
When GOF Design Patterns occur with God Class and Long
Method Bad Smells? - An Empirical Analysis

1BRUNO L. SOUSA
1MARIZA A. S. BIGONHA
2KECIA A. M. FERREIRA

1UFMG - Federal University of Minas Gerais – Computer Science Department
Antônio Carlos Avenue, 6627, 31270-010 - Belo Horizonte (MG) - Brazil

2CEFET-MG - Federal Center for Technological Education of Minas Gerais – Department of Computing
Amazonas Avenue, 5253, 30421-169 – Belo Horizonte (MG) - Brazil

1 (bruno.luan.sousa,mariza)@dcc.ufmg.br
2 kecia@decom.cefetmg.br

Abstract. Design patterns are general reusable solutions to common recurring problems in software
projects. These solutions, when correctly applied, are supposed to enhance modular and flexible struc-
tures in software. The aim of this work is to study the occurrences of God Class and Long Method
bad smells in software systems developed with design patterns. To achieve this aim, we carried out
an exploratory study with five Java systems to: (i) investigate if design patterns avoid bad smells; (ii)
identify design patterns that may have co-occurrence with bad smells; and (iii) extract the main reasons
that impact on such co-occurrence. We consider in our analysis eleven of the twenty-three GOF design
patterns. We also consider the God Class and Long Method bad smells. The results obtained suggest that
Composite and Factory Method have a low co-occurrence with these bad smells, and Template Method
and Observer have a high co-occurrence with God Class and Long Method, respectively. In addition,
we have identified that the misuse of design patterns and the scattering and crosscutting concerns has
contributed to such co-occurrences.

Keywords: design pattern, bad smell, software metric, threshold.

(Received September 15th, 2017 / Accepted March 29th, 2018)

1 Introduction

Design pattern is a general solution to a recurring prob-
lem in a given context in the software design [10]. Its
main goal is to create flexible and extensible software
systems, with a reusable structure and easy mainte-
nance. They are recognized as good programming prac-
tice. When applied correctly, they may help reducing
bad smells in software, although they have not been pro-
posed for this purpose [20].

Bad smells are symptoms existing in the source
code of a program that possibly indicate a more seri-
ous problem that requires code refactoring [9]. Code
regions that exhibit these symptoms are not considered

errors, but they impair software quality and violate Soft-
ware Engineering principles such as modularity, read-
ability and reuse. Design patterns may be used to re-
move bad smells [4, 14, 16, 17, 25]. On the other hand,
there are studies that identify co-occurrence of design
patterns and bad smells [3, 11, 12, 23]. Although de-
sign patterns are intended to improve software quality,
they do not necessarily avoid bad smells.

This paper presents an exploratory study in order to
investigate object-oriented software that apply the de-
sign patterns defined by Gamma et al. (GOF catalog)
[10]. The main purpose of this study are: (i) to investi-
gate if design patterns avoid bad smells; (ii) to identify

(bruno.luan.sousa,mariza)@dcc.ufmg.br
kecia@decom.cefetmg.br

design patterns that may have co-occurrence with bad
smells; and (iii) to extract the main reasons that impact
on such co-occurrence.

To achieve these goals, we carry out a case study
with five Java software systems. These systems are
open source and they were extracted from Quali-
tas.class Corpus [21]. In this case study, we investi-
gate in our analysis the co-occurrences relationship of
eleven design patterns described by Gamma et al. [10]
with two bad smells: (i) God Class [13] and (ii) Long
Method [9].

This paper is an extended version of our previous
work [18]. In the current version, we manually in-
spected source code in which bad smell and design pat-
tern co-occurrence were detected. We present in details
the architecture of two examples of such occurrence.
From this analysis, we describe the lessons learned, dis-
cussing the main reason that lead to design pattern and
the bad smells co-occurrence considered.

2 Research Methodology

This study was carried out in six steps: (i) definition
of research questions (ii) identification of bad smells
detection strategies, (iii) definition of the data set that
comprises the software systems considered in the study,
(iv) data collection, (v) application of the association
rules and (vi) method of the data analysis.

2.1 Rearch Questions

The research questions (RQn) investigated in this paper
are the following:

• RQ1: Do the design patterns defined in the GOF
catalog avoid the occurrence of God Class and
Long Method bad smells in software?

• RQ2: Which design patterns of GOF catalog pre-
sented co-occurrence with the God Class and Long
Method bad smells?

• RQ3: What are the more common situations in
which the God Class and Long Method bad smells
appear in software systems that apply GOF design
patterns?

2.2 Identification of Bad Smells Detection
Strategies

According to Marinescu [15], detection strategy is a for-
mal rule that charatecterizes a specific bad smell. In ad-
dition to detection strategies, software metric thresholds
can be used to determinate the relationship of a metric
with a bad smell and, thus, identify anomalous entities.

In this study, we consider the God Class and Long
Method bad smells. God Class is a class that ex-
ecutes too much work and delegate minor details to
other classes [13]. Long Method is a method that per-
forms too much work, having many lines, temporary
variables and parameters [9]. We choose these bad
smells because they are especially problematic to the
software maintenance. Besides, they are related to a
large amount of information that may turn the software
comprehension hard and increase coupling among the
methods and among the classes of the system.

