
Information and Software Technology 115 (2019) 79–92

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The usefulness of software metric thresholds for detection of bad smells

and fault prediction

Mariza A.S. Bigonha

a , ∗ , Kecia Ferreira

b , Priscila Souza

a , Bruno Sousa

a , Marcela Januário

b ,

Daniele Lima

b

a Computer Science Department, UFMG, Brazil
b Department of Computing, CEFET-MG, Brazil

a r t i c l e i n f o

Keywords:

Software metrics

Software quality

Thresholds

Detection strategies

Bad smell

Fault prediction

a b s t r a c t

Context: Software metrics may be an effective tool to assess the quality of software, but to guide their use it is

important to define their thresholds. Bad smells and fault also impact the quality of software. Extracting metrics

from software systems is relatively low cost since there are tools widely used for this purpose, which makes

feasible applying software metrics to identify bad smells and to predict faults.

Objective: To inspect whether thresholds of object-oriented metrics may be used to aid bad smells detection and

fault predictions.

Method: To direct this research, we have defined three research questions (RQ), two related to identification of

bad smells, and one for identifying fault in software systems. To answer these RQs, we have proposed detection

strategies for the bad smells: Large Class, Long Method, Data Class, Feature Envy, and Refused Bequest, based

on metrics and their thresholds. To assess the quality of the derived thresholds, we have made two studies. The

first one was conducted to evaluate their efficacy on detecting these bad smells on 12 systems. A second study

was conducted to investigate for each of the class level software metrics: DIT, LCOM, NOF, NOM, NORM, NSC,

NSF, NSM, SIX, and WMC, if the ranges of values determined by thresholds are useful to identify fault in software

systems.

Results: Both studies confirm that metric thresholds may support the prediction of faults in software and are

significantly and effective in the detection of bad smells.

Conclusion: The results of this work suggest practical applications of metric thresholds to identify bad smells and

predict faults and hence, support software quality assurance activities.Their use may help developers to focus

their efforts on classes that tend to fail, thereby minimizing the occurrence of future problems.

1

a

i

i

e

t

t

o

s

t

b

i

q

e

s

w

a

d

r

r

L

s

h

R

A

0

. Introduction

Software metrics provide quantitative evaluation of software quality,

llowing engineers to change the course of the process to promote qual-

ty improvement of the final product. Despite the importance of metrics

n managing quality of object-oriented software (OOS), they are not yet

ffectively used [14,41,49] . One possible reason is that to perform effec-

ive software measurement and increase the use of metrics it is essential

o associate them with thresholds [3,14,15] .

Definition of methods for deriving thresholds for metrics is the focus

f several studies [3,14,15,25,31,32,38,43,45,53] . Although there are

everal metrics proposed and a reasonable amount of defined methods

o derive thresholds, there are few metrics with threshold, which makes
∗ Corresponding author.

E-mail addresses: mariza@dcc.ufmg.br (M.A.S. Bigonha), kecia@decom.cefetmg.b

runo.luan.sousa@dcc.ufmg.br (B. Sousa), marcelajanuario92@hotmail.com (M. Jan

ttps://doi.org/10.1016/j.infsof.2019.08.005

eceived 5 March 2018; Received in revised form 22 May 2019; Accepted 5 August 2

vailable online 6 August 2019

950-5849/© 2019 Elsevier B.V. All rights reserved.
t difficult and even impossible to manage the quality of software by

uantitative means.

Additionally, although thresholds for software metrics have been

valuated, such evaluations are not widespread. It is important to con-

ider whether they are useful to identify bad smells and to predict faults,

hich are attributes that directly impact the quality of software.

Bad smells are features found in code structures that indicate they

re troublesome and need to be restructured. Bad smells are not the

irect cause of faults but may indirectly influence the insertion of faults

esponsible for future faults [18] . Marinescu [30] is possibly the first

esearcher to define strategies for detecting bad smells using metrics.

anza and Marinescu [26] also define a list of bad smells, some new and

ome modified from Fowler’s work [18] , and use detection strategies to
r (K. Ferreira), priscilinhapsouza@gmail.com (P. Souza),

uário), danieleddelima@gmail.com (D. Lima).

019

https://doi.org/10.1016/j.infsof.2019.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.08.005&domain=pdf
mailto:mariza@dcc.ufmg.br
mailto:kecia@decom.cefetmg.br
mailto:priscilinhapsouza@gmail.com
mailto:bruno.luan.sousa@dcc.ufmg.br
mailto:marcelajanuario92@hotmail.com
mailto:danieleddelima@gmail.com
https://doi.org/10.1016/j.infsof.2019.08.005

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

i

a

e

s

b

t

b

s

t

f

m

a

S

s

a

m

s

i

L

t

[

t

i

t

s

a

b

o

i

g

s

t

b

b

r

s

t

b

s

s

t

s

R

a

a

s

k

T

t

p

d

s

R

S

R

2

1

fi

D

e

i

[

t

a

2

o

t

fi

t

w

p

m

r

f

t

s

i

s

a

2

a

Table 1

Threshold catalog for object-oriented software metrics [15] .

Metrics Good/Frequent Regular/Casual Bad/Rare

CA CA < = 7 7 < CA < = 39 CA > 39

CE CE < = 6 6 < CE < = 16 CE > 16

MLOC MLOC < = 10 10 < MLOC < = 30 MLOC > 30

NOC NOC < = 11 11 < NOC < = 28 NOC > 28

NOF NOF < = 3 3 < NOF < = 8 NOF > 8

NOM NOM < = 8 8 < NOM < = 14 NOM > 14

NORM NORM < = 2 2 < NORM < = 4 NORM > 4

NSC NSC < = 1 1 < NSC < = 3 NSC > 3

NSF NSF < = 1 1 < NSF < = 5 NSF > 5

NSM NSM < = 1 1 < NSM < = 3 NSM > 3

PAR PAR < = 2 2 < PAR < = 4 PAR > 4
dentify them. Other works propose detection of bad smell from UML

nd class diagrams [37] and by means of metrics of interest [39] . Zhang

t al. [58] use the CPD (Copy/Paste Detector) function of the PDM open

ource tool 1 and a pattern-based Code Smells detection tool to identify

ad smells.

Many studies were carried out to investigate the relationship be-

ween fault and aspects such as metrics, thresholds, [2,27,31,32] , and

ad smells [8,20] . Fault prediction techniques involve analysis of the

ource code of a version of a system [5] or historical data from reposi-

ories [35] , fault tracking systems [1,4,22] .

The purpose of such techniques is to predict the occurrence of faults

ound in each component of the system, for example: package, class,

ethod or any other code unit [11] .

Extracting metrics from software systems is relatively low cost, there

re tools available with this purpose: CodePro Analytix, 2 Metrics 3 and

onar Qube. 4 Thus, the use of metrics to predict faults may be more fea-

ible than the application of complex techniques like Machine Learning

nd Source Code Analysis. It is important to investigate the efficacy of

etric-threshold values in this context.

The aim of this research is to perform a comprehensive empirical

tudy to evaluate the applicability of software metric thresholds in the

dentification of four bad smells defined by Fowler [18] (Data Class,

arge Class, Long Method, and Refused Bequest) and in fault predic-

ion. For this purpose, we use the OOS metric thresholds of Filó et al.

15] . We have chosen these thresholds because they belong to one of

he largest catalogue for object-oriented metrics thresholds, consider-

ng 18 metrics. The catalogue of Filó’s et al. is an extension of the

hresholds proposed by Ferreira et al. [14] . In their work, Ferreira et al.

how that the proposed thresholds are applicable regardless the size,

pplication domain, and type of the systems (tool, framework, and li-

rary). This is another reason we chose to use the Filó’s catalogue in

ur work. Moreover, this catalogue was previously used to evaluate the

nternal quality of a proprietary software system and the results sug-

est that the proposed thresholds provided a proper assessment of the

ystem.

To direct this research we have defined the following research ques-

ions (RQ):

RQ1 Do thresholds of object-oriented software metrics help to identify

ad smells?

To answer RQ1 we propose, in Section 2 , detection strategies of five

ad smells based on metric-threshold values [48] , since previous studies

eveal the absence of research focusing on the use of thresholds for bad

mells identification [26,30,39] . This generic question is divided into

wo more specific ones.

RQ1.1 What is the effectiveness of detecting bad smells using strategies

ased on the thresholds and taking into account the results generated by bad

mells detection tools?

The objective of the experiment to answer RQ1.1 is to place the re-

ults of our detection strategies in perspective with the results of two

ools that automatically identify bad smells. Sections 2.1.4–2.1.6 , re-

pectively, presents the experiment and the analysis made to answer

Q1.1.

RQ1.2 Do thresholds effectively support the detection of bad smells

gainst reference lists generated by specialists with object-oriented knowledge

nd bad smells?

We have used tools to automatically detect bad smells in the analy-

is referring to RQ1.1. However, the effectiveness of these tools is not

nown and there are differences between the results generated by them.

o better evaluate the detection strategies proposed, we have invited

hree specialists with good knowledge in OOP and bad smells to com-
1 http://pmd.sourceforge.net/ .
2 https://marketplace.eclipse.org/content/codepro-analytix .
3 http://metrics.sourceforge.net/ .
4 http://www.sonarqube.org/ .

80
ose and validate reference list. Section 3 describes the experiment con-

ucted to answer RQ1.2.

RQ2. Do thresholds of object-oriented software metrics help to predict

oftware fault?

With this RQ2, we intend to verify the usefulness of threshold values,

egular/Occasional and Bad/Rare [15] , in predicting software faults.

ection 4 presents the experiment and the analysis conducted to answer

Q2.

. Threshold and bad smells

To conduct our investigation, we have used a threshold catalog of

8 software metrics [15] derived from 100 software systems [50] to de-

ne detection strategies for the bad smells: Large Class, Long Method,

ata Class, Feature Envy and Refused Bequest [48] . We examine the

ffectiveness of the thresholds, analyzing the bad smells detected us-

ng these strategies in 12 software extracted from Qualitas.class corpus

50] . The results have been compared with the results obtained by the

ools JSpIRIT [52] and JDeodorant [51] , used to identify bad smells

utomatically.

.1. Strategies for detecting bad smells

Detection strategy may be defined as an expression quantification

f a rule used to verify if fragments of the source code complies with

his rule. The components used for definition of bad smells are metric

ltering mechanisms and mechanisms of composition. Filtering is used

o reduce the initial set of data, capturing fragments of code that match

ith the filters. Filters allow to set value limits for certain aspects. Com-

osition allows different filters, based on different software metrics, by

eans of logical connectives, thus enabling the mixture of metrics for

elevant information [30] . To define data filter one must define values

or the lower and upper limits of the filtered subset. Filters may be sta-

istical, based on absolute or relative thresholds [26] .

To define the filtering and composition mechanisms and propose the

trategies to detect bad smells, the software metrics were chosen accord-

ng to their availability in the catalog illustrated in Table 1 . The bad

mells chosen are those that may be evaluated with the metrics avail-

ble in that catalog.

