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Summary

A design pattern is a general reusable solution to commonly recurring prob-
lems in software projects. Bad smells are symptoms existing in the source code
that possibly indicate the presence of a structural problem that requires code
refactoring. Although design pattern and bad smells be different concepts, liter-
ature has shown that they may be related and cooccur during the evolution of a
software system. This paper presents an empirical study that investigates cooc-
currences of design patterns and bad smells as well as identifies the main factors
that contribute to the emergence of the relationship between them. We carried
out a case study with five Java systems to: (1) investigate if the use of design pat-
tern reduces bad smell occurrence, (2) identify cooccurrences of design patterns
and bad smells, and (3) identify situations that contribute for the cooccurrence
emergence. As the main result, we found that the application of design pattern
not necessarily avoid bad smell occurrences. The results also show that some
design patterns such as composite, factory method, and singleton, are intrinsi-
cally modular and might be useful in creating high-quality systems. However,
other design patterns such as adapter-command, proxy, and state-strategy, have
presented high cooccurrence frequency with bad smells; therefore, they require
attention in their implementation. Finally, via manual inspection in the compo-
nents with cooccurrence, we found that the identified cooccurrences appeared
due to poor planning and inadequate application of design patterns.
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1 INTRODUCTION

Design patterns are general solutions applied to recurring problems in the context of software development.1 Their main
goal is to ensure the creation of flexible and extensible systems with high reusability and maintainability. In general,
design patterns are recognized as good programming practice. Gamma et al1 described a set of 23 design patterns widely
referenced as “Gang of Four (GoF) design patterns.”

Bad smells are structures in the source code that may indicate a more serious problem and may demand refactoring
to remove them.2 Code regions with these symptoms are not considered errors, but they impair the software quality
and violate some quality concepts of software engineering such as modularity, readability, and reuse. Although design
patterns have not been designed to remove occurrences of bad smells, they may contribute to reduce the emergence of
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TABLE 1 Design patterns and bad smells used in this study

Bad Smell Design Patterns

Data class Adapter Bridge Command
Feature envy Composite Decorator Factory method
Large class Observer Prototype Proxy
Long method State Strategy Singleton
Refused bequest Template method Visitor

these structures in the source code when correctly applied.3,4 Previous studies have made use of design patterns to indicate
refactoring suggestions and remove bad smells.5-9 However, design patterns may also introduce complex structures in the
source code, such as the bad smells occurrences, when they are not correctly applied.10-14

Previously, we carried out systematic literature mapping, and we concluded that these two structures have been studied
under three aspects: impact on software quality, refactoring, and cooccurrences.15 Moreover, we also found that, although
there are papers associating design pattern with bad smells,10-13 this topic is still little explored and there are some gaps
not covered by the studies done, such as situations that culminate in the cooccurrence between design patterns and bad
smells and situations in which design patterns are more likely to cooccur with bad smells. Therefore, an investigation
about these subjects may serve to alert researchers and developers that the application of design patterns may result in
problematic structures that increase the complexity, readability, and comprehension of a software system.

To cover these gaps, we carried out an empirical study to investigate the relationship between design patterns and bad
smells via source code analysis of oriented-object systems. To do that, we verify the design pattern effectiveness in the
bad smell reduction, identify the design patterns that presented cooccurrence with bad smells, and identify situations
that contribute to the emergence of cooccurrences between design patterns and bad smells. We considered in this study
five bad smells defined by Fowler and Beck2 and 14 design patterns from the GoF catalog. Table 1 summarizes the design
patterns and the bad smells used in the present work.

The remaining of this paper is organized as follows. Section 2 describes the methodology used in this study emphasiz-
ing its main steps. Section 3 presents a tool for identifying cooccurrences of design patterns and bad smells, called design
pattern smell. Section 4 reports the case study carried out in this paper and details the main results by answering the
research questions (RQs). Section 5 discusses the lessons learned with this study. Section 6 shows the threats to valid-
ity and discusses the main decisions to mitigate them. Section 7 presents some related work. Section 8 concludes this
paper.

2 METHODOLOGY

This section describes the methodology applied in this study. Its main steps are shown in Figure 1. Section 2.1 presents
the RQs investigated in this work. Section 2.2 shows the detection strategies proposed by Souza16 and used to detect bad
smells in our analysis. Section 2.3 describes how we composed the data set to perform the study. Section 2.4 details the
data collection process. Section 2.5 presents the association rules used for identifying cooccurrences. Lastly, Section 2.6
summarizes the method used for the analysis of the results.

FIGURE 1 Steps of the case study
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2.1 Research questions
To evaluate the cooccurrence relationship between GoF design patterns and bad smells, we proposed three RQs. They are
as follows:

• RQ1: Do the design patterns defined by the GOF catalog avoid bad smell occurrences in software systems?
• RQ2: Which design patterns of the GOF catalog have cooccurrence with bad smells?
• RQ3: What are the more common situations in which bad smells appear in software systems that apply GOF design

patterns?

