An Algorithm for Dynamic Reconfiguration of
Mobile Agents

Marco Tulio Valente!?, Roberto Bigonha'! and Mariza Bigonha!

Department of Computer Science, Federal University of Minas Gerais
Institute of Informatics, Catholic University of Minas Gerais
Belo Horizonte - MG - Brazil
E-mail: {mtov,bigonha,mariza}@dcc.ufmg.br

Abstract

In this paper we show an algorithm for dynamic reconfiguration of distributed
applications based in the mobile agent model. We also show in the paper that
the proposed algorithm can be easily implemented in the IPL language, a lan-
guage with several abstractions for the construction of mobile applications in
the Internet.

Key words: dynamic reconfiguration, mobile agents, Internet programming
languages.

1 Introduction

Several distributed systems are designed to run without interruptions. In general,
this kind of application can not be stopped even to apply corrective or evolutionary
changes. As an example of such applications we can mention industrial process control
systems, network management software, telecommunication switches etc. Thus it is
important to be able to extend or modify these long-running systems whithout having
to stop them. This capability is known as dynamic reconfiguration [6].

On the other hand, recently mobile agents were proposed as an alternative model
to design distributed applications in the Internet. A mobile agent is a process that can
autonomously migrate among the nodes of the Internet to execute a task on behalf of
its user [15]. It is argued that mobile agents can be used to build distributed systems
that can reduce the network load, that are more robust to bandwidth fluctuations
and that can also operate in disconnected mode. Among the applications that benefit
from this new paradigm of distributed programming, we can mention monitoring and
notification systems [8], i.e., systems where dynamic reconfiguration is an important
requirement.

However, most of the work done in dynamic reconfiguration until this moment has
focused on systems designed following the traditional client /server model. Unlike these



works, in this paper we present an algorithm for dynamic reconfiguration of distributed
applications designed accordingly to the mobile agent paradigm. We also show that
this algorithm can be easily implement in the IPL language. IPL is an object based
language that has several abstractions to the construction of mobile applications in
the Internet.

The remaining of the paper is organized as follows. Section 2 briefly presents
the IPL language, which is used to code the examples and algorithms presented in
the following sections. Section 3 discusses the three kinds of dynamic reconfiguration
possible in distribute applications. In Section 4, we present the algorithm for dynamic
reconfiguration of mobile agents proposed in this paper. Section 5 describes how the
proposed algorithm can be implemented in the IPL language. Section 6 reviews related
work and Section 7 concludes the paper.

2 The IPL Language

IPL (Internet Programming Language) [14] is a language designed to construct mobile
systems in the Internet, including applications in the mobile agent paradigm. The ab-
stractions for mobile computation available in IPL resembles the style of computation
proposed by the Ambient Calculus [4]. IPL is an object based language whose syntax
follows Obliq [2]. Unlike Obliq, however, the language does not include abstractions
that do not scale up to the whole Internet, like the notions of distributed lexical scope
and network references.

Similar to Obliq, programs in IPL are organized as a set of objects. Since it is an
object based language, IPL does not provide support to classes, inheritance or dynamic
method dispatching. An object with fields xy, xs, ..., x, has the form:

{ 1 => a1, T2 => a2, ..., Tp => an }

where each a; can be a value or method field. A value field is defined like in the
following example:

x =>3
A method field is defined in the following way:
x => meth (y,y1,v2,...,ym) b end

where the parameter y is the self object, y1, ys, ..., ¥m are the remaining parameters
and b is the method body.

The main abstraction of IPL to support mobility is the notion of container. A
container is a wrapper of objects that makes them mobile, that is, containers can move
to contexts located in other network nodes. Contexts are processes that can receive,
execute and send containers to other contexts, as showed in Figure 1. Contexts also
offer resources to the execution of containers, like, for example, a window system or a
data structure. Contexts are identified by URLs in the form: host/name, where host
is the name of the workstation where the context is running and name is the name of
the context.

