per commit follows a heavy-tailed

distribution. The systems generally have between 1 and 4 .java files modified per

commit. Among the outliers, the median ranges from 25 to 104.

RQ5. How do practitioners perform change impact analysis?

To answer this research question, we calculated the number of files modified by

each commit category: Merge, Corrective Engineering, Forward Engineering, and

Management.
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Figure 6.6: Alluxio distribution of files modified in commits grouped by category.

Figure 6.6 shows the results of alluxio. The median values are low in the data

distribution, ranging from 1 to 3 files. The other systems presented a similar result,

except jdk. Due to space limitations, we do not show all graphics with the results

of this research question in this paper. However, we make them available online.3

Figure 6.7 shows the results of jdk. Reengineering, Forward Engineering, Corrective

Engineering, and Management have the same distribution pattern, and the median

3https://figshare.com/s/ffd7b22c520abdc7129c

https://figshare.com/s/ffd7b22c520abdc7129c
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Figure 6.7: JDK distribution of files modified in commits grouped by category.

value is 2. The merge category presents a different result: it has the largest in-

terquartile range:4 99 files. An important characteristic observed in jdk is that

commits that did not change files were categorized exclusively as merge.

Summary. The number of files modified in a commit does not significantly differ

regarding the activity type.

6.3 Discussion

Understanding the dataset’s characteristics is critical for conducting a good experi-

ment, and working with an inadequate dataset will lead any well-designed study to

reach inaccurate results. This section discusses the main lessons learned from our

research and their implications for studies that consider commits’ data.

The commits nature should be considered by the studies. This study found

4Difference between the first and third quartiles. In jdk, there are, respectively, 1 and 100 files.
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that most commits register Reengineering activities, followed by Forward En-

gineering and Corrective Engineering. A possible explanation for this charac-

teristic is that as open-source software projects are developed collectively, it

may demand refactoring the system more often. Besides, as the systems are

publicly available, their users may continuously report defects and failures on

them. This result indicates the need to properly select the commits in studies

on refactoring and faults in software since Reengineering commits correspond

to only 32.97% and Corrective Engineering to 25% of the commits in the sys-

tems. The percentage of Merge, Management, and Other activities should not

be ignored: 18.7%, 16.49%, and 16%, respectively. If these activity types can

impact the analysis in a study, they need to be identified when collecting the

data. The systems analyzed in this study are popular and very active, which

may be a reason for the high number of Forward Engineering. Therefore, fu-

ture work on Forward Engineering may consider the sample analyzed in this

work.

The Quantification of the Tangled Changes Problem. We found that 30%

of the commits involve more than one activity type. This result indicates the

extent of tangled changes in software repositories. Therefore, works threat-

ened by tangled changes should perform characterization of commits in terms

of activities because the amount of co-occurrence of activities is expressive.

For example, this care is critical in studies on change impact analysis. Many

studies consider a commit as a basic unit of correlated changes. In the face of

the results found in this work, the analysis performed in those works may be

biased.

Reengineering has the highest co-occurrence with other activity types, but

this does not happen too often. The incremental software development

methodologies, such as the Agile methodologies, favor Reengineering, Correc-

tive Engineering, and Forward Engineering to occur in parallel. For example,

it is possible that correcting a bug or introducing a new feature in the system

may cause a reengineering. Then both types of activities may be committed

together. However, the results of this study show that these co-occurrences

do not happen very often. The highest frequency of co-occurrences is between

Reengineering and Corrective Engineering and between Reengineering and For-

ward Engineering, 8% in both cases. Studies on refactoring based on commit

analysis should verify if this amount of co-occurrence introduced bias in their

results. Intuitively, we may consider that when a system is well constructed,

making changes will be more comfortable; therefore, it will demand fewer refac-

toring activities. Consequently, we raise two hypotheses that may explain the

low percentage of co-occurrence between reengineering with corrective and for-
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ward engineering: (i) or fixing bugs and changing a piece of the system usually

demands little refactoring in the system, (ii) or the practice of developers is to

commit the refactor of the system before fixing a bug or changing the system.

The size of the commit matters. The results show that the size of commits fol-

lows a heavy-tailed distribution. Therefore, although most commits involve just

a few files, a relevant number of them involve many files. A single commit may

include hundreds of files. In contrast with what one may intuitively assume,

large commits do not occur only in Merge or Management activities. This

result is significant to studies that consider the set of files in a commit, which

is the case of studies on change impact analysis and code authorship. In these

works, disregarding that a relevant number of commits (more than 50%) in-

volve a very high number of files may introduce bias in the analysis. In change

impact analysis studies, the files in large commits may be more likely not to

relate to a common cause of the change. In authorship analysis, a commit

registered by a contributor involving many files may not express authorship.

JDK is an exception. Many empirical studies have considered JDK, and our re-

sults revealed that JDK is an exception regarding the number of files per com-

mit. The commits of JDK involve a higher number of files per commit than the

other systems. Therefore, the study design based on commit analysis should

consider this characteristic if JDK is part of its analysis.

Commits’ size is not Normal. All results in this study lead us to a simple but

not-so-obvious conclusion: one of the essential characteristics regarding com-

mits’ size is that we cannot apply the Normal distribution statistical analysis

methodologies to them. The number of files modified in a commit has a long

tail distribution, and besides, there is no standard distribution for the number

of commits considering the activity type.