.1.1. Software metrics used in detection strategies

The software metrics applied in the definition of detection strategies

re:

• DIT (Depth in Inheritance Tree): number of classes that are above a

certain class in the inheritance hierarchy.
SIX SIX < = 0019 0019 < SIX < = 1333 SIX > 1333

VG VG < = 2 2 < VG < = 4 VG > 4

WMC WMC < = 11 11 < WMC < = 34 WMC > 34

DIT DIT < = 2 2 < DIT < = 4 DIT > 4

LCOM LCOM < = 0167 0167 < LCOM < = 0,725 LCOM > 0725

NBD NBD < = 1 1 < NBD < = 3 NBD > 3

RMD RMD < = 0467 0467 < RMD < = 0750 RMD > 0750

http://pmd.sourceforge.net/
https://marketplace.eclipse.org/content/codepro-analytix
http://metrics.sourceforge.net/
http://www.sonarqube.org/

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

2

t

a

d

m

s

t

s

L

t

1

t

o

G

i

v

v

e

d

w

u

c

c

o

2

b

F

t

t

u

e

s

Fig. 1. Detection strategies.

u

i

o

L

c

c

o

l

C

• LCOM (Lack of Cohesion between Methods): measure of the internal

cohesion of classes.

• MLOC (Method Lines of Code): number of lines of code in the

method.

• NBD (Nested Blocks Depth): maximum number of nested blocks of a

method.

• NSC (Number of Children): number of daughter classes regarding to

a given class.

• NOF (Number of Fields): number of attributes of a class.

• NOM (Number of Methods): number of methods in a class.

• VG (McCabe’s Complexity): cyclomatic complexity of a method.

• WMC (Weighted Methods per Class): total weight of a class regarding

to the weights of each class method.

• SIX (Specialization Index): evaluates how much a subclass overrides

the superclass.

.1.2. Threshold ranges used in bad smells detection strategies

To filter the universe of entities present in software and thus enabling

he identification of instances of bad smell, each software metric used by

 detection strategy must be related to a threshold value. This threshold

efines the range of values of interest relative to a specific software

etric. Thus, it is possible to use such metrics as support to identify bad

mell. For example, to find classes in a system that are very large in

erms of code lines, LOC may be used as a support metric in a detection

trategy filter. Additionally, it is necessary to establish a threshold for

OC so that the classes that override the range of values determined by

he threshold may be identified correctly. An example of threshold is

000, where LOC > 1000 filter determines a minimum threshold for

his metric to indicate large classes.

Our detection strategies of bad smells use three ranges of thresh-

lds: Good/Frequent, Regular/Casual and Bad/Rare (see Table 1).

ood/Frequent range addresses values with high frequency, character-

zing the most common values for metric. Bad/Rare range addresses

alues with low frequencies, and Regular/Occasional range addresses

alues that are neither very frequent nor infrequent [15] . For Ferreira

t al. [14] , values considered frequent in systems indicate that they ad-

ress the common practice in the development of high-quality software,

hich serves as a comparison parameter of software’s. Uncommon val-

es indicate unusual situations in practice, so, points to be considered

ritical, may be indicative of structural problems. In our strategies, we

onsider Good: upper limit of Good/Frequent range; Regular: lower limit

f Regular/Occasional range; and Bad: lower limit of Bad/Rare range.

.1.3. Bad smells detection strategies

To present the detection strategies for five of 22 bad smells proposed

y Fowler [18] we use metrics and thresholds described by Filó et al.

or each strategy, we show a brief description of the bad smell it refers

o, the metrics, and the strategy itself.

Data Class. Refers to classes containing attributes, getting and set-

ing methods, and nothing else. These classes function as an aggregator

sually without complex processing. The metrics composing this strat-

gy detection are:

• NSC: since a Data Class mimics a primitive type of data, it is inferred

that this type of class tends not to have subclasses. It is expected that

a Data Class only provide access to its attributes, with get and set.

Thus, we consider that low NSC values, along with other character-

istics, help to identify Data Class.

• DIT: according the considerations made for NSC, it is assumed that

a Data Class, in general, does not inherit responsibilities from su-

perclass. Thus, it is considered that a low DIT, associated with other

characteristics, may help to identify Data Class.

• NOF: since the class stores only data, we assume a high NOF indicates

Data Class.

Fig. 1 a illustrates the detection strategy for Data Class. NSC and DIT

hould have values within the range Good of the metric, including the
81
pper limit of that range; NOF value must be within the Regular or Bad

ntervals, including lower limit of the metric’s Regular interval.

Feature envy. Refers to method that seems more interested in a class

ther than the one it actually is in. Fig. 1 b shows its detection strategy.

COM is the only metric in the catalog able to detect the interest of a

lass by data from another class.

Large class. Refers to classes that have many responsibilities. They

oncentrate the system intelligence by performing an excessive amount

f work and becoming an aggregation of different abstractions. They are

arge, complex and have low cohesion. The detection strategy for Large

lass, Fig. 1 c, is composed by the metrics:

• NOF, NOM: a high amount of attributes (NOF) and methods (NOM)

points to excessive knowledge and processing of the class.

• WMC: consider that the higher the weight of class, the greater the

overhead of its operations. WMC may indicate many class responsi-

bilities.

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

v

T

m

a

i

t

s

r

p

u

s

t

t

p

t

2

r

a

i

s

w

b

n

t

Table 2

Systems selected from Qualitas.class Corpus 2013.

Systems Size No. of

classes

No. of

methods

1 aoi-2.8.1 9.4 MB 841 6915

2 checkstyle-5.6 53 MB 560 2896

3 cobertura-1.9.4.1 11 MB 174 3520

4 displaytag-1.2 10 MB 336 1728

5 itext-5.0.3 7.8 MB 587 5982

6 jedit-4.3.2 15 MB 1183 7315

7 joggplayer-1.1.4s 7.2M 363 2299

8 jsXe-04_beta 17 MB 270 1445

9 pmd-4.2.5 12 MB 914 5958

10 quartz-1.8.3 12 MB 316 2923

11 squirrel_sql-3.1.2 13 MB 169 689

12 webmail-0.7.10 12 MB 129 1091

a

p

m

[

v

i

b

L

a

t

n

F

e

a

F

t

m

d

t

b

l

m

a

t

w

2

J

C

f

t

2

g

g

fi

m

(

T
• LCOM: lack of cohesion between class methods indicates overload

responsibilities. High LCOM suggests that class is a Large Class.

Long method. Refers to complex methods, too long and/or with

arious responsibilities, so it is difficult to understand, change or extend.

he detection strategy for Long Method, Fig. 1 d, is composed by the

etrics:

• MLOC: long methods usually have an amount of lines of high code.

• VG: high cyclomatic complexity of method indicates high complexity

of method.

• NBD: high block nesting value in method is an indication of com-

plex/excessive processing.

Refused bequest. Refers to subclasses that have inherited methods

nd data of their parents, but they just use a few of them. Fig. 1 e shows

ts detection strategy, which is composed by metric SIX. The greater

he degree of overwriting that “daughter ” class has in relation to the

uperclass, the greater the chances of the “daughter ” class being refusing

esponsibilities provided by inheritance.

We did not define detection strategies for Fowler’s bad smells: Du-

licated Code, Message Chains, Parallel Inheritance Hierarchies, Spec-

lative Generality, Switch Statements, Temporary Field, Primitive Ob-

ession, Inappropriate Intimacy and Comments, because the metrics in

he catalog used [15] do not support their detection.

Although the metrics used allow detection strategy’s definition for

he bad smells Alternative Classes with Different Interfaces and Incom-

lete Library Class, they were not considered, because we did not find

ools to evaluate them.

The following bad smells were not included due to the reasons [13] .

• Lazy Class: we found four tools for Lazy Class, but they are not avail-

able for download. True Refactor was available for download, but it

could not be found.

• Middle Man: Code Bad Smell Detector is the only tool available to

detect it. We could not run it due to problems in the configuration

file.

• Data Clumps: there are five tools available for it, but InCode, 5 InFu-

sion 6 and IntelliJ IDEA [16] need license to use. Code Bad Smell De-

tector presented a problem in the configuration file, and Stench Blos-

som [33] presented problems of incompatibility with the Eclipse’s

version used in this study.

• Long Parameter List: there are nine detection tools for this bad smell.

However, five are unavailable for download. IntelliJ IDEA needs li-

cense; Gendarme does not perform detection on Java and, PMD pre-

sented faults in trying to export the results of some systems; Check-

style 7 did not identify Long Parameter List for the selected systems.

• Shotgun Surgery: there are three tools unavailable for download.

Among those, IntelliJ IDEA needs a license, and iPlasma 8 presented

problems of exporting the results.

.1.4. Thresholds and automated detection of bad smells

The identification of classes and methods with structural problems

eflects the impaired software quality. The aim of this study is to evalu-

te the ability of thresholds metrics proposed by Filó et al. assisting the

dentification of Fowler’s bad smells, and thus ensuring the quality of

oftware. For that, RQ1 and RQ1.1 are investigated.

Results of the strategies proposed in Section 2.1.3 were compared

ith the results of JSpIRIT and JDeodorant tools. The results produced

y these tools are not considered correct in this study, for there are

o previous studies indicating the precision of such tools, even though

hey are used in studies regarding bad smells [13,15,40] . Therefore, the
5 http://www.intooitus.com/inCode.html .
6 http://www.intooitus.com/inFusion.html .
7 http://checkstyle.sourceforge.net/index.html .
8 http://pmd.sourceforge.net/ .

g

b

t

t

t

82
nalysis made provides an overview of how the results of the strategies

roposed are compared to those tools. We have used three evaluation

etrics widely known for the analysis: Recall, Precision and F -measure

17,39,40,42] . These metrics were chosen for they are measures used to

erify the effectiveness of results, besides being complementary.

JSpIRIT and JDeodorant are open-source code plugin of Eclipse that

dentifies bad smells in Java language [13,15,40] . JSpIRIT uses a metric-

ased approach, and was used in this experiment to identify: Large Class,

ong Method, Data Class, Feature Envy and Refused Bequest. JDeodor-

nt identifies: God Class (similar to Large Class), God Method (similar

o Long Method), Feature Envy and Switch Statement. Detection tech-

iques applied by JDeodorant are based on refactoring for God Class and

eature Envy and slicing techniques to detect God Method [17] . In this

xperiment, JDeodorant was used to detect Large Class, Long Method,

nd Feature Envy.

To implement the scripts with the detection strategies we have used

indSmells [47] . FindSmells is a bad smells detection tool that allows

he user to select one or more files in XML format containing software

easurements. It processes these files and inserts the measurements in a

atabase. The user selects the system and the bad smell he wants to iden-

ify. After, FindSmells runs the strategy that was implemented for that

ad smell. It filters out methods, classes, and packages that have anoma-

ous measurements of OOS metrics in the context of software measure-

ent process. Anomalous measurements are those that are significantly

way from what is common, and may indicate problems with quality in

he artifact measured. The detection tools and the proposed strategies

ere executed in 12 systems of small to medium size (see Table 2).