A container with objects p1,pa, ... ,p, is created by the following command:



Context 1 Context 2

Resources Resources

Container Object

Figure 1: Abstractions for mobile computation available in IPL

new_container (m,pi,p2,...,Pn),

where m is an optional parameter that denotes the name of the container. Container
mobility is implemented by the following operations:

e insert object (c, a): insert the object a in the container c.

e context_jump (d): moves the current container to the context d. After this
operation, the execution continues in the next instruction, but in the target
context d.

e move (c, d, p): moves container ¢ to context d. The execution in the source
context continues asynchronously in the next instruction. In the target context,
the execution begins by the the method start of the object p and finishes when
this method returns.

e this_container: returns the name of the current container.

Objects in IPL are handled by nominal semantics. Every object has an implicit
name that uniquely identifies it in any context of the network. A definition of the
form = {...} associates with variable = the name of the created object. When an
operation of the form x.op is executed, it is initially verified if an object with the name
denoted by x exists in the local context. If such object exists, the operation op of
this object is executed. In case that it does not exist, the call remains blocked until
this object become locally available. Therefore, in IPL objects located in the current
context are called available objects, while remote objects are called unavailable objects.

The proposed semantics for object manipulation does not entail action-at-a-distance [3],
i.e., it does not allow transparent manipulation of network references as usual in dis-
tributed languages for local area networks. Moreover, name semantics allows the free
migration of objects wrapped in containers, as it does not create “static links” among
those objects and their execution context.



3 Dynamic Reconfiguration
There are three possible kinds of dynamic reconfiguration in distributed systems [6]:

e Module replacement: when one or more modules of the application need to be
replaced. For example, programmers may wish to replace a module by another
one that implements a more efficient algorithm.

e Structural change: when the logical structure or the topology of the system may
change. For example, new modules may be introduced and current modules may
be removed.

e Geometrical change: when the mapping from the logical structure of the system
to its distributed architecture may change. Usually, this form of reconfiguration
is useful for load balancing, fault tolerance or to allow better use of communica-
tion resources.

To illustrate these different kinds of reconfiguration, suppose a distributed imple-
mentation for the dining philosophers problem [7]. In this problem, module replace-
ment reconfigurations are needed for example when we decide to change one of the
philosophers by another one with, for example, a better appetite. A structural change
is needed, for example, when we decide do add or remove a philosopher from the sys-
tem. Lastly, a geometrical change is required when we decide to move a philosopher
from one node of the network to another one.

The last two kinds of reconfiguration — structural and geometrical — are already
available in any mobile agent system implemented in IPL. Structural changes are
supported by the notion of dynamic linking of containers, which allows containers
to be added or removed from systems during execution time. On the other hand,
the capability to move containers dynamically and autonomously from one execution
context to another one provides support to geometrical changes. For this reason, in
this paper we focus only in reconfigurations that require module replacement.

The main problem to support dynamic module replacement in a system is related
to transferring the execution state from the old container to the new one. Particularly,
this transfer should leave the new container in a consistent state, i.e., in a state where
the execution of the system can proceed normally rather than going to a error state [7].

To illustrate the problems involved in transferring the execution state from one
container to another, suppose a container ¢ denoting a consumer agent:

1 let p= { cont => O,

2 start => { resource buf;

3 var s;

4. while (true) do

5: s:= buf.get();

6: cont:= cont + 1;

7 "algorithm to process s"
8 end;

9



10: }
11:
12: let c= new_container (p);

A dynamic reconfiguration of this container can require replacing object p by an-
other one with a different algorithm to process the value s removed from the buffer.
Dynamic reconfiguration algorithms aiming to support module replacement should
then provide answers to the following questions:

e How the execution state of a container is defined ? Certainly, this state should
include the fields of the objects of the container. But how to deal with fields in
the old container that were removed in the new version 7 And about fields whose
types changed in the new container ? Considering these questions, a consensual
decision is that the state information transfered to the new container should not
include the program counter, since this value in the code of the new container
can be associated to a completely different instruction.

e When transfer the state of the old container to its new version ? In order to avoid
inconsistencies, one possible solution is to wait until the container is inactive, i.e.,
until no threads are running in the methods of the container. However, as shown
by the previous consumer agent example, it is common to have infinite loops
in notification and monitoring systems, making the containers of such systems
continuously active. On the other hand, a reconfiguration can not happen at
any moment of the execution of the old container, since this can result in several
kinds of inconsistencies. For example, supposing that the program counter is
not transfered to the new container, a inconsistency can happen in the previous
example if the execution changes to the new container before processing an item
removed from the buffer by the old container. In this case, this item will be lost
during the reconfiguration.