The time intervals of commits by developers. Understanding the developers’

behavior when registering commits in the repositories may aid practitioners,

especially in management tasks. We investigated if there is a pattern of time

intervals in which developers register commits in the repositories. The results

indicate that, in a project, the distribution of the time intervals is approx-

imately a Normal distribution, i.e., the distribution tends to be symmetric,

and the mean is representative. The results also show that the time intervals

vary among the projects. In this work, we do not investigate the causes of

the behavior of developers when performing commits. Further works should

investigate if the projects’ nature, application domain, and the number of con-

tributors may influence the frequency of commits by developers. Nevertheless,

the results found indicated that, in general, a contributor registers a commit
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every eight hours. We applied this result to define a new heuristic for co-change

analysis.

6.4 Threats to Validity

To answer RQ3, we relied on the approach defined in our previous work to categorize

commits [63]. That approach is based on the automatic search for keywords in the

commits’ messages. Therefore, as described in Section 6.1, it was necessary to

build a dictionary containing the keywords and their variations. We constructed

the dictionary manually, which may cause us to forget some keywords. To mitigate

this threat, we built the dictionary based on the keywords described by a previous

work [78] and added new words that we found in the manual inspection of ≈ 500

commits. We also evaluated the approach via manual inspection and found high

precision and recall.

We considered the field “author” of the commit’s data to identify the developers

when calculating the time interval between commits. Depending on the type of

study, such an approach may introduce substantial bias in the results, which is

the case, for instance, of studies on code ownership because a developer may have

more than one GitHub username. However, this is not the case in the present work

because we are interested in analyzing sequential commits performed by a user whose

name may be appropriately identified.

This research focused on Java-based software systems and considered data from

24 Java-based systems hosted on GitHub. GitHub has about 20 million public

repositories. Therefore, it is not possible to ensure the generalization of the results

found in this study. However, as this study concentrates on commit’s data, we

selected the most rated systems containing the highest number of commits, resulting

in a dataset containing ≈ 1M commits of mature systems from well-known owners,

such as Apache.
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6.5 Final Remarks

The system’s data hosted in GitHub have been profusely used in software engineer-

ing works. Commits data are one of the most used analysis sources in such works.

However, not knowing or not considering the characteristics of commits may intro-

duce biases in research. Besides, investigating the characteristics of commits may

bring insight into the developers’ practices and, hence, provide important informa-

tion to practitioners to improve the management and the planning of the software

activities.

We carried out an empirical study to characterize commit data in this research. We

evaluated the 24 most popular and active Java-based projects hosted on GitHub.

We analyzed ≈ 1M commits.

The main findings of the study described in this chapter revealed that:

(i) Reengineering is the most frequent activity, followed by Foward Engineering

and Corrective Engineering.

(ii) Although low the frequency of Merge and Management activities are relevant.

(iii) 30% of commits involve more than one type of activity.

(iv) The most common co-occurrences are between Reengineering and Forward

Engineering and between Reengineering and Corrective Engineering.

(v) The size of commits follows a heavy-tailed distribution; (vi) most commits

involve one to 10 files and one to four source-code files.

(vi) Many commits involve hundreds of files and those commits not only refer

to Merge or Management.

(vii) The distribution of the time intervals is approximately a Normal distribu-

tion, i.e., the distribution tends to be symmetric, and the mean is representa-

tive, and

(viii) On average, a developer proceeds a commit every eight hours.

The results of this study lead to some lessons that researchers should consider in

empirical studies based on commit analysis. We applied the results of this study to

define a new heuristic for co-change detection, presented in Chapter 7.
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Chapter 7

A Heuristic for Co-change

This chapter presents a heuristic for detecting co-change in classes through mining

data from software repositories - specifically commits. We incorporate into this

heuristic the commits’ characteristics presented in Chapter 6. We used data from

32 open-source Java systems to evaluate the heuristic and compare it to a heuristic

that does not use commit information, only the modification data it presents.

In this chapter, Section 7.1 presents the proposed heuristic, Section 7.2 describes

the method used to evaluate the heuristic, Section 7.3 shows the obtained results

and Section 7.4 discusses them, Section 7.5 reports the threats to validity, and

Section 7.6 presents the final remarks.

7.1 The Heuristic

We defined our heuristic for Java-based systems. Hence, given the clone of a Java

system repository, the first step of the heuristic proposed by us is to extract the

commit data from that repository. We collected authorship data, the file name (full

path), the commit message, the hash, the linked issue, and the date (day and hour).

We based the proposed heuristic on three points:

1. Discard commits that involve a high number of files. The reason for this ap-

proach is that commits with a high number of files may be related to activities

such as merge and, hence, introduce biases in the result of the co-change anal-

ysis. An essential point here is to define the threshold of the number of files to

consider. In our study about the characteristics of commits, we found out that

a commit changes between 1 and 10 files. Hence, commits that change more

than ten files are outliers. Therefore, we apply this threshold in our heuristic

and compute only commits whose number of files was less than or equal to 10.
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2. Consider the issue number as a co-change indicator. In GitHub, an issue is a

text-based description of tasks, bugs, changes, and updates that can be linked

to a commit. So, commits linked to the same issue are highly likely to be

related. Therefore, commits related to the same issue number represent co-

changes. In our heuristic, we grouped commits with the same issue number.

