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Roberto S. Bigonha∗

Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brazil

Abstract

Adaptable Parsing Expression Grammar (APEG) is a formal method for defi-
ning the syntax of programming languages. It provides an on-the-fly mechanism
to perform modifications of the syntax of the language during parsing time.
The primary goal of this dynamic mechanism is the formal specification and the
automatic parser generation for extensible languages. In this paper, we show
how APEG can be used for the definition of the extensible languages SugarJ and
Fortress, clarifying many aspects of the syntax of these languages. We also show
that the mechanism for on-the-fly modification of syntax rules can be useful
for defining grammars in a modular way, implementing all types of language
composition as defined by Erdweg et alii [15] in the context of specification of
extensible languages.

Keywords: Parsing Expression Grammars, Extensible languages, Grammars,
Language composition

1. Introduction

The use of Domain-Specific Languages (DSLs) has been considered a good
way to improve readability of software, bridging the gap between domain con-
cepts and their implementation, while improving productivity and maintain-
ability [1, 2, 3]. Despite the various methods for implementing DSLs, extensible
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languages seem to have several advantages over other approaches. One of the
advantages is the possibility of implementing DSLs in a modular way. For ex-
ample, Erdweg et alii show how DSLs can be implemented using the extensible
language SugarJ [1], by means of syntax units designated as sugar libraries,
which specify a new syntax for a domain concept. Tobin-Hochstadt et alii also
discuss the advantages of implementing DSLs by means of libraries [4].

Reis et alii observed that there is a lack of formalization when defining the
syntax of extensible languages and proposed a new formal method to fill this
gap, which is called Adaptable Parsing Expression Grammars (APEG) [5, 6].
The main feature of APEG is the ability for formally describing how the syntax
of a language can be modified on the fly, while parsing a program. Although
APEG was initially proposed as a formal method for defining the syntax of
extensible languages and efficiently parsing them, its flexibility for dynamically
changing the grammar during parsing time also accredits APEG to implement
other important issues in language design.

In [7], we have shown how APEG can be used for the definition of extensible
languages, using SugarJ [1] and Fortress [8, 9, 10] as examples. This paper is an
extended version of that work, showing how the mechanisms that allow on-the-
fly modifications on the syntax of the language can also be used for producing
modular specifications and composing of languages.

The remaining of this paper starts giving a brief introduction on how APEG
works, in Section 2. Section 3 discusses an APEG specification of the extensible
languages SugarJ and Fortress. In Sections 4 and 5, we show how the mech-
anisms provided by APEG allow building modular specifications and language
composition. Section 6 discusses the related work and, Section 7 presents the
conclusions.

2. Adaptable Parsing Expression Grammar

Adaptable Parsing Expression Grammars or APEG [5] is an extension of
PEG [11], so as to allow the set of grammar rules to be changed during parsing.
APEG associates attributes with nonterminal symbols and achieves adaptabil-
ity through a special inherited attribute called language attribute. The language
attribute is the first attribute of every nonterminal. It represents the current
grammar and contains the set of all its rules. For illustrating APEG, Figure 1
shows an example of an APEG grammar for parsing programs in a language ini-
tially containing only sum expressions and which is self-extended during parsing
with a rule for minus expression.

The inherited attributes immediately follow the name of its associated non-
terminal. The nonterminal Sum only has the language attribute, specified be-
tween the symbols [ and ]. The definition of this nonterminal consists of a
number followed by a sequence of zero or more Add Num. The nonterminal Num
has two attributes: one inherited, which is its language attribute, and the other
is a synthesized attribute, which is defined in the returns clause. In the defi-
nition of the nonterminal Sum, the grammar returned by Num is passed as the
inherited attribute of the nonterminal Add Num. This grammar may have a new
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Figure 1 An example of an APEG grammar

1 Sum[Grammar g ] :
2 Num<g , g1> (Add Num<g1>)∗
3 ;
4 Add Num[Grammar g ] :
5 '+' Num<g , g1>
6 ;
7 Num[Grammar g ] r e tu rn s [Grammar g1 ] :
8 [0−9]+ {g1 = g ;} /
9 'extend ' {g1 = adapt ( g , 'Add Num[Grammar g ] : \'−\' Num<g , g1>;' ) ; }

10 ;

rule for this nonterminal depending on the choice selected on the definition of
Num. The list of attributes of a nonterminal occurring on the right hand side
of a rule is enclosed by the symbols < and >. Each list begins with the inher-
ited attributes followed by the synthesized ones. One example is the use of the
nonterminal Num in the definition of the nonterminal Sum, in Figure 1.

The definition of the nonterminal Num presents two choices. The first one
specifies a sequence of at least one digit followed by an update expression, which
sets the value of the synthesized attribute g1 to the same value of g. An update
expression is defined between curly braces, { }. The second choice of Num is the
keyword extend, representing a mark to extend the grammar, in this example.
The function adapt, used in the update expression, receives a grammar and a
string representing the rules to be added to the grammar and returns a new
grammar, which contains the new rules. APEG only permits modifying the
grammar by creating new rules or adding new choices to the end of existing
rules [6]. In this case, a new choice is added to the end of the rule that defines
the nonterminal Add Num.

Then, if we have the string “extend+2-3-4+5” as input, the parser will work
as follows: it begins parsing with the nonterminal Sum with the initial gram-
mar, containing only the rules of Figure 1. After this, it tries to match the
nonterminal Num, which receives the initial grammar g. The second choice of
the nonterminal Num will be used, consuming the prefix extend of the input and
returns a new grammar g1 which has a new rule for Add Num. The nonterminal
Sum passes this grammar to the nonterminal Add Num. Now, the new gram-
mar has a rule choice for minus expression, then the remaining of the input is
correctly parsed.

This example illustrates some important features that APEG adds to the
PEG model. The update expression is a new feature added by APEG, which
is used, in the example, to assign a new grammar to a synthesized attribute.
However, the adaptability is effectively done only when this attribute is passed
to the nonterminal Add Num as its language attribute. APEG has two other
features that help to understand the examples in this paper. APEG allows the
specification of constraint expressions to check if an expression evaluates to the
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Figure 2 A definition of sugar library for Pairs in SugarJ.