Previous works about dynamic reconfiguration of distributed systems have already
concluded that the problems mentioned above could only be solved if the participat-
ing containers provide information to guide the reconfiguration process [6]. The old
container should, for example, announce the moment where its state is consistent and
therefore can be safely transfered to the new container. This state is usually called a
reconfigurable state. The new container should then be responsible to access the state
of the old container in order to copy all the information required to proceed the normal
execution of the system.

4 The Proposed Algorithm

Suppose that we want to dynamically replace container n, with objects p1,pa, ... , pm
by another version with objects ¢1,qo, ... ,¢n,. The container is currently running in
context t. In order to create the new version of the container, the following operation
should be used:



let c’= new_container_config (n,ql,q92,...,qm);

After this first step, we should send the new configuration ¢ to context t using
the move operation available in the language. In order to create a new container
configuration, the programmer of the application should know the name n of the
container and its current execution context. In this way, for security reasons, containers
names should not be shared with any application.

As mentioned in Section 3 the old version of container n should make explicit
the states of its execution where a reconfiguration can take place. This is done by
calling the function reconfig_event(). This function first verifies if there is locally a
new configuration for the current container. If this is the case, the reconfiguration
process is started. Initially, all messages in transit to container n are suspended until
the end of the reconfiguration, when they will be delivered to the new version of the
container.

Next, the upgrade method of each object q1,¢qo, ... , ¢y is called. These methods
are executed following the order that the objects were inserted in the container, i.e.,
beginning by ¢; and ending by ¢,,. The upgrade method of each object ¢; can use
the identifier old to access the fields of the object that it is replacing. In this way,
the upgrade method is used to transfer state information from the old version of the
container to its new version. In the upgrade method it is also possible to access any
field of object p; in the old configuration by indexing the identifier old in the following
way: old [1]. This is useful when the new configuration removes one object from the
previous configuration, but requires its state to be transfered to one of the new objects.
Once the execution of the upgrade method is finished, the execution is resumed by the
start method of the new configuration. The objects of the old container can then be
garbage collected.

We show next an example of dynamic reconfiguration of the consumer agent de-
scribed in Section 3:

1: let g= { cont => 0,

2 start => { resource buf;

3 var s;

4: while (true) do

5: s:= buf.get();

6: cont:= cont + 1;

7 "new algorithm to process s"
8 reconfig_event Q);
9: end;

10: }

11:

12: upgrade => { cont:= old.cont; }
13: }

14:

15: let c’= new_container_config (c, q);
16: move (c’, t, p);



Besides a new algorithm to process an item s (line 7), the code of the object ¢
is instrumented with a call to the reconfig_event() function (line 8). This means that
any further reconfiguration of this container will only happen after processing an item
read from the buffer. The object ¢ also includes an upgrade method that transfers the
counter of items from the old to the new configuration (line 12). In this example, we
suppose this is the only information that need to be preserved by the reconfiguration
process. It should also be noticed that the name c¢ of the old configuration is needed
to create its new configuration (line 15).

5 Implementation

The dynamic reconfiguration algorithm proposed in this paper benefit from the nomi-
nal and blocking semantics used by IPL in method calls. Since in IPL every object has
a unique name in the network, we can easily block messages to an object by renaming
its name. In IPL, object and container names are keys with 144 bits organized in the
following fields:

e bits 0 to 127: this first field is named OID (Object Identififier) and it uniquely
identifies the object or the container in any node of the network. The value of
this field is created using the algorithm proposed by the OSF DCE standard to
generate GUIDs (Globally Unique Identifiers) [9].

e bit 128: this second field is named unavailability bit. In objects, its main use is
to disable the processing of messages. In containers, it is used to indicate that
the the container is a new configuration that is not enabled yet.

e bits 129 to 143: this third field is named CID (Configuration Identifier) and it
stores a value that identifies the version of the container. This field does not
have any meaning in object names.