The detection strategies used in this study were pro-
posed by Filó et al. [8]. We choose these strategies be-
cause they are composed of well known software met-
rics. Besides that, they were previously evaluated by
Filó [6], and no false negative was returned. False pos-
itive may be returned, but with a low probability of
occurrence. These results suggest that these detection
strategies are effective in bad smells detection. The
thresholds defined by Filó et al. [8] for a software met-
ric is classified in three ranges: Good, Regular, and Bad.
The authors indicated that the Good range is related to
low occurrences of bad smells. Therefore, the detection
strategies rely on the Regular and Bad ranges. Follow-
ing, we describe the detection strategies of Filó et al.
[8] for God Class and Long Method.

The God Class detection strategy, Figure 1, uses the
metrics: Weighted Methods per Class (WMC), Number
of Methods (NOM), Number of Attributes (NOF), and
Lack of Cohesion of Methods (LCOM).

Figure 2 shows the detection strategy used for Long
Method bad smell. It uses the following metrics:
Method Lines of Code (MLOC), Nested Block Depth
(NBD) and McCabe Cyclomatic Complexity (VG).

Figure 1: Detection strategy for God Class extracted from [8].

2.3 Data Set

The software sample used in this study are from Qual-
itas.class Corpus [21], a data set which comprises soft-
ware metrics of 112 open source software systems de-
veloped in Java. Qualitas.class Corpus provides 23 soft-
ware metrics and the bytecodes of the software systems.

Figure 2: Detection strategy for Long Method extracted from [8].

This data set was chosen because it has a large collec-
tion of open source software developed in Java that are
widely used in empirical studies of software artifacts.

As this study involves manual inspection, we con-
sidered a sample of five software systems: Hibernate
4.2.0, JHotDraw 7.5.1, Kolmafia 17.3, Webmail 0.7.10
and Weka 3.6.9. All of them, except Kolmafia, are from
Qualitas Corpus. The main criteria for the selection of
these systems was based in two points: (i) they use de-
sign patterns from GOF catalog; and (ii) they present
the bad smells considered in this study. We decided to
include Kolmafia 17.3 in this study because previous
studies to point out metrics values considered problem-
atic in this software [5], however, without any correla-
tion of these values with bad smell or design patterns.

2.4 Data Collection

The third step involved the data collection to be ana-
lyzed. Qualitas.class Corpus comprises files in XML
format with the metrics of the software systems. As
most of the software used in this study are from Qual-
itas.class Corpus, we used these files. Since Kolmafia
17.3 data are not in this corpus. So, we downloaded its
code and collected its metrics. We used the Eclipse 4.2
Juno IDE1 and Metrics 1.3.6 plugin2 for this purpose.

To verify the design patterns existence in the soft-
ware, we used Design Pattern Detection using Similar-
ity Scoring 4 (DPDSS) tool [22]. It models all aspects
of design patterns by means of directed graphs, repre-
sented by quadratic matrices, and applies an algorithm
called Similarity Scoring. This algorithm receives as in-
put the system and the graph of the design pattern, and
then, calculates the similarity scores between the ver-
tices of the graph. The main advantage of this approach
is the ability to detect not only the patterns in their base
form, which is normally found in the literature, but also
the modified versions of it [22]. We previously tested
DPDSS with three systems: JHotDraw 5.1, JRefactory
2.6.24 and JUnit 3.7, and no false positive occurrence
of design patterns was returned. False negatives were

1http://www.eclipse.org/downloads/packages/
release/Juno/SR2

2http://metrics.sourceforge.net

returned only for two design patterns: Factory Method
and State. The results presented by this tool were very
satisfactory, showing that it is effective in identifying
instances of design patterns.

Filó et al. [7] developed a tool, RAFTool, which
performs the identification of methods, classes and
packages with anomalous measurements of object-
oriented software metrics. We used RAFTool with the
purpose of implementing detection strategies. The tool
receives as entry the XML file with software metrics
of the target system and a detection strategy that is de-
scribed by a logical expression in a given format. The
tool reports the classes or the methods whose metric
values fit to the detection strategy.

In RAFTool, the metrics’ thresholds that comprise
the detection strategy are represented by the follow-
ing keywords: COMMON, which corresponds to the
Good/Frequent ranges of the metrics, CASUAL, which
corresponds to the REGULAR/OCCASIONAL ranges
of the metrics, and UNCOMMON, which corresponds
the Bad/Rare ranges of the metrics. The God Class and
Long Method logical expression are defined as follows.

Exp1 (UNCOMMON[WMC] OR CASUAL[WMC])
AND (UNCOMMON[NOF] OR CASUAL[NOF])
AND (UNCOMMON[NOM] OR CASUAL[NOM])
AND (UNCOMMON[LCOM] OR CASUAL[LCOM]
)

Exp2 (UNCOMMON[MLOC] OR CASUAL[MLOC])
AND (UNCOMMON[NBD] OR CASUAL[NBD])
AND (UNCOMMON[VG] OR CASUAL[VG])

The design patterns instances returned by DPDSS
may be composed of one or more classes or methods.
For instance, the returned instance to the Bridge de-
sign pattern has a responsible class for representing the
implementation part and a responsible class for repre-
senting the abstraction part. To solve this problem, we
developed the Design Pattern Smell3 [19] to count the
classes and methods in the design pattern instances, as
well as to identify the components that have a given de-
sign pattern and a given bad smell. This tool receives
as entry (1) the XML files exported by DPDSS, con-
taining the design patterns instances of a system, and
(2) the CSV files generated by RafTool, containing the
components with a given bad smell.