1 package s y n t a c t i c ;
2
3 public sugar Pair {
4 context−free syntax
5 '( ' type ' , ' type ') ' −> type ;
6 '( ' expr ' , ' expr ') ' −> expr ;
7 }

true value. Also, APEG has bind expressions, which capture the expressions
matched and bind them to variable names. For example, the rule term

ch1 = [A− Z] ch2 = [A− Z] {? ch1 != ch2 }

binds the first symbol of the input to variable ch1 and the second symbol of
the input to variable ch2. At the end, this rule term checks if the values of
these variables are different. Additionally, we may omit the language attribute
whenever it is only passed on without modifications.

A formal definition of the semantics of APEG is presented in [5].

3. Defining the Syntax of Extensible Languages Using APEG

As we stated in the introduction, extensible languages arise as a good method
for implementing DSLs. However, analysing extensible languages which have
the properties required for defining DSLs in a modular way, such as the lan-
guages SugarJ [1], Fortress [8, 9, 10] and XAJ [12], we have noted a lack of formal
tools for their definition, leading to ad-hoc implementations. The parsers avail-
able for these languages use a mix of a handwriting approach and automatic
generation, first collecting all definitions of new syntax and, next, generating a
new parser table at compile-time for parsing the code that uses the new syntax.

Due the flexibility of APEG to change the grammar definition on the fly, it
is possible to formally define the syntax of extensible languages, including the
extensibility mechanism, and automatically parse them. In order to show how
extensible languages can be implemented using APEG, we specify the syntax of
the extensible languages SugarJ and Fortress, described in Sections 3.1 and 3.2,
respectively.

3.1. The Syntax of SugarJ

SugarJ [1] is a language recently developed by Erdweg et alii to experiment
and validate their idea of sugar libraries. The main aim of sugar libraries is
to encapsulate the definition of extensions for the Java language in units that
may be imported or composed for creating other extensions, in a modular way.
Figure 2 shows an example of a definition of a sugar library for a new syntax
for pairs, creating two new rules: a rule for the definition of pair types in line
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Figure 3 Use of the pair syntax.

1 import s y n t a c t i c . Pair ;
2
3 public class Test {
4
5 private ( Str ing , I n t e g e r ) p = ( ''12'' , 3 4 ) ;
6
7 }

5, type → ‘(’ type ‘, ’ type; ‘)’, and a rule for using pair expressions in line 6,
expr → ‘(’ expr ‘, ’ expr; ‘)’. Note that the definition of a rule in SugarJ is in
an order that is reverse to the one commonly used in context-free grammars.

A definition of a sugar library does not immediately extend the language,
an extension is only created when a module or file imports a sugar library. As
an example, Figure 3 shows a program that imports the sugar library Pair in
line 1. After this import statement, the parser effectively extends the language,
adding the two rules defined by the sugar library. The rules added are used for
correctly parsing the attribute p of the class Test in line 5.

We have defined the syntax of SugarJ in APEG and used an experimental
version of an interpreter of the model to automatically perform parsing. As
APEG is based on PEG , we adapted an implementation of the Java grammar
for the Mouse project [13], which is also based on PEG, and extended it to allow
the definition of sugar libraries. Figure 4 shows the syntax definition of sugar
libraries. As a definition of a sugar library does not extend immediately the
grammar, the nonterminal sugar decl only collects the name of the sugar library
and the rules in a single string. This information is passed through the rules
of Figure 4 as synthesized attributes and is used later in an import statement
to extend the grammar. Differently from the implementation of SugarJ, which
defines the rules in SDF [14] syntax, we have decided to use the PEG style for
defining the rules of SugarJ, because of the base model. Otherwise, we would
have to translate the context-free rules to PEG and this would add complexity
that is out of the scope of the project.

We have also modified the nonterminal that represents type declarations
to allow declarations of sugar libraries. Therefore, the definition rule for this
nonterminal has a new choice:

type declaration[String pack, Map m] returns[Map m1]:
. . . / sugar decl<s,r> {m1 = add(m,pack,s,r);}

The nonterminal type declaration has two inherited attributes, the package
name and a map from names to rules, and one synthesized attribute, a map
from sugar names to their corresponding definitions. So, when a sugar library
is defined by the user, a type declaration returns a new map associating
the sugar library to its rules. Figure 5 shows a new syntax definition for a
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Figure 4 Syntax definition of sugar libraries.

1 suga r d e c l r e tu rn s [ S t r ing name , S t r ing r u l e s ] :
2 'sugar ' name=Id '{' de f in ing syntax<ru l e s> '}'
3 ;
4 d e f i n i ng syn tax r e tu rn s [ S t r ing r u l e s ] :
5 'context−f r e e syntax ' peg ru l e<ru l e s>
6 ;
7 peg ru l e r e tu rn s [ S t r ing ru l e ] :
8 { r u l e = '' ;} ( peg expr<s> '−>' id=Id ' ; '
9 { r u l e += id + ' : ' + s + ' ; ' ;} )∗

10 ;
11 peg expr r e tu rn s [ S t r ing ru l e ] :
12 peg seq<ru le> ( '/' peg seq<r> { r u l e += ' / ' + r ;} )∗
13 ;
14 peg seq r e tu rn s [ S t r ing s ] :
15 peg pred i ca te<s> ( peg pred i ca te<s1> { s += ' ' + s1 ;} )∗
16 / { s = '' ;}
17 ;
18 peg p r ed i c a t e r e tu rn s [ S t r ing r ] :
19 ' ! ' peg unary op<s> { r = ' ! ' + s ;}
20 / '&' peg unary op<s> { r = '&' + s ;} / peg unary op<r>
21 ;
22 peg unary op re tu rn s [ S t r ing r ] :
23 peg fa c to r<s> '∗' { r = s + '∗' ;}
24 / peg fa c to r<s> '+' { r = s + '+' ;}
25 / peg fa c to r<s> '?' { r = s + '?' ;}
26 / peg fa c to r<r>
27 ;
28 p e g f a c t o r r e tu rn s [ S t r ing r ] :
29 r=( p e g l i t e r a l / Id / ' . ')
30 / '( ' peg expr<s> ') ' { r = '( ' + s + ') '}
31 ;

compilation unit, highlighting the possible changes on the grammar rules. The
nonterminal compilation unit receives a map of sugar libraries and passes
it to the nonterminal import decl. The nonterminal import decl checks if
the file is importing a sugar library and adapts the grammar, if necessary,
using the function adapt . The adaptable grammar is returned as a synthesized
attribute and passed to the nonterminal type declaration, which may use the
new syntax.