3. Consider a block of commits of the same contributor. Previous studies consider

atomic commits as units of co-changes. However, such an approach may bring

biases in the analysis. Suppose a contributor should modify three classes in a

given change task. Hence, he changed each class a time and performed three

commits, one for each class. In this illustrative example, considering commits

as units of co-change will bring wrong results because it will not reveal that

the three classes were co-changed. Therefore, our heuristic identifies blocks

of commits by the same contributor. An essential point here is to define the

time interval a contributor will likely proceed with commits related to a change

task. We found that, on average, a contributor performs a commit every eight

hours. Thus, we grouped subsequent commits by the same author within eight

hours. The rationale of this assumption is that sequential commits registered

in intervals lower than the average may be considered a block of commits.

Figure 7.2 exhibits the steps of the data processing of the proposed heuristic. We

developed a Python script that implements these steps and outputs a .csv file con-

taining all the pairs of files that are part of a co-change.

7.2 Study Design

In this section, we present the study design. First, we define the evaluation approach

and the research questions we aim to investigate in the study. We describe the

dataset we used to evaluate the heuristic. Finally, we explain how we collected and

processed the data.
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Figure 7.1: Heuristic steps performed to co-change detection.

7.2.1 Evaluation Approach

To assess the heuristic results, we compared the dependencies found by the co-

change heuristic with the actual dependencies between the classes in the source

code. For this purpose, we constructed a co-change graph and a dependency graph.

In both graphs, the vertices correspond to the classes. The co-change graph will

have an edge between A and B if the heuristic detects a co-change between classes

A and B. In the dependency graph, there is an edge between A and B when there

is a dependency between A and B.

We decided to apply this evaluation approach due to a theoretical rationale and

to previous empirical results found in the literature. Theoretically, it is considered

that the coupling among modules in a software system is a cause of change propa-

gation [120]. Besides, the link between co-change and static dependencies has been

empirically proved by previous studies [67].

We compared the Proposed Heuristic (PH) results with the Commit Heuristic (CH)

results. In the commit heuristic, there is a co-change of two classes if at least one

commit involves both classes.
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We conducted the evaluation aiming to answer the following research questions:

RQ1. How precise is the proposed heuristic? We considered the systems’

dependency graph an oracle, seeking to identify a connection between the co-change

classes detected by the heuristics. The dependency graph represents the connec-

tions between the system’s classes according to the static analysis of the source

code. Therefore, in this RQ, we seek to identify the precision of the heuristics when

detecting explicit dependencies between classes by comparing them.

RQ2. Does the amount of commits in a system influence the accuracy

of the heuristics? To understand whether the systems’ number of commits can

influence the results, we categorized the systems into three types: Small, Medium,

and Large. The number of commits for systems in the Small category varies from

255 to 302 commits; in the Medium category, this number varies from 704 to 636

commits; and in the Large category, the number of commits ranges from 1,027 to

2,907. In this RQ, we analyzed the accuracy of the heuristics according to their

types.

RQ3. Does the distance between the classes influence their co-change?

In this research question, we seek to identify whether classes that co-change more

with each other tend to be closer to each other in the dependency graph. Then,

we analyzed the correlation between the distance of two classes in the dependency

graph and the number of co-changes these classes presented in the heuristics.

7.2.2 Dataset

We analyzed data from 32 open-source systems hosted on the GitHub platform. All

systems have Java as the primary programming language. We collected their data

in November 2022. We selected repositories well-rated on the platform according to

their number of stars. Table 7.1 presents the systems repositories’ full names, de-

scriptions, number of commits, and stars. The systems’ number of commits ranges

from 256 (KunMinX/Jetpack-MVVM-Best-Practice) to 2,907 (azkaban/azkaban). They

have several purposes: Frameworks, i.g., uber/RIBs and alibaba/ARouter ; Android li-

braries, i.g., Justson/AgentWeb and Tencent/tinker ; APIs ,i.g., airbnb/DeepLinkDispatch,

among others domains.
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Table 7.1: Description of the analyzed systems and their respective number of commits
and star rate on Github.

System Description #Commits #Starts (K)