2.5 Application of Association Rules

To identify the design pattern and bad smells co-
occurrences, we applied association rules, based on

3http://www2.dcc.ufmg.br/laboratorios/llp/
Products/indexProducts.html

http://www.eclipse.org/downloads/packages/release/Juno/SR2
http://www.eclipse.org/downloads/packages/release/Juno/SR2
http://metrics.sourceforge.net
http://www2.dcc.ufmg.br/laboratorios/llp/Products/indexProducts.html
http://www2.dcc.ufmg.br/laboratorios/llp/Products/indexProducts.html

concepts of data mining [1, 2]. We decided to use the
association rules because they combine items from a
data set to extract knowledge about the data. Moreover,
previous works in the same context of this one have ap-
plied association rules [3, 23].

To apply the association rules, three metrics are
used: Support [1], Confidence [1], and Conviction [2].
These metrics are based in the following main concepts:
Transaction, defined as a set of items; Antecedent that
is an item that appears on the left side of a association
rule; and Consequent, an item that appears on the right
side of a association rule. Therefore, a basic association
rule has the following form: Antecedent⇒Consequent.

Support (sup) on an association rule corresponds
to the frequency that an item occurs in a transaction
(Equation 1). For instance, let us consider a shopping
base in a supermarket. Suppose that there is a data set
with 1,000 transactions, which are the set of items that
were purchased. In this data set, the items pasta and
tomato appear together in 100 records. So, Support
for this relationship is 0.1, i.e., 10.0%.

sup(X ⇒ Y) = P (X,Y) (1)

Confidence (conf) expresses the probability of a
Consequent occurs since Antecedent has occurred
(Equation 2).

conf(X ⇒ Y) =
sup(X ⇒ Y)

sup(X)
(2)

In the aforementioned example, let us consider that
the item pasta is found alone in 200 of 1,000 trans-
actions of the data set. To compute the Confidence of
the pasta⇒ tomato association rule, it is necessary
to divide the Support of this rule, 0.1, by the Support
of pasta – Antecedent in the association rule –, 0.2,
resulting in a confidence of 0.5, i.e., 50.0%.

Brin et al. [2] proposed the metric Conviction. This
metric uses the Support in both the Antecedent and the
Consequent (Equation 3).

conv(X ⇒ Y) =
sup(X) ∗ (1− sup(Y))

sup(X)− sup(X ⇒ Y)
(3)

In the given example, let us consider that the item
tomato is found alone in 300 of 1,000 transactions of
the data set. Thus, the support tomato, sup(tomato)
is 0.3 and the confidence conf(pasta ⇒ tomato)
is 0.5. Applying these values in the Equation 3, the
Conviction conv(pasta ⇒ tomato) is 1.4. When
the value of Conviction is 1.0, it indicates that the an-
tecedent and the consequent have no relation at all.
When the value of Conviction value is less than 1.0,

it indicates that if the antecedent occurs, the consequent
tends to not occur. When the value of the Conviction
is greater than 1.0, it means that the antecedent and the
consequent have relation; the greater the value of Con-
viction, the greater the relation between the antecedent
and the consequent. An infinite result indicates that the
antecedent never appears in the transactions.

In this study, for the association rules application,
we consider a transaction being each class in the ana-
lyzed system; antecedent being a design pattern; con-
sequent being a bad smell, in particular, the God Class
and Long Method bad smells.

2.6 Method of the Data Analysis

Figure 3 illustrates, via diagram, the method used to
analyze the data obtained in the study.

Figure 3: Method of the data analysis.

This step is made in five parts. Initially, we identify
the design patterns in the software systems. We used
DPDSS tool to identify them and stored the results ob-
tained in a table.

The second part aims to identify classes and meth-
ods that have the God Class or Long Method bad smells.
To find them, we applied the logical expressions Exp1
and Exp2 in RAFTool. After to identify the design pat-
tern instances and God Class and Long Method bad
smells, in sequel, we performed the pre-processing of
these data by running the Design Pattern Smell tool.

In the third part, we apply the association rules on
the data resulting from the pre-processing, and then, we
identify the co-occurrences existing in the systems.

In the fourth part, we manually inspected the classes
with co-occurrence to identify the situations that con-
tributed the emergence of this relation in such classes.

Finally, we analyzed the data to answer the research
questions proposed.

3 Results

This section presents the results followed by the dis-
cussion of the presented study. We also answer, in this
section, the proposed research questions.

Tables 1 and 2 show the amount of classes and meth-
ods of the software systems with the God Class and
Long Method bad smells, respectively.

Table 1: Amount of classes with God Class.

Software
Classes with

God Class # Classes % Classes with
God Class

Hibernate 527 7,711 6.83%
JHotDraw 122 1,061 11.50%
Kolmafia 385 3,225 11.94%
Webmail 15 129 11.63%
Weka 467 2,401 19.45%

Table 2: Amount of methods with Long Method.

Software
Methods with
Long Method # Methods % Methods with

Long Method
Hibernate 2,883 48,234 5.98%
JhotDraw 995 7,633 13.04%
Kolmafia 5,400 2,8078 19.23%
Webmail 131 1,091 12.01%
Weka 3,822 20,871 18.31%

Tables 3 and 4 show the results after the data pre-
processing. In both tables, the “T” column indicates
the total number of classes or method that uses a design
pattern, and the “DP&BS” column indicates the number
of classes that have instances of some design pattern
(DP) and occurrence of the respective bad smell (BS).

After the data pre-processing, we performed
the association rule application to identify the co-
occurrences. For this purpose, we calculated the met-
rics described in Section 2.5 using the Tables 1, 2, 3,
and 4 results. We used the Conviction metric result fol-
lowing the thresholds shown in Section 2.5. Figure 4
exhibits the Conviction metric results for the God Class
bad smell, considering the Design Pattern⇒God Class
association rule. Figure 5 shows the results of the same
metric for Long Method bad smell, according to the De-
sign Pattern⇒ Long Method association rule.

