
Software Qual J (2018) 26:217–248

A model for estimating change propagation in software

Kecia A. M. Ferreira1 ·Mariza A. S. Bigonha2 ·
Roberto S. Bigonha2 ·Bernardo N. de Lima3 ·
Bárbara M. Gomes1 ·Luiz Felipe O. Mendes2

Published online: 6 February 2017
© Springer Science+Business Media New York 2017

Abstract A major issue in software maintenance is change propagation. A software engi-
neer should be able to assess the impact of a change in a software system, so that the
effort to accomplish the maintenance may be properly estimated. We define a novel model,
named K3B, for estimating change propagation impact. The model aims to predict how
far a set of changes will propagate throughout the system. K3B is a stochastic model that
has input parameters about the system and the number of modules which will be initially
changed. K3B returns the estimated number of change steps, considering that a module may
be changed more than once during a modification process. We provide the implementation
of K3B for object-oriented programs. We compare our implementation with data from an
artificial scenario, given by simulation, as well as with data from a real scenario, given by
historical data. We found strong correlation between the results given by K3B and the results
observed in the simulation, as well as with historical data of change propagation. K3B may
be used for comparing software systems from the viewpoint of change impact. The model
may aid software engineers in allocating proper resources to the maintenance tasks.

Keywords Change propagation · Change impact analysis (CIA) · Software maintenance ·
Software metrics · Comparing programs · Stochastic process · Markov Chain

The authors would like to thank FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas
Gerais, which has sponsored Bárbara M. Gomes (CEFET-MG) and Luiz F. O. Mendes (UFMG) as
undergraduated students.

� Kecia A. M. Ferreira
kecia@decom.cefetmg.br

Mariza A. S. Bigonha
mariza@dcc.ufmg.br

1 Department of Computing, CEFET-MG, Belo Horizonte, MG, Brazil

2 Department of Computer Science, UFMG, Belo Horizonte, MG, Brazil

3 Department of Mathematics, UFMG, Belo Horizonte, MG, Brazil

DOI 10.1007/s11219-017-9358-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9358-6&domain=pdf
http://orcid.org/0000-0002-6361-7011
mailto:kecia@decom.cefetmg.br
mailto:mariza@dcc.ufmg.br

218 Software Qual J (2018) 26:217–248

1 Introduction

Software maintenance is the most costly activity in the software life cycle. About 2/3 of the
total cost of a software system is due to maintenance activities, whereas only 1/3 is due to
the development of the system (Sommerville 2011). One of the most important problems
in software maintenance is the change propagation effect (Hassan and Holt 2004), which
refers to the process in which a change in a particular module of the system, or in a set of
modules, causes changes in other modules of the system successively. A module, in this
context, is a piece of software. In an object-oriented project, for instance, a class can be
considered as amodule.When performing a change in a set ofmodules of a system, the developer
should be able to identify what else must be changed in order to keep it consistent with the
initial change. This problem is also referenced in the literature as change impact analysis
(CIA) or ripple effect (Li et al. 2012). Due to the importance of this issue, some works
have been carried out in the last decades with the aim to investigate how changes propagate
throughout a software system (Hassan and Holt 2004; Zimmermann et al. 2005; Li et al.
2009; Herzig 2010; Herzig and Zeller 2011; Geipel and Schweitzer 2012; Li et al. 2012).

Ideally, a small change performed in a module should impact a very few other mod-
ules (Meyer 1997). The easiness to perform changes in a software system is affected by the
internal characteristics of the system, such as information hiding, coupling, and cohesion
(Pressman 2009). Therefore, when facing a high-pervasive change propagation, the devel-
oper should identify the causes of this effect, and, hence, refactor the software structure in
order to improve its internal quality so as to lower the change impact rate. However, we still
do not have resources to perform such analysis in software systems properly. There is not a
consolidated method to estimate or to evaluate the effect of change propagation in software.

This work presents a novel model, named K3B, for estimating change propagation in
software systems. The aim of the model is to predict the potential change propagation effect
having as basis the structural characteristics of the software system, which is assessed by
means of software metrics.

K3B represents the change propagation process as a stochastic process. In short, the main
idea of the model is described following. The modification process starts with the changes
performed in a set of modules. From these initial changes, other modules can be affected
and, then, can be also changed successively. The process of changing a module occurs as
follows: (i) change starting: open the module source file for editing; (ii) code changing:
perform the necessary changes in the module source code to bring it back to a consistent
state; (iii) change propagation: propagate the impact of the changes, if any, to each module
connected to it and immediately start the process of changing in each connected module
accordingly; (iv) change finishing: close the module source file. We call change step the
event of starting or finishing a change in a module of the system. The idea of change step
introduced in the proposed model considers the fact that in a real scenario of maintenance, a
module is taken to be changed in a given moment and its changing process must be declared
as concluded in a given moment too. The whole modification process is accomplished when
all the necessary changes are finished, i.e, when there are no more modules to change in the
system relating to the initial set of changes.

The model proposed in this paper aims to estimate the number of change steps which will
be necessary to modify a system so that all changes resulting from an original set of changes
are performed. The main application of this model is, then, a resource for estimating the
cost to keep the system consistent with the initial changes.

The K3B model has as entry the size of the software, given in number of modules, the
number of modules which will be initially changed, and software metrics regarding the

Software Qual J (2018) 26:217–248 219

internal structure of the system. The model is generically defined in terms of modules,
which are separate units of software. In this work, we propose an implementation of K3B
for object-oriented programs.

We evaluated our implementation of K3B in two scenarios: an artificial one, by com-
paring the theoretical results of K3B with data from simulation, and in a real scenario, by
comparing the theoretical results of K3B with historical data of open-source projects. For
this purpose, we developed a tool to simulate change propagation in Java programs and to
count the resulting number of change steps. In this evaluation, we used data from 37 releases
of 11 Java programs. The results have shown a strong correlation between the number of
change steps given by K3B and those observed in the simulation. The data of K3B were also
compared with the historical data of change propagation from 10 open-source Java projects
(Geipel and Schweitzer 2012). We have also found a positive correlation about the results
of K3B and the probabilities of change propagation in real scenarios.

The main contributions of our work are the following:

– The definition of a stochastic model, named K3B, for predicting change propagation in
software modules (Section 2)

– An implementation of K3B for object-oriented programs (Section 3)
– The empirical evaluation of K3B by means of simulation (Section 4.1), and by

comparing the results produced by K3B with historical data (Section 4.2)

2 The K3B model

The modification of a program can be viewed as a process described as follows. During a
modification process, a module can be consistent or inconsistent. If an interface element of a
module is changed, all modules that use it will become inconsistent at the moment the mod-
ifications performed on the module are concluded. Since more than one interface element of
a module can be modified, each module changing process may cause several sets of modules
to be considered inconsistent. A module that is declared inconsistent needs to be checked
for its conformance to the proper use of the resources provided by modules whose interfaces
have been modified. It will return to a consistent state when it has been properly changed so
that all of its imported resources are used accordingly to their exporting interfaces. On the
other hand, if the modification process changes its public interface, all modules that depend
on it will become inconsistent, and the propagation of changes continues.

Before the modification process, all modules of the program are supposed consistent.
The process starts when a set of modules are taken to be changed. In this situation, these
modules become inconsistent. The changes of these modules may demand changes in other
ones successively. During this modification process, the changes of some modules may be
started, and the changes of other modules may be declared as finished, iteratively. When a
module of the system become consistent or inconsistent, an event is generated. We call this
event as a change step. A change step, then, represents the situation when a change has to
be performed or finished in a module. Indeed, during a modification process, the number of
modules to be changed can increase and decrease, iteratively, and the notion of change step
captures this behavior of the modification process. The process is said accomplished when
all modules are consistent again, i.e., when the number of inconsistent modules is zero.

The model proposed in this work aims to estimate the number of change steps for a
modification process of a system with n classes, when i modules will be initially changed,
until the modification process ends, i.e., until all the changes resulting from the initial ones

220 Software Qual J (2018) 26:217–248

are completely finished and all the modules are consistent. The effort needed to update a
module, although important for estimating the maintenance cost, is not considered in the
K3B model, because our purpose is to predict the number of change steps the modification
task will take to be completed.

2.1 Scenario examples

Consider that a user of an object-oriented system reported an issue to the project team. After
reading the issue report, one of the project developers concluded that there is an error in
the system. Initially, he or she identifies that the error is related to three classes which need
to be changed. The developer takes the three classes to be changed, starting the changing
process. These three classes, then, go to the inconsistent state and, hence, three change steps
are performed. The developer finishes the maintenance in one of the classes and, so, this
class turns into consistent and one more change step is performed. Let us call this class A. In
this situation, there are still two classes in the inconsistent state. However, due to the change
in A, the developer identifies that other two classes of the system need to be changed too.
Then, these classes turn into inconsistent and two more change steps are counted. At this
point, there are four classes in the inconsistent state. The developer finishes the maintenance
in one of the four classes, which turns into consistent. Let us call this class B. Therefore,
one more change step is counted and there are now three classes in the inconsistent state.
However, the developer notes that A needs to be changed again as a consequence of the
change performed in B. The class A is taken to be changed, turning into inconsistent, and
one more change step is counted. In this situation, there are four classes in the inconsistent
state. The developer finishes the maintenance on them, noting that there is no more need of
change in the system regarding the initial changes, i.e., changing those four classes will not
impact other classes in the system. In this situation, the four classes turn into consistent and
four more change steps are counted. At this point, all the classes of the system are consistent
and the changing process is over. In the total, five classes were changed and twelve change
steps were carried out.

This example describes a maintenance scenario started due to an error in the system. A
similar scenario can occur with other kinds of maintenance. For instance, consider that a
new feature will be included in the system. After designing the new feature, the software
engineer concludes that to include the new feature in the system, three classes of the current
system need to be changed. The process of changing the current system starts by taking the
three classes to be changed. A similar change process, then, may be followed in the same
way of the first scenario.

The proposed model aims to predict how many change steps the whole change process
will take. Of course, other problems are involved in a change process. For instance, the
model is not intended to identify the classes that need to be changed, though this is an
important problem in this context too. Nevertheless, the model aims to aid to estimate the
amount of task to be done in order to accomplish a whole change process, as described in
these examples.

2.2 The model definition

To define the change propagation model, we represent a software system as a directed
graph in which the nodes represent the modules, and the edges represent the connections
between the modules. A connection from a module A to a module B represents a dependence
relationship in such a way that a change in B may require a change in A.

Software Qual J (2018) 26:217–248 221

Consider a strongly connected software system with n modules and let S =
{0, 1, 2, ..., n} denote the set of possible states of a change process in the system. In the
model, a state corresponds to the number of modules which are inconsistent in a given
moment. A change process ends when the number of modules that are inconsistent is equal
to 0, i.e., when the change process is in state 0. This is the equilibrium state of the process.