.1.5. Analysis with JSpIRIT tool

Results of the strategies proposed were compared with the results of

SPiRIT in terms of Recall, Precision and F -measure metrics. For Data

lass, results were computed on the basis of eight of 12 systems since,

or the other systems, JSpIRIT did not find instances of Data Class, or

here was a memory limit exceeded by the tool.

.1.5.1. Recall analysis. Recall measures the ability of detection strate-

ies to find bad smells considering the software under review. The

reater the value of Recall for a strategy, the greater is its capacity of

nding instances of bad smell.

Fig. 2 a shows the results of Recall distribution by bad smells. The

edians of the Recall are greater than or equal to 40% for Large Class

LC), Long Method (LM), Data Class (DC), and Refused Bequest(RB).

hat happened because for six of 12 systems analyzed, the Recall was

reater than or equal to 40% to each bad smell. This result is reasonable

ecause it indicates that in an extensive universe of possible instances,

he detection strategies were able to find a significant amount of them.

Recall distribution for Feature Envy has a median of 26%, and the

hird quartile, 75%, is not far away, with a value close to 30%. A jus-

ification is the lack of metrics adequate to detect Feature Envy in the

http://www.intooitus.com/inCode.html
http://www.intooitus.com/inFusion.html
http://checkstyle.sourceforge.net/index.html
http://pmd.sourceforge.net/

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

Fig. 2. Results of JSpIRIT.

c

c

M

l

2

g

t

i

w

r

a

F

i

M

2

t

f

t

s

f

P

t

p

w

C

s

L

c

i

d

b

i

2

a

s

o

m

R

o

t

P

q

R

T

F

o

t

c

a

o

b

i

l

H

s

2

p

s

t

83
atalog used [15]. We use LCOM. Another important fact, 100% Re-

all was obtained for at least one system, considering: Large Class, Long

ethod and Data Class. Refused Bequest, obtained Recall of 90% for at

east one of the analyzed systems.

.1.5.2. Precision analysis. Precision measures the ability of the strate-

ies proposed to detect instances of bad smells. While Recall measures

he number of results, Precision measures the quality of results. True

nstances in this study refer to those identified by JSpIRIT. However,

e do not state that the data reported by this tool is indeed true. These

esults are used only for comparison with our strategies.

Fig. 2 b presents the results of the precision for each of five bad smells

nalyzed. It shows that the medians are over 40% for Large Class and

eature Envy. When checking the data of the systems for such bad smells

t is noted that six of 12 have Precision greater or equal to 40%. For Long

ethod, Precision is little over 30%.

.1.5.3. F-measure analysis. F -measure metric verifies the precision of

he results generated. It considers the results of Recall and Precision

ormulas, and may be interpreted as a weighted average between these

wo measures.

Fig. 2 c shows the results of the F -measure distribution by each bad

mell analyzed. The median obtained for F -measure is close to 50% only

or Large Class and Long Method. That means, by balancing Recall and

recision measurements, there is a significant precision and, therefore,

he detection strategies proposed for these bad smells proved to be com-

atible with the results of JSpIRIT. The median value of Feature Envy

as not lower than the values for Large Class and Long Method. Data

lass and Refused Bequest had even smaller results based on the set of

elected systems.

Fig. 2 c shows coefficients of up to 78% and 72% for Large Class and

ong Method, respectively. F -measure was low for the others. In these

ases, Recall was generally low, but Precision was significant, indicat-

ng that results generated by the strategies for these bad smells tend to

iffer from results of JSpIRIT. Noted that F -measure analysis may have

een impacted by the fact that only eight of 12 systems had Data Class

nstances found by JSpIRIT.

.1.5.4. Analysis for all bad smells. We also made a Recall, Precision

nd F -measure analysis for all bad smells, with the aim to compare the

trategies proposed results with results of JSpIRIT. We found a median

f 50% for Recall. It is reasonable to consider that even small systems

ay contain a high amount of bad smells, as showed in literature [29] .

ecall was not lower than 14% for any of the bad smells rated. For 25%

f the systems, Recall was significantly higher, with value ≥ 73%. Fea-

ure Envy was the only bad smell with Recall less than 40%. Regarding

recision, it got 41% for half of the systems. This result may be conse-

uence of the low precisions obtained for Long Method, Data Class and

efused Bequest, with medians close to 30%, 10% and 15% respectively.

he Precision values were inversely proportional to the values of Recall.

 -measure distribution has smaller values compared to the distributions

f Recall and Precision, respectively. This difference is justified by: for

hree bad smells, very low precision was obtained; we obtained low Re-

all for two bad smells. The F -measure ponders Recall and Precision in

 single accuracy measure. Therefore, is expected a low concentration

f F -measure values. All these analyses were done independently of the

ad smell that the strategies are proposed to identify. This indicates that,

n general, the results of the detection strategies proposed, when ana-

yzed as a whole, have a low coincidence with the results of JSpIRIT.

owever, it is worthwhile to notice that this result does not reflect the

ituations of Recall and Precision analyzed in isolation.

.1.5.5. Manual inspection of JSpIRIT results. Previous work has re-

orted inefficiencies in tools for automated detection of bad smells in

ource code [6,13,28] . This may be caused, among other factors, by how

he threshold and metrics used by tools are defined in the composition of

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

Table 3

Comparison of specialists results with detection strategies.

Large class Long method Feature envy Refused bequest

NV V DIF NV V DIF NV V DIF NV V DIF

Squirel Recall 100% 100% 0% 100% 100% 0% 50% 50% 0% – – –

Precision 60% 40% − 20% 17% 17% 0% 55% 15% − 40% – – –

Webmail Recall 15% 33% 18% 100% 100% 0% 27% 50% 23% 57% 80% 23%

Precision 100% 50% − 50% 56% 41% − 15% 47% 24% − 23% 14% 14% 0%

d

o

t

t

k

s

b

p

m

b

u

c

s

r

f

(

P

t

t

B

J

E

i

T

c

c

c

i

P

F

c

s

A

a

t

J

d

s

a

s

u

t

a

d

o

5

s

Fig. 3. Results of evaluated instances by the specialists.

2

w

2

b

J

t

s

t

J

t

e

e

C

t
etection strategies. These definitions may vary according to the context

f the systems analyzed, and this may impact the quality of the results.

To minimize one of the main threat of this experiment − the use of

he results of JSpIRIT as a reference list of bad smells − a validation of

hese results was conducted with the support of three specialists with

nowledge in OOP and in the definitions of Fowler’s bad smells. Each

pecialist analyzed the list returned by JSpIRIT and indicated for each

ad smell, the true positives according to his knowledge. After, we com-

ared the specialists’ analysis and generated an oracle for this experi-

ent. To an entity configure a bad smell in this oracle, it should have

e indicated by at least two specialists as an anomaly. To allow man-

al analysis of instances of bad smells − based on the system source

ode − provided by JSpIRIT, the specialists chose from the analyzed

et, Squirrel SQL and Webmail, to carried out the validation of their

esult.

For comparison purposes, Table 3 shows Recall and Precision values

or Non-Validated data (NV) and data after Validation by the specialists

V). It also displays the Difference (DIF) between Recall percentages and

recision validated and non-validated. Data Class was discarded from

his analysis, because JSpIRIT did not return their instances for the sys-

ems evaluated. Although, JSpIRIT did not return instances of Refused

equest for Squirrel SQL system, this bad smell was not discarded since

SpIRIT reported results for Webmail system.

DIF showed positive values for Recall regarding Large Class, Feature

nvy and Refused Bequest, meaning that the validation of the special-

sts has identified false positives in the results generated by JSpIRIT.

he removal of these instances identified by the specialists led to an in-

rease in Recall. A negative DIF was also obtained for Precision in the

ase of Large Class, Long Method and Feature Envy. In this case, we con-

lude that, in some situations, the specialists did not identify instances

n results generated by JSpIRIT. This fact had a negative impact on the

recision result. Analyzing Table 3 and the bad smells Large Class and

eature Envy, there is also an increase in the percentages of Recall ac-

ompanied by a decrease in Precision.

Fig. 3 shows Recall and Precision distributions for all bad smells. The

pecialists validated all instances of Squirrel SQL and Webmail systems.

 median of 80% was obtained for Recall. They noted that 3/4 of Recall

re greater than or equal to 55%.

We conclude that the participation of the specialists were positive,

hey have helped to improve the quality of referral lists provided by

SpIRIT. Results regarding Recall are quite expressive considering the

ifficulties inherent in the detection of bad smells in software. Even in

mall systems, there may be a high amount of instances of bad smells

nd, consequently, a high rate of recovery of instances is desirable. Re-

ults of Precision suggest either that the specialists have sometimes been

nable to manually identify some valid instances of bad smells or that

he strategies proposed indicate more instances of bad smells than actu-

lly exist.

Contrary to the observations made regarding Recall, the Precision

istribution indicates a median of 24%, a low but expected value if we

bserve the high Recall concentration. The highest Precision value is

0%. This indicates that, in the best case, given the results of a detection

trategy, half of the results provided are valid.
84
.1.6. Analysis with JDeodorant tool

Results of the strategies showed in Section 2.1.3 were also compared

ith results of JDeodorant.

.1.6.1. Recall Analysis. Figure 4 a shows Recall distribution for each

ad smells, taking into account the detection results provided by

Deodorant and the detection strategies presented in this study. This

ool does not identify Data Class and Refused Bequest. So, both bad

mells were discarded of this analysis.

Regarding Large Class and Long Method, we observe a low concen-

ration of Recall values for the detection strategies proposed according

Deodorant. However, when checking the reference lists, we observe

hat the amount of detection results reported by JDeodorant is, in gen-

ral, larger than the quantity identified by the strategies proposed. For

xample, based on Checkstyle system, JDeodorant identified: 81 Large

lass instances, against four instances reported by the respective detec-

ion strategy proposed, 95% more instances; and 110 instances of Long

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

Fig. 4. Results of JDeodorant.

M

6

s

m

b

a

q

s

i

n

m

T

a

t

2

g

t

i

w

r

s

s

s

i

s

t

s

F

t

b

r

o

w

A

b

p

2

s

o

3

i

J

v

u

s

e

w

8

w

t

t

2

s

l

d

u

o

s

n

85
ethod, against 40 reported by the detection strategy of Long Method,

0% more instances. Additionally, for JsXe system: 29 Large Class in-

tances, against four reported by the respective detection strategy, 86%

ore instances; and 126 instances of Long Method, against 52 reported

y the detection strategy of Long Method, that is, 59% more instances.

The concentration of Recall for Feature Envy is in general moder-

te, with median 50%. Recall’s highest value was around 65%. The first

uartile is close to 40%, which means that, for 3/4 of the evaluated

ystems, Recall was significant, ≤ 40%. Contrary to what we observe

n JSpIRIT analysis, Recall for Feature Envy was, to some extent, sig-

ificant. To Fernandes et al. [13] , the detection of bad smells imple-

ented by JDeodorant is based on software metrics and Abstract Syntax

ree (AST). Such a hybrid approach may provide detection results more

ligned to the results reported by the strategy proposed when compared

o JSpIRIT.