2.2 Bad smell detection strategies
We considered five bad smells described by Fowler and Beck2: data class, feature envy, large class, long method, and
refused bequest. We chose them because they are problematic for software maintenance and they are related to data
problems, a large amount of information, complexity, and coupling. Moreover, previous studies10-13 have used them to
investigate their impact on the emergence of software faults and have analyzed the static relationships between them and
design patterns.

One way to detect bad smells is done by using detection strategies. Detection strategy is a quantifiable expression of a
rule that evaluates whether source code fragments have properties of a given bad smell.17 Along with detection strategies,
thresholds are used to determine the relationship between a metric and a bad smell. Although there are other detection
strategies proposed and evaluated in the literature,16,17 in the present work, we decided to use the detection strategies
proposed by Souza16 because they apply well-known software metrics, they were previously evaluated, and their results
indicate that they have a good recall and accuracy to identify bad smells. The metric thresholds used in the detection
strategies were proposed by Filó et al.18 Filó et al presented an extraction method of thresholds for object-oriented software
metrics and applied it to identify thresholds for 18 software metrics. The threshold catalog created by them classifies a
metric in three ranges: good/common, regular/casual, and bad/uncommon. The good/common range corresponds to the
high-frequency values, characterizing the most common metric values in practice. The bad/uncommon range corresponds
to the low-frequency values, and the regular/casual range is intermediate, corresponding to values which are not very
frequent or rare. Table 2 presents the Filó's catalog.

The literature reports that tools such as DECOR,20 JDeodorant,21 and JSpIRIT22 have supported researchers and devel-
opers to automatically detect bad smells. However, we identified some problem to adopt them. For instance, DECOR does
not use an approach based on metrics, and it is not currently available for download.23 JSpIRIT and JDeodorant use an
approach based on metrics,23 but they do not allow the user to customize the detection strategies or the metric thresholds.
Therefore, we opted to use another tool, ie, RAFTool,24 which is based on software metrics that allow users to implement
their detection strategies for detecting bad smells.

Each detection strategy is composed by a sequence of clauses connected by AND and OR logical operators. A clause
consists of a composition of metrics with their respective thresholds. In the sequel, we describe the bad smells analyzed
in this work and the corresponding software metrics applied in their detection strategies.

Data Class. Data class refers to classes that have only gets and sets methods and do not have many features over these
data. A data class acts as a data container in a system, providing information for the use of other components. According
to Yamashita and Moonen,25 this kind of class negatively impacts the system maintainability because it often creates
incoming dependencies from envy methods, and consequently incentivizes the emergence of the feature-envy bad smell
in the system. The detection strategy regarding the data class is composed by the following metrics:

• Number of children (NSC): It measures the number of direct subclasses from a given class. As classes with a data class
symptom tend to have few subclasses, it is considered that low values of NSC may help to identify this bad smell.

• Depth of inheritance tree (DIT): It indicates the level where a given class is in the inheritance tree. Data classes are
self-contained and only provide access to their attributes. Moreover, they do not need to inherit features from another
class. Therefore, it is considered that low values of DIT may be useful to identify data class.

• Number of fields (NOF): It measures the number of attributes of a class. Data classes may store a high quantity of data.
So, it is considered that a regular or a bad number of attributes may indicate the presence of data class.

Feature envy. Feature envy occurs when methods from a given class are more interested in features from other compo-
nents and use them in excess. This symptom indicates that there are methods in a class that should be removed. Feature
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TABLE 2 Threshold catalog for object-oriented metrics18,19

Metric Good/Common Regular/Casual Bad/Rare

CA m ≤ 7 7 < m ≤ 39 m > 39
CE m ≤ 6 6 < m ≤ 16 m > 16
DIT m ≤ 2 2 < m ≤ 4 m > 4
LCOM m ≤ 0.167 0.167 < m ≤ 0.725 m > 0.725
MLOC m ≤ 10 10 < m ≤ 30 m > 30
NBD m ≤ 1 1 < m ≤ 3 m > 3
NOC m ≤ 11 11 < m ≤ 28 m > 28
NOF m ≤ 3 3 < m ≤ 8 m > 8
NOM m ≤ 6 6 < m ≤ 14 m > 14
NORM m ≤ 2 2 < m ≤ 4 m > 4
NSC m ≤ 1 1 < m ≤ 3 m > 3
NSF m ≤ 1 1 < m ≤ 5 m > 5
NSM m ≤ 1 1 < m ≤ 3 m > 3
PAR m ≤ 2 2 < m ≤ 4 m > 4
RMD m ≤ 0.467 0.467 < m ≤ 0.750 m > 0.750
SIX m ≤ 0.019 0.019 < m ≤ 1.333 m > 1.333
VG m ≤ 2 2 < m ≤ 4 m > 4
WMC m ≤ 11 11 < m ≤ 34 m > 34