In a real modification process scenario, many modules could simultaneously have their
status switched (to inconsistent or inconsistent). That is, a team may start changing more
than one module a time, as well as, it may conclude the changes in more than one module
a time. The main problem with such assumption is the unit of time to be considered. If we
consider a small unit of time, this assumption becomes unrealistic. For this reason, we do
not define the unit of time in our model. The unit of time can be a second, an hour, or even
a month. The model is designed to count the total number of changes that will be necessary
to accomplish the whole maintenance task. Therefore, the time in which each change is
performed does not matter to the final result. Besides, considering parallel changes will
introduce unnecessary complexity to the model.

Thus, for simplicity, we assume that changes are carried out singly and sequentially, in
order to compute the number of change steps. Therefore, when there are i modules incon-
sistent, i ε {1, 2, 3, ..., n − 1}, it is only possible to go to a state in which there are either
i + 1 or i − 1 inconsistent modules. This problem can be modeled as a Markov Chain. In a
Markov Chain, when i is the present state, the probability of going to future states depends
only on the present state, regardless of the previous states. Figure 1 shows the RandomWalk
(Petrov and Mordecki 2003) for this problem. In state i, the probability that the system goes
to state i + 1 is qi , and the probability that the system goes to state i − 1 is 1− qi . The Ran-
dom Walk is represented by a probability matrix P = (pij). Each position ij in the matrix
represents the probability that the system goes from state i to state j . These probabilities
are defined as follows.

– State 0 is the absorbing state, i.e., the equilibrium state. In this state, the change process
ends. The probability of leaving this state is 0, and the probability of staying in it is 1.
Hence, row 0 of the matrix is filled as follows.

p0j =
{
1 if j = 0
0 if j �= 0

– In state n, all modules are inconsistent . In this situation, the only possibility is to go
to state n − 1. Thus, row n of the matrix is filled as follows.

pnj =
{
1 if j = n − 1
0 if j �= n − 1

Fig. 1 The random walk of the change propagation process: i is the number of modules in the inconsistent
state in a given moment

222 Software Qual J (2018) 26:217–248

– In the intermediate states i, i ε {1, 2, 3, ..., n− 1}, it is only possible to go to state i + 1
or i − 1. The probability of going to state i + 1 is qi , and the probability of going to
state i − 1 is 1 − qi . In such states, the matrix is filled as follows.

pij =
⎧⎨
⎩

0 if j �= i + 1, j �= i − 1
qi if j = i + 1
1 − qi if j = i − 1

We use the term “contamination rate” to designate the rate with which a change in a
module will demand changes in other modules. We refer the parameter which indicates this
rate as α. This parameter should be a factor in such a way the higher its value, the higher
the “contamination rate.”

We use the term “decontamination rate” to designate the rate with which a change in
a module will be carried out without demanding changes in other modules. We refer the
parameter which indicates this rate as β. This parameter should be a factor in such a way
the higher its value, the higher the “decontamination rate.”

In state i, the probability of going to state i + 1 is proportional to the following:

– The “contamination rate,” α.
– The number of modules which are consistent , n− i, because the higher the number of

consistent modules, the higher the chance of at least one of them turns inconsistent .
– The number of modules which are inconsistent , i, because the higher the number

of inconsistent modules, the higher the chance of other module in the system turns
inconsistent too.

– The connectivity of the system. In this context, connectivity is referred to as the rate
of existing connections among modules in the software system. The higher the con-
nectivity of the system, the higher the chance of a change in a module affecting other
modules. We refer the parameter which represents the connectivity among modules
within a system as φ. For instance, in a system with φ = 0.5, there are 50 % of the pos-
sible connections between modules, whereas a system with φ = 1 is a totally connected
system.

Thus, from a state i, the rate of changing to state i + 1 is proportional to φ α (n − i)i .
In state i, the rate of going to state i − 1 is proportional to the following:

– The “decontamination rate,” β.
– The number of inconsistent modules, because the higher the number of inconsistent

modules, the higher the probability that one of them turns consistent.

Thus, from a state i, the rate of changing to state i − 1 is proportional to β i .
As the sum of pi,i+1 and pi,i−1, i ε {1, 2, 3, ..., n − 1}, must be equal to 1, Eqs. 1 and 2

are, then, defined.

pi,i+1 = αφ(n − i)i

αφ(n − i)i + βi
(1)

pi,i−1 = βi

αφ(n − i)i + βi
(2)

The purpose of this work it to define a method to compute the number of steps a process
will take to go from state i to the absorbing state, i.e., the number of steps it will take until
the change process reaches the equilibrium.

Theorem 1, described by Grinstead and Snell (1991), defines the estimated number of
steps a Markov Chain will take to reach the absorbing state when the chain is in state i.

Software Qual J (2018) 26:217–248 223

In order to apply this theorem, a (n + 1) × (n + 1) matrix of probabilities, where n is
the number of modules in the system, must be constructed. In this matrix, the absorbing
state corresponds to the last line and to the last column of the matrix. Hence, the matrix
of probabilities, P = (pij), for the problem of change propagation in software is filled as
shown in Fig. 2. The resulting matrix has four regions: A is a n×n matrix; 0 is a row vector
with all elements equal to zero; I is the identity matrix; and B is a column vector whose
first element can be nonzero, but the others cannot. The theorem is defined as follows.

Theorem 1 Let i be a state of the chain. Let E(ti) be the number of estimated steps before
the chain be absorbed, when the chain starts in state i. Let E be the column vector whose
ith entry is E(ti). Thus, E = Nc, where N = (I − A)−1, and c is a column vector whose
entries are equal to 1.

Applying the theorem, we have Eq. 3 as result. The ith position of the vector E, E(ti),
corresponds to the mean number of steps which the chain will take until it reaches the
absorbing state, when the chain starts in state i. In the context of change propagation,
E(ti) represents the number of change steps that a change process will take to reach the
equilibrium state when i modules of a software system are initially changed.

⎛
⎜⎜⎜⎜⎜⎝

E(t1)

E(t2)

E(t3)
...

E(tn)

⎞
⎟⎟⎟⎟⎟⎠

= (I − A)−1

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
...

1

⎞
⎟⎟⎟⎟⎟⎠

(3)

E(n, 1) = 1+ 2(n− 1)(n− 2)! αn−1φn−1

βn−1
+

k=n−2∑
k=1

2(n − 1)(n − 2)!
k!

αn−k−1φn−k−1

βn−k−1
(4)

E(n, i) = 1 + E(n, i − 1) +
k=n−2∑
k=i−1

2(n − i)
(n − i − 1)!
(k − i + 1)!

αn−k−1φn−k−1

βn−k−1
(5)

Using Matlab, we calculated the vector E for all n ε {4, 5, 6, ..., 11, 20, 25}. The results
of this computation are shown in Appendix A. From the analysis of these results, we

Fig. 2 The probability matrix

224 Software Qual J (2018) 26:217–248

Fig. 3 The pattern of the expressions

observed a pattern formation in the polynomials. Figure 3 shows the polynomials for soft-
ware system with six modules, n = 6, and indicates the pattern of the expressions. This
pattern was also observed in the polynomials for all n ε {4, 5, 6, ..., 11, 20, 25}. From this
observation, we analytically defined a generic formula which represents the pattern forma-
tion of those polynomials, that are the solution for Eq. 3. The generic formula is given by
Eqs. 4 and 5. Those equations are, then, the solution of the proposed model1. For simplicity,
we call them the K3B model.

The K3B model show that the number of change steps is given as a function of the
relation φα

β
. When φ = 0, there are no connections between modules within the software

system. In this case, the resultant number of change steps will be i, which is the number of
modules that will be initially changed. This is the expected result, because, in that situation,
there will be no change propagation. The same occurs when α = 0, which means that the
“contamination rate” is zero.

In a system with connections between its modules, i.e., when φ > 0, the best case occurs
when α and φ have a very low value, and β has a high value. In this case, the number of
change steps tends to i.

The worst case occurs when α and φ have high values, and β has a value near to 0. In this
case, the number of change steps is explosive, which means that the problem of changing a
software system may be intractable.

The K3B model are given in terms of factorial. Logarithmic transformation of the for-
mula is a way to overcome overflow problems in the implementation of K3B. The factorial
function can be generalized to real numbers by the gamma function (represented by �) as

1The formula was defined based on the resultant polynomials for n ε {4, 5, 6, ..., 11, 20, 25}. Analyzing data
for values of n > 25 manually was not viable.

Software Qual J (2018) 26:217–248 225

shown in Eq. 6. The natural logarithmic of n! corresponds to the natural logarithmic of
�(n+1), referenced as lngamma, which can be directly calculated. There are some available
implementations of lngamma for different programming languages. An implementation of
lngamma in Java is provided by the Weka project.2

n! = �(n + 1) =
∫ ∞

0
tne−t dt (6)

3 An implementation of K3B for object-oriented programs

In this section, we present an implementation of K3B for object-oriented programs3. Object-
oriented systems are made up of classes which relate one to another. We shall refer to classes
as modules.

K3B has as entry five parameters: φ, the connectivity of the system; α, the “contamina-
tion rate” in the system; β, the “decontamination rate” of the system; n, the total number of
classes; and i, the number of classes that will be initially modified. The definition of K3B
does not specify which metrics should be represented by parameters φ, α, and β; however,
we elected three well-known software metrics to represent those parameters.

The parameter α must be a factor in such a way as higher the factor, as higher the “con-
tamination rate,” i.e, the change propagation. The parameter β must lead to the opposite
effect. To choose the metrics for α and β, we considered modularity as one of the most
relevant factors of software quality and software maintenance (Meyer 1997). Moreover,
coupling among modules and module cohesion are considered the main forces that govern
modularity (Myers 1975; Pressman 2009). Thus, based on those assumption, we consider
that coupling metrics play the role of α, and cohesion metrics of β. Nevertheless, K3B does
not exclude the use of other metrics for α and β, provided the chosen metric for α corre-
sponds to a factor which may contribute to favor change propagation, and the chosen metric
for β corresponds to a factor which may contribute to prevent change propagation.

3.1 A metric for φ

The φ parameter represents the connectivity of the system. In the K3B model, the software
system is represented as a directed graph, i.e, a network. The connectivity refers to the
density of the network, that is, the percentage of existing connections on it. Abreu and
Carapuça (1994) defined a software metric that aims to measure such property in object-
oriented software systems. This metric, called COF (coupling factor), is given by c/(n2−n),
where c is the number of connections among the classes, and n is the number of classes in
the system. In our implementation of K3B, we have calculated φ according to the metric
COF. To generate the graph which represents the object-oriented program, we considered
the following types of connections between classes: inheritance, use of method, and use of
fields. However, the definition of the model does not limit the types of connections to be
considered in the implementation of the model.