Every file is parsed by the nonterminal compilation unit. So, for parsing
our examples of Figures 2 and 3, the compiler parses the definition in Figure 2
with the nonterminal compilation unit, which receives the initial grammar of
the SugarJ language and an empty map without any definition of sugar libraries.
As a result, the nonterminal compilation unit returns a new map that has an
entry for the new sugar library Pair. This new map is used in the import
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Figure 5 Syntax definition of compilation units.

1 comp i l a t i on un i t [Grammar g , Map m] r e tu rn s [Map m1 ] :
2 package dec l<p>? ( import dec l<g , m, g1> {g=g1 ;} )∗
3 ( type dec l a r a t i on<g , p ,m,m1> {m=m1;} )∗
4 ;
5 impor t dec l [Grammar g , Map m] r e tu rn s [Grammar g1 ] :
6 ' import ' n=q u a l i f i e d i d ' ; ' {g1=adapt (g ,m. get (n ) ) ; }
7 ;

Figure 6 Composition of more than one sugar library.

1 import j a v a c l o s u r e . Closure ;
2 import s y n t a c t i c . Pair ;
3
4 public class P a r t i a l {
5 public stat ic <R,X,Y> #R(Y)
6 invoke ( f ina l #R( (X,Y) ) f , f ina l X x ) {
7 return #R(Y y ) {
8 return f . invoke ( ( x , y ) ) ;
9 } ;

10 }
11 }

declaration for parsing the program text in Figure 3, so that the grammar is
modified with the new rules defining Pair syntax.

Composing sugar libraries

Sugar libraries are composed by importing more than one sugar library into
the same file. As an example, Figure 6 shows a program that uses the syntax
of pairs and closures. The compiler extends the grammar with the rules of the
syntax of closures defined in Figure 7 when parsing the first import statement,
in line 1. Next, the grammar is also changed with the syntax of pairs when
parsing the import declaration in line 2. The modified grammar, which has the
syntactic rules of pairs and closures, is used for parsing the class Partial.

The implementation of SugarJ uses SDF [14] and it may be necessary to
write disambiguation rules when composing various grammars. However, it is
impossible to prevent all the possibilities of ambiguities and conflicts, conse-
quently composing two or more sugar libraries is not always possible. APEG
avoids ambiguities using ordered choice, so composition is, in principle, always
possible using APEG. In fact, if there is some overlapping between the rules of
two or more extensions, the first option on the ordered choice clause will prevail.
As new choices are always inserted at the end of a rule definition, a user may
change the priority altering the order of the import declarations. It seems a
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Figure 7 Definition of the closure syntax.

1 package j a v a c l o s u r e ;
2
3 public sugar Closure {
4 context−free syntax
5 '#' type '( ' type ') ' −> type ;
6 '#' type formal param block −> expr ;
7 }

simple task, but it is not always easy to understand the interactions between
overlapping rules.

Paradox Syntax × Semantics

Erdweg et alii claim that is it not clear how to support “local” imports,
which extend the language [1]. They give an example of extending the language
with the statement s1 after s2 whose semantics is to swap the execution order
of the statements s1 and s2. They argue that the code

(‘‘12’’, 34) after import syntactic.Pair

is a paradox, because only after swapping the two statements, the import
statement comes before the expression (‘‘12’’, 34), so it becomes a valid
expression. However, they claim that the parser should already know how to
parse the pair expression (‘‘12’’, 34), before it can even consider parsing the
import.

We claim that this is not a paradox. In fact, it is an error situation and
the doubts arise only because of the lack of formalization of the language and a
confusion between syntax and semantics. Given the definition of the syntax in
APEG, which parses the program from left to right, it is possible to answer this
question. Initially, the grammar has the rule statement→ expr ‘after’ expr,
then the parser tries to use this rule to parse the statement. Next, the parser
tries to parse the first expression with the current grammar and fails, because
the current grammar was not extended yet and there is not a rule for cor-
rectly parsing the pair expression (‘‘12’’, 34). Note that the meaning of the
statement (‘‘12’’, 34) after import syntactic.Pair was not considered
because the objective of the parser is only to check if the program conforms
with the grammar rules available at the moment and the semantics of any ex-
pression is considered afterwards only if the program is valid.

3.2. The Syntax of Fortress

The main goals of the design of the Fortress language were to emulate math-
ematical syntax and to be extensible [9]. These two goals impose additional
difficulties to build a parser for the language. However, defining the extensibil-
ity system in a formalism like PEG [11], which supports unlimited lookahead
would bring some advantages [9, 10].
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Figure 8 Definition of a for loop in Fortress.

1 grammar ForLoop extends {Express ion , I d e n t i f i e r }
2 Expr | := f o r b : f o r S t a r t => <[ b ]>
3
4 f o r S t a r t : :=
5 i : Id <− e : Expr d : doFront => <[ . . . ]>
6 | e : Expr d : doFront => <[ . . . ]>
7 . . .
8 end

Figure 8 shows an example of the definition of an extension in Fortress. Line
1 defines a new grammar, called ForLoop, which may use symbols of two other
grammars, Expression and Identifier. The Fortress language has two types
of nonterminal specifications: the extension of an existing nonterminal, using
the symbol |:= (line 2) or the definition of a new one (line 4). The right hand
side of a rule has two parts, a parsing expression and an action. The parsing
expression defines the syntax of the new construct in a PEG style and the action
part specifies how to translate the syntax into the core language. The action
part is everything after the symbol ⇒. It is possible to use aliases associated
with terminal or nonterminal symbols, creating references for them, which can
be used in the action part. Figure 8 shows an example in which the nonterminal
forStart is referenced by b in line 2.