.1.6.2. Precision analysis. Precision measures the ability of the strate-

ies proposed to detect instances of bad smells. While Recall measures

he number of results, Precision measures the quality of results. True

nstances in this study refer to those identified by JSpIRIT. However,

e do not state that the data reported by this tool is indeed true. These

esults are used only for comparison with the proposed strategies.

Fig. 4 b shows the distribution of Precision for each bad smell, con-

idering the detection results provided by JDeodorant and the detection

trategies proposed. For Large Class and Long Method, we obtained a

ignificant distribution of Precision values for the proposed strategies,

n relation to JDeodorant. The medians are around 50% and 90%, re-

pectively. For Large Class, 50% of the evaluated systems have more

han 90% of Precision, reaching 100%. For Long Method, there is a con-

istency between the values obtained, which are between 40% and 70%.

or Long Method, Precision presented a little discrepancy of values be-

ween the evaluated systems. We note that although Recall is small for

oth bad smells, the Precision is great. That is, although JDeodorant has

eturned a low amount of instances regarding the strategies, the result

f the strategies is, in general, accurate.

For Feature Envy, we observe a low distribution of Precision values,

ith a median around 20%. This goes against Recall’s significant results.

 possible justification is that the greater the number of results retrieved

y a detection strategy, the greater the chances of occurrence of false

ositives, as observed in the experiment with JSpIRIT.

.1.6.3. Analysis of F-measure. Fig. 4 c shows F -measure distribution re-

ults for each bad smells. None of the bad smells analyzed by JDeodorant

btained F -measure greater than 50% and the medians did not exceed

0%. Meaning that by balancing Recall and Precision, a low accuracy

s obtained. Our detection strategies identified results close to those of

Deodorant.

Two factors may justify the disagreement between the results pro-

ided by JDeodorant and our detection strategies: the hybrid approach

sed by JDeodorant to detect bad smell; the difference between the re-

ults returned by JDeodorant regarding the strategies proposed. Consid-

ring JEdit system, JDeodorant identified 172 instances of Large Class,

hile the strategy proposed returned 34, a difference of approximately

0%. For Squirrel SQL, JDeodorant provided 21 instances of Large Class

hile only five were identified by the detection strategy. JDeodorant re-

urned 40 instances of Long Method, whereas only 12 were provided by

he strategy.

.1.6.4. Analysis for all bad smells. Regarding the analysis for all bad

mells we observe that the concentration of Recall values is, generally,

ow, although the results of Feature Envy have been significant. This is

ue to the fact that, for Large Class and Long Method, the Recall val-

es are low enough to tend to the general distribution to the median

f approximately 20%. These results indicate that the detection of bad

mells displayed by the strategies proposed, concerning JDeodorant, is

ot very expressive. The distribution of Precision for all three bad smells

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

i

s

o

t

n

a

a

a

L

t

r

h

2

s

a

b

t

i

l

t

t

p

o

t

r

d

g

o

r

w

r

t

J

r

a

t

5

8

R

a

p

l

m

c

S

S

a

t

t

r

t

c

i

s

v

s

o

t

s

n

o

d

v

a

c

t

[

t

i

m

i

t

a

a

i

t

l

i

T

w

a

3

a

a

3

i

s

a

T

t

p

s

p

o

t

c

n

w

3

i

s

r

l

n

dentified by JDeodorant regarding the detection results of the strategies

howed has, in general, high values, with median close to 50%. Results

btained individually for Feature Envy are low, but not enough to skew

he overall distribution, since Large Class and Long Method exhibit a sig-

ificantly high concentration of Precision. So, it has been shown that the

ccuracy of the strategies, in general, is expressive concerning JDeodor-

nt. Given F -measure distribution, we observe a low concentration, with

 median of approximately 30%, probably due to low Recall rates for

arge Class and Long Method, as well as low Precision values from Fea-

ure Envy, where the highest value is 49%. That indicates, in general, the

esults of the detection strategies proposed, when analyzed as a whole,

ave a low coincidence with the results of JDeodorant.

.2. Threats to validity

Construct threats. For this experiment, the software was randomly

elected from Qualitas.class Corpus. This choice was based on the avail-

bility of downloadable source code and on the ability of these systems

e analyzed by JSpIRIT and JDeodorant, which are not scalable for sys-

ems above 60 MB, 1K NOC and 7K NOM. This may have had a negative

mpact on the calculation of Recall, Precision and F-measure, for the

arger the sample size, the greater its representativeness and diversity

end to be [34] .

The detection strategies were proposed according to metrics and

heir thresholds available in Filó et al. catalog, and in Qualitas.class Cor-

us. The metrics and their thresholds may have had a negative impact

n the results, since strategies may not have considered some aspects

hat characterize each bad smells. To mitigate this problem, each met-

ic was carefully selected to compose the strategies and thresholds were

efined according to the characteristics of each bad smell.

The quality of the detection results of JSpIRIT and JDeodorant is not

uaranteed as said in Section 2.1.4 . Using them as irrefutable reference

f instances of bad smells in software may lead to an analysis with low

eliability. To mitigate this problem, the results provided by these tools

ere rather only considered as a list for comparison purposes with the

esults generated by detection strategies. In our comparative studies, for

hree bad smells analyzed, the strategies proposed when compared with

SpIRIT presented medians of 80% and 24%, for Recall and Precision,

espectively. When compared to JDeodorant, presented average Recall

nd Precision of 44% and 57%.

Fernandes et al. [13] , in their study of bad smells tools, identify 84

ools. Results indicate that inFusion and PMD have the highest Recall,

0% and 67%, respectively. JSpIRIT and PMD have higher Precision,

0% and 100%, respectively. JDeodorant have 17% Precision and 33%

ecall. But, they consider only Large Class and Long Method, and the

nalysis is performed with only small software. JDeodorant and inFusion

resented the best results in the analysis regarding their ease of use.

Internal threats. Part of data collection analyzed has threats re-

ated to human factors. JSpIRIT and JDeodorant results are transferred

anually for spreadsheets to make Recall, Precision and F -measure cal-

ulation feasible. The strategies proposed are implemented by Find-

mells, which may contain errors. To mitigate these problems, Find-

mells source code and the worksheets for calculating Recall, Precision,

nd F-measure have been validated by three OOP specialists. Beside

hat, a manual verification of the results has been performed to identify

he intersection between the results of JSpIRIT and JDeodorant with the

esults identified by the detection strategies proposed.

To select the 12 systems to be evaluated, we tried to import 58 sys-

ems, but 46 were discarded due to: problems in importing the source-

ode into Eclipse IDE; or Eclipse IDE memory limit exceeded; or ex-

stence of more than one XML file with software metrics for the same

ystem. The source-code importation of each system into Eclipse IDE de-

elopment tool was necessary, because JSpIRIT and JDeodorant require

ystems to be imported for bad smells identification. Eventually, the lack

f a proper import configuration may have led to the disposal of systems

hat could have been used in the study. To address this threat, several
86
ystems were submitted for importation in order to obtain a sufficient

umber of systems for analysis.

External threats. Qualitas.class Corpus has systems with more than

ne XML file of software metrics. Since it is not clear from the Corpus

ocumentation if the files correspond to different packages or distinct

ersions from the same system, these systems were removed from the

nalysis as a precaution. Such a decision was taken to avoid possible

onflicts between the content of the files, such as different values for

he same metric.

Based on previous work investigating bad smells in source code

6,13,15] , Recall, Precision and F -measure metrics are chosen to analyze

he effectiveness of thresholds used through detection strategies present

n this paper. Although there are other measurements interesting, the

easurements chosen are effective to our research. Additionally, to val-

date the analysis performed, we had the support of three specialists.

Conclusion threats. Although, we consider that the 12 chosen sys-

ems are sufficient for the analysis proposed, this set may not be the re-

lity of development in the context of large systems. Besides, all systems

vailable in Qualitas.class Corpus are open-source and implemented

n Java. This may also makes it difficult to generalize the results ob-

ained to other development contexts, such as for other programming

anguages.

Due to technology limitations, such as memory limit when attempt-

ng to run large systems, the analysis of more software was infeasible.

o address this threat, we select systems investigated in the literature

ith significant amounts of instances of bad smells, such as AOI, JEdit

nd Webmail [7] .

. Threshold value and bad smells manual detection

We analyzed Apache Maven, Version 3.0.5, with 18 MB, 864 classes

nd 6065 methods, to answer the RQ1.2. Maven is a tool for managing

nd understanding software systems projects [50] .

.1. Identification of bad smells by the specialists

Like the other experiments, the system source code was imported

nto Eclipse IDE, from which three specialists generated a list of bad

mell’s instances. They considered Large Class, Long Method, Data Class

nd Refused Bequest, whose brief descriptions appear in Section 2.1.3 .

o identify each type of bad smell, the specialists considered the de-

ection criteria next. Comments and interfaces were ignored whenever

resent. For Large Class, class methods need to be more complex than

imple gets and sets. For Long Method, the method must be also com-

lex. Class containing, besides − constructors, gets and sets − other types

f methods, these one should be considered as “simple ” processing for

he class to be designated as Data Class. For Refused Bequest, the spe-

ialists also considered that class contains one considerable number of

ew methods. Overlapped abstract superclass methods had no weight

hen considering Refused Bequest.

.2. Results of bad smells manual detection

Results for each bad smell manually evaluated by the specialists

n Maven system were compared with data obtained by the detection

trategies proposed. Recall (R), Precision (P), and F -measure (F-M) met-

ics were used in this evaluation, as showed follows. It was also calcu-

ated the mean and standard deviation of these values for the discussion

ext.

R P F-M

Large class 70% 37% 48%

Long method 73% 19% 30%

Data class 47% 32% 38%

Refused bequest 100% 2% 4%

Mean 72,5% 22,5% 30%

Deviation 21,7% 15,6% 18,8%

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

i

v

a

t

i

m

t

f

n

P

3

m

g

S

f

c

i

c

c

i

d

t

B

t

s

a

r

t

4

t

N

v

[

4

s

Table 4

Qualitas.class Corpus 2013 selected systems for threshold

x fault study.

Systems Size # of Analysed class

1 ant-1.8.2 37,1 MB 869

2 aspectj-1.6.9 61 MB 1507

3 batik-1.7 94 MB 1473

4 cayenne-3.0.1 7,1 MB 1844

5 derby-10.9.1.0 73 MB 1851

6 jmeter-2.5.1 22 MB 977

7 maven-3.0.5 18 MB 696

8 myfaces-2.1.10 83 MB 1189

9 poi-3.6 49 MB 2149

10 roller-5.0.1 133 MB 500

4

w

t

t

c

o

i

o

c

i

c

t
Analyzing these results, we have obtained a Recall mean of approx-

mately 73%, taking into account all four bad smells evaluated. This

alue indicates that detection strategies, in general, were able to report

 significant number of instances of bad smells regarding to those iden-

ified by the specialists. The average Precision obtained was approx-

mately 23%, much lower than the Recall percentage identified. This

eans that although the number of instances recovered is expressive,

he amount of false positive is high, that is, the number of valid instances

rom the specialists’ point of view is low. Consequently, this discrepancy

egatively affected the F -measure coefficient, which balance Recall and

recision, presenting an average value of 30%.