azkaban/azkaban Workflow manager. 2907 4.2
Justson/AgentWeb Library based on Android WebView. 1027 8.8
zo0r/react-native-push-notification Library for local and Remote Notifications 818 6.5
Tencent/tinker Hot-fix solution library for Android. 815 16.7
eirslett/frontend-maven-plugin A Maven plugin to manage Node and NPM locally. 773 3.9
alibaba/Sentinel Flow control component for microservices. 771 20.4
google/open-location-code Library to generate digital addresses. 708 3.8
NLPchina/ansj seg Library used for word segmentation. 705 6.2
square/dagger Dependency injector for Android and Java. 704 7.3
citerus/dddsample-core Domain-driven design application. 679 4.3
h6ah4i/android-advancedrecyclerview Library for advanced features of RecyclerView. 673 5.2
j-easy/easy-rules Java rules engine. 659 4.3
Genymobile/gnirehtet System that provides reverse tethering 658 4.8
oldmanpushcart/greys-anatomy Online troubleshooting tool for Java. 653 3.9
gabrielemariotti/cardslib Android Library to build a UI Card. 652 4.7
socketio/socket.io-client-java Socket.IO Client Library for Java. 328 5
alibaba/ARouter A framework for Android componentization. 302 14.1
huanghaibin-dev/CalendarView Calendar Widget on Android. 302 8.6
goldze/MVVMHabit Set of libraries based on the MVVM design pattern. 298 7.2
ragunathjawahar/android-saripaar UI form validation library for Android. 296 3.2
roncoo/roncoo-pay Open-source online payment system. 292 4.4
airbnb/DeepLinkDispatch API that provides access to Facebook. 291 4.3
facebookarchive/react-native-fbsdk Wrapper for Facebook integration in React Native apps. 289 3
apache/dubbo-spring-boot-project Java-based RPC framework. 287 5.4
orhanobut/hawk Key-value storage for Android. 281 3.9
aurelhubert/ahbottomnavigation Library to reproduce the behavior from Material Design. 280 3.9
rey5137/material Library to convert components to pre-Lolipop Android. 280 6
nytimes/Store Android Library for Async Data Loading and Caching 261 3.6
uber/RIBs Uber’s cross-platform mobile architecture framework. 260 7.3
vinc3m1/RoundedImageView Android Library to support rounded shapes in design. 259 6.4
Meituan-Dianping/Robust Plugin for Android hot-fix solution 258 4.4
KunMinX/Jetpack-MVVM-Best-Practice Framework to build applications based on containers 256 4.3

7.2.3 Data Processing

The data extraction process consists of cloning the repositories, extracting data

from the commits, applying the proposed heuristic, generating dependency data,

generating the dependency and co-change graphs, and finally, performing the com-

parison between the co-change and the dependency graphs. Figure 7.2 shows the

data extraction flow. We describe each step of the data processing in the following

sections.

7.2.3.1 Cloning the Repositories

The first step of the data extraction was cloning the repositories and extracting the

commits’ data. To make the system data available in a local space, we developed a

Python script using the GitPython library. Given a list containing the repositories’
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Figure 7.2: Data extraction flow

names and their GitHub URL, the script clones them into the chosen local space.

7.2.3.2 Extracting the Data from Repositories

After cloning the repositories, we generated a .csv file for each of them through a

Python script that uses the GitPython library to extract the commits’ data. For

each commit in the system, the file contains the hash that identifies the commit, the

author, the date (hour/min/sec), the number of modified files, the path of the files,
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the message summary, and the complete message used to describe the modifications

recorded in the commit.

7.2.3.3 Applying the Proposed Heuristic

The third step of the data processing was generating the .csv files for the two heuris-

tics we compared in the study. The first heuristic, which we will call the Commit

Heuristic (CH), considers that each commit corresponds to co-change in the system,

i.e., there is no treatment of the commit content. The second one, the Proposed

Heuristic (PH), identifies co-change according to the intrinsic characteristics of com-

mits, as described in Section 7.1.

7.2.3.4 Getting Classes Dependencies

We modified the CK tool [15] to generate the dependency graph. CK is a system

that calculates a series of Java code metrics based on the static analysis of the source

code. The modification occurred in the FANIN and FANOUT metrics. The FANIN

metric calculates class input coupling, i.e., the number of classes a class has as input

dependency. The FANOUT metric calculates the output coupling of a class, i.e.,

the number of classes that a class has as output dependency. Our modification in

the tool allowed CK returns the number of output and input classes and the classes’

full path for these metrics. Then, we exported the data to a .txt file.

7.2.3.5 Building the Graphs

Based on the connections among the classes given by the CK tool, we generated

a file (.net) containing the graph vertices and edges. The exported data followed

the standard of the .net file from the system Pajek [25], an open-source system

developed for the analysis and visualization of large networks. We also generate

.net files for the co-change graphs. In this case, classes that belong to the same

co-change are FANIN and FANOUT each other. We chose to generate the graphs
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in the Pajek format to allow further data analysis using Pajek.

7.2.3.6 Comparing Co-change and Dependency Graph

The last step of the data processing was to compare the co-change data of each

heuristic and the dependency graph. In this comparison, we seek to identify whether

the set of classes belonging to a co-change depends on each other. For this, use the

Python library networkx to search if there was a path between these classes in the

system dependency graph. For example, a heuristic detects that classes A, B, and

C are part of a co-change; then we verify whether there is a path between A-B,

A-C, and B-C in the dependency graph; if the path exists, we calculate the distance

between the classes. We exported the results of this comparison to files in .csv

format.

This step is the most time-consuming in the data extraction flow. Due to the large

number of vertices returned by the Commit Heuristic, the processing time of systems

with a large number of commits exceeded 14 hours, which made collecting the data

impracticable, restricting the number of systems in our dataset.

7.3 Results

RQ1. How precise is the proposed heuristic?

To answer this research question, we used the precision metric. Precision corre-

sponds to the sensitivity of the proposed heuristic, i.e., it is the probability of the

analyzed heuristic to identify that two classes are related and a path connects them

in the dependency graph. We exhibit this metric in Equation 7.1.