Figure 9 shows part of an APEG syntax definition of the Fortress language.
Similarly to the SugarJ definition, the nonterminal gram def defines the syn-
tax of an extension in Fortress and returns a map with the new entry for it.
However, differently from the SugarJ definition, a grammar in Fortress allows
self-recursion and may use the new syntax in the action part. Therefore, it is
necessary to collect the grammar rules before parsing the code. We use the
and-predicate operator “&” to specify this, collecting the grammar rules while
ignoring the action part. Next, we reparse the program with the modified gram-
mar. Note that, when collecting the grammar rules using the and-predicate
operator, the action part is parsed as a string, ignoring every symbol between
‘<[’ and ‘]>’ (nonterminal syn). After collecting the rule definitions, we adapt
the grammar and generate a new grammar g1. This new grammar is passed to
the nonterminal nonterm def, which passes it to its children, allowing parsing
the action part (nonterminal syntax). Therefore, the action part may use the
new syntax being defined.

The use of the and-operator, which allows an infinite lookahead, was very
important to handle self-recursion, a kind of forward reference. This operator is
inherited by APEG from PEG and it is implemented efficiently with the packrat
algorithm, using memoization.
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Figure 9 APEG formalization of Fortress language.

1 gram def [Grammar g , Map m] r e tu rn s [Map m1 ] :
2 'grammar' n=id gram ext<m, l>? &co l l e c t g ram<r>
3 {g1 = adapt ( g , r + a l lRu l e s ( l ) ) ; } nonterm def<g1>∗ 'end'
4 {m1 = put (m, n , r ) ; }
5 ;
6 gram ext [Map m] r e tu rn s [ L i s t l ] :
7 'extends ' qua l i f i ed names<m, l>
8 ;
9 co l l e c t g r am re tu rn s [ S t r ing r ] :

10 { r = '' ;} ( non def<n , r> { r += 'n : r ; ' ;} )∗
11 ;
12 non def re turn [ S t r ing n , S t r ing r ] :
13 n=id ' | := ' syn<r> ( '/' syn<r1> { r += '/' + r1 ;} )∗
14 / n=id ' : := ' syn<r> ( '/' syn<r1> { r += '/' + r1 ;} )∗
15 ;
16 syn re tu rn s [ S t r ing r ] :
17 peg seq<r> '=>' '<[' ! ']>' . ']>'
18 ;
19 nonterm def [Grammar g ] :
20 id ' | := ' syntax ( '/' syntax )∗ / id ' : := ' syntax ( '/' syntax )∗
21 ;
22 syntax :
23 peg seq<r> '=>' '<[' expr ']>'
24 ;

Combining Grammars

Figure 10 shows an example of composition of grammars in Fortress. Gram-
mar A defines a new nonterminal Nt, and grammar B extends grammar A.
Fortress allows the use of the syntax of A in the action part of B, as in line
6. Grammar C extends B and can use its syntax, however, C cannot use the
syntax of A because it does not explicitly extend grammar A. In [9], the authors
report that they need to resolve the set of extensions (for example, in grammar
C it may use syntax defined in C or B, but not in A) to generate the table for
parsing the action part and this is not an easy task.

Using the APEG model, defining the task described above is simple and
clear. We adapt the grammar, adding the rules of the grammars specified in the
extends part. For example, parsing the grammar B, we add only the rules of A
and when parsing the grammar C, we add only the rules of B. Another difficulty
reported in [9] is how to compose the rules with multiple extensions, as defined
in grammar D. In APEG, to have the same behaviour of the original Fortress
implementation, we must adapt the grammar in the following order: first, we
add the rules of the grammar which is currently being defined (rules of D in
the example), next the grammars in the extends part in the same order that is
specified (first, it adds rules of B and next of C, for the example of Figure 10).
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Figure 10 Combining grammars.

1 grammar A
2 Nt : := macroA => . . .
3 end
4
5 grammar B extends A
6 Nt | := macroB => < [ . . . macroA . . . ] >
7 end
8
9 grammar C extends B

10 Nt | := macroC => < [ . . . macroB . . . ] >
11 end
12
13 grammar D extends {B,C}
14 Nt | := macroD => < [ . . . macroB macroC . . . ] >
15 end

Figure 11 APEG grammar for expressions

1 expr :
2 term ( op term )∗
3 ;
4 op :
5 '+' / '−'
6 ;
7 term :
8 f a c t o r (mul f a c t o r )∗
9 ;

10 mul :
11 '∗'
12 ;
13 f a c t o r :
14 '( ' expr ') ' / number
15 ;
16 number :
17 [0−9]+
18 ;

The combination of extensions is difficult in the Fortress implementation
because it must generate an entire grammar which must contain the definitions
of all grammars used. As in the APEG model the grammar is changed locally
and only as needed, combining grammars is easy and clear.

4. Grammar Modularization

Grammars in APEG are first-class types in the sense that they can be used
as inherited or synthesized attributes from which APEG fetches the parsing
expression of the associated nonterminal during parsing. This feature enables to
pass pieces of grammars as attributes and to use them to build other grammars.

For example, Figure 11 shows an APEG grammar for expressions, and Fig-
ure 12 shows an example of a language which uses the definition of the language
of expressions. Observe that, in the definition of the nonterminal stmt in Fig-
ure 12, the nonterminal expr comes from the grammar Exp, which is an inherited
attribute of nonterminal stmt. This is possible because of the APEG semantics
of the use of a nonterminal on a parsing expression. The parsing expression
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Figure 12 Example of a APEG grammar which uses the definition of another
APEG grammar.

1 s t a r t [Grammar g , Grammar exp ] :
2 'begin ' stmt<g , exp>+ 'end'
3 ;
4 stmt [Grammar g , Grammar Exp ] :
5 id ':=' expr<Exp> ' ; '
6 / 'read ' '( ' id ( ' , ' id )∗ ') '
7 / 'wr i t e ' '( ' expr<Exp> ( ' , ' expr<Exp>)∗ ') '
8 ;
9 id :

10 [ a−zA−Z ] [ a−zA−Z0−9]∗
11 ;

of the nonterminal is fetched from the language attribute being used. For ex-
ample, when using expr<Exp> in Figure 12, the parsing expression associated
with the nonterminal expr is defined by the grammar Exp, which is the language
attribute in this case.

The APEG flexibility for changing grammars during parsing allows building
grammars in a modular way. It is possible to define different pieces of grammars
and use all of them together for building another language. So, we can think of
an APEG grammar as a module, which defines a set of “syntactic functions”.
Thus, grammars can be passed on as inherited attributes and their “syntac-
tic functions” can be used when these grammars are selected as the language
attribute.

