
C

P

C
N
a

b

c

a

A
R
R
A
A

K
D
C
G

1

i
e
d
s
c
q
e
a

p
n
(
K
2
2
S
f
s

T

c
(
(

0
h

The Journal of Systems and Software 93 (2014) 24–41

Contents lists available at ScienceDirect

The  Journal  of  Systems  and  Software

j our na l ho me  page: www.elsev ier .com/ locate / j ss

ontroversy  Corner

redicting  software  defects  with  causality  tests

esar  Coutoa,b,∗, Pedro  Piresa, Marco  Tulio  Valentea,  Roberto  S.  Bigonhaa,
icolas  Anquetilc

Department of Computer Science, UFMG, Brazil
Department of Computing, CEFET-MG, Brazil
RMoD Team, INRIA, Lille, France

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 6 May  2013
eceived in revised form 13 January 2014

a  b  s  t  r  a  c  t

In this  paper,  we  propose  a defect  prediction  approach  centered  on  more  robust  evidences  towards
causality  between  source  code  metrics  (as predictors)  and  the occurrence  of  defects.  More  specifically,
we  rely  on  the  Granger  causality  test  to  evaluate  whether  past  variations  in source  code  metrics  values
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can  be  used  to  forecast  changes  in  time  series  of  defects.  Our  approach  triggers  alarms  when changes
made  to the  source  code  of  a target  system  have  a high  chance  of producing  defects.  We  evaluated  our
approach  in  several  life  stages  of four Java-based  systems.  We  reached  an average  precision  greater  than
50% in  three  out  of  the  four systems  we  evaluated.  Moreover,  by  comparing  our  approach  with  baselines
that  are not  based  on  causality  tests,  it  achieved  a better  precision.

©  2014  Elsevier  Inc.  All  rights  reserved.
. Introduction

Defect prediction is a central challenge for software engineer-
ng research (Basili et al., 1996; Zimmermann et al., 2008; D’Ambros
t al., 2010; Kamei et al., 2013). The goal is to discover reliable pre-
ictors that can indicate in advance those components of a software
ystem that are more likely to fail. Clearly, this information is of
entral value for software quality assurance. For example, it allows
uality managers to allocate more time and resources to test—or
ven to redesign and reimplement—those components predicted
s defect-prone.

Due to its relevance to software quality, various defect
rediction techniques have been proposed. Essentially, such tech-
iques rely on different predictors, including source code metrics
e.g., coupling, cohesion, size) (Basili et al., 1996; Subramanyam and
rishnan, 2003; Nagappan et al., 2006), change metrics (Hassan,
009), static analysis tools (Nagappan and Ball, 2005; Araujo et al.,
011; Couto et al., 2013), and code smells (D’Ambros et al., 2010).

pecifically, in a recent paper we reported a study showing the
easibility of using causality tests to predict defects in software
ystems (Couto et al., 2012). We  relied on a statistical hypothesis
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164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2014.01.033
test proposed by Clive Granger to evaluate whether past changes
to a given source code metrics time series can be used to forecast
changes in defects time series. Granger test was originally proposed
to evaluate causality between time series of economic data (e.g., to
show whether changes in oil prices cause recession) (Granger,
1969, 1981). Although extensively used by econometricians, the
test was also used in bioinformatics (to identify gene regulatory
relationships, Mukhopadhyay and Chatterjee, 2007) and recently
in software maintenance (to detect change couplings spread over
an interval of time, Canfora et al., 2010). In our study, we  found
that 64–93% of the defects in four well-known open-source systems
were detected in classes with a Granger-positive result between the
respective time series of source code metrics and defects.

In this paper, we  leverage this initial study by proposing and
evaluating a defect prediction model based on causality tests. More
specifically, we not only report that Granger-causalities are com-
mon  between time series of source code metrics and defects (which
is essentially a theoretical result), but we  also propose a model that
relies on this finding to trigger alarms as soon as changes that are
likely to introduce defects in a class are made (i.e., a model that
can contribute effectively to software quality assurance practices).
Fig. 1 provides details on our approach for defect prediction. In
a first step, we  apply the Granger test to infer possible Granger-
causalities between historical values of source code metrics and
the number of defects in each class of the system under analysis. In

this first step, we also calculate a threshold for variations in the val-
ues of source code metrics that in the past Granger-caused defects
in such classes. For example, suppose that a Granger-causality is
found between changes in the size of a given class in terms of lines

dx.doi.org/10.1016/j.jss.2014.01.033
http://www.sciencedirect.com/science/journal/01641212
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Fig. 1. Proposed approach to predict defects.

f code (LOC) and the number of defects in this class. Considering
revious changes in this specific class, we can establish for exam-
le that changes adding more than 50 lines of code are likely to

ntroduce defects in this class (more details on how such thresh-
lds are calculated in Section 3.3). Using these thresholds and the
ranger results calculated in the previous step, a defect predictor
nalyzes each change made to a class and triggers alarms when
imilar changes in the past Granger-caused defects.

Regarding our initial study, we also extended a dataset proposed
o evaluate defect prediction approaches, by almost doubling the
umber of source code versions included in this dataset. Finally, we
valuated our approach in several life stages of four open-source
ystems included in the aforementioned dataset. Our approach
eached an average precision greater than 50% considering three
ut of the four systems we evaluated. Moreover, our results show
hat the precision of the alarms changes with time. For example,
or the Eclipse JDT Core, we achieved an average precision of 58%
onsidering 144 models covering seven years of the system’s his-
ory, and including a minimal and maximal precision of 27% and
0%, respectively. On the other hand, we were not able to predict
ll defects using times series of source code metrics. On average,
e achieved recall rates ranging from 13% (Equinox Framework) to

1% (Lucene). In fact, we argue that it is not feasible to expect that
larms based on source code metrics variations can cover the whole
pectrum of bugs reported to a system. Finally, we  show that our
odels outperform models that trigger alarms without considering
ranger-causality or that are based on linear regression techniques.

The remainder of this paper is organized as follows. We  start
ith an overview on Granger Causality (Section 2). Next, we
escribe the steps to build the proposed model (Section 3), includ-

ng the time series extraction, the application of the Granger test,
nd the identification of thresholds in metrics variations that may
ead to defects. Section 4 describes our dataset including time series
f source code metrics and defects for four real-world systems
Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, and Lucene).
ection 5 describes a feasibility study designed to illustrate and
o evaluate the application of Granger on defects prediction. We
resent an evaluation of the proposed model in Section 6. Section 7
iscusses related work, and Section 8 concludes the paper.

. Granger causality

In this section, we start first by describing a precondition that
ranger requires the time series to follow (Section 2.1). Next, we
resent and discuss the test (Section 2.2).

.1. Stationary time series
The usual pre-condition when applying forecasting
echniques—including the Granger test described in the next
ubsection—is to require a stationary behavior from the time
 and Software 93 (2014) 24–41 25

series (Fuller, 1994). In stationary time series, properties such as
mean and variance are constant over time. Stated otherwise, a
stationary behavior does not mean the values are constant, but
that they fluctuate around a constant long run mean and variance.
However, most time series of source code metrics and defects
when expressed in their original units of measurements are not
stationary. The reason is intuitively explained by Lehman’s Law
of software evolution, which states that software measures of
complexity and size tend to grow continuously (Lehman, 1980).
This behavior is also common in the original domain of Granger
application, because time series of prices, inflation, gross domestic
product, etc. also tend to grow along time (Granger, 1981).

When the time series are not stationary, a common workaround
is to consider not the absolute values of the series, but their
differences from one period to the next one. More specifically,
suppose a time series x(t). Its first difference x′(t) is defined as
x′(t) = x(t) − x(t − 1).

Example 1. To illustrate the notion of stationary behavior, we
will consider a time series that represents the number of methods
(NOM), extracted for the Eclipse JDT Core system, in intervals of
bi-weeks, from 2001 to 2008. Fig. 2(a) illustrates this series. As we
can observe, the series is not stationary, since it has a clear growth
trend, with some disruptions along the way. Fig. 2(b) shows the
first difference of NOM. Note that most values are delimited by a
constant mean and variance. Therefore, NOM in first difference has
a stationary behavior.

2.2. Granger test

Testing causality between two  stationary time series x and
y, according to Granger, involves using a statistical test—usually
the F-test—to check whether x helps to predict y at some stage
in the future (Granger, 1969). If this happens, we can conclude
that x Granger-causes y. The most common implementation of
the Granger Causality Test uses bivariate and univariate auto-
regressive models. A bivariate auto-regressive model includes past
values from the independent variable x and from the dependent
variable y. On the other hand, a univariate auto-regressive model
considers only past values of the variable y.

To apply Granger, we must first calculate the following bivariate
auto-regressive model (Canfora et al., 2010):

yt = ˛0 + ˛1yt−1 + ˛2yt−2 + · · · + ˛pyt−p + ˇ1xt−1

+ ˇ2xt−2 + · · · + ˇpxt−p + ut (1)

where p is the auto-regressive lag length (an input parameter of
the test) and ut is the residual. Essentially, p defines the number
of past values—from both x and y—considered by the regressive
models. Furthermore, Eq. (1) defines a bivariate model because it
uses values of x and y, limited by the lag p.