.3. Threats to validity

Construct threats. This experiment used only Maven system, what

ay have impacted the results of Recall, Precision and F -measure. Re-

arding detection strategies, we use those presented in Section 2.1.3 .

o, threats to validity of this experiment are the same as those one.

Internal threats. Data collection also has threats related to human

actors, because, Maven analysis was performed manually by three spe-

ialists in the source code. Such threat may be related to the complex-

ty of the task performed manually, as well as the limitations time to

omplete the study. To mitigate it, we gave two weeks for the analysis,

onsidering the size of the system and the number of bad smells to be

dentified.

The specialists used arbitrary thresholds in the criteria proposed to

etect bad smells. Additionally, they applied more rigorous concepts

han those defined by Fowler in the definition of Large Class, Refused

equest, Long Method and Data Class. These factors constitute threats

o the validity of the results of this study.

External threat. As previous experiments reported, the set of mea-

urements chosen to evaluate the results of this study is Recall, Precision

nd F -measure. So, the same threats to external validity of Section 2.2 ,

eferring to the calculation of these metrics, apply here as well.

Conclusion threat. Considering that the specialists evaluated only

he Maven system, it is not possible to generalize the results.

. Software metric thresholds and fault prediction

This section presents an empirical study and their results regarding

he experiments carried out to investigate the RQ2.

For each class-level software metrics: DIT, LCOM, NOF, NOM,

ORM, NSC, NSF, NSM, SIX, and WMC, we investigate whether the

alue-ranges Regular/Occasional and Bad/Rare specified for thresholds

15] are sufficient indicators of software system faults.

.1. Study design

We have inspired on the work of Wohlin et al. [54] to define the

teps and execution of this study to answers RQ2. The steps are:

Step 1. Select a threshold catalog . As in the previous study reported in

this paper, this experiment uses the catalog of threshold of Filó

et al., (Section 2.1).

Step 2. Select a tool to collect fault data. We use BugMaps to collect fault

data stored in bug-tracking systems [10] . BugMaps provides

historical fault data for systems in two repositories, Bugzilla

and Jira. We choose these tools based in the result of Januário

and Ferreira’s work [21] . These authors have compared data

collection tools of software faults, and have concluded that

BugMaps is the only tool that collects fault data in each class

of software, exporting the result on CSV format.

Step 3. Select the software systems for analysis. We also use as basis

Qualitas.class Corpus [50] to select the software to be ana-

lyzed. They were selected considering the availability of faults

registered in Bugzilla and Jira. Table 4 exhibits these systems,
87
where “Systems ” refers to their names and versions; and “#

of analyzed class ” refers to the number of system classes asso-

ciated with faults registered in BugMaps. Step 4 describes the

process for obtaining this data.

Step 4. Extract fault data from the selected software systems . To do that,

(I) data is collected in Bugzilla and Jira. This resulted on a CSV

file, format required to accomplish data entry in BugMaps. (II)

BugMaps was then informed of the desired time to filter the

faults. Considering that the metrics of Qualitas.class Corpus re-

fer to 2013, the fixed period comprises 2013–2016. (III) From

the ID of each fault in the repository of the project sources

(GitHub), BugMaps performs an association of faults with sys-

tem classes and exports the data to a file on CSV format.

Step 5. Classify measurements according to threshold ranges. We perform

an analysis of the metrics file of Qualitas.class Corpus for all

systems selected on Step 3 to identify in which range (Good,

Regular or Bad) the value of each metric, at the class level, is

related with the thresholds used, [15] . Through scripts imple-

mented in Java, the value of the metric has been replaced by

the name of the range to which it corresponds.

Step 6. Analyze the relation between threshold and faults. We consider

the output file generated by BugMaps containing the relation

of the classes per system and their respective number of faults;

and, the file of metrics obtained from the Qualitas.class Corpus

containing the range of the metrics according to the catalog

used [15] . These two files are combined to facilitate the anal-

ysis of the relationship between thresholds of software metrics

and occurrence of faults in each class. The analysis is achieved

based on descriptive statistics to investigate the relationship

between two qualitative variables: “the range that each met-

ric value refers to ” and “the presence of faults in each class ”.

To do that, we use dynamic tables that cross the investigated

variables and calculate the frequency of occurrence of each

crossing. The results are then converted to percent and the

mean and the standard deviation are calculated.

.2. Results of the analysis of software metrics by system

Table 5 shows by metric, and by system, the percentages of classes

ith faults classified in the Good, Regular, and Bad ranges, according to

he threshold used. The complement of the value of each cell, in relation

o 100%, corresponds to percentage of classes that did not present faults

lassified in the respective ranges of values. Observing JMeter, 83.93%

f its classes with NOF metric in Bad range shows fault. Results exhibited

n this table allow us to analyze which values ranges are best indicators

f the occurrence of fault per metric.

DIT. For 50% of systems, DIT obtains the highest percentage of

lasses with faults in Good range, with approximately 23% of classes

n this range. For Regular range 40% of systems obtain the highest per-

entage of classes with faults, average of 19% of classes, against 10% of

he system in Bad range. Merging the result of Regular and Bad ranges,

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

Table 5

Percentage of classes with faults per system for each software metric.

Metrics Band Ant AspectJ Batik Caienne Derby Jmeter Maven MyFaces POI Roller Average

% % % % % % % % % % %

DIT Good 20,10 9,50 8,46 18,45 25,35 61,56 20,37 0,42 45,41 15,61 22,52

Regular 17,35 6,78 14,52 21,54 33,98 42,76 2,25 1,12 27,30 21,70 18,93

Bad 8,86 3,85 24,51 3,60 29,58 54,73 0,00 0,00 21,21 0,00 14,63

LCOM Good 10,75 4,95 9,56 14,48 18,42 48,52 13,32 0,28 34,45 15,00 16,97

Regular 11,54 10,84 9,16 17,84 29,93 70,73 19,35 0,00 44,22 14,89 22,85

Bad 33,20 17,14 20,48 30,61 53,02 74,44 34,52 3,41 48,78 20,69 33,63

NOF Good 10,17 5,54 10,35 14,77 20,05 49,43 13,82 0,24 36,72 14,33 17,54

Regular 22,22 15,38 11,59 25,00 36,79 74,75 28,57 1,22 49,71 21,51 28,67

Bad 50,51 22,08 15,19 36,00 54,59 83,93 50,00 6,67 40,00 22,86 38,17

NOM Good 9,68 3,25 7,45 12,50 18,93 47,22 14,00 0,27 33,65 14,04 16,10

Regular 20,14 8,55 22,04 24,84 24,59 64,15 20,27 0,00 41,50 15,48 24,16

Bad 40,24 21,13 18,30 37,78 52,59 79,23 36,36 2,83 55,14 24,47 36,81

NORM Good 17,36 7,91 9,59 15,65 25,36 55,96 17,34 0,44 38,46 14,29 20,25

Regular 32,00 11,49 27,50 27,38 34,67 63,64 25,00 0,00 51,61 28,81 30,21

Bad 22,22 11,76 36,11 60,00 43,64 33,33 0,00 2,70 80,00 40,00 32,98

NSC Good 18,61 7,81 10,43 15,38 27,85 57,64 17,24 0,63 38,63 16,82 21,10

Regular 16,25 9,46 13,77 24,27 25,16 48,57 18,33 0,00 45,65 11,11 21,26

Bad 11,54 16,36 10,98 28,72 23,68 36,59 12,50 0,00 34,09 8,33 18,28

NSF Good 11,97 6,09 10,72 16,33 24,50 41,26 16,37 0,41 38,26 12,89 17,88

Regular 29,13 15,31 10,29 25,77 37,70 67,14 36,36 0,56 37,16 28,21 28,76

Bad 41,57 21,43 14,67 21,62 38,60 83,96 33,33 1,85 47,62 50,00 35,47

NSM Good 15,45 7,24 10,40 17,28 25,35 52,33 15,91 0,47 34,90 15,17 19,45

Regular 32,14 14,29 24,07 7,89 40,79 92,86 25,00 1,82 57,14 18,18 31,42

Bad 51,16 17,65 8,77 34,78 46,67 88,89 52,94 0,00 70,97 37,50 40,93

SIX Good 16,38 6,65 7,40 14,83 25,38 54,15 18,20 0,39 41,85 12,87 19,81

Regular 21,55 13,46 17,48 20,28 32,08 68,22 13,64 1,52 33,54 22,94 24,47

Bad 9,52 1,92 34,25 25,00 27,44 30,77 0,00 0,00 25,00 33,33 18,72

WMC Good 7.07 1,87 5,04 9,87 12,21 38,71 11,28 0,00 27,24 7,37 12,06

Regular 15,73 7,35 16,58 21,27 26,61 70,27 23,36 0,45 45,00 17,24 24,39

Bad 44,25 23,40 22,60 47,62 56,35 91,21 46,30 3,17 71,23 39,24 44,54

w

i

m

R

c

r

o

e

i

r

r

a

1

w

R

p

a

1

f

l

N

i

a

f

r

a

c

a

2

a

e

r

o

i

o

i

2

w

a

f

f

i

t

f

3

g

w

f

2

w

a

i

R

i

p

i

a

o

a
hich are the most critical, we obtain a result equivalent to that given

n the Good range. According to Filó et al., Good range represents the

ost frequent values that possibly indicate good programming practices.

esult suggests that DIT threshold may not be considered as good indi-

ators of software faults.

LCOM. The percentage of classes with faults in Good or Regular

anges, on average, is 14% and 18%, respectively. For Bad range 100%

f the systems have the highest percentage of classes with faults. The av-

rage percentage corresponds approximately 29% of classes. This value

s up to 15% greater than that obtained in previous ranges. So, the Bad

ange of LCOM metric proves to be effective in the indication of occur-

ence of faults in systems.

NOF. The average percentage of classes with faults in Good range is

pproximately 18%. Considering Regular and Bad ranges, respectively,

0% and 90% of 10 systems present the highest percentage of classes

ith faults. The mean percentage corresponds approximately 29% for

egular range and 38% for Bad range. Therefore, Bad range for NOF

roves to be effective in indicating system faults.

NOM. The average percentage of classes with faults in Good range is

pproximately 16%. Considering Regular and Bad ranges, respectively,

0% and 90% of 10 systems present highest percentage of classes with

aults. The mean percentage corresponds approximately 24% for Regu-

ar range and 37% for Bad range. So, we conclude that Bad range for

OM is effective in indicating faults.

NORM. The average percentage of classes with faults in Good range

s approximately 20%. For Regular and Bad ranges, respectively, 30%

nd 70% of 10 systems present the highest percentage of classes with

aults. On average, these ranges obtain approximately 30% for Regular

ange and 33% for Bad range. We conclude that Bad range for NORM is

 good indicator of system faults.