Another advantage of this semantics is that we can change the language
just by using a different grammar definition. For example, the attribute exp

of the nonterminal start could be associated with alternative grammars for
expressions using postfix or prefix notation, creating different languages with-
out modifying the text of Figure 12. This feature can be useful for describing
the syntax of languages in which a symbol has different meanings in different
contexts, such as the “if” expression in the AspectJ language.

5. Language Composition

Erdweg et alii proposed a new taxonomy for distinguishing different types
of language composition, namely language extension and restriction, self-exten-
sion, language unification and extension composition [15]. Although APEG has
been originally proposed as a formalism for defining the syntax of extensible
languages [5, 6] (self-extension as defined by Erdweg et alii), its dynamic be-
haviour is able to specify these kinds of language composition, in the syntactic
level. In this section, we discuss how each type of language composition can be
defined using APEG.

12



5.1. Self-Extension

Erdweg et alii define that a language supports self-extension if the language
can be extended by programs of the language itself without changing its imple-
mentation [15].

In Section 3, we showed how to define the entire syntax of two self-extensible
languages, SugarJ and Fortress, using APEG. Our specifications define clearly
what rules are available at a given moment during parsing. The SugarJ spec-
ification allows resolving the false paradox about the local import raised by
Erdweg et alii [1]. The semantics of the combination of Fortress grammars is
clear in the APEG specification, showing explicitly what set of rules will be
used when a grammar extends another. So, we have provided enough evidence
that APEG is capable for specifying self-extensible languages. The original def-
inition and implementation of the languages SugarJ and Fortress present a lack
of formalization of the syntax, especially for the aspects related with the exten-
sibility mechanism of the language. When comparing the APEG specifications
with those definitions, it is even more clear that APEG is appropriate to specify
self-extensible languages.

5.2. Language Extension and Restriction

Differently from self-extensibility , which is a property of the language, lan-
guage extensibility is a property of the language-development system. Erdweg
et alii [15] define that a system has this property if it allows extending a base
language by reusing its definition without modifications.

APEG clearly has this property and it is used for defining the syntax of
extensible languages, as in the case of SugarJ and Fortress. In fact, when the
SugarJ grammar (the base language) is extended with a new DSL (for example,
the Pair DSL of Figure 3), the language extensibility property provided by
APEG is used for extending the language.

The initial formalization of APEG [5] does not restrict how the grammar
can be extended, indicating that extensions will be performed by functions de-
fined by the designer. Later, in a prototype interpreter that was developed [6],
extensions on the base grammar were restricted by the addition of new rules
or by the addition of new choices at the end of an existing rule. As APEG
has ordered choices as in PEG, language extension could not be always possible
because of the shadow problem. For example, suppose a grammar consisting of
this APEG rule

rule : 'a';

If we extend this rule with the new choice 'ab', this second choice will never be
used, because if the input starts with the symbol a, the first choice will always
succeed and the second one will never be tested. Although APEG may present
this shadow problem when extending a language, it can be avoided as we did
when extending the SugarJ language with some DSLs [6].

Another limitation imposed by APEG when extending a grammar is that
it is not possible to change the set of attributes (inherited or synthesized) of
nonterminals. The attributes in APEG are syntactic, evaluated during parsing.
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Figure 13 APEG grammar for a declaration language

1 d e c l i s t : d e c l ( ' , ' dec l ) ∗ ;
2
3 dec l : id '=' number ;
4
5 id : [ a−zA−Z ] [ a−zA−Z0−9]∗ ;
6
7 number : [0−9]+;

When a nonterminal is used on a parsing expression, all the attributes must be
specified. It is very similar to arguments in function calls. So, if APEG allowed
adding a new attribute on a nonterminal, it would be necessary to change every
use of this nonterminal on all parsing expressions for defining the value of the
new attribute. To avoid redefining many rules, APEG does not allow changing
the set of attributes.

For syntactic purposes, the restriction to extend the set of attributes is
not a problem. However, if the attributes of APEG are also used for semantics
purposes, extensions on the semantics by adding new attributes may be desired.

Erdweg et alii present another type of language composition, the language
restriction [15]. The idea of language restriction is the opposite of language
extension: it consists in the exclusion of features from a language. Erdweg et
alii do not give special treatment to this type of language composition because
they argue that language restriction can be implemented as an extension of
the validation phase of the base language. APEG does not have any feature
to restrict the base language, thus it does not have any support for language
restriction.

5.3. Language Unification

A language-development system supports language unification when it is
possible to reuse, unchanged, the implementation of two languages being unified
only by the addition of glue code [15]. A possible solution for unifying languages
using APEG is to use ideas similar to the ones presented in Section 4, for
modularization of grammars. We may define a grammar which has the two
other grammars being unified as inherited attributes and create a new one which
uses or has the definition of these two grammars.

For example, Figure 13 shows a language for declaring variables. In Fig-
ure 14, we show how to combine the language of Figure 13 with the language of
expressions of Figure 11, so as to build a new language which allows variables in
expressions. In line 3 of Figure 14, a new grammar which has the rules of both
grammars is created. This is done by adding all rules of the grammar expr to
grammar decl. Note that, if there is any nonterminal in the second grammar
which is already defined in the first grammar, the parsing expression of this
nonterminal in the first grammar is extended with a new choice, consisting of
the parsing expression of the second one. It is similar to add a new rule, as
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Figure 14 A grammar which unify the declaration and expression languages.

1 u n i f i c a t i o n [Grammar g , Grammar dec l , Grammar expr ]
2 r e tu rn s [Grammar r e s u l t ] :
3 { un i fy = dec l + expr ;}
4 { g lue = un i fy + ' f a c t o r : id ; ' ;}
5 { r e s u l t = g lue + 'exprdec l : d e c l i s t expr ; ' ;}
6 ;

explained in Section 2, but, in this case, it may add a set of rules. In line 4,
the resulted grammar is extended with a rule to allow variables in expressions
and, in line 5, a new nonterminal definition, exprdecl, which defines a rule for
allowing a list of declarations followed by an expression is added, completing
the unification of the language of declaration with that of expressions. The
grammar unified is stored in the synthesized attribute result, allowing other
grammars to use it.