Precision =
TP

TP ∪ FP
(7.1)

We computed a True Positive (TP) when the heuristic identifies the co-change

between two classes, A and B, and there is a path from A to B in the dependency
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graph, i.e., B is reachable from A. On the other hand, we computed a False Positive

(FP) when the heuristic identifies the co-change between classes A and B. However,

there is no path from A to B in the dependency graph, i.e., B is unreachable from

A.
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Figure 7.3: Precision of the Proposed Heuristic (PH) and the Commit Heuristic (CH).

Figure 7.3 shows the violin plots with the precision values for each heuristic. For

the proposed heuristic (PH), the first quartile is 0.24, the median is 0.36, and the

third quartile is 0.64. For the co-change heuristic without optimization (CH), the

first quartile is 0.11, the median is 0.38, and the third quartile is 0.55. Therefore,

PH has higher precision than CH, i.e., when analyzing co-changes based on commit

data, the heuristic proposed is more likely to identify a true dependency between

classes.

RQ2. Does the amount of commits in a system influence

the accuracy of the heuristics?

To answer this research question, we calculated the precision values of the heuristics

according to the number of commits in the repositories of the analyzed systems.

As described in Section 7.2.1, we divided the systems into three groups: Large,

Medium, and Small, as exhibited in Table 7.3. Figure 7.4 shows the violin plots

with the results of precision.
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Precision

Repository
Proposed
Heuristic

Commit
Heuristic

azkaban 0.69 0.52
Large AgentWeb 0.24 0.20

react-native-push-notification 0.92 0.47
tinker 0.63 0.64
frontend-maven-plugin 0.70 0.55
Sentinel 0.77 0.55
open-location-code 0.34 0.89
ansj seg 0.01 0.00
dagger 0.44 0.42

Medium dddsample-core 0.21 0.01
android-advancedrecyclerview 0.63 0.65
easy-rules 0.36 0.45
gnirehtet 0.19 0.29
greys-anatomy 0.28 0.12
cardslib 0.62 0.56

socket.io-client-java 0.03 0.00
ARouter 0.62 0.41
CalendarView 0.33 0.70
MVVMHabit 0.19 0.18
android-saripaar 0.02 0.01
roncoo-pay 0.96 0.79
DeepLinkDispatch 0.48 0.40
react-native-fbsdk 0.68 0.37

Small dubbo-spring-boot-project 0.04 0.00
hawk 0.13 0.06
ahbottomnavigation 0.79 0.53
material 0.99 0.61
Store 0.26 0.01
RIBs 0.31 0.28
RoundedImageView 0.35 0.23
Robust 0.42 0.10
Jetpack-MVVM-Best-Practice 0.25 0.15

Table 7.2: The precision of each analyzed system.
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Figure 7.4: Precision of the proposed heuristic (PH) and the commit heuristic (CH)
according to the commits value range.

For the system in the Large category, the Proposed Heuristic (PH) has the first

quartile equal to 0.35, the median equal to 0.47, and the third quartile equal to

0.58. The Commit Heuristic (CH) has the first quartile equal to 0.28, the median

equal to 0.36, and the third quartile equal to 0.44. In this category, PH presents

more accurate results than CH.

In the Medium category, PH has the first quartile equal to 0.28, the median equal

to 0.44, and the third quartile equal to 0.63. For CH, the first quartile is 0.29, the

median is 0.47, and the third quartile is 0.56. The results demonstrate that for

systems in this category, CH is more accurate than PH.

In the Small category, for PH, the first quartile is 0.19, the median is 0.33, and the

third quartile is 0.62. For CH, the first quartile is 0.06, the median is 0.23, and the

third quartile is 0.41. Therefore, PH has greater accuracy than CH in this category.

The results demonstrate that, in general, the accuracy of the heuristic is not associ-

ated with the number of commits analyzed by them - they perform similarly in all

analyzed categories.
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RQ3. Does the distance between the classes influence their

co-change?

In this research question, we sought to identify whether there is a correlation between

the number of times two classes underwent co-change and the distance (number of

edges) between them. For that, we calculated the Pearson correlation coefficient for

each system, analyzing only the true positives - co-changes that could be reflected

in the dependency graph. This coefficient varies between -1 and 1, where -1 indi-

cates a negative correlation - as one variable increases -, the other decreases, and 1

expresses that the two variables behave similarly. In some systems, the number of

true positives was low, and it was impossible to calculate the coefficient. We identi-

fied them using the acronym ID (insufficient data) in Table 7.3, which presents the

Pearson coefficients for each system. The results show that for PH, 62.5% of the

systems have a negative Person coefficient, and for CH, this value equals 71.9%.
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Figure 7.5: Correlation between classes co-change and classes distance.

Figure 7.5 exhibits the violin plots with the correlation results. The PH has the first

quartile equal to -0.13, the median equal to -0.08 e third quartile equal to -0.01. For

the CH, the first quartile is -0.16, the median is -0.08, and the third quartile is -0.02.

Therefore, the negative correlation between the classes’ co-change and distance is

slightly higher in CH than in PH.