NSC. For 50% of the systems, this metric obtains the highest per-

entage of classes with faults in Good range, corresponding, on aver-

ge, approximately 21% of the classes in this range. For Regular range,

0% of the systems obtain the highest percentage of classes with faults,
88
verage of 19% of classes, while 30% of the systems have the high-

st percentages in Bad range. Adding up the result of the most critical

anges, Regular and Bad, the total number of systems equals the result

f Good range. We conclude that thresholds used for NSC are not good

ndicators of system faults, although their catalog presents Good range

f this metric as an indicator of good programming practices.

NSF. The average percentage of classes with faults in Good range

s approximately 18%. Regarding Regular and Bad ranges, respectively,

0% and 80% of these systems present the highest percentage of classes

ith faults. The respective average percentages of classes with faults are

pproximately 29% for Regular range, and 35% for Bad range. There-

ore, results suggest that NSF threshold are useful in predicting system

aults.

NSM. The average percentage of classes with faults in Good range

s approximately 19%. Regular and Bad ranges have, respectively, for

hese systems 20% and 80%, the highest percentage of classes with

aults. On average, the percentage of classes with fault is approximately

1% and 41% for Regular and Bad ranges, respectively. The results sug-

est that NSM is useful in predicting software faults.

SIX. Two of 10 systems present the highest percentage of classes

ith faults in Good range. On average, we observe 20% of classes with

aults in this range. Regarding Regular and Bad ranges, respectively,

0% and 80% of 10 systems present the highest percentage of classes

ith faults. Their respective average percentages of classes with faults

re approximately 24% for Regular range and 19% for Bad range. There

s an increase in the result from Good to Regular, but a decrease from

egular to Bad. Therefore, for SIX, Regular range is the most effective

n indicating system faults.

WMC. None of the 10 evaluated systems present for WMC the highest

ercentage of classes with faults in Good or Regular range. The approx-

mate average percentage of classes with fault in these ranges is 12%

nd 24%, respectively. For 100% of the systems, the highest percentage

f classes with faults is classified in Bad range, with an average percent-

ge of approximately 45% of classes. This value is 33% higher than that

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

o

t

−

i

p

N

o

G

o

i

t

m

i

T

s

4

s

s

f

a

i

c

R

p

i

1

c

a

t

o

o

o

a

a

r

w

i

p

a

o

2

T

t

fi

v

s

o

N

w

o

R

d

t

o

o

u

a

4

c

B

i

c

b

t

o

t

t

m

d

a

i

b

s

s

l

a

A

o

a

d

btained in the previous ranges. Therefore, Bad range for WMC is able

o indicate the largest number of system faults.

These results show that, for seven of 10 software metrics analyzed

 LCOM, NOF, NOM, NORM, NSF, NSM and WMC − the Bad range

s effective to indicate faults. None of 10 systems obtained the highest

ercentage of classes with faults in Good range for the metrics: NSM,

SF, NORM, NOM and NOF. For NOF, NOM and NSF, the percentage

f class per range increases as the criticality of the range increases from

ood to Bad, i.e., the more critical the range, the greater the percentage

f class with faults. Regarding SIX, Regular range is the most effective

n the indication of faults. For DIT and NSC metrics, it was not possible

o state that their thresholds are indicators of system faults, both are

etrics related to the application of inheritance. Result indicates that

nheritance level is not good predictor for occurrence of software faults.

hus, the study confirms that in general the thresholds used [15] may

upport the prediction of faults in software systems.

.3. Results of the analysis by software metric independent of the system

To complement the study of Section 4.2 , we provide a general analy-

is per metric independent of the source system. In this analysis, the data

et of all classes from the 10 systems evaluated is consolidated into a file,

rom which, for each metric, the frequency of classes with presence or

bsence of faults in the ranges Good, Regular, and Bad is calculated. This

s done in order to verify the relation between the percentages of classes

lassified on the threshold values ranges, and the presence of faults. The

Q2 is answered considering the data set of all these systems. Table 6

resents, for each metric, the percentages of classes with rated faults

n each of this value range. The complement of each cell, regarding to

00%, corresponds to the percentage of classes that do not present faults

lassified in the respective value range. The mean and the standard devi-

tion are calculated for each of the three ranges, allowing us to analyze

he ranges considered the best indicators of faults occurrence.

The results obtained for each metric here are compatible with those

ne observed when each individual software was analyzed, where seven

f 10 metrics evaluated had the highest percentage in classes with faults

n the Bad range.

Regarding value range Good, only two of 10 metrics analyzed, DIT

nd NSC, presented highest percentage of classes with faults. On aver-

ge, this range obtained approximately 18% of classes with faults. This

esult is consistent with the definition present in the catalog used [15] ,

here Good range corresponds to values that presented high frequency

n the system. Although these values do not necessarily express the best

ractices in Software Engineering, they may indicate a standard quality

nd, therefore, entities so classified tend not to fail.

Considering Regular range, only SIX presents the highest percentage

f classes with faults. However, on average, we obtained approximately

6% of classes with faults, considering all 10 metrics under analysis.
Table 6

Percentage of classes that presented faults by range and by met-

ric.

Metrics Good Regular Bad

% % %

DIT 2100 2088 2073

LCOM 1639 2361 3508

NOF 1709 2959 4153

NOM 1522 2482 3977

NORM 2010 2879 3121

NSC 2117 2069 1817

NSF 1752 3034 3931

NSM 1926 3311 3918

SIX 1945 2510 2143

WMC 1157 2473 4437

Average 1788 2617 3308

Standard deviation 2,98 4,13 9,65

c

r

d

t

m

t

p

i

i

c

a

e

5

t

89
his is a relatively significant value. It is 8% higher than the value ob-

ained for the Good range. This percentage’s increase of classes identi-

ed with faults is expected, because the Regular range corresponds to

alues that are not very frequent, nor rare. Classes having measures con-

idered Regular are more likely to present problems regarding the value

f Good range (Table 6).

Regarding Bad range, 70% of the metrics analyzed, LCOM, NOF,

OM, NORM, NSF, NSM, and WMC obtain highest percentage of classes

ith faults. The average percentage corresponds to approximately 33%

f classes. This value is up to 15% higher than that obtained on Good and

egular ranges. Result is in line with the threshold catalog used, which

escribes Bad range as low-frequency values, being the most critical in

erms of the propensity for problems to occur. Therefore, the application

f Bad range is effective to indicate fault occurrence in future versions

f the evaluated systems.

Results obtained suggest that the thresholds proposed by [15] are

seful to predict faults in software systems. Thus, the RQ2 response is

ffirmative.

.4. Threats to validity

Construct threats. We have selected BugMaps tool to support the

ollection of faults in systems available at BugZilla and Jira repositories.

ugMaps is an automated tool, so, it may contain glitches. Nevertheless,

ts choice was based on results of previous work that indicate its appli-

ability and effectiveness [10,21] .

Another threat is related to reliability of BugZilla and Jira, although

oth are used in software factories. Also we implemented a Java routine

o automate the process for classifying the values of the metrics thresh-

ld according to Good, Regular, and Bad ranges. This routine may con-

ain errors that may impact the results. To mitigate it, this routine was

ested on a small dataset before being used in this study.

Internal threat. During data collection, some threats related to hu-

an factors may have affected the process. At the cross-referencing fault

ata with the classification of software metrics by ranges Good, Regular

nd Bad, the classes with faults that had no software metrics computed

n Qualitas.class Corpus were removed manually. This was necessary

ecause the corpus contains information regarding 2013 version of the

ystems, while the fault data covers information from 2013 to 2016 ver-

ions.

External threat. We used systems implemented in Java and cata-

oged by Qualitas.class and discarded the ones whose fault data were not

vailable in Bugzilla or Jira repositories, totaling 10 analyzed systems.

lthough this number has been considered sufficient, the conclusions

btained may not be generalized to any development context. For ex-

mple, systems implemented in other programming languages or with

ivergent characteristics regarding the systems analyzed.

Conclusion threats. The analysis done is based on the percentage of

lasses with faults that are classified in the Good, Regular, and Bad value

anges.To support the investigation of RQ2, the mean and the standard

eviation were computed for metrics known in the literature. Although

here are other ways of analyzing this type of study, the analysis by

eans of these metrics was considered sufficient. Additionally, the en-

ire analysis was computed using spreadsheets. To minimize possible

roblems, a manual inspection of the generated files was performed. It

s emphasized that in this study only the presence or absence of faults

n the class is considered and not the number of faults identified by

lass. Although we consider that the number of faults justify conducting

 complementary study, we consider that our results provide sufficient

vidence for the established objectives.

. Related work

This section reports how researchers are investigating the applica-

ion of metrics thresholds to detect bad smells and to predict fault

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

i

a

r

[

a

d

t

c

a

s

r

F

v

f

o

w

u

M

o

s

m

a

o

3

C

d

s

w

b

c

i

f

2

3

e

w

L

T

a

p

h

i

F

i

p

s

u

t

w

G

o

d

[

m

c

c

d

m

i

l

T

u

g

g

a

p

p

m

u

t

f

t

n

f

c

v

o

m

c

w

w

t

t

L

t

n

a

a

a

t

a

u

b

d

t

i

o

[

d

t

w

o

o

u

c

d

6

u

s

t

w
n OO software systems. It shows that several approaches are avail-

ble for bad smells detection. Basically most of them proposed a set of

ules, which are combinations of software metrics with their thresholds

3,14,15,25,26,30–32,38,42,43,45,46,48,53] .

Sahin et al. [42] use the generation of rules for bad smell detection

s a two-level optimization problem, where top-level generates a set of

etection rules and the lower level generates artificial bad smells. The

hreshold for each metric is done manually. Results show seven types of

ode smells detected with an average of over 86% in terms of Precision

nd Recall.

For Singh and Kahlon [46] the propensity of a module to have fault is

omehow associated with a bad design. They address this problem using

isk analysis at five different levels. They used three versions of Mozilla

irefox as dataset. Results show that some metrics have threshold for

arious levels of risk that are of practical use in predicting classes with

aults.

Vale et al. [53] compare three methods [3,26,38] to derive thresh-

lds in a benchmark of Software Product Lines (SPL). They evaluated

hich of these methods provide appropriate thresholds to four metrics

sed in SPL: Lines of Code, Coupling between Objects Classes, Weighted

ethod per Class, and Number of Constant Refinements. The thresholds

btained identified God Class.

Marinescu [30] proposes one of the first works for detecting bad

mells via software metrics. To find threshold, he uses two statistical

eans: average to determine the most typical threshold of the dataset,

nd standard deviation to obtain a measure of how much the thresh-

lds in the data are scattered. With thresholds, he measure 45 Java and

7 C++ systems regarding the metrics: Number of Methods, Lines of

ode and Cyclomatic Number. The thresholds applied in our work were

erived considering the characteristics of distributions [15] .

Others, like Zhang et al. [57] , argue that software metrics lack preci-

ion in detecting bad smells and propose a code pattern-based approach

hose aim is to define bad smells as patterns of source code, so that

ad smells may be detected through examining these patterns in source

ode.

Zhang et al. [60] introduce an overview about an empirical study to

nvestigate the impact of bad smells in terms of their relationship with

aults.