2http://www.cs.waikato.ac.nz/ml/weka/
3Our implementation of K3B was introduced in Connecta Project and it is available in http://homepages.dcc.
ufmg.br/∼kecia/connecta.htm.

http://www.cs.waikato.ac.nz/ml/weka/
http://homepages.dcc. ufmg.br/~kecia/connecta.htm.
http://homepages.dcc.ufmg.br/~kecia/connecta.htm.

226 Software Qual J (2018) 26:217–248

3.2 A metric for β

In our implementation of K3B, we used the metric Cohesion by Responsibility (COR)
(Ferreira 2011) for β. This metric is given by 1/C, where C is the number of disjoint sets
of methods within the class. Each of these sets consists of similar methods. Two methods
are similar when they use a common field or a common method of the class. The similarity
relation is transitive in the sense that if a method a is similar to a method b, and b is similar
to a method c, then a is also similar to c. Each set defines a class responsibility. For exam-
ple, when there are only two sets in a class, COR is 0.5. This indicates that this class has two
responsibilities. If there is only one set in a class, COR will result in 1, which indicates a
high cohesion. Ferreira et al. (2011) carried out an experimental evaluation of four cohesion
metrics: LCOM (lack of cohesion in methods) (Chidamber and Kemerer 1994), LCOM4
(Hitz and Montazeri 1995), TCC (tight class cohesion) (Bieman and Kang 1995), and COR.
Findings of that work showed that COR may be used as a good indicator of class cohesion
and it is useful in identifying classes with design deviance. Based on these findings, we have
chosen to use COR in our implementation of K3B.

Cohesion metrics are usually defined to evaluate a single class. As β is a value taken for
the system as whole, we computed the mean cohesion in the system as β. We applied this
approach in our implementation of K3B.

3.3 A metric for α

Coupling is the level of interdependence among modules of a system. If a class depends on
another, there is a connection between them. The nature of this connection may define the
coupling level between the classes. For instance, the use of public fields may cause strong
coupling between classes.

We consider four main types of dependence among classes. To each of them, we asso-
ciated a weight from 0 to 1, because the value is supposed to represent α, that is a rate.
The weights of this scale were set based on the idea that the higher the coupling, the higher
should its weight be. The highest weight we used was 0.2. We carried out previous tests with
K3B formulae in order to calibrate those weights. The value 0.2 was selected to be used in
our implementation as the highest value for α because bigger values had led to huge values
of K3B, what we assumed to be unrealistic.4 The types of connections and its weights are
described as follows.

– Use of field: this type of coupling occurs when a class uses a field of another, what
might lead to strong coupling between the classes. For this reason, the weight associated
to this type of coupling is the highest in this scale: 0.2.

– Inheritance: it occurs when a class extends another. In languages such as Java, when
a class implements an interface, it could also be considered an instance of this type of
coupling. This kind of relationship leads to a strong dependence among classes, but not
as high as the connection by the use of field. The weight associated with this type of
connection should be less than that associated with connection by the use of field. We
used 0.1 as the weight for connection by inheritance.

4Geipel and Schweitzer (2012) have found that the probability that two interconnected classes have been
modified together is at least once is 0.33, with a standard deviation of 0.12. The weights we used in our study
are near to those.

Software Qual J (2018) 26:217–248 227

– Reference: when a class uses a method of another and passes a reference to some object
to this method as parameter, there is a relevant degree of dependence among these
classes, because changing the object inside the called method would impact on the
caller. We used the weight 0.1 for this kind of coupling.

– Use of method: it occurs when a class uses a method of another and only passes non-
object data to this method as parameter. This is the lowest level of coupling among
classes, but it still represents some level of dependence. We used 0.05 as the weight for
this level of coupling.

A class may use another one in many ways, resulting in different types of connections.
In this case, we considered the connection with the highest weight. As α is a single value,
which represents a property of the system as whole, we used the mean value of the weights
of all the connections as α.

3.4 Computing K3B

To implement K3B, we represent an object-oriented program as a weighted directed graph,
where a node represents a class with its corresponding metric COR; an edge corresponds
to a connection between two classes, and it has a weight that represents the type of the
connection. We compute COF as φ, the mean weights of the edges as α, and the mean value
of COR of the nodes as β. The evaluation of K3B performed in this work is based on the
implementation of K3B described in this section.

4 Evaluation of K3B

In this section, we evaluate the proposed model. We compare the results generated by our
implementation of K3B with (1) data from simulation of change propagation in Java pro-
grams and (2) data of a previous study that empirically investigated the change propagation
in real scenarios of modification process of Java projects.

4.1 K3B × simulation

We developed a tool (Ferreira 2011) which simulates a given type of change the classes of a
program, and counts the number of change steps resulting from each initial change. The tool
analyzes Java software given its bytecode, the type of change which will be simulated, and
the number of classes which will suffer changes initially. The tool simulates all the possible
changes in the program with the given pattern and, for each of these instances of change, it
counts the number of change steps and returns the average number of change steps.

The evaluation of K3B was performed according to the following steps. Initially, for
a given program, K3B estimates the number of change steps for 1 ≤ i ≤ n, where i is
the number of classes which will be initially changed, and n is the total number of classes
that compose the program. For each value of i, we performed the simulation of a given
type of change. We, then, compared the value computed by K3B with the resultant value
of the simulation. The hypothesis investigated in this evaluation is that K3B estimates the
mean number of change steps in object-oriented software systems. In order to verify this
hypothesis, we investigated if there is correlation between the values generated by K3B and
the results of the simulation. We used the Pearson correlation to perform such analysis. In
this experiment, we used 37 versions of 11 open-source software systems.

228 Software Qual J (2018) 26:217–248

4.1.1 The evaluated type of change

The aim of this evaluation is to verify the accuracy of K3B in estimating change propaga-
tion. A change in a module can “contaminate” the other ones to which it is connected. This
process dynamics is applicable to any modification, regardless of the type of the modifica-
tion performed in the module interfaces. Hence, for the purpose of simulation, it is necessary
just a situation which represents this process, i.e., it is enough to perform a change in a
module and see how it ripples successfully to other ones.

Changing the parameter list of a given public method implies that the contract (Meyer
1997) of the class will change necessarily. In particular, when a parameter is added to the
parameter list of a method, there are two main ways to generate the new method’s argument
in the caller methods: the own caller method is able to provide the new data, or it may
demand this new data will be passed to it as a parameter. Hence, a change in a parameter
list of a method may be propagated to other ones.

Adding private fields may demand accessor methods. In the case of adding public fields,
accessor methods are not needed. In both cases, the classes which use the changed class
also may have to be changed in order to provide data for the new fields. In these situations,
there are two main possibilities: the own class is able to provide the data, or it may demand
the data be generated by other classes and, then, sent to it as a parameter. The effect of this
type of change and the effect of changing parameter list are, hence, similar.

Fowler (1999) describes a set of changes that can be performed in an object-oriented soft-
ware system, that is known as code refactoring. For instance, add parameter, parametrize
method, collapse hierarchy, and extract class may lead to change in the contract of the
affected class. The propagation effects of those types of change are similar to change of
parameter list. Therefore, for the purpose of simulating the effect of a change propagating
throughout the system, a single type of change is sufficient. We have chosen the change of

Fig. 4 Simulation of change propagation—meanStepChange

Software Qual J (2018) 26:217–248 229

parameter list to simulate change propagation. Although this is not the only possible change
in object-oriented software, it is good enough to represent the change propagation effect.

4.1.2 The algorithm of the simulation of change propagation

The simulation of the change propagation is based on the call flow among methods of a
program. When a method m2 calls a method m1, and m1 has its parameter list changed, it
is possible that m2 will have its parameter list also changed. This might occur because there
are two main ways for m2 produce the new parameters to m1: m2 will produce the new
parameter itself, or m2 also will need to receive the new parameter from some other object.
As in the simulation, it is not possible to define how m2 can produce the new parameter
itself, we consider the worst case in the simulation: the parameter list of m2 also will be
changed. Therefore, the propagation of a change in m1 is counted until a method which is
not called by any other methods is reached. The algorithms of Figs. 4 and 5 describe the
computation of the number of change steps when the parameter list of a method is changed.

The algorithm simulates all the possibilities of change propagation in the software sys-
tem. To compute the change propagation for i = 1, i.e, when one class is changed, the
simulation of change propagation is carried out for each method of the classes. At the end
of the computation, the mean value of the partial results is calculated. This result repre-
sents the mean number of change steps when one class is changed. To simulate the effect
of change propagation for i > 1, the algorithm takes i classes from the software program a
time, making a combination of i methods from them. The result of each partial simulation
is the sum of the change impact of the methods. After considering all the combination of i

classes, the simulation ends. The final result of the simulation is the average of the partial
results.

Fig. 5 Simulation of change propagation—countStepsMethod

230 Software Qual J (2018) 26:217–248

4.1.3 Method of the evaluation

To evaluate K3B, we verified if there is correlation between the values produced by K3B
and the resultant values of the simulation. The hypothesis investigated is that K3B estimates
the real value; hence, there is a positive correlation between K3B values and the data from
simulation. We performed this analysis for the 37 software versions used in this experiment.
For each of these programs, we computed the K3B value for different values of i (the initial
number of modules in inconsistent state), and we collected the corresponding values in the
simulation. Each of these observations resulted in a regression line Simulated = m ∗
K3B + b.

If there is a positive correlation between K3B and the values given by the simulation, and
if the values of m and b are slightly different, or invariant, among the resultant regression
lines for distinct software systems, it is possible to conclude that, regardless the software
system, K3B estimates the real number of change steps properly. Moreover, the simulation
value can be calculated by multiplying K3B values by m and, then, adding the result with b.
On the other hand, if there is a significant difference among the values of m and among the
values of b in the resultant regression lines, it means that, though K3B can predict the real
value, the regression line is sensitive to the evaluated software. In this situation, it would not be
possible to define general values for m and b to obtain the real value using the K3B formulae.

Therefore, besides the verification of correlation between K3B and the values given by
the simulation, we analyzed the behavior of the values of m and b among the regression
lines. The hypothesis investigated in this analysis is that the value of K3B multiplied by a
known constant will result in the real value, regardless the software system.

4.1.4 Results

In this section, we present and discuss the results of the evaluation of K3B. For simplicity,
we use the termK3B(i) to denote the value given by K3B for a programwhen i of its classes
are initially changed. In the same way, we use the term Sim(i) to denote the value given
by the change simulation algorithm considering that i classes of the program are initially
changed.