These results indicate that classes that change together more frequently tend to be

closer to each other, i.e., the greater the number of co-changes between classes, the

smaller the distance between them.
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Correlation

Repository PH CH

azkaban -0.05 -0.17
AgentWeb -0.07 -0.20
react-native-push-notification 0.08 0.01
tinker -0.07 -0.19
frontend-maven-plugin 0.05 -0.06
Sentinel -0.05 -0.18
open-location-code 0.57 -0.09
ansj seg ID ID
dagger -0.01 -0.17
dddsample-core -0.35 -0.02
android-advancedrecyclerview 0.00 -0.29
easy-rules -0.15 -0.14
gnirehtet -0.08 -0.07
greys-anatomy -0.15 -0.16
cardslib 0.14 0.24
socket.io-client-java ID ID
ARouter -0.09 -0.14
CalendarView ID -0.22
MVVMHabit -0.11 -0.14
android-saripaar -0.41 0.26
roncoo-pay -0.09 -0.10
DeepLinkDispatch -0.13 -0.04
react-native-fbsdk ID -0.02
dubbo-spring-boot-project ID ID
hawk -0.12 0.08
ahbottomnavigation -0.15 -0.14
material -0.05 -0.17
Store 0.03 0.01
RIBs ID -0.31
RoundedImageView 0.03 -0.10
Robust -0.21 -0.02
Jetpack-MVVM-Best-Practice -0.06 0.01

Table 7.3: Correlation values between the number of co-changes and the distance between
classes. The abbreviation ID means insufficient data.

7.4 Discussion

In our analysis, we considered the dependency graph as the basis of comparison to

assess the precision of the heuristics. One may argue that if the dependency graph is

the accurate set of change impact, then the co-change analysis performed employing

commits’ data is unnecessary. Indeed, as described mainly in the literature, the

couplings between modules in a software system determine change impact proneness.
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Hence, comparing the results of a co-change approach with the dependency graph is

essential to assess to which extent the co-change identifies the actual dependencies

among the modules.

However, it is worth noting that some types of coupling between classes may be

hidden in the dependency graph. Hence, analyzing the change history is essential

to capture such dependencies.

The results of the evaluation indicate that the precision of our heuristic (PH) out-

performs the commit-only heuristic (CH) in terms of precision, regardless of the

systems’ category (small, medium, and large). Besides, the higher the number of

commits in a repository, the higher the size of the historical data and, hence, the

higher the expectation for the precision of the heuristic. In this sense, the precision

of our approach (PH) was higher than the other one (CH) in 10 out of the 15 systems

categorized as Medium and Large.

The evaluation also indicated that the results of both heuristics, in general, have a

negative correlation with the distance between the classes in the dependency graph,

which means that the higher the distance between the two classes, the lower the

chance that a change made in a class will propagate to the other one.

7.5 Threats to Validity

Our heuristic considers the number of files changed in a commit and defining the

threshold to this number is an essential point of our heuristic. We rely on the study’s

results described in Chapter 6 to consider commits with up to ten files.

Another strategy applied in our heuristic is to group the commits a contributor

performed in eight hours. The rationale for doing so is that a contributor may

conduct several sequential commits related to the same change task. Our approach’s

definition of the time interval was not arbitrary since we rely on the results of

the study described in Chapter 6, which found that the average time interval a

contributor does sequential commits is eight hours.

When evaluating the heuristics, we considered commits of 32 Java-based software

systems hosted in GitHub. Therefore, the results may not be generalized to other

programming languages. To mitigate this threat, we built a dataset with systems

developed for different domains, such as frameworks, libraries, APIs, and others.

The number of commits in the systems varies from 255 to 2,907. The number of
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commits is a threat to the evaluation since many systems have many more commits

than those considered in this work. This limitation was due to the extensive process-

ing time required to generate the Commit Heuristic data. Systems with more than

2,907 commits took more than 14 hours to process the data from these heuristics,

which made it unfeasible to collect systems with more commits.

7.6 Final Remarks

In this study, we defined a new commit-based heuristic to co-change analysis. Unlike

proposals found in the literature, our heuristic considers important characteristics

of commits that recent results have revealed. Based on those characteristics, in our

heuristic, we:

• discard commits that have more than ten files;

• group commits related to the same issue;

• group commits of the same contributor registered in the interval of eight hours.

We compared the proposed heuristic (PH) with the main approach applied by pre-

vious works, which considers all the files registered in a commit as a Co-change.

We named this heuristic Commit Heuristic (CH). The basis for comparison was the

dependency graph of the software systems. We constructed this graph by applying

static analysis. In this graph, the nodes correspond to the classes, and the edges,

are the relationships between the classes. We represented the Co-changes relations

found by our approach (PH) as a graph and compared it with the dependency

graph. We did the same with the Commit Heuristic (CH). Then, we compared the

similarity between the dependency graphs with the resulting graphs of the two ap-

proaches. And the results indicate that our approach leads to results nearer to the

actual dependencies among the classes. Besides, we also found an inverse correlation

between the distance of the classes in the dependency graph and the Co-changes

in both approaches. However, our approach presented a higher inverse correlation.

This result indicates that the higher the distance between two classes, the lower the

co-change between them.

We will apply the heuristic presented in this chapter to define a new change impact

analysis approach, as described in Chapter 8.
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Chapter 8

The Proposed Change Impact

Model

This Ph.D. dissertation aims to define a new method for change impact analysis

in object-oriented software, which is capable of, starting from the indication of the

classes that will be initially changed, identifying the set of other classes that may

suffer impacts from these initial changes. For this, we propose to define a hybrid

probabilistic model. This chapter describes the structure of the proposed model.