Abbreviations: CA, Afferent Coupling; CE, Efferent Coupling; DIT, depth
of inheritance tree; LCOM, lack of cohesion of methods; MLOC, method
lines of code; NBD, nested block depth; NOC, number of classes; NOF,
number of fields; NOM, number of methods; NORM, number of overri-
den methods; NSC, number of children; NSF, Number of Static Attributes;
NSM; PAR, Number of Parameters; RMD, Normalized Distance; SI, spe-
cialized index; VG, McCabe cyclomatic complexity; WMC, weighted
methods per class.

envy negatively impacts the system maintainability because, as components with this symptom access data and methods
from different areas of the system, it forces the developers to examine all the artifacts called by these envious compo-
nents to understand their behavior within the system.25 Detection strategies regarding feature envy may be proposed to
detect both methods and classes. The detection strategy of Souza16 aims to detect feature envy to the class level, and it is
composed by only one metric:
• Lack of cohesion of methods (LCOM): It measures the internal cohesion of a class by computing the lack of cohesion

between the methods of the class. The greater the value of this metric is, the less the internal cohesion of the class.
Classes with envious feature tend to have low cohesion because they are interested in methods from other classes.
Therefore, it is considered that a regular or bad value of LCOM may detect this feature.
Large class. Large class occurs in classes that perform a lot of tasks and have many responsibilities in the system. This

anomaly may be characterized as an object that knows very much and has many instances of variables. According to
Yamashita and Moonen,25 a large class negatively impacts the systems maintainability because it is related to high values
of size measures. Moreover, as it often uses a lot of different variables, there is a higher chance of the same temporary
variable to be used for several different purposes. The detection strategy regarding large class bad smell is based in the
following metrics:

• Number of fields (NOF): Souza16 chose NOF because large classes have an excessive knowledge of the system; therefore,
it tends to have a large number of attribute. So, this metric in the bad range may aid to detect classes that concentrate
knowledge.

• Number of methods (NOM): Souza16 chose NOM because besides concentrating knowledge, large classes also have
high data processing and therefore tends to have a large NOM. So, this metric in the bad range may detect this high
data processing in classes.

• Lack of cohesion of methods (LCOM): one of the main characteristics of the large class bad smell is the high overhead
of tasks and responsibilities in the system. LCOM is a metric that may measure the rate of cohesion in a class. Therefore,
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when a class has a high value of LCOM, ie, values into the bad range, may be an evidence that the class is performing
excessive work.

• Weighted methods per class (WMC): It measures the complexity of a class taking into account the methods within that
class. Large classes perform too much work, and they tend to present large and complex methods. Therefore, when a
class has a high value of WMC, ie, a bad value, it may be performing excessive responsibilities.

Long method. Long method is a method that implements several features and is complex and difficult to under-
stand. This kind of a method tends to centralize the functionality of the class. A long method negatively impacts the
system maintainability because it is linked to high values of size metrics and it demands complex tasks for removing it
from the system structure.25 The detection strategy regarding the long method bad smell is composed by the following
metrics:

• Method lines of code (MLOC): It measures the number of lines of code of a method. The main characteristic of the
long method is a large number of lines of code. Therefore, when a method has a bad value of MLOC, it might be a long
method.

• Nested block depth (NBD): It measures the depth of nested block existing in a method. Nested blocks occur when
control structures, such as IF, WHILE, and FOR, are one inside the other. This metric is an indicator of complexity
since increasing the number of nested blocks makes the code more difficult to understand. So, when a method has a
high value of NBD, there is an evidence of excessive and complex processing; therefore, Souza16 included NBD in the
detection strategy.

• McCabe cyclomatic complexity (VG): It aims to measure the number of independent execution paths in the source
code. Cyclomatic complexity indicates that the method has a high complexity. Therefore, when a method has a high
value of VG, ie, a bad value, it might be an evidence of the long method.

Refused bequest. Refused bequest occurs when a subclass does not use features and attributes inherited from its super-
class. The occurrence of this smell is an evidence that there is something wrong with the inheritance structure. According
to Palomba et al,26 refused bequest is a highly diffused smell, and it may negatively impair the system maintainability
because its occurrence tends to increase the systems proneness to change. Moreover, as refused bequest consists of mis-
use of inheritance, its high occurrence makes the system comprehension complex and difficult. The detection strategy
regarding the refused bequest bad smell is composed by only one metric:

• Specialization index (SIX): This metric indicates the level of specialization of a class. It is given by the ratio between
the ratio of the number of overridden methods (NORM) weighted by the DIT and the NOM in the class, ie, (NORM ×
DIT)∕NOM. So, the greater the degree of overwriting in the subclass regarding its superclass, the greater the value of
SIX and the greater the chances of the subclass deny the responsibilities provided through inheritance. As the main
characteristic of the refused bequest is the high overwriting of methods, when a class has the SIX value in the regular
or bad range, it might indicate the presence of this bad smell.