The evaluation was limited to 1 ≤ i ≤ 3 because the simulation is a high-cost process.
The algorithm simulates all the possibilities of change propagation. Therefore, its complex-
ity is exponential. Some simulations for i = 3 took more than 24 h of computer processing
time. In four programs, the execution of the simulation was performed for i = 4, and in
other three programs, the execution of the simulation was performed for i = 5. Some of
these simulations have consumed about 3 days. For this reason, performing the simulation
for values of i higher than five is impracticable.

Tables 1 and 2 show the data from the analysis for i = 3. Columns α e β correspond to
the mean class coupling and the mean class cohesion of the system, respectively. Column
φ is the COF metric of the system. Columns K3B(i) and Sim(i) are the values of K3B
and the values given by the simulation, respectively. Column r is the correlation coefficient
between K3B and the corresponding value observed in the simulation. Columns m and b

are the coefficients of the regression line Simulated ′ = m ∗ K3B + b.
The results for 1 ≤ i ≤ 4 and 1 ≤ i ≤ 5 are reported in Table 3. From the gathered data,

we observed that these results are very close to those for 1 ≤ i ≤ 3. An example of this
situation is illustrated in Fig. 6, which shows the result of the program JUnit, version 3.4,
for i = 3 and i = 5. Although these results are not conclusive, they suggest that those for
1 ≤ i ≤ 3 can be considered as significant.

Software Qual J (2018) 26:217–248 231

Ta
bl
e
1

C
om

pa
ri
so
n
be
tw
ee
n
K
3B

an
d
da
ta
fr
om

th
e
si
m
ul
at
io
n—

1
≤

i
≤

3

Pr
og
ra
m

V
er
si
on

α
β

φ
C
la
ss
es

M
et
ho
ds

K
3B

(1
)

K
3B

(2
)

K
3B

(3
)

Si
m
(1
)

Si
m
(2
)

Si
m
(3
)

r
m

b

H
ib
er
na
te

3.
0

0.
08
3

0.
58
4

0.
00
3

95
6

10
35
8

2.
33

4.
66

6.
99

2.
67

5.
34

8.
01

0.
99
99
99
97

1.
15

0

3.
1

0.
08
5

0.
58
4

0.
00
3

11
18

13
68
3

2.
38

4.
76

7.
14

2.
73

5.
47

8.
01

0.
99
97
87
41

1.
11

0.
12

Ja
sp
er

0.
4.
0

0.
09
5

0.
72
0

0.
00
9

24
2

17
90

1.
75

3.
49

5.
23

2.
73

5.
47

8.
20

0.
99
99
99
98

1.
57

−0
.0
2

R
ep
or
ts

1.
0.
0

0.
08
3

0.
63
9

0.
00
4

57
4

60
94

1.
88

3.
77

5.
65

2.
79

5.
58

8.
38

1.
00
00
00
00

1.
48

0.
00

2.
0.
0

0.
08
1

0.
61
7

0.
00
2

11
04

13
19
6

1.
97

3.
94

5.
90

2.
82

5.
65

8.
79

0.
99
95
31
85

1.
52

−0
.2
3

Ja
va

1.
0

0.
10
9

0.
66
0

0.
00
7

41
5

33
31

3.
01

6.
01

8.
99

3.
73

7.
44

11
.1
4

0.
99
99
99
96

1.
24

0.
00

G
ro
up
s

2.
1.
1

0.
10
5

0.
69
9

0.
00
4

69
6

86
38

2.
46

4.
92

7.
37

4.
51

9.
02

12
.3
7

0.
99
63
37
03

1.
60

0.
76

JM
L

10
a1

0.
08
5

0.
53
5

0.
01
7

17
1

11
67

2.
61

5.
20

7.
77

2.
33

4.
66

6.
98

0.
99
99
99
54

0.
90

−0
.0
2

10
a2

0.
07
9

0.
58
0

0.
01
5

18
6

16
52

2.
18

4.
35

6.
51

2.
01

4.
01

6.
02

0.
99
99
98
18

0.
93

−0
.0
1

10
b1

0.
08
1

0.
58
2

0.
01
5

20
3

18
08

2.
42

4.
82

7.
21

2.
13

4.
27

6.
41

0.
99
99
99
60

0.
89

−0
.0
3

10
b3

0.
08
1

0.
57
6

0.
01
4

21
8

19
56

2.
50

4.
99

7.
47

2.
16

4.
33

6.
49

0.
99
99
99
49

0.
87

−0
.0
2

10
b4

0.
08
3

0.
59
2

0.
01
2

27
0

23
19

2.
74

5.
48

8.
20

2.
59

5.
18

7.
77

0.
99
99
98
89

0.
95

−0
.0
1

JS
C
H

0.
1.
14

0.
11
1

0.
74
7

0.
03
2

80
67
1

2.
17

4.
32

6.
44

2.
30

4.
60

6.
89

0.
99
99
99
08

1.
08

−0
.0
4

0.
1.
20

0.
10
8

0.
66
8

0.
02
8

83
74
0

2.
17

4.
31

6.
43

2.
26

4.
51

6.
75

0.
99
99
98
39

1.
05

−0
.0
3

0.
1.
26

0.
10
4

0.
68
1

0.
02
4

94
82
3

2.
03

4.
05

6.
04

2.
15

4.
29

6.
43

0.
99
99
98
29

1.
07

−0
.0
2

0.
1.
34

0.
10
5

0.
69
0

0.
02
3

10
9

94
1

2.
17

4.
32

6.
45

2.
26

4.
53

6.
80

0.
99
99
99
01

1.
06

−0
.0
5

0.
1.
42

0.
10
3

0.
65
9

0.
02
0

11
7

10
12

2.
11

4.
21

6.
29

2.
25

4.
50

6.
75

0.
99
99
97
34

1.
08

−0
.0
2

JU
ni
t

3.
4

0.
07
8

0.
81
5

0.
02
3

78
31
5

1.
41

2.
81

4.
21

1.
67

3.
32

4.
96

0.
99
99
99
68

1.
18

0.
01

3.
8

0.
07
8

0.
80
3

0.
01
8

10
1

59
5

1.
41

2.
81

4.
21

2.
35

4.
70

7.
04

0.
99
99
99
96

1.
67

−0
.0
1

4.
0

0.
07
3

0.
76
3

0.
02
0

92
92
4

1.
42

2.
82

4.
23

2.
27

4.
53

6.
80

0.
99
99
99
44

1.
61

−0
.0
2

4.
5

0.
07
5

0.
74
2

0.
01
0

18
8

15
16

1.
47

2.
94

4.
40

2.
58

5.
15

7.
73

0.
99
99
99
46

1.
76

−0
.0
1

4.
8.
1

0.
07
5

0.
74
2

0.
00
8

23
0

16
94

1.
46

2.
92

4.
38

2.
68

5.
35

8.
02

0.
99
99
99
68

1.
83

0.
01

232 Software Qual J (2018) 26:217–248

Ta
bl
e
2

C
om

pa
ri
so
n
be
tw
ee
n
K
3B

an
d
da
ta
fr
om

th
e
si
m
ul
at
io
n—

1
≤

i
≤

3

Pr
og
ra
m

V
er
si
on

α
β

φ
C
la
ss
es

M
et
ho
ds

K
3B

(1
)

K
3B

(2
)

K
3B

(3
)

Si
m
(1
)

Si
m
(2
)

Si
m
(3
)

r
m

b

K
ol
M
af
ia

0.
2

0.
09
1

0.
78
5

0.
05
6

39
23
9

1.
65

3.
27

4.
88

2.
83

5.
69

8.
58

0.
99
99
78
62

1.
78

−0
.1
2

1.
0

0.
09
3

0.
76
0

0.
02
5

14
3

63
4

2.
47

4.
93

7.
37

5.
53

11
.0
2

16
.4
6

0.
99
99
99
96

2.
23

0.
01

L
og
si
m

2.
0.
0

0.
09
2

0.
63
2

0.
00
4

90
8

67
38

3.
17

6.
34

9.
51

3.
86

7.
72

11
.5
8

0.
99
99
99
97

1.
22

0.
00

2.
1.
0

0.
09
2

0.
63
0

0.
00
4

99
3

75
08

3.
32

6.
64

9.
95

3.
90

7.
79

11
.6
8

0.
99
99
99
80

1.
17

0.
00

M
ov
ie

1.
6b
et
a

0.
08
0

0.
76
7

0.
03
7

64
36
4

1.
64

3.
26

4.
87

2.
93

5.
75

8.
46

0.
99
99
67
04

1.
71

0.
13

M
an
ag
er

1.
7

0.
08
0

0.
83
2

0.
03
2

73
41
8

1.
56

3.
12

4.
66

2.
88

5.
64

8.
30

0.
99
99
64
24

1.
75

0.
16

2.
0

0.
08
8

0.
68
7

0.
00
4

51
7

80
97

1.
66

3.
31

4.
96

6.
53

13
.0
4

19
.5
3

0.
99
99
99
59

3.
94

0.
00

2.
8

0.
09
5

0.
83
0

0.
00
7

45
8

34
95

2.
23

4.
46

6.
69

8.
43

16
.7
7

25
.0
2

0.
99
99
96
04

3.
72

0.
14

2.
9.
13

0.
09
7

0.
83
4

0.
00
5

60
8

46
55

2.
27

4.
54

6.
81

7.
26

14
.4
8

21
.6
4

0.
99
99
98
18

3.
17

0.
07

Ph
ex

0.
6

0.
09
8

0.
64
8

0.
00
7

39
3

22
32

2.
49

4.
98

7.
45

8.
71

17
.4
1

26
.1
0

0.
99
99
99
96

3.
50

−0
.0
2

2.
8.
0

0.
08
7

0.
70
5

0.
00
3

12
05

98
72

2.
42

4.
83

7.
24

4.
74

9.
48

14
.2
1

1.
00
00
00
00

1.
97

−0
.0
1

3.
4.
2

0.
08
7

0.
70
3

0.
00
3

13
52

14
07
8

2.
75

5.
50

8.
25

4.
16

8.
33

12
.4
9

1.
00
00
00
00

1.
52

−0
.0
1

Sq
ui
rr
el

1.
0

0.
07
2

0.
78
5

0.
00
4

42
4

15
89

1.
37

2.
73

4.
10

4.
06

8.
11

12
.1
6

1.
00
00
00
00

2.
97

−0
.0
1

2.
0

0.
07
5

0.
74
6

0.
00
3

72
9

51
03

1.
46

2.
92

4.
37

3.
33

6.
67

10
.0
0

0.
99
99
99
97

2.
29

−0
.0
1

2.
6

0.
07
9

0.
79
9

0.
00
2

94
0

63
35

1.
50

3.
00

4.
50

3.
23

6.
46

9.
69

1.
00
00
00
00

2.
16

0.
00

Software Qual J (2018) 26:217–248 233

Ta
bl
e
3

C
om

pa
ri
so
n
be
tw
ee
n
K
3B

an
d
da
ta
fr
om

th
e
si
m
ul
at
io
n—

i
=

4
an
d

i
=

5

Pr
og
ra
m

V
er
si
on

K
3B

(1
)