To test whether x Granger-causes y, the following null hypoth-
esis must be rejected:

H0 : ˇ1 = ˇ2 = · · · = ˇp = 0

This hypothesis assumes that past values of x do not add predic-
tive power to the regression. In other words, by testing whether the

 ̌ coefficients are equal to zero, the goal is to discard the possibility
that the values of x contribute to the prediction.

To reject the null hypothesis, we  must first estimate the follow-

ing auto-regressive univariate model (i.e., an equation similar to
Eq. (1) but excluding the values of x):

yt = �0 + �1yt−1 + �2yt−2 + · · · + �pyt−p + et (2)
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Fig. 2. NOM f

inally, to evaluate the precision of both models, we must calculate
heir residual sum of squares (RSS):

SS1 =
T∑

t=1

û2
t RSS0 =

T∑
t=1

ê2
t

f the following test

1 = (RSS0 − RSS1)/p

RSS1/(T − 2p − 1)
∼Fp,T−2p−1

xceeds the critical value of F with a significance level of 5% for the
istribution F(p, T − 2p − 1), the bivariate auto-regressive model is
etter (in terms of residuals) than the univariate model. Therefore,
he null hypothesis is rejected. In this case, we can conclude that x
ranger-causes y.

xample 2. In our previous Eclipse JDT Core example, we applied
ranger to evaluate whether the number of public methods

NOPM), in the Granger sense, causes NOM. Although the com-
on  intuition suggests this relation truly denotes causality, it is

ot captured by Granger’s test. Particularly, assuming p = 1 (the lag
arameter), the F-test returns a p-value of 0.32, which is superior
o the defined threshold of 5%. To explain this lack of Granger-
ausality, we have to consider that variations in the number of
ublic methods cause an immediate impact on the total number
f methods (public, private, etc.). Therefore, Granger’s application
s recommended in scenarios where variations in the independent
ariable are reflected in the dependent variable after a delay (or
ag).

xample 3. To explain the sense of causality captured by Granger
n a simple and comprehensive way, suppose a new time series
efined as:

OM′(t) =
{

NOM(t) if t ≤ 5

NOM(t − 5) if t > 5

Basically, NOM′ reflects with a lag of five bi-weeks the values
f NOM. We  reapplied Granger to evaluate whether NOPM causes
OM’, in the Granger sense. In this case, the result was positive,
ssuming p = 5. Therefore, knowing the NOPM values at a given
i-week helps to predict the value of NOM′. Fig. 3 illustrates the

ehavior of both series. For example, we can observe that just before
i-week 21 a significant increase occurred in the number of pub-

ic methods. By knowing this information, one could predict an
mportant increase in NOM′ in the following bi-weeks. In fact, the
Fig. 3. NOPM and NOM′ time series. The increase in NOPM values just before bi-
week 21 has been propagated to NOM′ few weeks later.

figure shows that this increase in NOPM propagates to NOM′ in few
bi-weeks (we circled both events in the presented series).

Example 4. To illustrate the application of Granger in a real exam-
ple, Fig. 4 shows the time series of LOC (lines of code) and defects
for four classes of the Eclipse JDT Core system. These time series
were created in intervals of bi-weeks from 2001 to 2008. In the fig-
ure, we  circled the events in the time series of LOC  that probably
anticipated similar events in the time series of defects. For exam-
ple, in the SearchableEnvironmentRequestor class (first series),
the increase in LOC just before bi-week 87 generated an increase
in the number of defects few weeks later. In this class specifically,
a Granger-causality has been detected between LOC and defects,
assuming p = 3.

3. Proposed approach
The ultimate goal of our approach is to predict defects using
a model centered on Granger-causality relations between source
code metrics (independent variables) and defects (dependent
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ariable). Our approach relies on historical data such as bug his-
ories (extracted from bug tracking platforms) and source code
ersions (extracted from version control platforms). This data is
sed to create time series of source code metrics and defects for the
lasses of a target system. Next, we rely on the Granger causality
est for inferring relations between the time series of metrics and
efects. After that, we build a defect prediction model that triggers
larms when changes made to the target system have a high chance
f producing defects.

As illustrated in Fig. 5, we propose the following steps to build
 defect prediction model:

. We  create time series of source code metrics for each class of the
target system. To create such series, source code versions of the
target system are extracted from its version control platform in a
predefined time interval (e.g., bi-weeks). After that, the values of
the considered source code metrics are calculated for each class
of each extracted version.

. We  create a time series with the number of defects in each class
of the target system from the bugs history. Basically, we map
the bugs reported in bug tracking platforms to their respec-

tive commits using the bug identifier. Next, the files changed by
such commits are used to identify the classes changed to fix the
respective defects (i.e., the defective classes). Section 3.1 details
the methodology we follow to generate the defects time series.
ity between LOC and defects.

3. We apply the Granger causality test considering the metrics and
defects time series. More specifically, Granger is responsible for
identifying Granger-cause relations on time series of source code
metrics and defects. Section 3.2 describes the methodology we
follow to apply Granger.

4. As a distinguishing aspect of our approach, we identify thresh-
olds for variations in metrics values that may  contribute
according to Granger to the occurrence of defects. More specif-
ically, we build a model that relies on such thresholds to alert
developers about future defects whenever a risky variation in
the values of a metric happens due to changes in the system.
Section 3.3 describes the proposed approach to identify alarms
thresholds.

3.1. Extracting the time series of defects

We consider that bugs are failures in the observable behavior
of the system. Bugs are caused by one or more errors in the source
code, called defects (IEEE Standard, 1990). We  count defects at the
class level since our ultimate goal is to trigger alarms due to changes
in classes. More specifically, each class changed to fix a given bug is

counted as a defective class. Therefore, whenever mentioned that a
system has n defects in a given time frame, we  are actually stating
that we counted n defective classes in this time frame (i.e., classes
that were later changed to fix the defect). Classes with multiple
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efects related to the same bug are counted only once; on the
ther hand, defects in the same class but due to different bugs are
ounted separately. Finally, we do not consider open or non-fixed
ugs.

To create the time series of defects, the bugs—or more precisely,
he maintenance requests—reported in the bug tracking platforms

ust be collected during the same time frame used to extract the
ource code versions. In a second step, each bug b is linked to the
lasses changed to fix b, using the following procedure (which is
lso adopted in other studies on defect prediction (D’Ambros et al.,
010; Zimmermann et al., 2007; Śliwerski et al., 2005)):

. Suppose that Bugs is the set containing the IDs of all bugs
reported during the time frame considered in the analysis.

. Suppose that Commits is the set with the IDs of all commits in the
version control platform. Suppose also that Cmts[c] and Chg[c]
are, respectively, the maintainer’s comments and the classes
changed by each commit c ∈ Commits.

. The classes changed to fix a given bug b ∈ Bugs are defined as:

⋃
∀c∈Commits

{Chg[c]|substr(b, Cmts[c])}

This set is the union of the classes changed by each commit c
whose textual comments provided by the maintainer includes a
reference to the bug with ID b. The predicate substr(s1, s2) tests
whether s1 is a substring of s2.

Finally, suppose that in order to fix a given bug b changes were
pplied to the class C. In this case, a defect associated to b must
e counted for C during the period in which b remained open,

.e., between the opening and fixing dates of b. More specifically,
 defect is counted for the class C at a time interval t whenever the
ollowing conditions hold: (a) b has been opened before the ending
ate of the time interval t; (b) b has been fixed after the starting
ate of the time interval t.

Fig. 6 shows an example regarding the extraction of a time series
f defects with three bugs and three classes and spanning a time
nterval of five bi-weeks. The left table shows data on the bugs and
he right figure shows the time series of defects extracted from

hese bugs. As we can observe, bug #1 was opened in 2010-01-
7 (bi-week 1) and fixed in 2010-03-10 (bi-week 5). In order to
x this bug, changes were applied to the class A. In this case, a
efect associated to bug #1 is counted for the class A during five
i-weeks.

Fig. 6. Example of extracting
odel for defect prediction.

3.2. Applying the Granger test

To apply the Granger causality test in order to identify causal
relations on the time series of source code metrics and defects, we
propose the Algorithm 5. In this algorithm, Classes is the set of
all classes of the system (line 1) and Defects[c] is the time series
with the number of defects (line 2). The algorithm relies on function
d check (line 3) to check whether the defects in the time series d
conform to the following preconditions:

Algorithm 5. Applying the Granger test

1: for all c ∈ Classes do
2:  d = Defects[c];

3: if d check(d) then
4: for n = 1 → NumberOfMetrics do
5:  m = M[n][c];

6: if m check(m) then
7: granger(m, d);

8: end if
9: end for
10: end if
11: end for

• P1: The time series must have at least k values, where k repre-
sents the minimum size that a series must have to be considered
by the prediction model. Therefore, time series that only existed
for a small proportion of the time frame considered in the
analysis—usually called dayfly classes (Lanza, 2001)—are dis-
carded. The motivation for this precondition is the fact that such
classes do not present a considerable history of defects to qualify
their use in predictions.

• P2: The values in the time series of defects must not be all null
(equal to zero). Basically, the goal is to discard classes that never
presented a defect in their lifetime (for instance, because they
implement a simple and stable requirement). The motivation for
this precondition is that it is straightforward to predict defects
for such classes; probably, they will remain with zero defects in
the future.