The operation new_container_config creates a new container name from the current
name. The new name has the same OID from the old name, but its CID is incremented
by one. The unavailability bit of this new name is also set to one to indicate that the
container is still unavailable.

The following auxilary functions are used in implementation of the reconfiguration
algorithm:

e new config (n): checks if there is in the current context a new configuration
for container n, i.e., if there is locally a container with the same OID, but with
a greater CID. If such container exists, the function returns its name; otherwise
it returns zero.

e _available (n): makes container n available by unsetting bit 128 of its name.
e _unavailable (n): makes container n unavailable by setting bit 128 of its name.

e _rename (p, q): renames the OID of object p to the same OID of object q.



e start object (n): returns the name of the object with the start method of
container n.

Using the previous functions, the implementation of the reconfiguration algorithm
is straightforward:

1: proc OnReconfig(n) {

2: n’= _new_config (n)

3: if (n’> > 0)

4 _unavailable (n);

5: for each pi in n, _unavailable(pi);
6: for each gqi in n’, qi.upgrade(Q);

7 for each qi in n’, _rename(qi, pi);
8 _available (n’);

9: _start_object(n) .start();

10:}

The algorithm initially verifies if there is locally a new version for the container n
(line 2). If such version exists, its OID is greater than zero and the reconfiguration
process starts (lines 4-9). First, the current container and its objects are made un-
available (lines 4-5). Next, we execute the upgrade methods of each object of the new
configuration (line 6). The objects of the new configuration are then renamed to the
same name of the current objects (line 7). In this way, the new objects are going to
process all suspended messages to the old objects and also the new messages that were
sent to the container during the execution of the OnReconfig function. Last, the new
container is enabled (line 8) and its execution starts by the start method (line 9).

6 Related Work

The current paper is inspired in a proposal to add dynamic reconfiguration in the
distributed programming system Polylith [6, 10]. Applications in Polylith are orga-
nized in a set of modules interconnected using a message bus. In the system, each
module represents a process. Polylith supports the three kinds of dynamic recon-
figuration mentioned in Section 3: module replacement, structural and geometrical
change. Similar to the algorithm proposed in this paper, dynamic reconfiguration in
Polylith can only happen in pre-defined states and it is not transparent to application
programmers. Unlike dynamic reconfiguration in IPL, in Polylith the reconfiguration
process does not start by merely plugging a new module in the system. Besides the
code of the new module, programmers need to specify a script to guide the reconfig-
uration process. This script should be responsible for the following tasks: blocking
communication among modules during the reconfiguration, rerouting messages to the
new module that were in transit when the reconfiguration started and transferring the
execution from the old to the new module.

Since the proposal presented in this paper rely on a distributed language designed
with dynamic reconfiguration in mind, it does not require the use of such external



script. The main reason is that the nominal semantics used to call methods in IPL
makes it easy to suspend messages to the new container during the reconfiguration
process. Also in IPL the transfer of the execution state to the new module is done by
the upgrade method, i.e., by a internal method of the new version of the application
and not by an external script.

Argus is a system that supports dynamic reconfiguration of distributed applications
in the CLU language. In Argus [1], it is possible to dynamically replace objects
named guardians. The reconfiguration of such objects happens when the system is in
a consistent state. However, since Argus includes a operational system with support to
transactions, a consistent state can always be obtained performing a rollback operation.
Although this approach does not require adding explicit points of reconfiguration in
the applications, providing support to rollbacks introduce a considerable overhead in
the system.