K
3B

(2
)

K
3B

(3
)

K
3B

(4
)

Si
m
(1
)

Si
m
(2
)

Si
m
(3
)

Si
m
(4
)

r
m

b

JM
L

10
a1

2.
61

5.
20

7.
77

10
.3
3

2.
33

4.
66

6.
98

9.
29

0.
99
99
98
53
5

0.
90

−0
.0
3

JS
C
H

0.
1.
14

2.
17

4.
32

6.
44

8.
54

2.
30

4.
60

6.
89

9.
17

0.
99
99
97
45
3

1.
08

−0
.0
5

K
ol
m
af
ia

1.
0

2.
47

4.
93

7.
37

9.
79

5.
53

11
.0
2

16
.4
6

21
.8
5

0.
99
99
99
88
2

2.
23

0.
02

Sq
ui
rr
el

1.
0

1.
37

2.
73

4.
10

5.
46

4.
06

8.
11

12
.1
6

16
.2
0

0.
99
99
99
99
6

2.
97

−0
.0
04

Pr
og
ra
m

V
er
si
on

K
3B

(1
)

K
3B

(2
)

K
3B

(3
)

K
3B

(4
)

K
3B

(5
)

Si
m
(1
)

Si
m
(2
)

Si
m
(3
)

Si
m
(4
)

Si
m
(5
)

r
m

b

JU
ni
t

3.
4

1.
41

2.
81

4.
21

5.
60

6.
99

1.
67

3.
32

4.
96

6.
58

8.
19

0.
99
99
97
48
6

1.
17

0.
03

K
ol
m
af
ia

0.
2

1.
65

3.
27

4.
88

6.
46

8.
02

2.
83

5.
69

8.
58

11
.4
9

14
.4
1

0.
99
99
05
93
4

1.
82

−0
.2
3

M
ov
ie
M
an
ag
er

1.
6b
et
a

1.
64

3.
26

4.
87

6.
46

8.
05

2.
93

5.
75

8.
46

11
.0
9

13
.6
6

0.
99
99
05
93
4

1.
67

0.
25

234 Software Qual J (2018) 26:217–248

Fig. 6 Correlation between K3B and the data from simulation, for i = 3 and i = 5 - JUnit 3.4

The analysis of the data reported in Tables 1, 2 and 3 shows that

– In all cases, correlation r is nearly 1. The mean of the values of r is 0.99992, with
standard deviation of 0.0005. This result indicates a strong correlation between K3B
and the observed data in the simulation. Despite the small number of points used in the
correlation analysis, this finding reveals that K3B indeed predicts the values given by
the simulation.

– The values of the coefficients m are very close. The same occurs with the coefficient
b. The mean values of these coefficients and their respective 95 % confidence intervals
are such as

– The mean value of m is 1.7, with standard deviation of 0.82. The 95 % con-
fidence interval of the mean is [1.46; 1.92]. This indicates that the value
observed in a simulation is 1.92 times larger than the value given by K3B at
most.

– The mean value of b is 0.02, with standard deviation of 0.14. The 95 % confi-
dence interval of the mean is [−0.02; 0.06]. This indicates that, in general, the
value of b is near to 0. Thus, the value given by the simulation can be obtained
by adjusting the value of K3B with the known mean of m.

– Equation 7 is the mean regression line between the values of K3B and the observed
data from the simulation.

Simulated = 1.7 × K3B (7)

This finding suggests that the value given by K3B can indeed be used to predict the
value given by the simulation. Moreover, as the value ofm is quite small, the value given
by K3B and the value given by the simulation have the same magnitude. Assuming that
the simulation is a good expression of the real scenarios, the K3B model can be, hence,
used to predict the number of change steps in software systems.

The K3B model is based on the probability of a change be propagated in the system. In
our implementation of K3B, such probabilities were computed in terms of factors such as
level of class coupling, cohesion and connectivity. The simulation of change propagation
used in the evaluation of K3B does not directly consider cohesion and level of coupling. In
the simulation, a change in a method is supposed to be always propagated to all the other

Software Qual J (2018) 26:217–248 235

methods which use the changed method. The simulation is, hence, more pessimist than
K3B. The achieved results are consistent with this, because they show that the values given
by the simulation are larger than those given by K3B, as expected.

Simulation is a high-cost process. In some cases, the simulation time is infeasible. For
instance, the simulation of change of four classes (i = 4) from JSCH, which has only
80 classes and 671 methods, took 34 min. The simulation of change of four classes from
Squirrel, which has only 424 classes and 1589 methods, took more than 24 h. As the
implementation of K3B is simple and it computes the result promptly, K3B is an efficient
candidate to predict the number of change steps in software systems.

The systems considered in this study have the following mean parameters for K3B: φ =
0.009, α = 0.085, β = 0.700. Hence, in general, there is less than 1 % of the connections
among the classes in the system. The coupling among classes is near to 0.1, which is the
corresponding weight of coupling by inheritance or by reference. The mean cohesion of
the classes is 0.7, which corresponds to a high cohesion. These values suggest that the
software systems considered in this study have good internal quality in general, regarding
coupling, cohesion, and level of connectivity. This might be the reason why the K3B values
obtained in this study are low. However, a deeper investigation would be necessary to state
that these systems actually have high internal quality. Even in software systems with such
internal characteristics, K3Bmay be of help because not always the developer will be able to
estimate the impact of the changes he or she has to accomplish. The importance of predicting
change impact would be even greater in systems with low internal quality.

4.2 K3B × historical data

In this section, we compare the results of K3B with historical data that consider the depen-
dencies between modules. To carry out this comparison, we considered the results of
the empirical study of Geipel and Schweitzer (2012) that investigated the role of class
dependence in change propagation. They have shown that dependencies among classes
significantly raise the chance of change propagation.

We decided to compare our model with the results of their study for many reasons: the
sample they used is large; they analyzed open-source Java projects, that is, the target pro-
gramming language of our tool; the way they represented the dependencies between classes
is similar to ours; and they provided detailed data about the results in their paper so that we
could carry out a comparison with our proposal.

Following, we describe the terminology used by Geipel and Schweitzer (2012) in their
study:

– Co-change: it is an event that “comprises all classes whose changes have been commit-
ted at exactly the same time by exactly the same author.” This event is considered by
them as a change propagation occurrence. The change data consist of CVS logs.

– Dependence: they consider that I depends on J when: I extends or implements J; I
uses J as a member or a variable; or I references or calls a method of J. They refer
those types of dependencies as A, B, and C, respectively.

– PD : the probability that two classes have changed together at least once, given that a
dependence exists between them.

– PDa: the probability that two classes have changed together at least once, given that a
dependence of type A exists between them.

– PDb: the probability that two classes have changed together at least once, given that a
dependence of type B exists between them.

236 Software Qual J (2018) 26:217–248

– PDc: the probability that two classes have changed together at least once, given that a
dependence of type C exists between them.

4.2.1 Method of the evaluation

The results of the study of Geipel and Schweitzer (2012) are reported in terms of probabil-
ities, whereas K3B gives the absolute number of change steps. Although those results are
reported in different units, we consider comparing them may put K3B in perspective, since
the data of the study of Geipel and Schweitzer (2012) are from real scenarios of modifi-
cation process. For the purpose of comparison, we considered the value (K3B(i))/i, that
is a relative K3B, instead of K3B(i), which is the absolute value of K3B. We made this
adjustment because K3B depends on the size of the system and, then, comparing it with a
probability, which is a relative number, would be misleading.

The data analyzed by Geipel and Schweitzer (2012) are from 35 projects and were col-
lected in 2008. Their paper reports only a date for each project, and it does not report the
release numbers. We faced some problems when recovering the versions of the projects:
some of them are not available anymore, and, for most of them, it was not possible to iden-
tify the proper files to analyze based only in the date reported in the study of Geipel and
Schweitzer (2012). Aiming to mitigate the threats to our analysis, we only considered the
projects for which we could clearly identify the release close to the date reported by Geipel
and Schweitzer (2012). This selection resulted in ten projects. We, then, gathered the K3B
values of them.

To compare the results of K3B with the historical data, we analyzed the correlation
among the probabilities of co-change obtained by Geipel and Schweitzer (2012) and the
values of K3B(1), K3B(2), K3B(n/2)/(n/2), and K3B(n)/n. We used Pearson and
Spearman correlation in our analysis, because the data distribution is unknown.

4.2.2 Results

Table 4 shows the data of the Java projects considered in this work, in which column n is the
number of classes. Table 5 shows the Pearson correlation between K3B and the co-change
data, and Table 6, the Spearman correlation. Both results indicate that K3B(i) is related to
changes performed in real scenarios of modification process.

Table 4 Historical co-change data and K3B

Project n PD PDa PDb PDc K3B(1) K3B(2) K3B(n/2)/(n/2) K3B(n)/n

aspectj 31 57.8 76.0 60.5 55.2 3.13 6.13 2.33 1.83

fudaa 15987 34.5 48.8 37.3 31.1 3.02 6.05 2.26 1.78

jpox 732 35.1 57.1 41.9 30.5 2.77 5.54 2.12 1.70

azureus 5446 38.2 45.6 38.2 36.9 1.81 3.62 1.56 1.36

rodin-b-sharp 166 21.8 47.0 18.8 18.2 1.75 3.51 1.53 1.34

university 388 26.8 38.6 12.0 28.6 1.73 3.46 1.51 1.33

jaffa 538 29.5 28.3 28.0 29.9 1.58 3.17 1.41 1.76

squirrel 832 27.4 34.7 28.9 25.3 1.47 2.96 1.34 1.22

xmsf 79 34.8 29.1 46.4 34.3 1.46 2.91 1.33 1.21

hibernate 251 45.6 72.9 56.9 39.4 1.99 3.98 1.56 1.55

Software Qual J (2018) 26:217–248 237

Table 5 Pearson correlation among co-change data and K3B values

K3B(1) K3B(2) K3B(n/2)/(n/2) K3B(n)/n

PD 0.60 0.59 0.57 0.52

PDa 0.70 0.69 0.66 0.51

PDb 0.49 0.48 0.45 0.42

PDc 0.52 0.51 0.50 0.47

The correlation between K3B and PD , when performing a change in one class (i = 1),
is 0.6, according Pearson, and 0.56, according Spearman. This result indicates a positive
correlation between K3B and the co-change data, i.e, the higher the number of co-changes,
the higher the K3B value. From the results, we observe that the correlation values slightly
decrease as i grows. This result might indicate that K3B precision decreases a little for
higher values of i.