• P3: The time series of defects must be stationary, which is a pre-
condition required by Granger, as reported in Section 2.1.

Suppose that a given class c has passed the previous precondi-

tions. For this class, suppose also that M[n][c] (line 5) is the time
series with the values of the n-th source code metric considered
in the study, 1≤ n ≤ NumberOfMetrics. The algorithm relies on
function m check (line 6) to test whether time series m—a time

 time series of defects.
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Fig. 7. Example of a threshold for the LOC  metric.

Defect Prediction  
Model 

input output  
(Metric     , Metric      )m v mv Alarm! 

Previous variations like that in m
have Granger-caused defects 

this table, column Period informs the time interval in which the
metrics were collected by D’Ambros et al. In total, the dataset has
C. Couto et al. / The Journal of Sy

eries with metrics values—conforms to the following precondi-
ions:

P4: The time series of source code metrics must not be constant.
In other words, metrics time series whose values never change
must be discarded, since variations in the independent variables
are the key event to observe when computing Granger causality.
P5: The time series of source code metrics must be stationary, as
defined for the defects series.

Finally, for the time series m (source code metrics) and d (defects)
hat passed preconditions P1 to P5, function granger(m,d) checks
hether m Granger-causes d (line 7). As described in Section 2,
ranger is sensitive to the lag selection. For this reason, in the pro-
osed algorithm the test is not applied for a single lag value, but
everal times, with the lags ranging from 1 to l. In this way, we con-
ider that a metric m is a Granger-cause of defects in a given class c
henever one of the tested lags return a positive result.

.3. Calculating thresholds to trigger alarms

As described in Section 2.2, Granger causality test identifies
hether an independent variable x contributes to predict a depend-

nt variable y at some stage in the future. However, the test does
ot establish the thresholds for relevant variations of the values
f x that may  impact y. Therefore, this step aims to calculate the
hresholds used by our model to trigger alarms, as follows:

. For each time series of source code metrics that Granger returned
a positive result, we compute the positive variations in the series
values, by subtracting the values at consecutive bi-weeks.1

. A threshold to trigger alarms for a given class C and metric m is
the arithmetic mean of the variations of m computed for C, as
defined in the previous step.

Fig. 7 shows a time series for one of the classes of the Eclipse JDT
ore system where Granger returned a positive result between the
alues of LOC and defects. In this figure, we circled the positive vari-
tions used to calculate the alarms thresholds. As can be observed,
he threshold for the class BindingResolver is 33.1, which is the
rithmetic mean of the values we circled. The proposed defect pre-
iction model relies on this threshold to alert maintainers about
uture defects in this class. More specifically, an alarm is triggered
y our model for future changes adding at least 34 lines of code to
his class.

.4. Defect prediction model

Fig. 8 illustrates the inputs and the output of our prediction
odel. Basically, the model receives as input two values for a

iven source code metric m, mv and mv′ , where mv is the value of
he metric regarding a class C that was just changed to fix a bug.

oreover, mv′ is the value of the metric in the previous version
f C in the version control platform. The proposed model verifies

hether m Granger-causes defects in C and whether the difference

mv − mv′ ) is greater or equal to the threshold identified for varia-
ions in the metric values. When both conditions hold, the model
riggers an alarm. Basically, such alarm indicates that, according to

1 We decided to compute the positive variations because they typically indicate
 degradation in the internal quality of the source code, which may  influence the
ccurrence of future defects. Therefore, at least in principle, it does not make sense
o  trigger alarms in cases where the variations in the metric values are negatives,
.e.,  when the source code quality improves.
Fig. 8. Defect prediction model

the Granger test, similar variations in the values of this metric in
the past resulted in defects.

Using the Prediction Model: With this model in hand, a main-
tainer before making a commit in the version control platform with
changes to a given class can verify whether such changes may lead
to defects. If our model triggers an alarm for a given class warning
about future occurrences of defects, the maintainer can for exam-
ple perform extra software quality assurance activities in this class
(e.g., unit testing or a detailed code inspection) before executing
the commit.

4. Dataset

The evaluation reported on this paper is based on a dataset
made public by D’Ambros et al. to evaluate defect prediction tech-
niques (D’Ambros et al., 2010, 2012). This dataset includes temporal
series for seventeen source code metrics, including number of
lines of code (LOC) and the CK (Chidamber and Kemerer) metrics
suite (Chidamber and Kemerer, 1994). The metrics were extracted
in intervals of bi-weeks for four well-known Java-based systems:
Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, and Lucene.
Table 1 provides detailed information on this original dataset. In
Table 1
Original dataset

System Period Classes Versions

Eclipse JDT Core 2005-01-01–2008-05-31 1041 90
Eclipse PDE UI 2005-01-01–2008-09-06 1924 97
Equinox framework 2005-01-01–2008-06-14 444 91
Lucene 2005-01-01–2008-10-04 889 99
Total 4298 377
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Table 2
Extended dataset

System Period Classes Versions

Eclipse JDT Core 2001-07-01–2008-06-14 1370 183
Eclipse PDE UI 2001-05-24–2008-04-03 3478 180
Equinox Framework 2003-11-25–2010-10-05 615 180
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Table 4
Number of bugs, defects, and defects per bugs

System Bugs Defects Defective classes Defects/bugs

Eclipse JDT Core 3697 11,234 833 3.04
Eclipse PDE UI 1798 3566 1019 1.99
Equinox Framework 784 1478 292 1.88
Lucene 2002-06-22–2009-05-02 760 180
Total 6223 723

298 classes, each of them with at least 90 bi-weekly versions
which is equivalent to around three and a half years).

.1. Extended dataset

We  extended this dataset as described next: (a) by consider-
ng more versions and classes and (b) by creating a time series
f defects. Table 2 provides detailed information on our extended
ataset. As can observed, our extension has approximately twice
he number of versions (723 versions) and 45% more classes
6223 classes). Basically, we extended the original dataset to
onsider—whenever possible—the whole evolution history of the
onsidered systems, starting from the first version available in their
ersion repositories.

Similar to the original dataset, our extension does not include
est classes. Test classes were discarded because they are not
elated to the core functionality of their systems and therefore
hey may  statistically invalidate attempts to perform predictions.

ore specifically, we removed the directories and subdirecto-
ies whose name starts with the words “Test” or “test”. The
umber of removed classes is as follows (for the last versions

ncluded in our dataset): 3452, 208, 816, and 360 classes for
clipse JDT Core, Eclipse PDE UI, Equinox Framework, and Lucene,
espectively.

Furthermore, we consider a reduced number of source code
etrics, as indicated in Table 3. More specifically, we  reduced the

umber of source code metrics from seventeen to seven, for the
ollowing reasons:

The seven metrics we selected cover different properties of code,
such as complexity (WMC), coupling (FAN-IN and FAN-OUT),
cohesion (LCOM) and size (NOA, LOC, and NOM).
The metrics related to inheritance—such as Depth of Inheritance
Tree (DIT) and Number of Children (NOC)—usually do not present
positive results regarding the Granger causality test, at least
according to our previous study (Couto et al., 2012).

It is important to highlight that eventual collinear relations
etween the considered source code metrics values do not have

 major impact in our model. Basically, collinear pairs of metrics
like NOM and LOC, possibly) just tend to produce multiple alarms

or the same defects, assuming that a Granger-causality is detected
etween them and defects. For this reason, we did not check for
ollinearity in our dataset. The following sections describe the

able 3
etrics considered in our dataset.

Metrics Description Category

1 WMC  Weighted methods per class Complexity
2  LCOM Lack of cohesion in methods Cohesion
3  FAN-IN Number of classes that reference a given class Coupling
4  FAN-OUT Number of classes referenced by a given class Coupling
5  NOA Number of attributes Size
6  LOC Number of lines of code Size
7  NOM Number of methods Size
Lucene 335 615 157 1.83
Total 6614 16,893 2297 2.18

extraction process of the time series of source code metrics and
defects provided in the dataset.

4.2. Data collection

To create the time series of source code metrics, we extracted
the source code of each considered version from the version con-
trol platform in intervals of bi-weeks. We then used the Moose
platform2 to calculate the metrics values for each class of each
considered version, excluding only test classes. Particularly, we
relied on VerveineJ—a Moose application—to parse the source code
of each version and to generate MSE  files. MSE  is the default
file format supported by Moose to persist source code models.
We extended the Moose platform with a routine to calculate
LCOM, since the current version of Moose does not support this
metric.

Another important difference between the datasets is the fact
that D’ambros’ dataset only provides information on the total num-
ber of defects for each class. Thus, in order to apply Granger
we distributed this value along the bi-weeks considered in our
evaluation. To create the time series of defects, we  followed the
methodology described in Section 3.1. We initially collected the
issues (bugs) reported in the Jira and Bugzilla platforms (the bug
tracking platforms of the considered systems) that meet the fol-
lowing conditions:

• Issues reported during the time interval considered by our dataset
(as described in Table 2).