8.1 Proposal Description

As a final result of the work developed in this Ph.D., we propose a probabilistic

model for change impact analysis. It is a hybrid model based on the history of

co-change between classes and on data from the system’s dependency graph. Figure

8.1 shows the model’s data source.

Figure 8.1: The data sources to be used in the proposed model.

To perform the change history analysis, we will apply the co-change heuristic we

defined in Chapter 7 to detect co-change between the systems’ classes. In the

evaluation of the heuristic described in Chapter 7, we collected data from 32 Java-



8.1. Proposal Description 110

based open-source software systems. We will extend this data set aiming to generate

a more representative sample. For this purpose, we defined a set of 90 software

systems to be analyzed, as shown in Tables 8.1, 8.2 and 8.3 at the end of this chapter.

The criteria to select these software systems were the following: (i) software systems

developed in Java and (ii) the best-evaluated Java systems in GitHub, according to

the number of stars of the repository. We used three ranges to divide the dataset

according to the number of commits: Small (241 to 292 commits), Medium (599 to

721 commits), and Large (1,891 to 2,543 commits).

Given the co-change data set, we will extract the probabilities of change impact

between the classes considering the following main aspects: the type of structural

dependency - inheritance, use of method, and use of fields-; the distance between

them in the dependency graph; and software metrics that may be related to change

propagation proneness, such as cohesion, coupling, number of methods, number

of fields, and size of the parameter list. The probabilities will be defined for the

data set as a whole; that is, the proposal is to use the change history data from

the 90 software systems, mined by applying our co-change heuristic, to find such

probabilities.

As described in Chapter 7, we extended the CK tool to collect the dependency

graph. CK Tool also provides the extraction of the software metrics. However, CK

Tool does not collect the type of structural dependency. Hence, we will need to

extend the tool to provide this functionality.

Therefore, the proposed model will have as entry:

• the dependency graph of the software system, in which the vertices are the

system’s classes and the edges are their connections;

• the software metrics of the classes;

• the distance between the classes;

• the set of classes that will be initially changed.

The edges’ weights in the dependency graph will be defined according to the prob-

abilities found in the change history analysis. To calculate these weights, we will

apply logistic regression. Logistic regression is a statistical model that allows the

analysis of elements whose predictions are of the binary type, e.g., yes or no. We

chose to use this type of regression because it allows using continuous (software

metrics, distance) or categorical (co-change identification) predictors. Furthermore,

logistic regression supports the use of multiple predictors.
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8.2 Evaluation Method

We will base our evaluation method on an oracle of modifications built from data

from open-source software systems. We will select mature and well-rated systems

on the GitHub hosting platform. Besides, we will base the oracle on data extracted

from issues existing on the platform since issues are used to tag and track changes.

Issues can receive labels, for example, bugs. Therefore, we will build a database

composed of issues related to bugs and the files that were changed related to each

issue. We will adapt the scripts already developed in this work for collecting the

data for oracle.

We will compare the results obtained by the proposed method with the oracle. For

this, we will randomly select classes from the set of classes modified together in the

oracle - this is the oracle impact set. For each class, we will compare the resulting

impact set presented by our model with the oracle impact set. The evaluation will

be done by calculating the accuracy and recall of the method. For false positives

and false negatives, we will perform a manual analysis to analyze these results.
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Category Name Owner Age #Commits #Stars

azkaban azkaban 8 2543 3432
glide bumptech 7 2541 30209
cryptomator cryptomator 6 2516 4695
quasar puniverse 7 2494 4122
graphql-java graphql-java 5 2451 4549
junit4 junit-team 11 2449 8004
smile haifengl 5 2446 5056
apollo ctripcorp 4 2425 22837
immutables immutables 7 2379 2780
EhViewer seven332 6 2376 5851
karate intuit 3 2339 4149
angel Angel-ML 3 2331 6031
testcontainers-java testcontainers 5 2314 4343

Large conductor Netflix 3 2283 3066
zookeeper apache 11 2237 8765
lucida claritylab 6 2202 4849
mapdb jankotek 8 2181 4128
joda-time JodaOrg 9 2163 4521
Hystrix Netflix 7 2109 20617
shiro apache 11 2103 3242
shardingsphere-elasticjob apache 5 2093 6606
MPAndroidChart PhilJay 6 2068 32106
volley google 3 2045 2876
APIJSON Tencent 3 2027 8431
wiremock tomakehurst 9 2012 4164
rest-assured rest-assured 10 2009 5011
lettuce-core lettuce-io 6 1964 3597
android-volley mcxiaoke 7 1932 4387
smali JesusFreke 8 1892 4661
halo halo-dev 2 1891 17208

Table 8.1: Dataset - the systems in the large category



8.2. Evaluation Method 113

Category Name Owner Age #Commits #Stars

spring-boot-starter mybatis 5 721 3144
spring-petclinic spring-projects 7 720 4506
Mapper abel533 5 710 6085
ansj seg NLPchina 8 702 5683
dagger square 8 701 7235
react-native-push-notification zo0r 4 700 5298
xUtils3 wyouflf 5 697 5836
AgentWeb Justson 3 685 7607
android-advancedrecyclerview h6ah4i 5 672 5005
frontend-maven-plugin eirslett 7 665 3418
dddsample-core citerus 5 660 3076
gnirehtet Genymobile 3 657 2906
greys-anatomy oldmanpushcart 7 653 3557