3.1 Analysis of the Results

The classes with the God Class or Long Method bad
smells were inspected manually to answer the research
questions defined in this paper.

RQ1. Do the design patterns defined in the GOF cat-
alog avoid the occurrence of God Class and Long
Method bad smells in software?

The results reported in Table 3 indicate two design
patterns with a low God Class occurrence: Compos-
ite and Factory Method. The manual inspection reveals
that they have a modular structure and divides the tasks
between several classes. The idea of the Composite de-
sign pattern is to build complex objects via simpler ob-
jects. These simpler objects are defined in modules, in

Singleton

Factory Method

Composite

Prototype

Decorator

State−Strategy

Adapter−Command

Bridge

Proxy

Observer

Template Method

Weka 3.6.9

Webmail 0.7.10

Kolmafia 17.3

Jhotdraw 7.5.1

Hibernate 4.2.0

Relationship between GOF Design Pattern and God Class

conviction

0 1 2 3 4

de
si

gn
 p

at
te

rn
s

Figure 4: Results of the association rule Design Pattern ⇒ God
Class.

such a way intelligence is divided between them, reduc-
ing the complexity of the classes. The Factory Method
design pattern simulates the idea of a factory in which
there is an interface to create objects, but the object cre-
ation itself occurs in the class that implements this in-
terface. Thus, it is possible to create several modules,
each one responsible for creating and managing the in-
formation of a objects set, removing the workload from
a single class. Therefore, both Composite and Factory
Method are design patterns intrinsically modular.

We observed a similar behavior for the Long
Method bad smell, as shown in Table 4. Most design
patterns present a high amount of Long Method occur-
rences, except Composite and Factory Method, which
present just a few occurrences of this bad smell.

The Singleton design pattern is a special case. Al-
though its instances do not have the Long Method bad
smell, it seems a false negative case. Singleton was
indicated as false negative because its instances iden-
tified by DPDSS are based only on the static attribute
presented in the class. It does not consider methods as
characteristic of this design pattern. Thus, when this de-
sign pattern was intersected with methods that had bad
smells, it returned 0. However, when classes containing

Table 3: Amount of classes that comprise each design pattern and amount of classes that contain both design pattern and the bad smell God
Class.

Design Pattern
Hibernate

4.2.0
JHotDraw
7.5.1

Kolmafia
17.3

Webmail
0.7.10

Weka
3.6.9

T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS
Adapter-Command 228 39 53 19 386 81 40 7 152 68
Bridge 56 16 40 9 14 5 6 3 0 0
Composite 12 0 12 4 8 0 0 0 0 0
Decorator 37 3 10 2 67 7 0 0 32 17
Factory Method 37 3 5 0 31 3 2 0 22 3
Observer 4 2 2 1 8 1 0 0 36 12
Prototype 0 0 21 9 0 0 0 0 0 0
Proxy 8 2 0 0 18 9 0 0 35 18
Singleton 232 3 13 1 77 9 1 1 34 5
State-Strategy 271 47 121 43 334 64 23 3 93 45
Template Method 87 27 16 7 54 13 4 3 22 9

Table 4: Amount of methods that comprise each design pattern and amount of methods that contain both design pattern and the bad smell Long
Method.

Design Pattern
Hibernate

4.2.0
JHotDraw
7.5.1

Kolmafia
17.3

Webmail
0.7.10

Weka
3.6.9

T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS
Adapter-Command 271 52 73 19 703 123 50 5 222 71
Bridge 61 13 51 11 19 3 8 2 0 0
Composite 8 0 29 0 37 0 0 0 0 0
Decorator 115 2 31 1 255 12 0 0 61 25
Factory Method 58 0 23 0 45 0 2 0 27 0
Observer 8 3 2 1 7 3 0 0 24 4
Prototype 0 0 16 6 0 0 0 0 0 0
Proxy 6 1 0 0 31 9 0 0 37 12
Singleton 340 0 15 0 672 0 1 0 83 0
State-Strategy 343 121 227 90 974 154 19 0 173 97
Template Method 275 90 47 13 161 48 14 3 34 16

Singleton were inspected, we identified methods with
the Long Method bad smell inside them.

Summary. Although Factory Method and Compos-
ite design patterns present few co-occurrences with the
God Class and Long Method bad smells, the general
conclusion of this analysis is that most of the design
patterns studied in this paper are associated with this
two bad smells. Therefore, the answer of RQ1 is “No,
design patterns GOF not necessarily avoid occurrences
of the God Class and Long Method bad smells.”

RQ2. Which design patterns of GOF catalog pre-
sented co-occurrence with the God Class and Long
Method bad smells?

To analyze the association between design patterns
and bad smells, we considered the values of Convic-
tion. The choice of this metric is due to the fact that

Conviction is able to establish a relationship between
Support and Confidence metrics. Moreover, Conviction
has a better sensitivity to the direction between the an-
tecedent and the consequent. In order to define which
design patterns and bad smells co-occurrences have the
highest relation, we considered the Conviction thresh-
olds, mentioned in Section 2.5.