• Issues denoting real corrective maintenance tasks. Our goal was
to distinguish between issues demanding corrective mainte-
nance tasks and issues that in fact are requests for adaptive,
evolutive or perfective maintenance. Jira has a field that classifies
the issues as bug, improvement, and new feature.  Therefore, we col-
lected only issues classified as bug. On the other hand, Bugzilla is
used mainly for corrective maintenance tasks (at least for Eclipse
Foundation systems). Despite that, some issues were classified
as enhancement in the Severity field. Therefore, we also discarded
them.

• Issues having fixed status. In other words, we discarded open,
duplicate, invalid,  and incomplete issues.

In a second step, we  mapped the bugs to defects in classes and
created the time series of defects for each class. Table 4 shows the
number of bugs opened via Bugzilla or Jira for each of the systems.
As can be observed, we collected a total of 6614 bugs. This table also
shows the number of bugs we collected, the number of defects that
caused such bugs (i.e., number of classes changed to fix such bugs,
according to the definition of defects, provided in Section 3.1), the
number of defective classes (i.e., number of classes associated to at
least one bug), and the average number of defects per bug. As can
be observed, on average each bug required changes in 2.18 classes.

Therefore, at least in our dataset, changes to fix bugs do not present
a scattered behavior.

2 http://www.moosetechnology.org.

http://www.moosetechnology.org
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Table  5
Percentage and absolute number of classes conforming to preconditions P1, P2, and P3

System P1 (%) Classes P1 + P2 (%) Classes P1 + P2 + P3 (%) Classes

Eclipse JDT Core 80 1090 59 811 57 779
Eclipse PDE UI 45 1582 26 918 23 788
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Equinox Framework 65 397 4
Lucene 59 450 1
Total  57 3519 3

. Feasibility study

In this section, we describe a first study designed to evaluate our
pproach for defect prediction using Granger causality test. Besides
llustrating the use of Granger, we investigate the feasibility of using
he approach proposed in Section 3 to predict defects in the dataset
escribed in Section 4. More specifically, we focus on the following
uestions: (a) How many time series pass the preconditions related
o defects (preconditions P1, P2, P3)? (b) How many time series
ass the preconditions related to source code metrics (precondi-
ions P4 and P5)? (c) How many classes present positive results on
he Granger test? (d) What is the number of defects potentially cov-
red by our approach? (e) What are the lags that most led to positive
esults regarding Granger-causality? To answer these questions, we
sed the entire dataset described in Section 4. Therefore, we  ana-

yzed 6223 classes, 16,893 defects, and approximately 50,000 time
eries of source code metrics and defects, with a maximum size of
83 bi-weeks (JDT Core) and a minimal size of 180 bi-weeks (PDE
I, Equinox Framework, and Lucene).

Parameters setting: An important decision when applying the
roposed defect prediction model is setting the parameters used

n the preconditions, as described in Section 3.2. In practice, we
ecided to set such parameters in the following way:

Minimum size: We  defined that the classes should have a lifetime
of at least 30 bi-weeks (approximately one year). Our goal is to
select classes with a sufficient history of defects that qualify their
use in predictions (and therefore to tackle the cold-start prob-
lem that typically happens when making predictions based on
historical data (Schein et al., 2002)).
Maximum lag:  We  computed the tests using a lag ranging from
1 to 6. To set this maximum lag, we analyzed the time interval
between the opening and fixing dates of the bugs in our dataset.
On average, 84% of the bugs were fixed within six bi-weeks.
Significance level: We  computed the tests using a significance level
of 95% (  ̨ = 0.05). We  counted as causality the cases where the p-
value obtained by applying the F-Test was less than or equal to
˛, i.e., p-value ≤0.05.

ool support: The algorithm described in Section 3.2 was  imple-

ented in the R statistical system. We  considered all times series in

rst difference (see Section 2.1) to maximize the number of station-
ry time series—a precondition to apply the Granger test. To identify
tationary time series, we relied on function adf.test() of the tseries

able 6
ercentage of time series conforming successively to preconditions P4 and P5.

JDT Core (%) PDE UI (%) Equ

P4 P4 + P5 P4 P4 + P5 P4 

LCOM 70 66 53 43 64 

WMC  88 84 79 64 84 

FAN-IN 60 57 47 39 50 

FAN-OUT 76 72 80 69 76 

NOA  61 57 60 51 62 

LOC  94 91 92 73 90 

NOM  80 75 76 62 76 

Total  76 72 70 57 72 
271 36 219
142 17 131

2142 31 1917

package. This function implements the Augmented Dickey–Fuller
test for stationary behavior (Fuller, 1994). More specifically, this
function receives as parameters the time series to be checked and a
lag. Particularly, we  relied on the default lag suggested by the func-
tion. To apply the Granger test, we  used function granger.test() of
the msbvar package.

5.1. Preconditions on time series of defects

The algorithm proposed in Section 3.2 first checks whether the
defects times series pass the preconditions P1, P2, and P3 using
function d check.  Table 5 shows the percentage and the abso-
lute number of classes that survived these preconditions. We  can
observe that 57% of the classes survived precondition P1 (lifetime
greater than 30 bi-weeks) and that 34% of the classes survived
both P1 and P2 (at least one defect in their lifetime). Finally,
our sample was  reduced to 31% of the classes after applying the
last precondition (test for stationary behavior). In summary, after
checking the preconditions P1, P2, and P3, our sample was reduced
significantly.

5.2. Preconditions on time series of source code metrics

The second step of the algorithm described in Section 3.2 relies
on function m check to evaluate the preconditions P4 and P5.
Considering only the classes passing preconditions P1, P2, and
P3, Table 6 shows the percentage of source code time series that
passed preconditions P4 and P5. As defined in Section 3.2, precon-
dition P4 states that the time series must not be constant and P5
requires the series to be stationary. By observing the values in
Table 6, we  conclude that constant time series are common for
some metrics. For example, for LCOM, FAN-IN, and NOA  approxi-
mately 40% of the considered classes presented a constant behavior
(column total). Furthermore, we can observe that the number of
series with non-stationary behavior—even when considering the
first differences—is not negligible. For example, for WMC,  84% of
the series survived P4, but only 74% survived P5. In summary, after
checking the preconditions P4 and P5, our sample of time series of
source code metrics was reduced to 65%.
5.3. Defects covered by Granger

After checking the proposed preconditions, the algo-
rithm computes function granger to check the existence of

inox (%) Lucene (%) Total (%)

P4 + P5 P4 P4 + P5 P4 P4 + P5

53 63 59 62 54
72 85 84 84 74
43 76 73 55 49
67 75 73 78 70
53 59 55 61 54
79 95 89 93 82
66 79 76 77 69
62 76 73 73 65
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Table 7
Percentage and absolute values of classes with n positive results for Granger.

n JDT Core PDE UI Equinox Lucene

% Classes % Classes % Classes % Classes

0 62 849 88 3,067 80 491 90 682
1  9 122 4 141 5 31 2 16
2  7 99 2 71 3 18 2 13
3  6 78 2 55 4 23 2 13
4  6 77 2 53 4 22 1 9
5  4 53 1 45 3 20 2 13
6  4 49 1 36 1 7 1 11
7  2 43 0 10 0 3 0 3
Total  100 1370 100 3478 100 615 100 760

Table 8
Classes, Granger positive classes (GPC), number of bugs, number of defects, number of defects in Granger positive classes (DGC).

System Classes GPC Bugs Defects DGC DGC/defects

Eclipse JDT Core 1370 521 3697 11,234 8781 78%
Eclipse PDE UI 3478 411 1798 3566 2391 67%

784 1478 766 52%
335 615 462 75%

6614 16,893 12,400 73%
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Table 9
Granger positive p-values.

JDT Core (%) PDE UI (%) Equinox (%) Lucene (%)

0.04 < p-value ≤ 0.05 5 5 3 2
0.03 < p-value ≤ 0.04 5 5 3 2
0.02 < p-value ≤ 0.03 5 7 6 6
0.01 < p-value ≤ 0.02 10 8 8 6

made to the considered systems (which we will call event A). Such
changes have an impact in the values of the metrics considered
in our study (event B). Frequently, such changes also introduced

Table 10
Percentage of lags with a positive result for Granger-causality (highest values in
bold).

Lag JDT core PDE UI Equinox Lucene

1 15 30 40 19
2  17 15 11 12
3  14 15 18 14
Equinox Framework 615 124 

Lucene 760 78 

Total  6223 1134 

ranger-causality. Table 7 shows for each class c the number
f tests with a positive result considering the series M[n][c]
nd Defects[c], where M[n][c] is one of the seven series of
etrics for a given class c (1 ≤ n ≤ 7) and Defects[c] is the series

f defects for this class. For example, for Eclipse JDT Core, 62%
f the classes have no Granger-causality relationship between
heir defects series and one of the metrics series (Table 7, first
ine). Stated otherwise, in 38% of the classes in the Eclipse JDT
ore (i.e., 521 classes), we were able to detect a Granger-causality
elation between the series of defects and at least one of the
even series of metrics; in around 9% of the classes Granger
eturned a positive result for a single series of metrics, and so
n. In the remaining three systems—Eclipse PDE UI, Equinox,
nd Lucene—the percentage of classes where the test found a
ranger-causality connection between metrics and defects was
2% (411 classes), 20% (124 classes), and 10% (78 classes), respec-
ively. In summary, our sample was reduced considerably to 18%
1134 classes) of its original size after applying Granger.