Medium cardslib gabrielemariotti 7 652 4756
SpringBoot-Labs YunaiV 2 651 8453
Sentinel alibaba 2 648 14366
open-location-code google 6 648 3252
zuihou-admin-cloud zuihou 2 645 3271
react-native-image-picker react-native-image-picker 5 640 6687
tinker Tencent 4 639 15455
easy-rules j-easy 7 636 2705
okdownload lingochamp 2 624 3939
flutter boost alibaba 1 618 4606
Fragmentation YoKeyword 4 612 9598
android-classyshark google 5 610 6588
ListViewAnimations nhaarman 7 609 5660
SpringCloud zhoutaoo 3 606 5332
mosby sockeqwe 5 603 5447
Timber naman14 5 602 6363
nanohttpd NanoHttpd 8 599 5668

Table 8.2: Dataset - the systems in the medium category.
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Category Name Owner Age #Commits #Stars

ip2region lionsoul2014 5 292 8684
android-saripaar ragunathjawahar 8 292 3170
DeepLinkDispatch airbnb 5 290 3864
ARouter alibaba 3 289 12565
roncoo-pay roncoo 4 288 3776
piggymetrics sqshq 5 286 9425
ActiveAndroid pardom-zz 7 284 4735
android-tips-tricks nisrulz 4 284 4342
react-native-fbsdk facebook 5 282 2911
hawk orhanobut 5 281 3728
material rey5137 5 280 6051
ahbottomnavigation aurelhubert 4 280 3842
dubbo-spring-boot-project apache 2 279 4831

Small MVVMHabit goldze 3 277 5951
CalendarView huanghaibin-dev 3 276 7125
socket.io-client-java socketio 7 268 4480
RxGalleryFinal FinalTeam 4 263 2702
Store nytimes 3 261 3603
Robust Meituan-Dianping 3 260 3801
RoundedImageView vinc3m1 7 258 6074
RIBs uber 3 257 5836
Jetpack-MVVM-Best-Practice KunMinX 1 255 5306
jd-gui java-decompiler 5 253 9263
groupie lisawray 4 253 3024
elasticsearch-analysis-ik medcl 8 252 10926
ice Teevity 7 251 2735
okhttp-OkGo jeasonlzy 4 250 10163
UETool eleme 2 250 2956
Android-CleanArchitecture android10 6 244 14569
ViewPagerIndicator JakeWharton 9 241 10215

Table 8.3: Dataset - the systems in the small category.
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Chapter 9

Conclusion

The modification propagation analysis is an important activity for the maintenance

and evolution of a software system. It is also a challenging activity: to carry it

out, the developer must understand the impacts that a modification can have on

a system, and this requires time and a high level of knowledge about the software

structure - elements that are not always available in the daily life of the software

development. Seeking to overcome the challenges faced by developers, many re-

searchers have proposed methods for CIA over the years. However, using these

methods in software development is not practical since many are complex, require

extensive manual data collection, and lack tooling support. In this context, the

objective of this Ph.D. is to propose a new change propagation analysis model.

As described in Chapter 2, up to the present moment, the results obtained in the

development of the Ph.D. dissertation were:

• A study to understand how software engineering research has evolved and

identify the general status of software maintenance research.

• A survey identifying how software maintenance has been done in practice.

• A systematic literature review on change impact analysis.

• An empirical study on commit characterization.

• A new co-change heuristic.

The results we obtain so far in this Ph.D. dissertation proposal were published in

five papers. Besides, two papers were submitted to international venues.

9.1 Next Steps

To conclude this Ph.D. dissertation, we will implement and evaluate a novel change

impact analysis method, as described in Chapter 8. The main difference between
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our proposal and other change impact methods proposed in the literature is that

it combines characteristics of change history analysis and three different types of

structural analysis. In our method, the change history analysis is not done for a

single software system but by a large set of software systems. The results of this

analysis are, then, applied to the dependency graph of the software system, which

may make the proposed method easy to be used in practice. We will perform the

following steps to construct and evaluate our change impact analysis method:

1. Modify the CK tool to obtain data on types of dependencies between classes

the systems’ classes.

2. Run the co-change heuristic in the remaining data set.

3. Perform an empirical analysis to find the probabilities of change impact con-

sidering the structural dependency type, the distance between the classes, and

the software metrics.

4. Define and implement the change impact analysis method.

5. Evaluate the proposed method, as described in Section 8.2.

6. Write the chapters of the Ph.D. dissertation describing the proposed change

impact analysis method and its evaluation.

7. Write a paper about the proposed change impact analysis method.

8. Present the Ph.D. dissertation.

Table 9.1 presents the schedule for developing the activities described above.

Schedule

2023

Activity 03 04 05 06 07 08 09 10 11
1 x
2 x
3 x x
4 x x
5 x x
6 x x x x x x
7 x x
8 x

Table 9.1: Schedule of activities to be developed.
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