The chart in Figure 4 indicates a strong relation-
ship of several design patterns with the bad smell God
Class. The design patterns with the highest Convic-
tion values are: Template Method, Observer, and Proxy.
We also observed that the results for those design pat-
terns in four systems are very close: Hibernate 4.2.0,
JHotdraw 7.5.1, Kolmafia 17.3, and Weka 3.6 .9. In
Webmail 0.7.10, the association rule Template Method
⇒ God Class prevailed over the others, showing that
the Template Method was the design pattern that pre-

Composite

Factory Method

Singleton

Decorator

Prototype

Bridge

Adapter−Command

Proxy

Template Method

State−Strategy

Observer

Weka 3.6.9

Webmail 0.7.10

Kolmafia 17.3

Jhotdraw 7.5.1

Hibernate 4.2.0

Relationship between GOF Design Pattern and Long Method

conviction

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

de
si

gn
 p

at
te

rn
s

Figure 5: Results of the association rule Design Pattern ⇒ Long
Method.

sented more co-occurrences with God Class. These re-
sults, then, indicate that Template Method, Observer,
and Proxy presented more occurrences of the God Class
bad smell than the other design patterns.

Long Method has a similar behavior. The chart in
Figure 5 shows that many design patterns have a strong
relation with Long Method. Three design patterns
present a higher co-occurrence with Long Method: Ob-
server, State-Strategy, and Template Method. Convic-
tion is higher in 3 out of 5 systems: Hibernate 4.2.0,
JHotDraw 7.5.1, and Kolmafia 17.3. The strongest as-
sociation rule in these systems is Observer ⇒ Long
Method. Webmail 0.7.10 does not present any Observer
instance, therefore the Observer ⇒ Long Method as-
sociation rule was not found in this project. In Weka
3.6.9, Observer⇒ Long Method has a low occurrence.
In conclusion, the Observer ⇒ Long Method associa-
tion rule, despite having a low occurrence in two cases,
was the one that presented the strongest Conviction in
this paper. Nevertheless, State-Strategy and Template
Method also present a high Conviction value. Then, the
results indicate that Observer, State-Strategy, and Tem-
plate Method presented more occurrences of the Long
Method bad smell than the other design patterns.

Summary. So, answering RQ2, we identified Tem-
plate Method, Observer and Proxy as those which pre-
sented the main co-occurrences with the God Class bad
smell. Among them, Template Method design pattern
was those which presented the highest co-occurrence
with this bad smell. We also identified the Observer,
State-Strategy and Template Method design patterns as
those that presented the main co-occurrences with the
Long Method bad smell. Nevertheless, Observer pre-
sented the highest co-occurrence with Long Method.

RQ3. What are the more common situations in which
the God Class and Long Method bad smells ap-
pear in software systems that apply GOF design
patterns?

The results indicate that God Class bad smell has
more co-occurrences with the Template Method design
pattern, and the Long Method bad smell has more co-
occurrences with the Observer design pattern. To iden-
tify the causes of such co-occurrences, we performed
a manual inspection in the classes with the Template
Method ⇒ God Class and Observer ⇒ Long Method
co-occurrences. Tables 5 and 6 show the computed met-
rics results for these two co-occurrences.

Table 5: Metrics results for the Template Method ⇒ God Class.

Software Support (%) Confidence (%) Conviction
Hibernate 0.35 31.03 1,35
JHotDraw 0.66 43.75 1,57
Komafia 0.40 24.07 1,16
Webmail 2.33 75.00 3,53
Weka 0.37 40.91 1,36

Table 6: Metrics results for the Observer ⇒ Long Method.

Software Support (%) Confidence (%) Conviction
Hibernate 0.01 37.50 1.50
JHotDraw 0.01 50.00 1.74
Komafia 0.01 42.86 1.41
Webmail 0.00 ∞ ∞
Weka 0.02 16.67 0.98

3.1.1 Template Method ⇒ God Class

Template Method aims to define the skeleton of an al-
gorithm via an operation, transferring some steps to the
subclasses, which have the power to redefine the char-
acteristics of the algorithm without changing the algo-
rithm structure [10]. That is, this pattern uses a modu-
lar structure, in which the various behaviors of an ob-
ject are modeled in the subclasses and assigned to the

object via polymorphism. The advantage of this imple-
mentation is the reduction of complexity in the super
class, since definitions via conditional structures such
as if, else, and switches are replaced by polymorphism.
However, using this pattern requires careful attention to
avoid assigning many responsibilities to the templates
and also to the super class.

The manual inspection in the classes that presented
Template Method ⇒ God Class co-occurrence indi-
cated that a great amount of responsibilities were as-
signed to the classes containing the template method.
We observed that the templates methods refer to the
definition of the object behavior, implemented in the
subclasses. In some classes, the behavior implementa-
tion has a high complexity. This generates task over-
load in the templates methods, contributing with the
Long Method occurrence in some cases. In addition,
a high number of dependencies has been observed in
super classes that implements a Template Method. Sev-
eral objects are instantiated in such implementations,
elevating the coupling of these classes, and small tasks
are passed to them. For instance, Figure 6 shows a
class diagram of an Template Method instance identi-
fied in the Webmail system. The Storage class plays the
AbstractClass role on the design pattern and contains
the template methods. The initConfigKeys(), setCon-
fig(), getUserData(), setUserData(), deleteUserData(),
setVirtualDomain() and save() methods are the template
methods existing within the Storage class.

Analyzing the diagram in Figure 6, we can observe
the characteristics discussed above. The Storage class
contains the template method of this Template Method
instance. This class has an intense amount of getters
and setters methods that make use of few attributes.
In addition, we observe that this class has too much
services provided for others classes with different con-
cerns. It contains services regarding to user authentica-
tion, log handling, data transport, among others. This
task overloading at the Storage class, besides centraliz-
ing the intelligence of the system in a single component,
impairs the maintainability of component and system.