Finally, it is fundamental to check the number of defects in
his subset of 1,134 classes. Table 8 shows the following results:
umber of classes, number of Granger positive classes (column
PC), number of bugs we  initially collected, number of defects

hat caused such bugs, and number of defects detected in our sub-
et of 1134 classes (column DGC). More specifically, considering
he classes with at least one positive result for Granger, Table 8
hows that 73% of the defects collected in our dataset were detected
n such classes. Therefore, by combining the results in Tables 7
nd 8, we conclude that our preconditions and the Granger results
educed our sample to 18% of its original size. However, such classes
oncentrate 73% of the defects in our dataset. Considering that there
re many bugs not related to variations in source code metrics, it is
atural to expect that our coverage would be significantly less than
00%. On the other hand, an average coverage of 73% shows that it

s at least feasible to rely on Granger to predict defects in software
ystems.

As previously described, the Granger tests were calculated using
 significance level of 95% (  ̨ = 0.05). In other words, we  counted as
 Granger-causality the cases where the p-value obtained by apply-
ng the Granger test was less than or equal to ˛, i.e., p-value ≤0.05.

able 9 shows the percentage of tests with a positive result dis-
ributed in intervals of 1%. As can be observed, approximately 70%
f the tests with a positive result returned a p-value less than 0.01
or all considered systems.
0.00 < p-value ≤ 0.01 65 70 70 64
Total 100 100 100 100

5.4. Lags considered by Granger

It is well known that the Granger test is sensitive to the lag selec-
tion (Granger, 1981). For this reason, as described in Section 3.2, we
do not fix a single lag, but calculate the test successively for each
pair of series, with the lags ranging from one to six. Whenever one
of such lags returns a positive result, we assume the existence of
Granger-causality.

Table 10 shows the lags that were most successful in returning
positive results. When multiple lags returned causality, we chose
the one with the lowest p-value. As we can note, we  achieved dif-
ferent results for each system. For Eclipse JDT Core, 33% of the
Granger-causalities were established for a lag equal to six bi-weeks.
For Eclipse PDE UI and Equinox, the most successful lag was  equal
to one bi-week. For Lucene, the distribution was almost uniform
among the six lags.

We can interpret such results as follows. First, changes were
4  11 12 10 18
5  10 12 11 17
6  33 16 10 20

Total 100 100 100 100
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efects in the source code (event C) and some of them became bugs
eported in the system’s bug tracking platform (event D). In this
escription, events A, B, and C can be considered as happening at
he same time and they are succeeded by event D. Essentially, we
ely on Granger to show the existence of causality between events

 and D. According to this interpretation, Granger’s lag is the typical
istance between such events in the time. Therefore, the results in
able 10 suggest that in the case of the Eclipse JDT Core and Lucene
ost bugs were perceived by the developers in six bi-weeks. In

ontrast, for the Eclipse PDE UI and Equinox, this interval was of
ust one bi-week, in most of the cases.

To summarize, when applying the Granger test to
ncover causal relations between source code metrics and
efects, it is important to run the tests with various lags. The
eason is that the time between the inception of a defect in the
ource code and its perception by the maintainers as a bug can
ary significantly.

. Model evaluation

In the feasibility study reported in Section 5, we concluded that,
ven by reducing our sample to 18% of the classes after applying the
reconditions and the Granger test, it was possible to cover 73% of
he defects in our dataset. Motivated by such positive results, we
ecided to conduct a second study to evaluate our model for trigg-
ring defects alarms. More specifically, this study aimed to answer
he following research questions:

Q1: What is the precision and recall of our approach? With
this question, we want to investigate whether our models
provide reasonable levels of precision and recall.

Q2: How does our approach compares with the proposed
baselines? Our aim with this question is to analyze the
precision and recall of our approach when compared to
three baselines. The first baseline does not consider the
results of the Granger test, the second one does not con-
sider both the preconditions defined in Section 3.2 and the
results of the Granger test and the third one uses simple
linear regression as prediction technique.

Q3: What is the impact of using other functions (different
from the mean) for triggering alarms? As defined in Sec-
tion 3.3, the thresholds used to trigger alarms for a given
class C and metric m is the mean of the positive variations
of the values of m computed for C. Therefore, our goal
with this question is to investigate whether alternative
descriptive statistics functions—such as minimum, first
quartile, median, third quartile, and maximum—provide
better results than the mean when used to trigger alarms.

Q4: Regarding their severity, what types of bugs are typi-
cally predicted by the proposed models? Our goal with
this research question is to investigate whether our mod-
els tend to predict with higher accuracy some particular
categories of bugs, in terms of severity. Particularly, we
intend to rely on the severity categories informed by the
users of the Bugzilla and Jira tracking platforms.

In this section, we start by presenting the methodology followed
n our evaluation (Section 6.1). After that, we provide answers and
nsights for our research questions (Section 6.2). Finally, we  discuss
hreats to validity (Section 6.3).
.1. Evaluation setup

We  performed the following steps to answer the proposed
esearch questions:
 and Software 93 (2014) 24–41 33

1. We divided the time series (considered in their first differences)
in two parts. We used the first part (training series) to build a
defect prediction model and the second part (validation series)
to validate this model. Moreover, we  defined that the time series
start in the first bi-week with a reported defect. For example, for
the Eclipse JDT Core, our training series start in the bi-week 8,
because we  have not found defects in the previous bi-weeks.
We also defined the size of the validation series as including
exactly 18 bi-weeks, i.e., approximately six months (which is a
time frame commonly employed in studies on defect predic-
tion (D’Ambros et al., 2010; Holschuh et al., 2009; Schröter et al.,
2006)). For example, for a time series with 50 bi-weeks in the
Eclipse JDT Core, we  discarded the first seven bi-weeks (since
the first defect appeared only in the 8th bi-week). We  used the
next 25 bi-weeks for training, and the 18 remaining bi-weeks for
validation.

2. We created a defect prediction model for each system accord-
ing to the methodology described in Sections 3.2, 3.3, and 3.4.
More specifically, we  first checked the preconditions and applied
the Granger test considering the source code metrics (indepen-
dent variables) and the defects (dependent variable) time series.
Next, we identified the thresholds for variations in the metrics
values that may  have contributed to the occurrence of defects.
Finally, we  created a prediction model that triggers defects
alarms.

3. We defined three baselines to evaluate the models constructed in
the Step 2. In these baselines, the way to calculate the thresholds
is exactly the one used by our approach, i.e, the arithmetic mean
of the positive variations of the metrics. However, they differ on
the preconditions and on the use of the Granger test, as described
next:
(a) The first baseline is a model created using time series meet-

ing the preconditions P1 to P5, but that does not consider the
results of the Granger test. Therefore, variations in any source
code metrics that respect the preconditions can trigger
alarms (i.e., even when a Granger-causality is not detected).
The purpose of this baseline is to check whether the Granger
test contributes to improve the precision of the proposed
models.

(b) The second baseline considers time series meeting only
precondition P1 (i.e., this model does not consider the pre-
conditions P2 to P5 and the results of the Granger test).
We preserved precondition P1 because it is fundamental to
remove classes with a short lifetime that do not help on
reliable predictions. An alarm is triggered by variations in
any metric that respects the first precondition, even when a
Granger-causality is not detected. The central purpose of this
second baseline is to evaluate the importance of the precon-
ditions in the proposed model.

(c) The third baseline considers time series meeting the pre-
conditions P1 to P5, but instead of applying the Granger
test, we  created a simple linear regression model. More
specifically, this model is composed by linear equations that
correlate each source code metric separately (independent
variable) and the defects time series (dependent variable).
We  checked the significance of the individual coefficients
of the regressions in order to identify if a given metric is
effective to predict the occurrence of defects. Therefore,
alarms are only triggered due to variations in the metrics
whose individual coefficients are statistically significant
(  ̨ = 0.05). The main goal of this third baseline is to evaluate
whether the Granger test is more effective than linear regres-

sions to express relations between source code metrics and
defects.

4. We evaluated our models using precision and recall measures.
Precision evaluates whether the alarms issued by the model are
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3 As an example, we  can mention the following bug reported for the Eclipse JDT
Fig. 9. Training and validation time series (Eclipse JDT Core).

confirmed by defects. To calculate precision, we  used only the
validation time series, i.e., series with values not considered dur-
ing the model construction phase. An alarm issued in a given
bi-week t is classified as a true alarm when a new defect is identi-
fied at most six bi-weeks after bi-week t. Therefore, we  calculate
precision in the following way:

Precision = number of true alarms
number of alarms

Conversely, recall measures whether the alarms triggered by our
approach cover the defects found in Granger positive classes. To
calculate recall we checked whether the occurrences of defects
in the validation series were preceded by an alarm. More specif-
ically, we checked whether a defect in a given bi-week t was
preceded by an alarm in at most six bi-weeks before t. We cal-
culate recall in the following way:

Recall = number of true alarms
number of defects

. We  repeated Steps 1–4 for several time frames, i.e., for multiple
training and validation time series. Our main goal is to evaluate
the proposed approach in different life stages of the considered
systems. Fig. 9 illustrates the time frames considered for the
Eclipse JDT Core. As presented, we created and validated 144 dif-
ferent models, considering different time frames. The first time
frame has 30 bi-weeks, including 12 bi-weeks to build the model
(training time series) and 18 bi-weeks to validate the model
(validation time series). To generate a new model, we extended
the previous training series in one bi-week. For example, the sec-
ond time frame has 31 bi-weeks, the third one has 32 bi-weeks,
etc. Finally, the last time frame has 174 bi-weeks. For the systems
Eclipse PDE UI, Equinox Framework, and Lucene, we  created and
validated 125, 145, and 115 models, respectively.