Creating a new grammar by extending a grammar with the rules of another
one, such as in line 3 of Figure 14, resembles the idea of inheritance of object-
oriented programming. Mernik shows that the notion of inheritance enables to
implement all the types of language composition described by Erdweg et alii [16].
Thus, by passing grammars as inherited attributes and using the idea presented
in the example above, which simulates inheritance, APEG can achieve language
unification. However, APEG does not allow overriding a nonterminal definition
as in object-oriented programming, or simulate it, thus it is not possible to use
inheritance as discussed in [16] when it is needed to override a nonterminal
definition. Also, unifying languages by creating a new grammar dynamically,
as in Figure 14, is not efficient when the set of nonterminals and rules are
static. However, in the context of defining the syntax of extensible languages,
composing grammars in this way using APEG could be useful, because the
syntax would change dynamically.

5.4. Extension Composition

The kind of language composition described above only defines how a system
can be extended with a single extension. To refer to a system which allows
composing more than one extension, Erdweg et alii [15] define a new term,
extension composition. There are two interesting cases of extension composition:
incremental extension and extension unification.

A system supports incremental extension if it is possible to extend a base
language with a extension E1 and also extends the result with another extension,
E2. In other words, the system allows language extensibility twice or more
times in the base language. APEG supports incremental extension because it
is possible to extend a grammar and, afterwards, to extend the result. In fact,
this property was used to implement composition of sugar libraries of SugarJ,
as shown in Figure 6. The only restriction to incremental extension of APEG is
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Figure 15 An example of extension composition.

1 s t a r t [Grammar g , Grammar dec l , Grammar , expr , Grammar un i fy ] :
2 un i f i c a t i o n<uni fy , dec l , expr , r>
3 { r e s u l t = r + 'mul : \'/\' ; ' ;}
4 exprdec l<r e su l t>
5 ;

the shadow problem, discussed in Section 5.2, that can occur between extensions
too.

A system supports extension unification when it allows extending a language
with the result of the unification of two other languages or extending the result of
the unification. So it refers to the process of combining together the properties
language extension and language unification. APEG also supports extension
unification. As an example, Figure 15 shows an extension to the result of the
unification shown in Figure 14. In line 2, the grammar of Figure 14 is used to
unify the languages of declarations and expressions. In the sequel, line 3 extends
the result with the rule mul: '/' to allow division expressions. Finally, line 4
uses the definition of the nonterminal exprdecl, fetching the parsing expression
of this nonterminal from the new grammar, represented by the attribute result.
This example shows a language unification and afterwards a language extension,
giving the idea of how APEG supports extension unification. The same idea
can be used to extend a language with the set of rules of a unification of other
two languages.

The APEG ability to add new rules or rule choices and also to change the
grammar during parsing provides a flexible mechanism to compose language.
APEG is indeed a powerful mechanism to define extensible languages by means
of features to compose and reuse definitions of DSLs.

6. Related Work

In this section, we discuss works related to ours and split them in four
categories: parsing of extensible languages, models for defining extensible lan-
guages, grammar modularization and language composition. First, we discuss
some implementations of extensible languages which allow a flexible mechanism
to extend their own concrete syntax (Section 6.1) and some adaptable models to
define them (Section 6.2). Afterwards, we show related work in grammar mod-
ularization (Section 6.3) and in the field of language composition (Section 6.4).

6.1. Parsing of Extensible Languages

The idea of offering facilities to add syntactic constructions to a language
remotes to the Lisp language and its dialects, such as Scheme and Racket [4].
These languages use the same notation for data and program, S-expressions,
thus they allow the implementation of a flexible and powerful macro system.
Racket implements macros by means of functions from syntax to syntax that are
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executed at compile time when a macro use is reached by the macro expander.
However, S-expressions impose restrictions on macro syntax, and Racket lacks
support for a high-level syntax formalism, and modern extensible languages
avoid this approach.

The implementation of parsers for extensible languages which do not use the
same notation for data and program is similar. In general, it uses a stepwise
approach, which collects the grammar definitions and generates a parse table
from the new rules collected. Then, the parser analyzes the program using the
table generated.

For example, the SugarJ compiler [1] uses a stepwise approach for parsing
its syntax: parsing, desugaring, splitting and adaptation; and the compiler uses
an incremental compilation process, in which every top-level entry is parsed at
a time. A top-level entry in SugarJ is either a package declaration, an import
statement, a Java type declaration, a declaration of syntactic sugar or a user-
defined top-level entry introduced with a sugar library. Every top-level entry
passes through the four stages before parsing other top-level entries.

In the parsing phase, a top-level entry is parsed with the current grammar,
which reflects all sugar libraries currently in scope, and the other entries are
parsed as a string. As a result of this stage, an abstract syntax tree is constructed
with nodes of SugarJ and user-defined extension nodes. In the desugaring stage,
user-defined extension nodes are desugared in nodes of SugarJ. The desugaring
is done by the Stratego tool [17] (a language for program transformation) with
the rules defined in a sugar library. In the splitting stage, the compiler splits
every top-level entry into fragments of Java code, SDF [14] grammar (a syntax
formalism whose parsing algorithm allows ambiguous grammars) and Stratego
rules. SDF grammar and Stratego rules produced in the splitting stage are
used in the adaptation stage for modifying the current grammar of the parsing
stage and the desugar rules in the desugaring stage. In the adaptation stage
of the SugarJ compiler, the SDF grammar needs to be compiled to generate
a parsing table at compile time, which will replace the current grammar to
parse the other top-level entries. This approach only works because the current
grammar in SugarJ is only changed after parsing top-level entries, which are
disposed according to the structure of a file. For example, a file starts with
a package declaration, next is the import statements, then classes declaration
and so forth. This allows parsing, for example, an import statement, changing
the current grammar and parsing the next top-level entry, that could be a new
syntax defined by the user.