Based on this analysis, we identify some reasons
that contributed to the Template Method ⇒ God Class
co-occurrence emergence. The Template Method de-
sign pattern allows the classes extension and the addi-
tion of new features. However, poor planning and mis-
application of this design pattern contributes to increase
the amount of super-class responsibilities, concentrat-
ing a large part of the system intelligence in the super-
class, generating the God Class emergence. To elim-
inate these co-occurrences, it is necessary to extract,
from the overloaded classes, methods and attributes,

adding them to other classes to divide the amount of
work and effort performed by the Template classes.

3.1.2 Observer ⇒ Long Method

Observer is a solution that establishes a one-to-many
dependency between objects. Observer uses a structure
where the subject class has a list of all observers classes
that use its data. When some information is changed in
the subject by one of its observers, the subject is trig-
gered by changing the other observers. The aim of this
design pattern is the synchronization of data and the up-
dating of objects in real time. This update occurs via
polymorphism, avoiding the increase of complexity that
generally occurs with the use of conditional structures.
However, when using this design pattern, it is important
to implement the operation that notifies the observers in
the subject properly, since a poor planning of this oper-
ation can result in complex methods.

We manually inspected the methods involved in the
Observer ⇒ Long Method co-occurrence. Figure 7
shows a class diagram of an Observer instance identi-
fied in the Hibernate system.

In the diagram, the ConnectionObserver class
represents the Abstract Observer and the Connec-
tionObserverAdapter, ConnectionObserverStatsBridge
and JournalingConnectionObserver classes represent
the Concrete Observers which actually use the data
maintained by the Subject. The LogicalConnectionImpl
plays the Subject role and is primarily responsible for
maintaining and managing data that is essential for the
proper observers operation. When the existing data in
the Subject is changed for some of observers, the others
observers may be notified by one of following meth-
ods: close(), obtainConnection(), releaseConnection()
and notifyObserversStatementPrepared().

Analyzing the structure showed by the diagram in
Figure 7, we observed that three of four notify meth-
ods presented the Long Method bad smell: close(), ob-
tainConnection() and releaseConnection(). During the
manual inspection we noticed that the methods imple-
mented in the subject class, responsible for notifying
observers, perform a lot of work. Such methods are
big and complex, what make the code difficult to read
and to understand. In some case, there is also scattering
in the code, involving log records and observer update,
among others, that influence the high complexity and
the large size of these methods.

The aforementioned analysis revealed some main
situations that may lead to the presence of the Long
Method bad smell in methods implemented in Ob-
server. The high amount of code repetitions and
responsibilities assigned to the notifying observers

Figure 6: Class Diagram that represent the Template Method ⇒ God Class co-occurrence.

methods are the main situation we have found. Scatter-
ing and crosscutting concerns also have appeared in the
implementation of such methods. A concern is a part
of a problem that one needs to deal with in a software
system. The registration of the operation log is an ex-
ample of concern. When concerns are not modularized
in a program, it leads to scattering and to crosscutting
concerns in the code. In the methods implemented in
Observer, we have detected scattering and crosscutting
concerns in subject classes, specially due to repetition
of code that implements register of log, aiming to
notify observers. To eliminate such co-occurrences,
it is necessary to eliminate these code repetitions and
to modularize them so that they are implemented in
a single entity and can be reused by other entities.
With respect to scattering and crosscutting concerns,
in object-oriented programming, these occurrences are
difficult to control. However, they can be mitigated
through the Singleton design pattern. Developers could
create a Singleton class, responsible for managing log
concern for example, that would provide a specific
method for logging, requesting only the information
that should be written.

Summary. The main reason of co-occurrences of
God Class bad smell with Template Method is the mis-
use of object orientation, leading to concentration of re-
sponsibilities in the classes that implements the Tem-
plate Method. A similar situation was also found in the
case of the co-occurrences of Long Method bad smell

with Observer; in this case, the misuse of object orien-
tation leads to scattering and crosscutting concerns.

4 Lessons Learned

Design patterns are solutions with modular structure, so
it is possible to infer think that their application avoid
bad smells. Nevertheless, design patterns were not pro-
posed specifically to this aim.

When applying design patterns in the construction
of object-oriented software systems, it is important
to ensure that object orientation and modularization
are being properly applied. Design patterns are usu-
ally applied in methods and classes to allow software
more flexible and extensible. When design patterns
are not implemented carefully, it may result in design
deviances, such as concentration of responsibilities in
classes and methods, scattering and crosscutting con-
cerns. Such deviances may lead to the presence of bad
smell in software systems, and make the code complex
and difficult to understand.

The main co-occurrences of design patterns and bad
smells found in this work are Template Method⇒ God
Class and Observer ⇒ Long Method. In the manual
inspection we found classes with many responsibilities,
complex methods and code repetition. A better plan-
ning of the software design and its manutenability dur-
ing the evolution phase could avoid the design patterns
and bad smells co-occurrences. In particular, the ap-
plication of refactoring techniques during the software

Figure 7: Class Diagram that represent the Observer ⇒ Long Method co-occurrence.

evolution could improve or keep the internal quality
of the system, providing modularity, reducing the code
complexity and improving the code readability.

Another important information found in this study
is that most of the software systems analyzed presents
both bad smells, God Class and Long Method in the
implementation of the design pattern. The character-
istics of these bad smells might be the reason of the
co-occurrence of them with the design patterns. God
Class is a class that performs a lot of work in a software
system. To accomplish all the tasks a God Class has to
do, there are two not excluding possibilities: the class
has many methods and/or the methods of the class im-
plement many tasks, i.e., some or all of them are Long
Methods.