.2. Results

In this section, we provide answers to our research questions.

.2.1. RQ1: What is the precision and recall of our approach?
To address this research question, we followed Steps 1–5

escribed in Section 6.1. Therefore, we created and validated mod-
ls for each time frame of the systems considered in this evaluation.
ur main goal was to evaluate the proposed approach in different

ife stages of the considered systems. The tables in Fig. 10 shows
he values we measured for true alarms, precision, recall, and F-

easure for the considered systems. Considering all time frames,
he tables also report the following results: maximum value (Max),
he top 5%, 10%, and 20% values, minimum value (Min), average,
edian, and standard deviation (Std. Dev.). As can be observed, our
pproach reached an average precision ranging from 28% (Eclipse
DE UI) to 58% (Eclipse JDT Core) and a median precision ranging
rom 31% (Eclipse PDE UI) to 58% (Eclipse JDT Core). Furthermore,
 and Software 93 (2014) 24–41

some particular models presented high precisions, 90%, 60%, 100%,
and 88%, for the Eclipse JDT Core, Eclipse PDE UI,  Equinox and
Lucene, respectively.

In general terms, we can conclude that our approach reached
reasonable levels of precision in many life stages of the consid-
ered systems. This result is a distinguishing contribution of our
evaluation, since defect prediction approaches typically analyze a
single time frame (Couto et al., 2013; Kamei et al., 2013; Holschuh
et al., 2009; D’Ambros et al., 2010; Giger et al., 2012). For example,
D’Ambros et al. created and validated their defect prediction mod-
els for the Eclipse JDT Core for a single time frame (2005-01-01 to
2008-06-17) (D’Ambros et al., 2010). For the same system, we  cre-
ated and validated defect prediction models for 144 time frames
achieving an average precision of 58%.

On the other hand, specifically for the Eclipse PDE UI  system,
our approach obtained an average precision of just 28%. Probably,
this result was due to the low mapping rate between bugs and
commits in this system. While for Eclipse JDT Core, Equinox, and
Lucene we obtained a mapping rate of approximately 70%, Eclipse
PDE UI reached a mapping rate around 46% (i.e., from the 3913 bugs
reported on the bug tracking platform, only 1798 were linked to a
commit on the version control platform).

We can also observe that some of the evaluated models triggered
a significant number of true alarms. For example, for the system
Eclipse JDT Core, the maximum number of true alarms triggered
by a given model was  168 (for the model constructed in the time
frame 49). Probably, this result is explained by a major mainte-
nance activity in the system during the validation period of this
model. We  measured on average 277 classes changed per bi-week
in this particular validation period, while this rate considering the
entire period of analysis is 218. Fig. 11 illustrates some validation
time series where an alarm triggered by this model was later con-
firmed by the occurrence of defects. In this figure, we  circled the
true alarms issued by the model.

Despite such encouraging results regarding precision, our
approach presented an average recall ranging from 13% (Equinox)
to 31% (Lucene) and a median recall ranging from 12% (Equinox) to
30% (Lucene). In practice, this result shows that we were not able
to cover all defects in all life stages of the considered systems. We
argue that the main reason is the fact that there is a large spectrum
of bugs that can be reported for any system. Probably, some types of
bugs are less impacted by variations in the values of the source code
metrics. For example, we can mention bugs related to usability con-
cerns, internationalization, and JavaDoc documentation.3 Despite
this fact, we  achieved reasonable levels of recall in particular time
frames. For example, for the Eclipse JDT, Eclipse PDE UI,  Equinox,
and Lucene systems, the maximum values for recall were 68%, 44%,
31%, and 52%, respectively.

RQ1: Our approach reached an average precision greater
than 50% in three out of the four systems we  evaluated.
On the other hand, as expected, we were not able to trig-
ger alarms for all defects using times series of source code
metrics as predictors. On average, we achieved recall rates
ranging from 13% (Equinox Framework) to 31% (Lucene).
Core system: “Bug 10495 – typo in ASTNode::MALFORMED javadoc, ‘detcted’ should be
‘detected’”.  Because JavaDocs are comments in the source code, a class was changed
to  fix this bug and a respective defect was included in our defects time series. How-
ever, it is not feasible to suppose that bugs like that can be predicted. In fact, an
alarm was never raised by our models for this particular bug.



C. Couto et al. / The Journal of Systems and Software 93 (2014) 24–41 35

Measur e TA Pr e Re c F
Max 16 8 90 % 68 % 70%
Top 5% 11 8 88 % 48 % 60%
Top 10 % 95 82 % 40 % 55%
Top 20 % 82 67 % 32 % 42%
Min 2 27 % 7% 12%
Mean 56 58% 24% 33%
Median 49 58% 23% 32%
Std De v 34 14 % 13 % 14%
(a) Ecli pse JD T Cor e (14 4 models)

Measure TA Pr e Re c F
Max 36 60 % 44 % 38%
Top 5% 33 41 % 36 % 33%
Top 10 % 31 40 % 33 % 31%
Top 20 % 27 36 % 29 % 30%
Min 1 6% 6% 7%
Mean 16 28% 24% 24%
Median 16 31% 23% 26%
Std De v 11 11 % 7% 7%
(b) Ecli pse PD E UI (125 models)

Measure TA Pre Rec F
Max 21 100% 31 % 44%
Top 5% 9 88 % 25 % 40%
Top 10 % 8 80 % 22 % 35%
Top 20% 7 75% 19% 27%
Min 1 22 % 5% 8%
Mean 5 53 % 13 % 20%
Median 4 46 % 12 % 20%
Std De v 3 21 % 7% 10%
(c) Eq uinox Frame wor k (14 5 models)

Measure TA Pre Rec F
Max 16 88 % 52 % 50%
Top 5% 16 80 % 50 % 50%
Top 10 % 14 78 % 45 % 48%
Top 20% 13 67% 43% 44%
Min 0 0% 0% 10%
Mean 8 51 % 31 % 36%
Median 7 48 % 30 % 37%
Std De v 5 19 % 13 % 10%

(d) Luce ne (115 models)

Fig. 10. Number of true alarms (TA), precision (Pre), recall (Rec), and F-measure (F).

Fig. 11. True alarms raised by our approach.
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.2.2. RQ2: How does our approach compares with the proposed
aselines?

This research question aims to compare the precision and recall
f our approach with the three baselines. Fig. 12 shows for each
ime frame the precision results for the following models: (a) pro-
osed approach (Granger); (b) Baseline1 (baseline that does not
onsider the results of the Granger test); (c) Linear (baseline that
ses simple linear regression as the prediction technique). As we
an note, the initial time frames have no precision results. This
ack of precision happened because we discarded results coming
rom unstable models, i.e., models reporting zero alarms or whose
recision values alternate between 0 and 1. As we can observe in
he figure, in most time frames, our approach (solid line) shows a
recision greater than Baseline1 (long dash line) and Linear (dot-
ed line). To confirm this assumption, for each pair of samples
Granger vs. Baseline1 and Granger vs. Linear),  we applied a non-
arametric statistical hypothesis test (Mann–Whitney U test) using

 significance level of 95%. This test confirmed that the median
recision of our approach (Granger) is significantly different from
aseline1 in all systems (Eclipse JDT Core, Eclipse PDE UI, Equinox,
nd Lucene). Furthermore, the median precision of our approach
s also significantly different from Linear in three out of the four
ystems (Eclipse JDT Core, Eclipse PDE UI, and Equinox).

It is worth mentioning that Fig. 12 also shows that in several
ime frames our approach reached high precision measures. For
nstance, for Eclipse JDT Core, between time frames 36 and 47, our

odels achieved a precision ranging from 83% to 90%, with the
umber of true alarms ranging from 40 to 138. For Eclipse PDE UI,
ur approach in the time frame 24 reached a precision of 60%, with

hree true alarms. For Equinox, between time frames 95 and 107,
ur approach reached a precision ranging from 60% to 75%, with
he number of true alarms ranging from 6 to 11. Finally, for Lucene,
etween time frames 79 and 88, our approach reached a precision
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Fig. 12. Precision results for Gra
 and Software 93 (2014) 24–41

ranging from 66% to 87%, with the number of true alarms ranging
from 2 to 7.

Fig. 13 shows for each time frame the precision results for the
following models: (a) Baseline1 and (b) Baseline2 (baseline that
only considers precondition P1). As we  can observe, in most time
frames, Baseline1 (solid line) shows a precision greater than Base-
line2 (long dash line). In fact, the Mann–Whitney U test asserted
that the median precision of Baseline1 is significantly different from
Baseline2 (for this reason, we  omitted Baseline2 from Fig. 12).