Zhang et al. [59] conduct a SLR with 319 papers from 2000 to June

009 to identify the knowledge about bad smells. They analyze in detail

9 papers. Results indicate that the level of knowledge varies for differ-

nt bad smells. Duplicated Code get the most attention of researchers,

hereas, Message Chains, have very few studies. Study of Feature Envy,

ong Method and Large Class focuses on improving the understanding.

he focus of other bad smells is on developing tools and methods to

utomatically detect them. Only five studies directly investigate the im-

act of using bad smells, four of them indicate that not all bad smells

ave negative impact on software, Duplicated Code for example may

ncrease the reliability of software. Data Class, Refused Bequest and

eature Envy are not significantly associated with the specific sever-

ty level of software faults. Most of the studies are based on open source

roject, expert opinion are infrequently used. Results suggest that the

tudies mainly focus on objective data, while subjective data are rarely

sed.

Nascimento and Sant’Anna [36] also investigate the relationship be-

ween bad smells and software faults. Their results show that classes

ith bad smells, in most cases, are more related to occurrence of faults.

od Class and Feature Envy were the ones with the highest proportion

f faults on their classes.

Macia et al. [29] study the impact of code anomalies in architectural

esign degradation. They use MuLATo [3] , Together [4] and Understand

5] tools to collect metrics for the detection strategy. Results show that

ost architectural problems in source code emerge from an anomalous

ode.

There are several techniques to predict fault in software systems: ma-

hine learning [22,44] ; historical analysis of the systems [2,19,24,44] ;
90
esign patterns application [12] ; source code statistical analysis [61] ;

etric-based defect prediction [1,22,23,55,56] .

Zhang et al. [58] study the relationship between bad smells and fault

n source code file level. They capture the bad smells from each col-

ected source code files, and the number of faults associated with it.

hey consider: Duplicate Code, Data Clumps, Switch Statements, Spec-

lative Generality, Message Chains, and Middle Man. They also investi-

ate if their results may be used to emphasize refactoring. Results sug-

est that source codes containing Duplicated Code, and Message Chains

re associated with much higher number of faults, therefore should be

rioritized for refactoring. The remaining ones are not likely to be fault

rone.

Thresholds of software metrics are also used in predicting faults. Gyi-

othy et al. [20] describe how fault prediction of Mozilla may be made,

sing metrics CK, [9] . Catal and Diri [8] propose a grouping of metric

hreshold to solve the problem of predicting faults when the fault labels

or modules are unavailable.

Lavazza and Morasca [27] investigate the consequences of defining

hresholds on internal measures without taking into account the exter-

al measures that quantify qualities of practical interest. They focus on

ault-proneness as the specific quality of practical interest. Results indi-

ate that distribution-based thresholds appear to be unreliable in pro-

iding sensible indications about the quality of software modules.

Morasca and Lavazza [31] propose and evaluate an approach based

n the existence of a statistically significant model that relates a given

easure to fault-proneness, defined as the probability that a module

ontains at least one fault.

Morasca and Lavazza [32] extend this former work, introducing four

ays for setting thresholds on a given measure X . They use the value of X

here a fault-proneness model curve changes direction the most. Then,

hey use the values of X where the slope has specific values. They apply

heir approach to data from the PROMISE repository by building Binary

ogistic and Probit regression fault-proneness models. Results show that

heir thresholds effectively detect “early symptoms ” of module faulti-

ess, and achieve a level of accuracy in classifying faulty modules that

re close to usual thresholds’ fault-proneness.

Lavazza and Morasca [27] , Morasca and Lavazza [31,32] propose,

nd evaluate metric thresholds based on fault-proneness, whereas Filó’s

nd Ferreira’s approaches are based in benchmark data. The main con-

ribution of the present paper is to evaluate Filó’s catalogue considering

s the main points: it is a catalogue big, 18 metrics; previously eval-

ated; and previous results [14] indicate that thresholds gathered, via

enchmark data, are applicable regardless the size, type, or application

omain of systems.

This paper extends our previously work [48] , which proposes detec-

ion strategies for five bad smells based on thresholds [15] , and prelim-

narily shows the study done to investigate the efficacy of these thresh-

lds in identifying bad smells in 12 systems of Qualitas.class Corpus

50] . In that work, we use reference lists provided by the bad smells

etection tools, JSpIRIT [52] and JDeodorant [51] and concluded that

he results of the detection strategies are not dissimilar to these tools,

hich identify bad smell automatically. We also observe that the results

f the detection strategies are closer to the results of JSpIRIT than those

f JDeodorant.

Several works propose thresholds, (Section 1), but they are not eval-

ated in general. Our research contributes with an investigation not yet

onsidered: the usefulness of software metric thresholds to bad smell

etection and fault prediction.

. Conclusion

This paper reports the results of the research done to evaluate the

sefulness of software metrics thresholds in the identification of bad

mells in source code and in predicting software system faults. The mo-

ivation is due to the fact that, even though threshold definition for soft-

are metrics has been studied in the literature, there is still no in-depth

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

e

o

o

o

t

i

B

i

s

r

i

a

r

t

s

s

a

g

a

t

q

h

m

g

t

i

c

D

A

s

w

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

valuation of the proposed thresholds. We have used the metric thresh-

ld’s catalog defined by Filó et al. [15]], which has the largest quantity

f metrics with thresholds, 18, and has been partially evaluated previ-

usly, [48] .

To evaluate the usefulness of these thresholds, we have conducted

wo studies. The first one investigates the effectiveness of thresholds to

dentify Large Class, Long Method, Data Class, Feature Envy and Refused

equest bad smells. The second study investigates the use of thresholds

n predicting faults according to Good, Regular and Bad range. Both

tudies are addressed to object oriented systems written in Java. The

esults of these studies show that thresholds are significantly effective

n supporting the detection of bad smells, with generally high percent-

ges for Recall and moderate for Precision and F -measure. This positive

esult was obtained from reference lists provided by bad smells detec-

ion tools, and from the lists generated manually by specialists. It also

hows that thresholds are effective in predicting faults for most of the

oftware metrics analyzed. The Bad range presents the highest percent-

ge of classes with faults in the evaluated systems. We observe that the

reater the criticality of the range of thresholds, the greater the percent-

ge of classes with faults. The main conclusion of our research is that

hresholds of metrics may be useful instruments in evaluating software

uality. Identifying classes whose metrics are rated in Bad range may

elp developers to focus their efforts on classes that tend to fail, thereby

inimizing the occurrence of future system problems.

As future works we consider the evaluations of the proposed strate-

ies in other systems; manual evaluation of the 12 systems considered in

his article; extension of the analysis done here to systems implemented

n other programming languages; replication of these studies with other

atalogs of thresholds to evaluate their applicability.

eclaration of Competing Interest

None.

cknowledgments

Sponsors: CAPES, UFMG, CEFET-MG, CNPq.

We thank the specialists with knowledge in OO and Fowler’s bad

mells definitions: Eduardo Fernandes, Bruno Sousa, Mivian Ferreira,

ho help us doing the manual revision of three systems.

eferences

[1] G. Abaei , A. Selamat , H. Fujita , An empirical study based on semi-supervised hy-

brid self-organizing map for software fault prediction, Knowl. Based Syst. 74 (2015)

28–39 .

[2] J. Al Dallal, S. Morasca, Investigating the impact of fault data completeness over

time on predicting class fault-proneness, Inf. Softw. Technol. 95 (2017) 87–105,

doi: 10.1016/j.infsof.2017.11.001 .

[3] T.L. Alves , C. Ypma , J. Visser , Deriving metric thresholds from benchmark data, in:

International Conference on Software Maintenance, IEEE, 2010, p. 10 .

[4] S. Artzi , S. Kim , M.D. Ernst , Recrash: making software failures reproducible by pre-

serving object states, in: Proceedings of the 22nd European Object-Oriented Pro-

gramming Conference, 2008, pp. 542–565 .

[5] V. Basili , L. Briand , W. Melo , A validation of object-oriented design metrics as quality

indicators, in: IEEE Transactions on Software Engineering, 1996, pp. 751–761 .

[6] S. Bellon , R. Koschke , G. Antoniol , J. Krinke , E. Merlo , Comparison and evaluation

of clone detection tools, Trans. Softw. Eng. 33 (9) (2007) 577–591 .

[7] B. Cardoso , E. Figueiredo , Co-occurrence of design patterns and bad smells in soft-

ware systems: an exploratory study, in: Proceedings of SBSI, 46, 2015, pp. 347–354 .

[8] C. Catal , B. Diri , A systematic review of software fault prediction studies, Expert

Syst. Appl. 36 (4) (2009) 7346–7354 .

[9] R. Chidamber , F. Kemerer , A metrics suite for object oriented design, IEEE Trans.

Softw. Eng. 20 (6) (1994) 476–493 .

10] C. Couto , P. Pires , M.T. Valente , R. Bigonha , A. Hora , N. Anquetil , Bugmaps-Granger:

a tool for causality analysis between source code metrics and bugs, in: Brazilian

Conference on Software: Theory and Practice, 2013, pp. 1–6 .

11] M. D’Ambros , M. Lanza , R. Robbes , An extensive comparison of bug prediction ap-

proaches, in: 7th IEEE Working Conference on Mining Software Repositories, IEEE,

2010, pp. 31–41 .

12] J. Fehmi , G.G. Yann , H. Sylvie , K. Foutse , Z. Mohammad , Evaluating the impact of

design pattern and anti-pattern dependencies on changes and faults, Empir. Softw.

Eng. 21 (3) (2016) 896–931 .
91
13] E. Fernandes , J. Oliveira , G. Vale , T. Paiva , E. Figueiredo , A review-based com-

parative study of bad smell detection tools, in: 20th International Conference on

Evaluation and Assessment in Software Engineering, ACM, 2016, p. 18 .

14] K.A.M. Ferreira , M.A. Bigonha , R.S. Bigonha , L.F.O. Mendes , H.C. Almeida , Iden-

tifying thresholds for object-oriented software metrics, J. Syst. Softw. 85 (2012)

244–257 .

15] T.G.S. Filó, M.S. Bigonha , K.M. Ferreira , A catalogue of thresholds for object-oriented

software metrics, in: Proc. of International Conference on Advances and Trends in

Software Engineering, 2015, pp. 48–55 .

16] F. Fontana , M. Mangiacavalli , D. Pochiero , M. Zanoni , Experimenting refactoring

tools to remove code smells, in: Proceedings of the Scientific Workshops on the 16th

Int. Conference on Agile Software Development, ACM, 2015, pp. 1–8 .

17] F.A. Fontana , V. Ferme , M. Zanoni , A. Yamashita , Automatic metric thresholds

derivation for code smell detection, in: Proceedings of the Sixth International Work-

shop on Emerging Trends in Software Metrics, IEEE, 2015, pp. 44–53 .

18] M. Fowler , Refactoring: Improving the Design of Existing Code, Pearson Ed., 1999 .

19] T. Graves , A. Karr , J. Marron , H. Siy , Predicting fault incidence using software

change history, IEEE Trans. Softw. Eng. 26 (7) (2000) 653–661 .

20] T. Gyimothy , R. Ferenc , I. Siket , Empirical validation of object-oriented metrics on

open source software for fault prediction, IEEE Transactions on Software engineering

31 (10) (2005) 897–910 .