5 Threats to Validity

This section presents threats to validity according to the
guidelines proposed by Wohlin et al. [24]. They are
organized in external, internal and construct validity.

External Validity. We considered a sample com-
posed of five systems. We mainly analyzed systems
from a large data set, called Qualitas Corpus. The sam-
ple has small, medium, and large systems. Neverthe-
less, due to the small size of the sample, we are not
able to generalize the results found in this study. Even
though, the results found are still important because
they show that the use of design patterns not necessarily
avoid bad smells in object oriented software system.

Internal Validity. Our data collection was carried
out by tools. The identification of design patterns was
performed by DPDSS, and the identification of bad
smells by RAFTool. We are not able to ensure that
the results of those tools are totally right. However, we
chose tools already used in previous work.

Construction Validity. To identify the main causes
of the main co-occurrences of design pattern and the
bad smells identified in this study, we performed a
manual inspection in the classes and in the methods
involved in such co-occurrences. This inspection
was carried out by one of the authors of this work.
Although the inspector has high level of knowledge of
all the concepts involved in the analysis, the manual
inspection might be error-prone. To overcome this
threat, we decided to analyze a small quantity of
software systems in this work.

6 Related Work

This section presents the main previous related work
regarding the identification of co-occurrence between
design patterns and bad smells.

Jaafar et al. [11] investigated the existence and the
impact of the static relationship between anti-patterns
and design patterns in software systems. They analyzed
the behavior of these relationships during software evo-
lution. In their work, a case study was performed with
open source Java systems. The authors identified that
design pattern have relationship with anti-patterns and
that this relationship is in constant growth as the system
evolves. In addition, the Command design pattern was
identified as the one that presented the highest relation
with the investigated anti-patterns.

Cardoso and Figueiredo [3] performed an ex-
ploratory analysis to investigate the co-occurrence of
bad smells in software systems that use design pat-
terns. Their study considered the God Class and Du-
plicate Code bad smells and eleven of twenty-three de-
sign patterns described by [10]. The authors extracted

the information of design patterns and bad smells in-
stances, and through of association rules they found the
co-occurrence between Command with God Class as
well as Template Method with Duplicate Code.

Jaafar et al. [12] present a study on the impact of
static and co-changes dependencies in classes with de-
sign patterns and bad smells, and verify the relation
of these dependencies to occurrences of software fail-
ures. In their study, the authors observed the evolu-
tion of three open-source Java software projects and
concluded that classes having static dependencies with
anti-patterns as well as classes having static and co-
change dependencies with anti-patterns and design pat-
terns tend to have more flaws.

Walter and Alkhaeir [23] investigated the relation-
ship between design patterns and bad smells, and ex-
amined how the presence of one interacts with the pres-
ence of the other in a class. The authors carried out an
empirical study with seven bad smells and nine design
patterns, identified in two applications. They concluded
that the presence of design patterns is linked with a
small number of cases of bad smells.

In this paper, we identified other kind of co-
occurrences to the God Class and Long Method bad
smells and discussed these cases. In addition we iden-
tified design patterns with low co-occurrence with the
bad smells. Our study applied a different approach to
detect bad smells. Our data rely in detection strategies
to detect bad smells based in software metrics and their
thresholds. These detection strategies were previously
proposed and evaluated by Filó et al. [8].

7 Conclusion

In this paper we carried out an exploratory study with
object-oriented systems that applies design patterns to
(i) investigate if design patterns avoid the bad smells
emergence in software; (ii) identify design patterns that
may to present co-occurrence with bad smells; and
(iii) extract the main reasons that impact on the co-
occurrence emergence. The study considered a sample
of five systems, of varying sizes. Our main contribution
is that their findings may help the software engineering
community in the comprehension of the internal struc-
ture of the software systems that apply design patterns.

To identify the bad smells in the software systems,
we used detection strategies that are based in software
metrics and that were previously proposed and evalu-
ated in the literature. The detection strategies are based
in metrics consistent with the characteristics of God
Class and Long Method bad smells. Moreover, the
thresholds of the metrics used in the strategies were also
proposed and evaluated in previous work.

The results of this study show that the use of
design patterns not necessarily avoid God Class and
Long Method. We found that Composite and Factory
Method are the design patterns less associated with
the bad smells considered in this study. The main co-
occurrences of design patterns and bad smells found in
this paper are Template Method ⇒ God Class and Ob-
server⇒ Long Method. In the manual inspection of the
artifacts that presented these relations, we found classes
with many responsibilities, complex methods and code
repetition. A better planning of the software design and
its evolution could avoid the occurrences of bad smells
in the implementation of design patterns. In particular,
such problems would be avoided by a better planning
of the software design, as well as by the application of
refactoring techniques during the evolution of the soft-
ware system.

Another important information found is that most
of the analyzed systems presents both bad smells, God
Class and Long Method, in the implementation of the
design pattern. The characteristics of these bad smells
might be the reason of the co-occurrence of them. God
Class is a class that performs a lot of work in a software
system, and to accomplish all the tasks there are two
not excluding possibilities: the class has many methods
and/or the methods of the class implement many tasks,
i.e., some or all of them are Long Methods.

As future works, it is important (i) to extend this re-
search to a greater amount of sample in order the results
can be generalized; (ii) to investigate co-occurrences of
design patterns with other bad smells; (iii) to conduct an
analysis of a larger sample considering type and size of
the software systems would be also of help to improve
the comprehension of software systems that apply de-
sign patterns.