It is also important to highlight that the precision results do not
present a monotonically increasing behavior, as the evaluated mod-
els include more bi-weeks in the respective training time series.
For example, the highest precision value for Eclipse JDT Core was
achieved in bi-week 42 (precision = 90%) and the second lowest
value 69 bi-weeks later (precision = 34%).

Considering recall, Fig. 14 compares our approach with two
baselines: Baseline1 and Linear.  In general terms, the model based
on Granger outperformed the baseline that uses simple linear
regression as the prediction technique (Linear). The Mann–Whitney
U test confirmed that the median precision of our approach
(Granger) is significantly different from Linear in all systems. It
is worth noting that Linear has better recall than the proposed
approach in the first bi-weeks considered for the Equinox system.
However, it is not possible to reason about this behavior without a
deep knowledge on the defects reported for Equinox during such
initial bi-weeks. On the other hand, the best recall was achieved
by the baseline that does not consider the results of Granger or
of any other prediction technique (Baseline1). In fact, this result is
expected since Baseline1 triggers more alarms and therefore such

alarms have more chances to cover real defects.

To summarize, two  conclusions can be derived from our inves-
tigation concerned this research question: (i) based on the fact that
the Baseline1 outperformed the Baseline2, we can conclude that
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nger, Baseline1, and Linear.
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Fig. 13. Precision results for Baseline1 and Baseline2.
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Fig. 14. Recall results for Granger, Baseline1, and Linear.
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Table 11
Average precision (Pre) and recall (Rec) results considering alternative threshold
functions

Function JDT Core PDE UI Equinox Lucene

Pre Rec Pre Rec Pre Rec Pre Rec

Min  61% 53% 27% 54% 49% 33% 51% 51%
1st  Quartile 60% 45% 27% 50% 50% 30% 52% 40%
Median 59% 37% 27% 43% 49% 24% 53% 36%
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Mean 58% 24% 28% 24% 52% 13% 51% 31%
3rd  Quartile 57% 26% 25% 29% 51% 17% 50% 29%
Max  51% 15% 28% 16% 51% 10% 50% 20%

hen building defect prediction models, it is important to remove
lasses with zero defects (that make the predictions trivial), classes
ith a constant behavior (that do not contribute with predictive
ower), and classes with non-stationary time series (that may  sta-
istically invalidate the findings); and (ii) from the fact that Granger
utperformed both Baseline1 and Linear,  we can conclude that it is
ossible to achieve gains in precision by considering the Granger
est to raise alarms for defects (instead of traditional models, based
or example on standard regressions).

RQ2: The precision achieved by our approach was  sta-
tistically better than the proposed baselines in three out
of the four systems, which confirms the gains achieved
by considering Granger-causality when predicting defects
using source code metrics.

.2.3. RQ3: What is the impact of using other functions (different
rom the mean) for triggering alarms?

To answer this third research question, the experiments con-
ucted for answering the first questions were executed again
hanging only the function used to summarize the variations in
he values of the source code metrics. More specifically, in the
revious research questions the thresholds used to trigger alarms
ere defined as the mean of the positive variations in the values

f the source code metrics that Granger-caused defects in a given
lass. On the other hand, in this research question, we evaluated
ve other descriptive statistics functions calculated over such vari-
tions: minimal value, first quartile value, median, third quartile
alue, and maximal value. For example, suppose that during the
raining window it was inferred that variations in the values of a
iven metric m Granger-caused defects in a class C. Therefore, a
odel based on the minimal function will trigger alarms for this

lass, during the validation window, when the value of m after
 given change in C is greater than the minimal variation of m
bserved during the training period.

Table 11 presents the average precision and recall achieved by
he evaluated models considering the aforementioned descriptive
tatistics functions. As can be observed, the precision is not affected
y the considered functions. For example, for the Eclipse JDT Core
ystem, the precision ranges from 51% (for alarms thresholds calcu-
ated using the maximal variation in the source code metrics values)
o 61% (for thresholds equal to the minimal variation values). In the
ther systems, the dispersion was less than this one reported for the
clipse JDT Core. Regarding recall, the best result is always achieved
y the minimal function, since this function raises more alarms.
onversely, the worst recall is achieved by the maximal function.

herefore, we decided to use the mean function, since it represents
n interesting balance between precision and recall.

Fig. 15 shows the number of alarms (Fig. 15a) and the num-
er of true alarms (Fig. 15b) for each model evaluated in our study,
 and Software 93 (2014) 24–41

considering only the Eclipse JDT Core. As expected, by changing the
functions from the minimal to the maximal functions, the number
of alarms decreases, i.e., the higher the threshold, the lower the
number of alarms. However, Fig. 15b shows that the true alarms
change in the same proportion, as we change the number of alarms.
For this reason, the precision among the different threshold func-
tions was very similar.

RQ3: Because the evaluated functions presented similar
results, we decided to trigger alarms using the mean vari-
ation in the values of the source code metrics, as originally
proposed.

6.2.4. RQ4: Regarding their severity, what types of bugs are
typically predicted by the proposed models?

To answer the fourth research question, we followed these
steps: (a) for each alarm classified as a true alarm in our exper-
iments, we  located the defect responsible for this classification
(called predicted defect); (b) each predicted defect was then
mapped to its respective bug (called predicted bug), following a
reverse process from the one described in Section 3.1; (c) for each
predicted bug, we retrieved its severity degree in the Jira and
Bugzilla tracking platforms. Basically, when reporting a bug, an
user of such platforms can rank the bug in one of the following
categories: blocker, critical, major, normal, minor, or trivial.

Fig. 16 presents the distribution of the bugs considered in our
experiment by severity. The table shows the distribution of the
whole population of bugs considered in the study and also the dis-
tribution of the bugs predicted by at least one of our models. As we
can observe, the distributions are very similar, in all systems in our
dataset. For example, 81% of the bugs we  evaluated in the Eclipse
JDT Core system are normal bugs; for this system, 84% of the bugs
predicted by our approach were also classified as normal, regarding
their severity.

RQ4: In terms of severity, we were not able to identify a
particular category of bugs that the proposed model tends
to predict with higher frequency.

6.3. Threats to validity

In this section, we  discuss potential threats to the validity of our
study. We arranged possible threats in three categories: external,
internal, and construct validity (Perry et al., 1997):

External validity: Our study to evaluate the proposed defect pre-
diction model involved four medium-to-large systems, including
three systems from the Eclipse project and one system from the
Apache Foundation, with a total of 6223 classes. Therefore, we  claim
this sample includes a credible number of classes, extracted from
real-world and non-trivial applications, with a consolidated num-
ber of users and a relevant history of bugs. Moreover, we considered
seven metrics, covering major source code properties like size, cou-
pling and cohesion. We  only omitted inheritance-related metrics,
like Depth of Inheritance Tree (DIT), because they did not present

good results in our previous study (Couto et al., 2012). Despite
these observations, we  cannot guarantee—as usual in empirical
software engineering—that our findings apply to other metrics or
systems, specifically to systems implemented in other languages or
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Fig. 15. Number of alarms and true alarms, for different threshold functions (Eclipse JDT Core).

Severi ty Bugs Predicted
# % # %

Block er 38 1 11 1
Critical 131 4 24 3
Majo r 31 1 8 61 7
Norma l 300 1 81 69 4 84
Minor 15 6 4 33 4
Trivia l 60 2 4 0
Tota l 3697 10 0 82 7 100

(a) Eclipse JD T Core

Severi ty Bugs Predicted
# % # %

Block er 14 1 1 1
Critical 52 3 4 2
Majo r 11 5 6 9 5
Minor 77 4 5 3
Normal 150 9 84 15 9 89
Trivia l 31 2 1 1
Tota l 179 8 10 0 17 9 100

(b) Eclipse PD E UI

Severi ty Bugs Predicted
# % # %

Block er 14 2 1 2
Critical 33 4 1 2
Majo r 55 7 4 7
Minor 12 2 - -
Norma l 66 1 84 48 89
Trivia l 9 1 - -
Tota l 78 4 10 0 54 100

Severi ty Bugs Predicted
# % # %

Block er 3 1 - -
Critical 6 2 - -
Majo r 14 3 43 20 42
Minor 16 0 48 27 56
Normal - - - -
Trivia l 23 7 1 2
Tota l 33 5 10 0 48 100

ion of 

t
e

t
t
o
t
a
r
v
(
r

s
t
c
t

(c) Eq uinox Framework

Fig. 16. Distribut

o systems from different domains, such as real-time systems and
mbedded systems.

Internal validity: This form of validity concerns to internal factors
hat may  influence our observations. A possible internal validity
hreat concerns the procedure to identify the thresholds used by
ur model to trigger alarms. We  rely on the average of the posi-
ive variations in the metric values to define such thresholds. We
cknowledge that the use of the average in this case is not strictly
ecommended, because we never checked whether the positive
ariations follow a normal distribution. We  tested other functions
median, 1st quartile, minimum, etc.) and they presented similar
esults than the average.