Geipel and Schweitzer (2012) detailed the co-change data according three types of
dependencies among classes: inheritance, use of variable, and use of methods. The correla-
tions between K3B and the probability of changes due to use of variable (PDb), and due to
use of methods (PDc) are positive and relevant, near to 0.5. The correlations found for PDb,
however, are a little lower than PDc. This result indicates that K3B can predict the change
propagation effect due to use of variables or methods.

The strongest Pearson correlation, 0.7, appeared between K3B and the probability of
changes due to inheritance (PDa). Using Spearman, the correlation between K3B and co-
change due to inheritance is even higher, 0.9. These correlations were the highest we have
found in our study. Geipel and Schweitzer (2012) has noticed inheritance leads to signifi-
cantly strongest dependencies. This result, then, suggests that K3B is able to detect the main
ripple effect in software systems.

These results refer to a sample of ten Java projects. To depict any conclusion about the
population projects having as basis these results, it is necessary to use the hypothesis test for
the population correlation, denoted by ρ. We, then, tested if ρ = 0, with a significance level
of 0.05, i.e., 95 %. The hypothesis are H0: ρ = 0, and H1: ρ > 0. For the test purposes, we
used the Pearson correlation in the case of K3B(1). The resulting test statistic is t = 2.13,
and the critical value of the test is tc=1,86. As |t | > tc, H0 is rejected. We may conclude,
then, that ρ > 0. The p value of the test is 0.033, i.e, 97 %. The p value of a test is the lowest
significance level that will lead to reject the null hypotheses. This means that it is possible
to state there is a positive correlation between K3B and co-change.

The co-change data of Geipel and Schweitzer (2012) reflect the change propagation
effect in real scenarios. This study compared K3B with such data and found a positive cor-
relation between them. A consequent conclusion is that K3B is, in fact, correlated with
change propagation effect.

Table 6 Spearman correlation among co-change data and K3B values

K3B(1) K3B(2) K3B(n/2)/(n/2) K3B(n)/n

PD 0.56 0.56 0.55 0.48

PDa 0.90 0.90 0.85 0.58

PDb 0.44 0.44 0.40 0.32

PDc 0.51 0.52 0.50 0.44

238 Software Qual J (2018) 26:217–248

5 Application of K3B

The proposed model has the following main applications in real scenarios of software
engineering.

5.1 Estimating change impact

Consider the following scenario. The client requests a change in the system. The devel-
oper performs a preliminary analysis on the system and finds out the classes that need to be
changed in order to attend the request. Based on this evaluation, the developer defines how
much time the activity will take and how much it will cost. However, during the change pro-
cess, the developer realizes that the activity is much more complex because changing these
classes will impact other classes of the systems. Moreover, due to the high complexity and
the large size of the system, the developer notices that it is very difficult, or even impossi-
ble, to manually determine the time and the cost of the activity. The K3B model provides an
automatic and simple way for predicting change impact in software systems. The higher the
value of K3B, the greater the number of steps in the modification process. Consequently, a
high value of K3B indicates that high amount of time should be spent in the activity and that
the cost of the software maintenance would be high. Therefore, both developer and manager
may consider K3B to plan the modification process more properly.

5.2 Refactoring

A high value of K3B indicates that performing change in the software will be costly. The
K3B formulae have as parameters α and β, which represent aspects that determine the
tendency for change propagation in the software system. Thus, in order to reduce the cost
of maintenance, the developer should control these aspects: reducing α and increasing β. In
order to reduce the K3B value, and, hence, to improve the software structure, it is necessary
to improve the factors which lead to high values of K3B. For instance, it could be necessary to
improve the internal structure of the classes in order to increase their cohesion by means of
a better application of the information hiding principle, or a more proper use of inheritance.

5.3 Comparing software systems

The model may be used to compare systems from the viewpoint of maintainability, in the
aspect of change impact. The K3B curve of the software system is particularly important in
this comparison. The K3B curve provides an overview of how the change propagation can
grow depending on the number of classes that will initially be changed.

Figure 7 shows the K3B curve of two Java projects with approximately the same size,
about 1500 classes. By observing the curves, it is possible to notice that a change of a high
number of modules in Eclipse JDT may cause a huge impact in the software system, when
compared to JHotDraw.

6 Related work

Changeability, the easiness of performing changes in a software system, is a relevant
characteristic of maintainability, especially for environments in which changes are fre-
quent. Controlling the pervasiveness of change propagation is notably important for the

Software Qual J (2018) 26:217–248 239

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

1800
K3B values of JHoTDraw 7.6

i

K
3B

(i)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 K3B values of Eclipse JDT 3.4

i

K
3B

(i)

Fig. 7 The K3B curve of a JHotDraw 7.6 and b Eclipse JDT 3.4

management of software maintenance. Some works have been carried out on the topic of
change propagation since the early days of Software Engineering (Myers 1975; Rajlich
1997; Hassan and Holt 2004; German et al. 2009; Li et al. 2009; Li et al. 2010). These
works use different approaches, such as the analysis of dependence between modules, the
analysis of historical data about changes performed, and simulation of change propagation
(Li et al. 2012). Following, we discuss some of them.

To demonstrate the explosive effect that changes may have on software, Myers (1975)
uses the example of a circuit with 100 lamps, which correspond to modules in a system. The
lamps can assume two states: on and off. A lamp in the on state corresponds to a module
which is suffering a change. A lamp in the off state corresponds to a module which is not
suffering a change. If a lamp is on, the probability it will be off in the next second is 0.5.
An off lamp will keep this state while it is connected only to off lamps. An off lamp which
is connected to an on lamp will be on in the next second with probability 0.5. The system
reaches the equilibrium when all lamps are off. Starting with all lamps on the on state,
Myers (1975) has determined the time of equilibrium of the circuit in three configurations:
(1) 7 s, when there are no connections between the lamps; (2) 20 min, when the circuit has
10 groups of 10 lamps, and there is no connections between the groups, but all lamps within
a group are connected to each other; (3) 1022 years, when all lamps within the circuit are
connected one to another. The way we define the modification process in K3B has been
inspired by the circuit metaphor of Myers.

Myers (1975) proposed a model for stability of programs which aims to predict the num-
ber of modules which will be changed due to a change in a random module of the software
system. The model has a complex algorithm which is based on probabilities, the internal
cohesion of the modules and the coupling between modules. It was originally proposed
for the structured programming paradigm. Ferreira et al. (2008) adapted the model to the
object-oriented paradigm.

The model proposed by Chaumun et al. (1999) aims to evaluate the impact of changes
in object-oriented software. Their model basically counts the number of classes which are
directly affected by a change in a given class of the system. They performed a case study to
evaluate the model in which they considered a single type of change: the change of method
signature. The target program of the case study was developed in C++ and consists of 1044
classes. The aim of the case study was to investigate correlation between the results given
by the model for each class of the system, and the number of methods of the class. However,
they did not report strong correlation between these variables.

240 Software Qual J (2018) 26:217–248

A set of heuristics was defined by Hassan and Holt (2004) to predict change propagation,
including the following ones: the analysis of historical co-change data in order to identify
the software entities that have been changed together at the same time; and the call graphs
representing the static dependencies between software entities. A simplifying assumption
made by them is that each heuristic will predict the ripple effect of a change carried out on a
single software entity, i. e., the heuristics disregard that a change can start in more than one
software entity. The proposed heuristics aim to identify the set of software entities which
will be affected when a given software entity is changed. They have evaluated the proposed
heuristics by using historical change data. They reported that the co-change data is useful
in the analysis of change propagation, whereas the code structure is not a good indicator for
this analysis.

Zimmermann et al. (2005) have defined a tool to predict likely changes by mining related
changes previously performed in the software system. When the developer made a change
in a given software entity, the tool suggests possible further changes. They carried out an
empirical evaluation of their approach with data from eight projects. They found that their
approach was able to predict changes with a precision of 40 % in stable software systems.

The predicting model defined by Mirarab et al. (2007) aims to determine the chance
that a particular module has to change when a given set of modules is initially changed.
Their model is based on the analysis of dependence between modules and in the analysis of
historical data, aiming to identify modules in the system which have been changed simul-
taneously. This information is used to define the probability of changing a module A when
B is changed. They carried out a case study with the program Azureus5. In the case study,
the results of the model were compared to historical data of changes. The results of the case
study indicated a strong correlation between the variables.

Brudaru and Zeller (2008) have defined the concept of genealogy of changes, which is
a directly acyclic graph whose nodes represent the changes performed in a software system
during its lifetime, and whose edges represent the dependencies between the changes. An
edge from A to B means that A has caused B. Herzig (2010) and Herzig and Zeller (2011)
have used this concept to define a model aiming to capture the long-term impact of changes,
i.e., the impact of a change in other ones along the lifetime of the software system. Their
model aims to predict code changes to be applied in the software system by analyzing how
changes are related one to another historically. They consider the following types of change
performed in methods of an object-oriented system: adding method, changing definition of
method, removing method, adding new method call, changing method call, and removing
method call. They carried out an empirical evaluation of their approach, using data from
four open-source programs, in which they observed a precision around 70 %.

Robillard (2008) has proposed a technique for recommending program elements, such as
methods and fields, which the developer should consider when performing a given change
in the program. The technique is based on the analysis of the structural dependencies in
the program. The algorithm used in the technique has as entry a set of program elements
which will be initially changed, and results in another set containing program elements that
the developer should consider in the change process. Robillard (2008) has evaluated the
proposal in an experiment with five software systems, and has concluded that this kind of
analysis can aid developers to identify elements to be changed during the change process.

5(http://sourceforge.net/projects/azureus/)

http://sourceforge.net/projects/azureus/

Software Qual J (2018) 26:217–248 241

A simulation-based model was proposed by Li et al. (2010) toevaluate change propagation
in object-oriented software. In the model, a software system is represented as a weighted
graph, in which the nodes correspond to classes and interfaces, and the edges correspond
to relationships among them. The weights of the edges are defined according to the type
of relationship, such as inheritance, aggregation, and dependence. The weight of an edge
represents the probability of a change in a module will cause change in the other one. The
model proposed by Li et al. (2010) considers only atomic modifications, i.e., it considers
that a single module will be changed each time and, then, it simulates the change propaga-
tion. The algorithm applied in the simulation is the following: a class of the target system is
selected randomly; the adjacent classes are, then, affected iteratively; the result of the sim-
ulation is the number of affected classes. For the target software system, many simulations
are performed. The final result is the mean value of the results given by the simulations. Li
et al. (2010) used their model to evaluate five versions of Apache Ant. From the assump-
tion that the model can be used to evaluate the structural quality of a software system, they
concluded that Apache Ant has good quality. However, they did not describe any study to
demonstrate that the proposed model can evaluate structural quality of software systems
properly.