Acknowledgments

We would like to thank CAPES that supported to con-
duction of this work and the XIII Brazilian Symposium
on Information Systems (SBSI 2017) where part of this
study was published.

References

[1] Agrawal, R., Imieliński, T., and Swami, A. Min-
ing association rules between sets of items in large
databases. SIGMOD Rec., 22(2):207–216, June
1993.

[2] Brin, S., Motwani, R., Ullman, J. D., and Tsur, S.
Dynamic itemset counting and implication rules
for market basket data. SIGMOD Rec., 26(2):255–
264, June 1997.

[3] Cardoso, B. and Figueiredo, E. Co-occurrence of
design patterns and bad smells in software sys-
tems: An exploratory study. In Brazilian Sym-
posium on Information Systems, pages 347–354,
2015.

[4] Christopoulou, A., Giakoumakis, E. A., Zafeiris,
V. E., and Soukara, V. Automated refactoring to
the strategy design pattern. Information and Soft-
ware Technology, 54(11):1202–1214, 2012.

[5] Ferreira, K. A. M., Bigonha, M. A., Bigonha,
R. S., Mendes, L. F. O., and Almeida, H. C.
Identifying thresholds for object-oriented soft-
ware metrics. The Journal of Systems and Soft-
ware, 85:244–257, 2012.

[6] Filó, T. G. S. Identifying reference values for
object-oriented software metrics. Master’s thesis,
UFMG, Computer Science, 2014.

[7] Filó, T. G. S., Bigonha, M. A. S., and Ferreira, K.
A. M. Raftool - filtering tools for methods, classes
and packages with uncommon measurements of
software metrics. In WAMPS, pages 1–6, 2014.

[8] Filó, T. G. S., Bigonha, M. A. S., and Ferreira,
K. A. M. A catalogue of thresholds for object-
oriented software metrics. In SOFTENG, pages
48–55, 2015.

[9] Fowler, M. and Beck, K. Refactoring: Improv-
ing the Design of Existing Code. Addison-Wesley,
1999.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. Design Patterns: Elements of Reusable Object-
oriented Software. Addison-Wesley, 1994.

[11] Jaafar, F., Guéhéneuc, Y., Hamel, S., and Khomh,
F. Analysing anti-patterns static relationships with
design patterns. ECEASST, 59, 2013.

[12] Jaafar, F., Gueheneuc, Y.-G., Hamel, S., Khomh,
F., and Zulkernine, M. Evaluating the impact of
design pattern and anti-pattern dependencies on
changes and faults. Empirical Software Engineer-
ing, 21(3):896–931, 2016.

[13] Lanza, M. and Marinescu, R. Object-Oriented
Metrics in Practice. Springer-Verlag, 2006.

[14] Liu, W., Hu, Z.-G. b., Liu, H.-T., and Yang, L. Au-
tomated pattern-directed refactoring for complex
conditional statements. Journal of Central South
University, 21(5):1935–1945, 2014.

[15] Marinescu, R. Em Measurement and Quality in
Object-Oriented Design. PhD thesis, University
of Timisoara, 2002.

[16] Nahar, N. and Sakib, K. Automatic recommenda-
tion of software design patterns using anti-patterns
in the design phase: A case study on abstract fac-
tory. In CEUR Workshop Proc., pages 9–16, 2015.

[17] Nahar, N. and Sakib, K. Acdpr: A recommen-
dation system for the creational design patterns
using anti-patterns. In IEEE 23rd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 4, pages 4–7, 2016.

[18] Sousa, B. L., Bigonha, M. A. S., and Ferreira, K.
A. M. Evaluating co-occurrence of gof design pat-
terns with god class and long method bad smells.
In Proceedings of the XIII Brazilian Symposium
on Information Systems, pages 396–403, 2017.

[19] Sousa, B. L., Bigonha, M. A. S., and Ferreira, K.
A. M. A tool for detection of co-occurrences be-
tween design patterns and bad smells. Technical
report, Programming Language Lab (UFMG), llp
001-2017, 2017.

[20] Speicher, D. Code quality cultivation. Commu-
nications in Computer and Information Science,
348:334–349, 2013.

[21] Terra, R., Miranda, L. F., Valente, M. T., and
Bigonha, R. S. Qualitas. class corpus: A compiled
version of the qualitas corpus. ACM SIGSOFT
Software Engineering Notes, 38(5):1–4, 2013.

[22] Tsantalis, N., Chatzigeorgiou, A., Stephanides,
G., and Halkidis, S. T. Design pattern detection
using similarity scoring. Software Engineering,
IEEE Transactions on, 32(11):896–909, 2006.

[23] Walter, B. and Alkhaeir, T. The relationship be-
tween design patterns and code smells: An ex-
ploratory study. Information and Software Tech-
nology, 74:127–142, 2016.

[24] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C.,
Regnell, B., and Wessln, A. Experimentation in
Software Engineering. Springer, 2012.

[25] Zafeiris, V. E., Poulias, S. H., Diamantidis, N.,
and Giakoumakis, E. Automated refactoring of
super-class method invocations to the template
method design pattern. Information and Software
Technology, pages 19–35, 2017.

	Introduction
	Research Methodology
	Rearch Questions
	Identification of Bad Smells Detection Strategies
	Data Set
	Data Collection
	Application of Association Rules
	Method of the Data Analysis

	Results
	Analysis of the Results
	Template Method God Class
	Observer Long Method

	Lessons Learned
	Threats to Validity
	Related Work
	Conclusion