Construct validity: This form of validity concerns the relation-

hip between theory and observation. A possible threat concerns
he way we linked bugs to defects in classes. Particularly, we dis-
arded bugs without explicit references in the textual description of
he commits. However, the percentage of such bugs was not large,
(d) Luce ne

bugs by severity.

around 36% ((10,394–6614)/10,394) of the bugs considered in our
evaluation. Moreover, this approach is commonly used in studies
that involve mapping bugs to defects in classes (D’Ambros et al.,
2010; Zimmermann et al., 2007; Śliwerski et al., 2005).

7. Related work

A recent systematic literature review identified 208 defect pre-
diction studies—including some of the works presented in this
section—published from January 2000 to December 2010 (Hall
et al., 2012). The studies differ in terms of the software metrics
used for prediction, the modeling technique, the granularity of
the independent variable, and the validation technique. Typi-

cally, the independent variables can be classified into source code
metrics, change metrics, bug finding tools, and code smells. The
modeling techniques vary with respect to linear regression, logis-
tic regression, naïve bayes, neural networks, etc. The granularity
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f the prediction can be at the method level, file/class level, or
odule/package level. The validation can be conducted using clas-

ification or ranking techniques. It is worth noting that neither of
he 208 surveyed studies rely on causality tests as the underlying

odeling technique. Usually, such studies emulate the lag concept
y using larger evaluation intervals.

The defect prediction approaches we discuss in this section can
e arranged in two groups: (a) source code metrics approaches and
b) process metrics approaches. Approaches based on source code

etrics consider that the current design and structure of the pro-
ram may  influence the presence of future defects. On the other
and, approaches based on process metrics consider that informa-
ion extracted from version control platforms such as code changes
nfluence the occurrence of defects. In this section, approaches that
se both source code and process metrics as independent variables
ppear only in one group, based on the best results they achieved.
inally, we have a third group that presents a single study on the
pplication of the Granger test in software maintenance.

Source code metrics approaches: Basili et al. were one of the
rst to investigate the use of CK metrics as early predictors for

ault-prone classes (Basili et al., 1996). In a study on eight medium-
ized systems they report a correlation between CK metrics (with
he exception of the NOC metric) and fault-prone classes. Subra-

anyam et al. later relied on the CK metrics to predict defect-prone
omponents in an industrial application with subsystems imple-
ented in C++and Java (Subramanyam and Krishnan, 2003). They

oncluded that the most useful metrics to predict defects may  vary
cross these languages. For modules in C++, they report that WMC,
IT, and CBO with DIT had the most relevant impact on the num-
er of defects. For the modules in Java, only CBO with DIT had an

mpact on defects.
Nagappan et al. conducted a study on five components of the

indows OS in order to investigate the relationship between com-
lexity metrics and field defects (Nagappan et al., 2006). They
oncluded that metrics indeed correlate with defects. However,
hey also highlight that there is no single set of metrics that can
redict defects in all the five Windows components. As a conse-
uence of this finding, the authors suggest that software quality
anagers can never blindly trust on metrics, i.e., in order to use
etrics as early bug predictors we must first validate them using

he project’s history (Zimmermann et al., 2008).
Later, the study of Nagappan et al. was replicated by Holschuch

t al. using a large ERP system (SAP R3) (Holschuh et al., 2009).
owever, both studies rely on linear regression models and corre-

ation tests, which consider only an “immediate” relation between
he independent and dependent variables. On the other hand, the
ependency between bugs and source code metrics may  not be

mmediate, i.e., usually exists a delay or lag in this dependency. In
his paper, we presented a new approach for predicting bugs that
onsiders this lag.

Process metrics approaches: D’Ambros et al. provided the origi-
al dataset with the historical values of the source code metrics
e extended in this paper (D’Ambros et al., 2010, 2012). By making

his dataset publicly available, their goal was to establish a com-
on  benchmark for comparing bug prediction approaches. They

elied on this dataset to evaluate a representative set of predic-
ion approaches reported in the literature, including approaches
ased on change metrics, bug fixes, and entropy of changes. The
uthors also propose two  new metrics called churn and entropy
f source code. Finally, the authors report a study on the expla-
ative and predictive power of the mentioned approaches. Their
esults shows that churn and entropy of source code achieved a

etter adjusted R2 and Spearman coefficient in four out of the five
nalyzed systems. However, the results presented by D’Ambros
t al. cannot be directly compared with our results, because their
pproach do not aim to trigger alarms as soon as risky changes
 and Software 93 (2014) 24–41

(as captured by variations in the values of source code metrics) are
applied to the classes of a target system. Instead the authors used
the Spearman coefficient to evaluate the correlation between the
rank of predicted defects and real defects. In other words, they do
not evaluate precision and recall considering defects alarms.

Emanuel et al. proposed a defect prediction model at the
method-level, using four classification methods: Random Forest
(RndFor), Bayesian Network (BN), Support Vector Machine (SVM),
and J48 Decision Tree (Giger et al., 2012). More specifically, the
proposed model is used to identify defect-prone methods using
24 method level change and source code metrics. They performed
an experiment using 21 open-source systems to assess the effi-
cacy of the prediction models. The results indicated that the model
based on RndFor reached a precision of 85% and a recall of 95%.
However, they evaluate the models using a 10-fold cross-validation
technique. On the other hand, cross-validation operates on a single
time frame and therefore does not consider the temporal aspect.
In this paper, we trained our prediction models using data from a
time frame and validated them using data from future time frames.

Typically, defect prediction models are used to identify defect-
prone methods, files, or packages. Kamei et al. proposed a new
approach for defect prediction called “Just-In-Time Quality Assur-
ance” that focus on identifying defect-prone software changes
instead of methods, files or packages (Kamei et al., 2013). Based
on logistic regression, the models they propose identify whether
or not a change is defect-prone using change metrics, such as num-
ber of modified files, number of developers involved in the change,
lines of code added and deleted, etc. They performed an empirical
study with six open-source and five commercial systems to evalu-
ate the performance of the models. The results showed an average
precision of 34% and an average recall of 64%. Similar to the study of
Emanuel et al., the models are not validated in future time frames.

Hassan and Holt’s Top Ten List is an approach that highlights
to managers the ten most fault-prone subsystems of a given soft-
ware, based on the following heuristics: Most Frequently/Recently
Modified, Most Frequently/Recently Fixed (Hassan and Holt, 2005).
The goal is to provide guidance to maintainers, by suggesting they
must invest their limited resources on the recommended subsys-
tems. Similarly, our goal is to provide guidance to maintainers, but
by triggering alarms when risky changes—according to Granger
causality test—are applied to classes.

Application of Granger in software maintenance: Canfora
et al. propose the use of the Granger test to detect change
couplings, i.e., software artifacts that are frequently modified
together (Canfora et al., 2010). They claim that conventional tech-
niques to determine change couplings fail when the changes are not
“immediate” but due to subsequent commits. Therefore, they pro-
pose to use Granger causality test to detect whether past changes in
an artifact a can help to predict future changes in an artifact b. More
specifically, they propose the use of a hybrid change coupling rec-
ommender, obtained by combining Granger and association rules
(the conventional technique to detect change coupling). After a
study involving four open-source systems, they concluded that
their hybrid recommender provides a higher recall than the two
techniques alone and a precision in-between the two.

In summary, our approach for defect prediction differs from the
presented studies with respect to three aspects: (a) to the best of our
knowledge, the existing defect prediction approaches do not con-
sider the idea of causality between software metrics and defects.
Differently, our approach relies on the Granger test to infer relation-
ships between source code metrics and defects; (b) typically, most
studies evaluate their models in a single time frame. In contrast,

we evaluated our approach in several life stages of the considered
systems; and (c) unlike common approaches for defect prediction,
the models we  propose do not aim to predict the number of defects
of a class in a future time frame. Instead, our models trigger alarms
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hat indicate changes to a class that have more chances to gener-
te defects. However, we acknowledge that other defect prediction
echniques can also be extended to include such alarms.

. Conclusions

In this paper, we described and evaluated an approach for pre-
icting defects using causality tests. In contrast with other works on
efect prediction, our approach does not aim to predict the num-
er or the existence of defects in a class in a future time frame.
lternatively, we proposed a model that predicts defects as soon
s they are introduced in the source code. More specifically, we
ely on input from the Granger test to trigger alarms whenever a
hange performed to a class reproduces similar variations in the
lass’ source code properties that in the past caused defects. Our
pproach reached an average precision greater than 50% in several
ife stages of three out of the four systems we evaluate. Further-

ore, by comparing our approach with baselines that are not based
n causality tests, it achieved a better precision.

As further work, we plan to design and implement a tool sup-
orting the defect prediction model proposed in this paper. We  plan
o implement this tool as a plug-in for version control platforms,
ike SVN and Git. Basically, this tool should trigger alarms when-
ver risky changes are committed to the version repository. Based
n such alarms, the maintainer can for example perform software
uality assurance activities (e.g., testing or code inspections) before
xecuting the commit. In addition, we plan to extend the proposed
efect prediction model to handle the cases where changes in a
lass cause defects in other classes of the system. Finally, another
uture work includes a qualitative analysis on why some defects
an be predicted and others not, which certainly requires a direct
articipation of expert developers on the target systems.

The dataset with the time series of source code metrics and
efects used in this paper is publicly available at: http://aserg.

absoft.dcc.ufmg.br/jss2013.
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