There is also a proposal to add dynamic reconfiguration in the Conic system [7].
However, this proposal supports only structural reconfiguration. Recently, in [5] is
presented another proposal to add dynamic reconfiguration in an agent based system.
However, since the agents in this proposal are not mobile, the focus is in structural and
geometrical reconfiguration. Dynamic reconfiguration requiring module replacement
is not handled by this proposal.

In [11] it is proposed the introduction of dynamic reconfiguration in Eiffel applica-
tions. This proposal introduces in the Eiffel environment a dynamic linker and loader
and also a configuration management utility, where the programmer can issue com-
mands to dynamically replaces objects from a running application. Unlike the previous
solutions described in this section, this proposal requires the participation of the user
in the reconfiguration process.

7 Conclusions

Dynamic reconfiguration is a relevant requirement in many distributed systems. How-
ever, the works done until this moment in this area have focused mainly on applications
designed following the traditional client /server model. In this paper, we have proposed
an algorithm for dynamic reconfiguration of distributed applications designed in the
mobile agent paradigm. We have also showed that the presented algorithm can be eas-
ily implemented in the IPL language. Particularly, handling objects using names with
meaning in the whole network and the blocking semantics used in method calls has
contributed to make the implementation of the proposed algorithm straightforward in
IPL.

Besides having mobile agent applications as its target, the proposed algorithm
makes almost transparent the reconfiguration process. Unlike other proposals, pro-
grammers do not need to customize a script to guide the reconfiguration. However,
the algorithm presented in this paper requires programmers to explicitly indicate the
states of the application where a reconfiguration can take place. As further work, we
intend to implement a version of IPL supporting the algorithm proposed in this paper.



References

1]

2]

T. Bloom and M. Day. Reconfiguration and module replacement in Argus: Theory
and practice. IEEE Software Engineering Journal, 8(2):102-108, Mar. 1993.

L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27-59,
1995.

L. Cardelli. Abstractions for mobile computation. In J. Vitek and C. Jensen,
editors, Secure Internet Programming: Security Issues for Mobile and Dis-
tributed Objects, volume 1603 of Lecture Notes in Computer Science, pages 51-94.
Springer-Verlag, 1999.

L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Foundations
of Software Science and Computational Structures, volume 1378 of Lecture Notes
in Computer Science, pages 140-155. Springer-Verlag, 1998.

N. de Palma. Dynamic reconfiguration of agent-based applications. Technical

Report Project SIRAC, INRIA, 1999.

C. Hofmeister. Dynamic Reconfiguration of Distributed Applications. PhD thesis,
Computer Science Department, University of Maryland, 1993.

J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change
management. [EEE Transactions on Software Engineering, 16(11):1293-1306,
Nov. 1990.

D. Lange and M. Oshima. Seven good reasons for mobile agents. Communications
of the ACM, 42(3):88-89, 1999.

Open Group. DCE 1.1: Remote Procedure Call. Technical Report C706, Open
Group, Aug. 1997.

J. Purtilo. The Polylith software bus. ACM Transactions of Programming Lan-
guages and Systems, 16(1):151-174, Jan. 1994.

M. Stadel. Object oriented programming techniques to replace software compo-
nents on the fly in a running program. ACM SIGPLAN Notices, 26(1):99-108,
Jan. 1991.

M. T. Valente and R. Bigonha. Especificao formal das abstraes para computao
mvel de IPL. Technical Report LLP 01/2000, Laboratrio de Linguagens de Pro-
gramao, DCC/UFMG, Jan. 2000.

M. T. Valente, R. Bigonha, A. A. Loureiro, and M. Bigonha. Linguagens para
computao mvel na Internet (tutorial). In I'V Simpsio Brasileiro de Linguagens de
Programao. Sociedade Brasileira de Computao, May 2000.



[14] M. T. Valente, R. Bigonha, A. A. Loureiro, and M. Bigonha. Object oriented
languages with abstractions for mobile computation. In FEletronic Notes on The-
oretical Computer Science, volume 38. Elsevier Science, 2000.

[15] J. E. White. Mobile agents. In J. Bradshaw, editor, Software Agents, pages
437-472. AAAT Press/MIT Press, 1997.