The work of Dagenais and Robillard (2011) addresses the specific problem of changing
frameworks and the impact on client applications. The approach is based on the analysis
of the framework repository in order to identify the changes performed on it and, then,
recommend needs of changes in the client application.

Kawrykow and Robillard (2011) analyzed data from four open-source systems, and have
concluded that up to 15.5 % of changes performed in a software system are non-essential,
such as local variable extraction and rename refactoring. Regarding this result, they evaluate
that any change-based approach should consider only the relevant changes, because elim-
ination of non-essential changes may improve the change-based approach. Moreover, they
consider that their technique may be used with an approach of impact of code changes by
detecting changes of low impact in the system.

A very interesting empirical work on the topic of change propagation was carried out
by Geipel and Schweitzer (2012). They investigated the relationship between class depen-
dence and change propagation. In their study, data from 35 large open-source Java projects
were analyzed. The data were gathered from CVS logs, so that they captured the occur-
rences of classes that have been changed together, what they called co-change. Their results
support the idea that direct dependencies are propagators of changes. They also concluded
that indirect dependencies are important and have to be considered when modeling change
propagation. We used the data reported by Geipel and Schweitzer (2012) as a benchmark to
evaluate the results of K3B in the present work.

The approach used to model the process of changing propagation in the present work is
innovative. We represent the software change process as a stochastic process. As a result, we
defined a generic model named K3B. The main differences between K3B and the previous
models are the following:

– K3B is a formula whose parameters are software metrics. This may aid software engi-
neers in the task of identifying the aspects of the target software system that contribute
to the high rate of change propagation.

– The model is not limited to single changes. K3B has as input parameter the number of
modules which will be initially changed.

242 Software Qual J (2018) 26:217–248

– The idea of change step is introduced in the model to represent the fact that a module
is taken to be changed in a given moment and its changing process must be declared as
concluded in a given moment too.

– In a change process, a module may be changed many times, due to cyclic dependence
between modules within a system. The proposed model is not limited to the number
of classes which are affected in a change process. The result of K3B is the estimated
number of change steps, which considers that a class may be changed more than once
in a change process.

– The K3B model was designed to compare the change propagation effect of software
systems, by providing as result a measure that indicates how far a set of changes will
propagate throughout them. K3B also shows how the change propagation effect of a
program behaves as the number of modules that are initially changed grows.

– The implementation of the K3B is simple.
– The model is generically defined in terms of modules, in such a way its definition may

be applicable to any software development paradigm. In this work, we focus in the object-
orientation, by providing an implementation and an evaluation of K3B in this paradigm.

7 Threats to validity

In this section, we discuss the main threats to validity of this work.

7.1 External validity

We identify four main threats to the external validity of this work. To define the K3B model,
a software system is taken as a group of modules connected one to another. The metric
that we used to compute φ considers only the explicit relationships between the modules,
which can be identified by source code analysis. However, a software system can have
relationships which cannot be discovered in such a way. For instance, in an object-oriented
program, the classes which use a particular file are coupled, even if they do not directly use
one another. In this situation, a change in one of those classes may propagate to the other
ones. The metrics used for α and φ in our implementation of K3B do not consider situations
like these. Then, it is not possible to claim that the results of this study can be generalized
for programs with such characteristics.

The evaluation of K3B was limited to 1 ≤ i ≤ 5 because the simulation for i > 5 was not
feasible. Hence, is not possible to assure that the achieved conclusions can be generalized
for i > 5.

An accurate evaluation of K3B in real scenarios of Software Engineering will demand
gathering data about the number of change steps resulting of each set of contractual changes
performed in a program. It is difficult, or even impossible, to obtain this information from
the repositories of open-source software systems, since, in general, they do not maintain
detailed information at this level. The data we used to evaluate K3B in real scenarios are not
in such level. However, they provide sufficient information to allow a suitable comparison
with K3B. The results of such comparison have revealed that K3B, which is a mathematical
model, generates results that correspond to the real events that it aims to represent.

The evaluation of K3B was performed using only open-source software systems due
to the difficulty of obtaining data from proprietary software. There is no apparent reason

Software Qual J (2018) 26:217–248 243

to believe that the results would not be applicable to proprietary software. However, from
the achieved results of this analysis, we are not able to assure that our conclusions can be
generalized to proprietary software.

7.2 Internal validity

We used the sample of open-source Java projects from the study of Geipel and Schweitzer
(2012) to evaluate K3B. As we compared the results of K3B with the data reported by
Geipel and Schweitzer (2012), it was important ensuring that we are processing the same
sample of data. However, they mentioned in their paper only the date of the releases, that
is 2008. Due to this, we had problems to identify the proper releases of the programs. To
overcome this issue, we considered only the projects for which we could locate the releases
with the date reported by Geipel and Schweitzer (2012).

K3B is parametric. One of its parameters is α, a factor that contributes to the high rates of
change propagation. In our implementation of K3B, we considered the level of coupling as
α. A threat to the validity of our study is that there is no previous work that defines exactly
the weight to be considered for each kind of coupling among classes. For this reason, we
defined those weights based on calibration of the model, performed in preliminary experi-
ments. Nevertheless, the weights we defined in our implementation are close to the data of
co-change found by Geipel and Schweitzer, given in terms of probabilities. Anyway, further
empirical studies to identify more precise values for those weight would be appreciable.

7.3 Construct validity

The proposed model do not consider “which modules are inconsistent,” but “how many
modules are inconsistent.” This information is represented by the parameter i in the K3B
formulae. K3B is a predicting model and, then, it aims to provide an estimated number of
change steps. Nevertheless, knowing “which modules are inconsistent” is still important in
maintenance scenarios, and further models should be provided to calculate the exact number
of change steps due to the changes in specific modules.

The K3B formulae, given by Eqs. 4 and 5, were defined from the pattern of the expres-
sions, as described previously. Those expressions were generated for values of n from 4 to
25. Although the K3B formulae are massively applied to all the resultant expressions, there
is no formal demonstration that they are applicable for all value of n. Nevertheless, there is
no reason to believe that this is not the case. In the studies reported in this paper, the results
obtained by means of K3B was systematically compared with data obtained from simula-
tion, as well as with data reported previously in the literature. In both comparative studies,
the data reported by K3B is remarkably verified as good predictor of the change propagation
effect in object-oriented projects.

8 Conclusions

Software maintenance is responsible for most of the total cost of a software system. Control-
ling the software maintainability is important to reduce this cost. Besides, the assessment of
maintenance difficulties might help managers and developers in allocating resources to the
maintenance tasks.

244 Software Qual J (2018) 26:217–248

In the present work, we defined a novel predictingmodel for change propagation in software.
The model, called K3B, predicts the number of change steps that a modification process
will take. K3B was defined based on probability concepts, especially Markov Chains. K3B
is a formula with five variables: n, which is the total number of modules within the system;
i, the number of modules which will be initially changed; φ, the percentage of connections
between modules of the system; α represents a factor which favors change propagation; and
β represents a factor which avoids change propagation. In our implementation of K3B, we
used a coupling metric for the parameter α, and a cohesion metric for β.

The K3B formulae indicate that the number of change steps in a strongly connected sys-
tem with high α and low β is explosive. This indicates that changing a software system with
such properties is an intractable problem. On the other hand, even for large size programs,
when φ, α, and β are suitable, the change propagation effect might be well controlled.

We evaluated K3B by comparing its results with those given by simulation. In this study,
we used 37 releases of 11 open-source software systems. The results of the evaluation
showed that there is a strong correlation between the values given by K3B and the values
obtained from simulation. The results reported by K3B were also compared with historical
data of change propagation. We have also found a positive correlation between K3B and the
historical data.

The K3B model provides an automatic and simple way for predicting change impact
in software systems. The higher the value of K3B, the greater the number of steps in the
modification process. Consequently, a high value of K3B indicates that a long time should
be spent in the activity and that the cost of the software maintenance would be high.

The K3Bmodel can be used to evaluate software maintainability since it is an indicator of
how widely a change or a set of changes would propagate throughout the system. The main
application of the model is the comparison of the change propagation effect of software
systems, since it indicates how this effect behaves as the number of modules that are initially
changed grows.

Based on the results of this work, we identify many directions for further work, such
as new implementations of K3B in order to evaluate other candidate metrics for α, β, and
φ; empirical studies to accurately identify the weights of the different types of connections
between modules; an extension of K3B in order to consider which classes are changed
during the maintenance process; development of proper tools based on K3B to detect which
classes will be affected during the modification process; evaluation of K3B in representative
industrial software systems; and replication of this studywith other programming environments.

Appendix A: The expressions obtained

This appendix shows the expressions obtained for number of modules from 4 to 7. The
symbol a corresponds to the parameters αφ, whereas b corresponds to β, respectively.

4 modules⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 6
a

b
+ 12

a2

b2
+ 12

a3

b3

2 + 10
a

b
+ 16

a2

b2
+ 12

a3

b3

3 + 12
a

b
+ 16

a2

b2
+ 12

a3

b3

4 + 12
a

b
+ 16

a2

b2
+ 12

a3

b3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Software Qual J (2018) 26:217–248 245

5 modules⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 8
a

b
+ 24

a2

b2
+ 48

a3

b3
+ 48

a4

b4

2 + 14
a

b
+ 36

a2

b2
+ 60

a3

b3
+ 48

a4

b4

3 + 18
a

b
+ 40

a2

b2
+ 60

a3

b3
+ 48

a4

b4

4 + 20
a

b
+ 40

a2

b2
+ 60

a3

b3
+ 48

a4

b4

5 + 20
a

b
+ 40

a2

b2
+ 60

a3

b3
+ 48

a4

b4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6 modules⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 10
a

b
+ 40

a2

b2
+ 120

a3

b3
+ 240

a4

b4
+ 240

a5

b5

2 + 18
a

b
+ 64

a2

b2
+ 168

a3

b3
+ 288

a4

b4
+ 240

a5

b5

3 + 24
a

b
+ 76

a2

b2
+ 180

a3

b3
+ 288

a4

b4
+ 240

a5

b5

4 + 28
a

b
+ 80

a2

b2
+ 180

a3

b3
+ 288

a4

b4
+ 240

a5

b5

5 + 30
a

b
+ 80

a2

b2
+ 180

a3

b3
+ 288

a4

b4
+ 240

a5

b5

6 + 30
a

b
+ 80

a2

b2
+ 180

a3

b3
+ 288

a4

b4
+ 240

a5

b5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7 modules⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 12
a

b
+ 60

a2

b2
+ 240

a3

b3
+ 720

a4

b4
+ 1440

a5

b5
+ 1440

a6

b6

2 + 22
a

b
+ 100

a2

b2
+ 360

a3

b3
+ 960

a4

b4
+ 1680

a5

b5
+ 1440

a6

b6

3 + 30
a

b
+ 124

a2

b2
+ 408

a3

b3
+ 1008

a4

b4
+ 1680

a5

b5
+ 1440

a6

b6

4 + 36
a

b
+ 136

a2

b2
+ 420

a3

b3
+ 1008

a4

b4
+ 1680

a5

b5
+ 1440

a6

b6

5 + 40
a

b
+ 140

a2

b2
+ 420

a3

b3
+ 1008

a4

b4
+ 1680

a5

b5
+ 1440

a6

b6

6 + 42
a

b
+ 140

a2

b2
+ 420

a3

b3
+ 1008

a4

b4
+ 1680

a5

b5
+ 1440

a6

b6

7 + 42
a

b
+ 140

a2

b2
+ 420

a3

b3
+ 1008

a4

b4
+ 1680

a5

b5
+ 1440

a6

b6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

References

Abreu, F.B., & Carapuça, R. (1994). Object-oriented software engineering: Measuring and controlling the
development process. In Proceedings of 4th Int. Conf. of Software Quality McLean, VA, USA.