21] M.L.C. Januário , K.A.M. Ferreira , Aprimoramento de uma ferramenta de medição

de software, Technical Report, CEFET-MG, 2016 .

22] X. Jing, F. Wu, X. Dong, F. Qi, B. Xu, Heterogeneous cross-company defect prediction

by unified metric representation and cca-based transfer learning, in: Proceedings of

the 10th Joint Meeting on Foundations of Software Engineering, in: ESEC/FSE 2015,

ACM, New York, NY, USA, 2015, pp. 496–507, doi: 10.1145/2786805.2786813 .

23] X. Jing , F. Wu , X. Dong , B. Xu , An improved sda based defect prediction framework

for both within-project and cross-project class-imbalance problems, IEEE Trans.

Softw. Eng. 43 (4) (2017) 321–339 .

24] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, J. Liu, Dictionary learning based

software defect prediction, in: Proceedings of the 36th International Confer-

ence on Software Engineering, ACM, New York, NY, USA, 2014, pp. 414–423,

doi: 10.1145/2568225.2568320 .

25] S. Kaur , S. Singh , H. Kaur , A quantitative investigation of software metrics threshold

values at acceptable risk level, Int. J. Eng. Res.Technol. 2 (2013) .

26] M. Lanza , R. Marinescu , Object-Oriented Metrics in Practice: Using Software Metrics

to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems, (Firs

ed.), Springer, 2010 .

27] L. Lavazza, S. Morasca, An empirical evaluation of distribution-based thresholds for

internal software measures, in: Proceedings of the 12th International Conference on

Predictive Models and Data Analytics in Software Engineering PROMISE, ACM, New

York, NY, USA, 2016, pp. 6:1–6:10, doi: 10.1145/2972958.2972965 .

28] H. Liu , Z. Ma , W. Shao , Z. Niu , Schedule of bad smell detection and resolution: a

new way to save effort, Trans. Softw. Eng. 38 (1) (2012) .

29] I. Macia , R. Arcoverde , A. Garcia , C. Chavez , A. von Staa , On the relevance of code

anomalies for identifying architectural degradation symptoms, in: Proceedings of the

16th Europe Conference on Software Maintenance and Reengineering, IEEE, 2012,

pp. 277–286 .

30] R. Marinescu , Detection strategies: metrics-based rules for detecting design flaws,

in: Software Maintenance., IEEE, 2004, pp. 350–359 .

31] S. Morasca, L. Lavazza, Slope-based fault-proneness thresholds for software

engineering measures, in: Proceedings of the 20th International Conference

on Evaluation and Assessment in Software Engineering, 2016, pp. 1–10,

doi: 10.1145/2915970.2915997 .

32] S. Morasca, L. Lavazza, Risk-averse slope-based thresholds: definition and empirical

evaluation, Inf. Softw. Technol. 89 (2017) 37–63, doi: 10.1016/j.infsof.2017.03.005 .

33] E. Murphy-Hill , A.P. Black , An interactive ambient visualization for code smells, in:

5th international Symposium on Software Visualization, ACM, 2010, pp. 5–14 .

34] M. Nagappan , T. Zimmermann , C. Bird , Diversity in software engineering research,

in: Proceedings of the 9th Joint Meeting on Foundations of Software Engineering,

2013, pp. 466–476 .

35] N. Nagappan , T. Ball , A. Zeller , Mining metrics to predict component failures, in:

Proceedings of the 28th International Conference on Software Engineering, 2006,

pp. 452–461 .

36] R. Nascimento , C. Sant’Anna , Investigating the relationship between bad smells and

bugs in software systems, in: SBCARS, 2017, pp. 1–10 .

37] H. Nunes , Identificação de bad smells em software a partir de modelos UML, UFMG,

2014 Master’s thesis .

38] P. Oliveira , M.T. Valente , F. Lima , Extracting relative thresholds for source code

metrics, in: Software Evolution Week – IEEE Conference on Software Maintenance,

Reengineering, and Reverse Engineering, 2014, pp. 254–263 .

39] J. Padilha , E. Figueiredo , C. Sant’Anna , A. Garcia , Detecting god methods with con-

cern metrics: an exploratory study, in: Proceedings of the 7th Latin-American Work-

shop on Aspect-Oriented Software Development, 2013, pp. 1–6 .

40] T. Paiva , A. Damasceno , J. Padilha , E. Figueiredo , C. Santanna , Experimental eval-

uation of code smell detection tools, in: III Workshop on Software Visualization,

Evolution, and Maintenance, 2015, pp. 1–8 .

41] M. Riaz , E. Mendes , E. Tempero , A systematic review of software maintainability

prediction and metrics, in: Proceedings of the 3rd International Symposium on Em-

pirical Software Engineering and Measurement, 2009, pp. 367–377 .

42] D. Sahin , M. Kessentini , S. Bechikh , K. Deb , Code-smell detection as a bilevel prob-

lem, Trans. Softw. Eng.Methodol. 24 (1) (2014) 6 .

43] B. Saida , E.K. El , G. Nishith , R. Shesh , Thresholds for object-oriented measures, in:

Proceedings of the 11th International Symposium on Software Reliability Engineer-

ing, IEEE, 2000, pp. 24–38 .

http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0001
https://doi.org/10.1016/j.infsof.2017.11.001
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0021
https://doi.org/10.1145/2786805.2786813
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0023
https://doi.org/10.1145/2568225.2568320
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0026
https://doi.org/10.1145/2972958.2972965
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0030
https://doi.org/10.1145/2915970.2915997
https://doi.org/10.1016/j.infsof.2017.03.005
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0043

M.A.S. Bigonha, K. Ferreira and P. Souza et al. Information and Software Technology 115 (2019) 79–92

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

44] F. Salfner , M. Lenk , M. Malek , A survey of online failure prediction methods, ACM

Comput. Surv. 42 (3) (2010) 10 .

45] R. Shatnawi , W. Li , J. Swain , T. Newman , Finding software metrics threshold values

using roc curves, J. Softw. Maint. Evolut. 22 (1) (2010) 1–16 .

46] S. Singh , K. Kahlon , Object oriented software metrics threshold values at quantitative

acceptable risk level, CSI Trans. ICT 2 (3) (2014) 191–205 .

47] B.L. Sousa , P. Souza , E. Fernandes , K. Ferreira , M.S. Bigonha , Findsmells: flexible

composition of bad smell detection strategies, in: 25th International Conference on

Program Comprehension, 2017, pp. 360–363 .

48] P.P. Souza , B.L. Sousa , K. Ferreira , M.S. Bigonha , Applying software metric

thresholds for detection of bad smells, in: Proceedings of 11th Brazilian

Symposium on Software Components Architecture, and Reuse, ACM, 2017 . 10, (in

Portuguese)

49] E. Tempero , C. Anslow , J. Dietrich , T. Han , J. Li , M. Lumpe , H. Melton ,

J. Noble , The qualitas corpus: a curated collection of java code for em-

pirical studies, in: Asia Pacific Software Engineering Conference, 2010, pp.

336–345 .

50] R. Terra , L.F. Miranda , M.T. Valente , R. Bigonha , Qualitas.class corpus: a compiled

version of the qualitas corpus, Softw. Eng. Notes 38 (5) (2013) 1–4 .

51] N. Tsantalis , T. Chaikalis , A. Chatzigeorgiou , Jdeodorant: identification and removal

of type-checking bad smells, in: Software Maintenance and Reengineering., IEEE,

2008, pp. 329–331 .

52] S.A. Vidal , H.C. Vázquez , J.A.D. Pace , C. Marcos , A.F. Garcia , W.N. Oizumi , Jspirit:

a flexible tool for the analysis of code smells, in: 34th International Conference of

the Chilean Computer Science Society, 2015, pp. 1–6 .
92
53] G. Vale , D. Albuquerque , E. Figueiredo , A. Garcia , Defining metric thresholds for

software product lines: a comparative study, in: Proceedings of the 19th Interna-

tional Conference on Software Product Line, ACM, 2015, pp. 176–185 .

54] C. Wohlin , P. Runeson , M. Höst , M.C. Ohlsson , B. Regnell , A. Wesslén , Experimen-

tation in Software Engineering, Springer Science and Business Media, 2012 .

55] F. Wu , X. Jing , Y. Sun , J. Sun , L. Huang , F. Cui , Y. Sun , Cross-project and within-pro-

ject semisupervised software defect prediction: a unified approach, IEEE Trans. Re-

liab. 67 (2) (2018) 581–597 .

56] F. Wu, X.Jing, X. Dong, J. Cao, M. Xu, H. Zhang, S. Ying, B.Xu, Cross-project and

within-project semi-supervised software defect prediction problems study using a

unified solution, in: IEEE/ACM 39th International Conference on Software Engi-

neering Companion, 2017, pp. 195–197, doi: 10.1109/ICSE-C.2017.72 .

57] M. Zhang , N. Baddoo , P. Wernick , T. Hall , Improving the precision of fowler’s defi-

nitions of bad smells, in: 32nd Annual IEEE Software Engineering Workshop, 2008,

pp. 161–166 .

58] M. Zhang , N. Baddoo , P. Wernick , T. Hall , Prioritising refactoring using code bad

smells, in: IEEE 4th International Conference on Software Testing, Verification and

Validation Workshops, 2011, pp. 458–464 .

59] M. Zhang , T. Hall , N. Baddoo , Code bad smells: a review of current knowledge, J.

Softw. Maint. Evolut. 23 (3) (2011) 179–202 .

60] M. Zhang , T. Hall , N. Baddoo , P. Wernick , Do bad smells indicate “trouble ” in code?

in: DEFECTS, ACM, 2008, pp. 43–44 .

61] J. Zheng , L. Williams , N. Nagappan , W. Snipes , J.P. Hudepohl , Vouk , On the value of

static analysis for fault detection in software, IEEE Trans. Softw. Eng. 32 (4) (2006)

240–253 .

http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0055
https://doi.org/10.1109/ICSE-C.2017.72
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0058
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0058
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0058
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0058
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0058
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0059
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0059
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0059
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0059
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0061
http://refhub.elsevier.com/S0950-5849(19)30169-7/sbref0061

	The usefulness of software metric thresholds for detection of bad smells and fault prediction
	1 Introduction
	2 Threshold and bad smells
	2.1 Strategies for detecting bad smells
	2.1.1 Software metrics used in detection strategies
	2.1.2 Threshold ranges used in bad smells detection strategies
	2.1.3 Bad smells detection strategies
	2.1.4 Thresholds and automated detection of bad smells
	2.1.5 Analysis with JSpIRIT tool
	2.1.6 Analysis with JDeodorant tool

	2.2 Threats to validity

	3 Threshold value and bad smells manual detection
	3.1 Identification of bad smells by the specialists
	3.2 Results of bad smells manual detection
	3.3 Threats to validity

	4 Software metric thresholds and fault prediction
	4.1 Study design
	4.2 Results of the analysis of software metrics by system
	4.3 Results of the analysis by software metric independent of the system
	4.4 Threats to validity

	5 Related work
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