Fortress is also an extensible language which does not use the same notation
for data and program. To parse a program in the Fortress language, a two-phase
approach is taken [9]: in the first step, all the grammars except the action part
(a rule that describes how to desugar the extension in terms of Fortress core
syntax) and the main expression are parsed. In this step, the action part and the
main expression are parsed as Unicode Strings. Next, the parser computes the
set of extensions that are available and generates another parser that is used for
parsing the action part and the main expression, which may use the new syntax.
This strategy only works because all the grammar definitions must come before
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the main expression, so they can be processed first. Similarly, the parser of the
XAJ language [12] collects the new syntactic constructions defined by syntax
classes and generates a new parser using the PPG tool [18]. The generated
parser is used for parsing the program, which may use the new syntax.

The approach described for parsing SugarJ, Fortress and XAJ has some
problems: the lack of a formalism for defining the extensibility aspects of the
language makes it impossible to automatically generate the parser, increasing
the complexity of writing the parser, and it makes it difficult to understand the
language; the parser implementation may not conform with the language spec-
ification; and the generation of the entire parser table every time the language
is extended with few rules may be inefficient.

6.2. Models for Defining Extensible Languages

As extensible languages may change their own set of rules during parsing,
the formalisms more appropriate to specify their syntax may be the ones which
also allow modifying the own set of grammar rules. Christiansen [19] proposes
a formalism with these features, called Adaptable Grammars, which is essen-
tially an Extended Attribute Grammar [20] where the first attribute of every
nonterminal symbol is inherited and represents the language attribute. The lan-
guage attribute contains the set of rules allowed in each derivation. The initial
grammar works as the language attribute for the root node of the parse tree,
and new language attributes may be built and used in different nodes. Each
grammar adaptation is restricted to a specific branch of the parse tree. One
advantage of this approach is that it is easy to define statically scoped depen-
dent relations, such as the block structure declarations of several programming
languages. APEG was inspired in Adaptable Grammars of Christiansen and
the main difference between APEG and Adaptable Grammars are the models
in which they are based [5].

Shutt [21] observes that Christiansen’s Adaptable Grammars inherit the lack
of orthogonality of attribute grammars, with two different models competing.
The CFG kernel is simple, generative, but computationally weak. The aug-
menting facility is obscure and computationally strong. He proposes Recursive
Adaptable Grammars (RAGs) [21], where a single domain combines the syntactic
elements (terminals), meta-syntactic (nonterminals and the language attribute)
and semantic values (all other attributes). One problem of RAG is the difficulty
to check for forward references, which is important for defining the syntax of
the Fortress language, for example. Modelling forward references is also dif-
ficult with Christiansen’s Adaptable Grammars. As shown in Section 3.2, the
and-predicate and the not-predicate operators allow APEG to model forward
reference of Fortress.

Carmi [22] argues that existing adaptable formalisms do not handle well
forward references, such as goto statements that precede label declarations, and
extensible languages with features like macro syntax and its expansion. Thus,
he proposes a new model, called AMG . AMG is driven by the parsing algorithm
and the derivation must be rightmost. Nonterminal symbols of AMGs may have
annotations and a special type of rule, a multi-pass rule. A multi-pass rule is
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similar to a simple rule, however, when the parser reduces using this type of
rule, the annotation of the rule is put as a prefix of the input to be parsed.
The multi-pass rules together with nonterminal annotations allow parsing a
prefix of the input string and then reparse it using the same grammar rules
or a different set of rules, handling forward references, macro definitions and
expansion accordingly.

6.3. Grammar Modularization

Mernik and Umer [23] present an approach to modularizing grammars by
incorporating the idea of inheritance in Attribute Grammars (AG). Using in-
heritance, the definition of new grammars may reuse productions rules and
attributes of other grammar definitions, as well extend or modify them. The
tool LISA [24, 25] implements this notion of inheritance. An important differ-
ence between APEG and LISA is that LISA, as it is an AG system, models
the syntax and semantics of the language. APEG is a formalism to define the
syntax of languages and, although the attributes can be used for semantic pur-
pose, APEG does not allow extending the set of attributes of a nonterminal as
in LISA. Another difference between LISA (and also AG systems) and APEG
is that the attributes of APEG are evaluated during parsing and not after it,
traversing the AST. Also, APEG is L-attributed and does not allow definitions
with circular dependency.

Rats! [26] is a parser generator tool based on PEG that allows modularizing
grammars. The tool has a module system for organizing, modifying, and com-
posing syntactic specifications. Every grammar module can use other module
definitions and also modify them by adding, overriding or removing individual
alternatives in a production. SDF [14] also can separate grammars in modules
and allows building new grammar definitions importing and using the definition
of other grammars. However, differently from LISA and Rats!, SDF cannot al-
low modifying or overriding the definitions of the grammar being used and only
permit adding new production rules to them. The ANTLR [27] parser generator
tool also has an import mechanism which resembles inheritance. It processes a
list of imports of grammars in depth-first strategy, adopting the first definition
of some rule that it encounters and ignoring subsequent instances. However,
ANTLR does not have any mechanism for overriding or modifying rules of im-
ported grammars. Johnstone et alii introduced the idea of Modularized Gram-
mar Specification, which divides the grammar specification into modules [28].
The main difference to previous works is the treatment for module namespaces,
allowing using or importing the same nonterminal name from different grammar
modules.

The above tools work at source level and produce a global grammar from the
modules, so they make it hard to produce separated pieces of compiled gram-
mars (parsers) and use them when building a new parser. As APEG allows
changing the grammar during parsing, it is possible to generate binary pieces
of grammars and use them as libraries, but the prototype interpreter does have
this feature yet. Several works have this goal and propose techniques for gener-
ating small parse tables for parts of the language, and combining them to form

19



the table for the language. As an example, Cervelle et alii [29] implements a
system which supports to separate compilation of pieces of grammars and dy-
namic linkage of these pieces at runtime. Parse tables are generated using a
bottom-up approach from incomplete grammars in which some nonterminals,
those that come from other pieces of grammars, are treated as special terminals
(branch points). During runtime, the parser switches between the parse tables
when needed. The algorithm described by Bravenboer and Visser [30] for parse
table composition supports separate compilation of grammars to parse table
components, using modular definition of syntax. A prototype for this algorithm
generates parse tables for scannerless Generalized LR (GLR) parsers [31], with
input grammars defined in SDF [14]. Schwerdfeger and Van Wyk [32, 33] de-
fine conditions for composing parsing tables while guaranteeing deterministic
parsing, allowing defining extension to a base language with the guarantee that
problems will not occur when combining several extensions.