Bieman, J.M., & Kang, B.K. (1995). Cohesion and reuse in an object-oriented system. SIGSOFT Software
Engineering Notes, 20, 259–262. doi:10.1145/223427.211856.

Brudaru, I.I., & Zeller, A. (2008). What is the long-term impact of changes?. In Proceedings of the 2008
international workshop on Recommendation systems for software engineering, ACM, New York, NY,
USA, RSSE ’08 (pp. 30–32). doi:10.1145/1454247.1454257.

http://dx.doi.org/10.1145/223427.211856
http://dx.doi.org/10.1145/1454247.1454257

246 Software Qual J (2018) 26:217–248

Chaumun, M.A., Kabaili, H., Keller, R.K., & Lustman, F. (1999). A change impact model for changeability
assessment in object-oriented software systems. In Proceedings of the Third European Conference on
Software Maintenance and Reengineering, IEEE Computer Society (pp. 130–139). Washington, DC: USA.

Chidamber, S.R., & Kemerer, C.F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6), 476–493. doi:10.1109/32.295895.

Dagenais, B., & Robillard, M.P. (2011). Recommending adaptive changes for framework evolution. ACM Trans-
actions on Software Engineering and Methodology, 20(4), 19:1–19:35. doi:10.1145/2000799.2000805.

Ferreira, K.A.M. (2011). Um Modelo de Predição da Amplitude de Propagação de Modificações Contrat-
uais em Software Orientado por Objetos. Brazil: Doctoral Dissertation.Computer Science Department,
Federal University of Minas Gerais.

Ferreira, K.A.M., Bigonha, M.A.S., & Bigonha, R.S. (2008). Reestruturação de software dirigida por conec-
tividade para redução de custo de manutenção. Revista de Informática Teórica e Aplicada, 15(2),
155–179.

Ferreira, K.A.M., Bigonha, M.A., Bigonha, R.S., Almeida, H.C., & Moreira, R.C.N. (2011). Métrica de
coesão de responsabilidade - a utilidade de métricas de coesão na identificação de classes com problemas
estruturais. In X Brazilian Simposium on Software Quality - SBQS’2011, Curitiba, Paraná (pp. 9–23).
Brazil.

Fowler, M. (1999). Refactoring: improving the design of existing code. USA: Addison-Wesley Longman
Publishing Co., Inc. Boston, MA.

Geipel, M.M., & Schweitzer, F. (2012). The link between dependency and cochange: Empirical evidence.
IEEE Transactions on Software Engineering, 38(6), 1432–1444. doi:10.1109/TSE.2011.91.

German, D.M., Hassan, A.E., & Robles, G. (2009). Change impact graphs: Determining the impact of prior
codechanges. Information and Software Technology, 51(10), 1394–1408. doi:10.1016/j.infsof.2009.04.018.

Grinstead, C.M., & Snell, J.L. (1991). Introduction to probability. America Mathematical Society.
Hassan, A.E., & Holt, R.C. (2004). Predicting change propagation in software systems. In Proceedings of the

20th IEEE International Conference on Software Maintenance, IEEE Computer Society, Washington,
DC, USA, ICSM ’04 (pp.284–293). http://dl.acm.org/citation.cfm?id=1018431.1021436.

Herzig, K., & Zeller, A. (2011). Mining cause-effect-chains from version histories. In Proceedings of the
2011 IEEE 22nd International Symposium on Software Reliability Engineering, IEEE Computer Society,
Washington, DC, USA, ISSRE ’11 (pp. 60–69). doi:10.1109/ISSRE.2011.16.

Herzig, K.S. (2010). Capturing the long-term impact of changes. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ACM, New York, NY, USA, ICSE ’10
(pp. 393–396). doi:10.1145/1810295.1810401.

Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented systems., In Proceed-
ings of the 1995 Int. Symposium on Applied Corporate Computing, Int. Symposium on Applied Corporate
Computing, Monterrey (pp. 1–10). Mexico.

Kawrykow, D., & Robillard, M.P. (2011). Non-essential changes in version histories., In Proceedings of the
33rd International Conference on Software Engineering, ACM, New York, NY, USA, ICSE ’11 (pp. 351–
360). doi:10.1145/1985793.1985842.

Li, B., Sun, X., Leung, H., & Sai, Z. (2012). A survey of code-based change impact analysis techniques.
Softw Test Verif Reliab, 1–34. doi:10.1002/stvr.1475.

Li, L., Qian, G., & Zhang, L. (2009). Evaluation of software change propagation using simulation., In
Proceedings of the 2009 WRI World Congress on Software Engineering - Volume 04, IEEE Computer
Society, Washington, DC, USA, WCSE ’09 (pp. 28–33). doi:10.1109/WCSE.2009.22.

Li, L., Zhang, L., Lu, L., & Fan, Z. (2010). Assessing object-oriented software systems based on change
impact simulation. International Conference on Computer and Information Technology, 1364–1369.

Meyer, B. (1997). Object-oriented software construction, 2nd edn. USA: Prentice Hall International Series.
Mirarab, S., Hassouna, A., & Tahvildari, L. (2007). Using bayesian belief networks to predict change

propagation in software systems. International Conference on Program Comprehension, 177–188.
Myers, G.J. (1975). Reliable software through composite design, 2nd edn. New York: Petrocelli/Charter.
Petrov, V., & Mordecki, E. (2003). Teorı́ de Probabilidades Matematnka. Moscow: Editorial URSS.
Pressman, R.S. (2009). Software Engineering: a practitioner’s approach, 7th edn: McGraw Hill.
Rajlich, V. (1997). A model for change propagation based on graph rewriting., In Proceedings of the Inter-

national Conference on Software Maintenance, IEEE Computer Society, Washington, DC, USA, ICSM
’97 (pp. 84–91). http://dl.acm.org/citation.cfm?id=645545.656039.

Robillard, M.P. (2008). Topology analysis of software dependencies. ACM Transactions on Software
Engineering and Methodology, 17(4), 18:1–18:36. doi:10.1145/13487689.13487691.

Sommerville, I. (2011). Software Engineering 9. Pearson Education.
Zimmermann, T., Weissgerber, P., Diehl, S., & Zeller, A. (2005). Mining version histories to guide software

changes. IEEE Transactions on Software Engineering, 31(6), 429–445. doi:10.1109/TSE.2005.72.

http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1145/2000799.2000805
http://dx.doi.org/10.1109/TSE.2011.91
http://dx.doi.org/10.1016/j.infsof.2009.04.018
http://dl.acm.org/citation.cfm?id=1018431.1021436
http://dx.doi.org/10.1109/ISSRE.2011.16
http://dx.doi.org/10.1145/1810295.1810401
http://dx.doi.org/10.1145/1985793.1985842
http://dx.doi.org/10.1002/stvr.1475
http://dx.doi.org/10.1109/WCSE.2009.22
http://dl.acm.org/citation.cfm?id=645545.656039
http://dx.doi.org/10.1145/13487689.13487691
http://dx.doi.org/10.1109/TSE.2005.72

Software Qual J (2018) 26:217–248 247

Kecia A. M. Ferreira received her Ph.D. in Computer Science from Federal University of Minas Gerais
(Brazil) in 2011. She is a professor of Computer Engineering at Federal Center for Technological Education
of Minas Gerais. Her main research interest is software measurement and its applications in software develop-
ment and maintenance. Her most recent research has focused on software metrics, software evolution, and
software maintenance.

Mariza A. S. Bigonha received her Ph.D. in Computer Science from Pontifical Catholic University of Rio
de Janeiro (Brazil) in 1994. She is a professor of Computer Science at Federal University of Minas Gerais (Brazil)
since 1994. Her main research interests are Programming Languages, Compilers, and Code Optimization.

Roberto S. Bigonha received his Ph.D. in Computer Science from University of California, Los Angeles
(1981). He is a professor of Computer Science at Federal University of Minas Gerais (Brazil) since 1974,
and he is also a member of the Brazilian Computer Society. His main research interests are Programming
Languages, Compilers, and Formal Semantics.

248 Software Qual J (2018) 26:217–248

Bernardo N. de Lima received his Ph.D. in Mathematics from National Institute for Pure and Applied
Mathematics (IMPA), Rio de Janeiro-Brazil in 2003. He is a professor of Mathematics at Federal University
of Minas Gerais (Brazil) since 1999. His main research interest are Probability Theory, Statistical Mechanics,
and Discrete Mathematics with emphasis in the study of percolative models.

BárbaraM. Gomes is a Computer Engineer by Federal Center for Technological Education of Minas Gerais.
Her main interests are Software Engineering and Optimization.

Luiz Felipe O. Mendes is a Bachelor in Computer Science by Federal University of Minas Gerais. He is a
data scientist and co-founder of Hekima, a Brazilian company of Big Data and Artificial Intelligence. His
main interest are Machine Learning and Data Analytics.

	A model for estimating change propagation in software
	Abstract
	Introduction
	The K3B model
	Scenario examples
	The model definition

	An implementation of K3B for object-oriented programs
	A metric for
	A metric for
	A metric for
	Computing K3B

	Evaluation of K3B
	K3B simulation
	The evaluated type of change
	The algorithm of the simulation of change propagation
	Method of the evaluation
	Results

	K3B historical data*.3pt
	Method of the evaluation
	Results

	 Application of K3B
	Estimating change impact*.3pt
	Refactoring*.3pt
	Comparing software systems

	Related work
	Threats to validity
	External validity
	Internal validity
	Construct validity

	Conclusions
	Appendix A A: The expressions obtained*.3pt
	References