6.4. Language Composition

The increasing use of DSLs has brought new challenges for language devel-
opment, requiring that languages and development systems can be planned to
be composed and evolved. Many researches and systems have been developed
to allow easy implementation and composition of languages, specially to DSLs.

Erdweg et alii [15] noticed that there is a lack of precise terminology and
ambiguity about the many meanings of language composition, therefore they
proposed a new terminology and classification to language composition, which
we used to analyse APEG. Also, composing languages involves to compose syn-
tax and semantics. We discussed how APEG can achieve language composition
only in the syntactic level, however there is much work which goes beyond syn-
tax.

Attribute Grammars are a model that allows defining the syntax and se-
mantics of languages, and the mechanism of inheritance applied to AG, which
is implemented in LISA, allows LISA to compose languages in both syntactic
and semantic levels [16]. JastAdd [34] takes a similar approach to LISA and also
allows all type of language composition in both levels, syntax and semantics.
JastAdd works on an object-oriented representation of an AST, in which non-
terminals act as abstract superclasses and their productions act as specialized
concrete subclasses. The subclasses specify the syntactic structure, semantics
rules and attributes, which can be specialized or overrided using inheritance. By
means of aspect-oriented concepts, JastAdd allows combining language specifi-
cations.

Spoofax [35] is an approach based on SDF and Stratego. Using SDF, Spoofax
is able to implement all types of language composition on the syntax level. By
means of the Stratego tool, Spoofax supports language composition on the se-
mantics level, however Stratego only supports the addition of new semantic rules
to extend the base language semantics and does not support the adaptation of
an existing rule, so Spoofax only supports extension unification on the semantic
level.
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There are many systems that allow only composition by language extension.
The main purpose of these systems is to provide a way to extend a base language
with DSLs (incremental extension, to use the taxonomy of Erdweg et alii [15]).
Language boxes [36] and island grammar based approaches [37] are examples
of approaches that allow only incremental extension. Language boxes specify
extensions by defining the syntax, including modification on the base grammar
to integrate with the new syntax, the transformation of the DSL AST to the
AST of the base grammar and some integration with IDEs, such as highlighting
code. The idea of language boxes is very similar to sugar libraries of SugarJ [1]
and to syntax classes of XAJ [12], which define how to extend the syntax of the
language (the difference is that SugarJ and XAJ are extensible languages) and
the transformation of the extension to the base language code, encapsulated in
a single definition.

The implementation of language boxes is based on PEG and parser combi-
nators. However, language boxes also allow more four forms to modify a nonter-
minal definition, besides insertions of new choices at the end of the nonterminal
parsing expression allowed by APEG. It also allows adding a new choice at the
beginning, adding a sequence parsing expression at the beginning or the end of
the pre-defined parsing expression or overriding the nonterminal definition.

Using island grammars, Dinkelaker et alii propose an approach to extend
a host language with DSLs [37]. Due to the use of island grammars, they
avoid to specify the complete grammar of the DSL and the host-language. It is
necessary only to specify the parts of the grammars (DSL and host language)
that are relevant to the DSL concrete syntax implementation. The Dinkelaker et
alii’s approach also allows the notion of grammar inheritance, allowing defining
syntax and semantics based on other definitions. Their approach composes
languages in the syntax level using a version of the Earley parser algorithm [38]
which supports composable island grammars [39]. The semantics of DSLs is
given by translation to code in the host-language.

7. Conclusion

The primary goal of designing APEG is to provide a formal method to de-
fine the syntax of extensible languages and also automatically generate efficient
parser for such languages. In this paper, we proved that APEG may have
achieved these goals by defining the syntax of SugarJ and Fortress. The spec-
ification of these languages shows that APEG is a powerful formalism, which
permit a clear definition of what rules are available at a given moment during
parsing. It allows us to resolve the false paradox about local imports raised by
Erdweg et alii [1]. Also, the semantics of the combination of Fortress grammars
is clear in the APEG specification, explicitly showing what set of rules is to be
used when a grammar extends another.

Forward reference is reported as difficult to be handled with adaptable mod-
els [22]. The definition of grammars in Fortress has a kind of forward reference,
in which the action part may use syntax that is defined later. Therefore, it is
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necessary to use a multi-pass approach. We showed that the predicate oper-
ator & of APEG allows simulating a multi-pass parser, handling the forward
reference.

In this work, we do not address the efficiency of parsers generated using
APEG. However, an experiment on parsing programs with SugarJ using a pro-
totype version of an APEG interpreter indicates that APEG may significantly
improve the performance of parsing such programs, when compared to the orig-
inal implementation built with SDF [6].

We also analyze the flexible mechanism of APEG to change the grammar on
the fly with respect to its power to define grammars in a modular way and to
compose languages. We showed that the flexibility to modify the grammar, by
means of the language attribute, during parsing allows APEG to reuse defini-
tions from other grammars. This mechanism makes possible to generate parsers
from APEG grammars and distribute them as libraries. At this moment, we
only have a prototype interpreter for APEG and we are working on a parser
generator, therefore we still do not have the appropriate tool to make libraries
from APEG grammars.

Erdweg et alii claim that implementing DSLs by means of libraries in an ex-
tensible language, such as SugarJ, is a better choice than other approaches [1].
Defining DSLs libraries may require the use of the definition of other DSLs and
composing them, therefore it is important that a formalism for specifying exten-
sible languages supports composition of DSLs. We showed that APEG allows
implementing almost all types of language composition presented by Erdweg et
alii [15], showing that the mechanism for changing grammars on-the-fly is very
flexible.

Implementing and composing languages require more than only syntax. It
involves semantics and also language-based tools, such as editors and debug-
gers. We have used APEG’s attributes for syntactic purposes, but it may be
used for giving semantics. Therefore, a first question to investigate is whether
APEG is appropriate for giving semantics or we should use other formalism
after building the AST, such as metaprogramming or rewrite rules. APEG does
not allow modifications on the set of attributes and also the definition of them
are embedded into the parsing expression, then we must investigate whether it
is a severe restriction to compose semantics. As inheritance is a good solution
to compose grammars incrementally and modularly [23, 16], we are planning to
study how inheritance could be incorporated to APEG and how it would fit its
dynamic mechanism.
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