Souza16 evaluated the detection strategies through three experiments, which were supported by a specialist in
object-oriented programming and bad smells. The first experiment compared the detection strategies results with the
JSpIRIT22 results. Souza16 collected the bad smell instances of two Java systems, namely, Squirrel SQL 3.1.2 and Webmail
0.7.10, and used them as a verification list to compute the recall and precision of the detection strategies. However, rely-
ing purely on the results of a tool may introduce bias in the results. So, the participation of the specialist was fundamental
in this experiment because he manually analyzed and validated the results returned by JSpIRIT to remove the false pos-
itives. The results of recall and precision were recalculated based on the validated reference list. Table 3 summarizes the
results of this first experiment.16 The column ‘NV’ contains the recall and precision results regarding the JSpIRIT nonva-
lidated results. The column ‘V’ contains the recall and precision results regarding the JSpIRIT validated results. Finally,
the column ‘DIF’ contains the difference of recall and precision metrics between the nonvalidated and validated data. A
DIF positive value indicates that the specialist identified and removed false positives returned by JSpIRIT. In contrast, a
DIF negative value indicates that the specialist identified false positives in the JSpIRIT results that were being recognized
by the detection strategies as a bad smell. According to Souza16, the data class was not evaluated in this first experiment
because JSpIRIT did not find instances of this bad smell in the analyzed systems.

The second experiment carried out by Souza16 aimed to compare the detection strategies with results returned by
another tool, JDeodorant.21 In this experiment, they collected bad smell instances of 12 Java systems and compared the
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TABLE 3 Recall and precision of the detection strategies based on results of JSpIRIT16

System Feature Envy Large Class Long Method Refused Bequest
NV V DIF NV V DIF NV V DIF NV V DIF

Squirrel Recall 50% 60% 10% 100% 100% 0% 100% 100% 0% - - -
Precision 55% 30% -25% 60% 40% -20% 17% 17% 0% - - -

Webmail Recall 27% 33% 6% 15% 50% 35% 100% 100% 0% 57% 80% 23%
Precision 47% 24% -23% 100% 50% -50% 56% 41% -15% 14% 14% 0%

Abbreviations: Abbreviations: DIF, difference of recall and precision metrics between nonvalidated and validated data; NV, recall and
precision results regarding the JSpIRIT nonvalidated results; V, recall and precision results regarding the JSpIRIT validated results.

TABLE 4 Recall and precision of the detection
strategies based on results of JDeodorant16

Bad Smell Recall Precision

Data class - -
Feature envy 47.5% 24%
Large class 16% 91%
Long method 18.5% 51.5%
Refused bequest - -

TABLE 5 Recall and precision of the detection
strategies based on the analysis of a specialist16

Bad Smell Recall Precision

Data class 47% 32%
Feature envy - -
Large class 70% 37%
Long method 73% 19%
Refused bequest 100% 2%

results of detection strategies with the data collected in each system. Table 4 summarizes the detection strategies results
regarding to recall and precision obtained in this second experiment. The values reported refer to the median returned
for these 12 systems. According to Souza,16 data class and refused bequest were not evaluated in this experiment because
JDeodorant did not support the detection of them.

The third experiment was carried out with the support of the specialist again. Here, the specialist manually analyzed a
Java system, Apache Maven 3.0.5, to identify bad smell instances based on his knowledge and background. He identified
instances of all bad smells, except feature envy. The specialist did not analyze feature envy because such analysis will
demand a great deal of time, and it would overload the specialist who was a volunteer in this study. Table 5 summarizes
the recall and precision results obtained in this experiment.

2.3 Data set definition
The second step of this study was the definition of the sample of systems to be analyzed. We chose five Java systems to
compose our data set. They are Hibernate 4.2.0 JHoDraw 7.5.1, Kolmafia 4.2.0, Webmail 0.7.10, and Weka 3.6.9. We used
these systems because they are open source, belong to different domains, have different size, use GoF design patterns,
and present the bad smells considered in this work. Hibernate 4.2.0, JHotDraw 7.5.1, and Webmail 0.7.10 are respectively
large, medium and small systems that have been studied by previous work with focus in both design patterns and bad
smells.11Kolmafia 4.2.0 is a medium system. Previous studies pointed out it has metric values considered problematic,27

but they did not identify the correlation of these values with bad smells or design patterns. Weka 3.6.9 is a medium system
with support to a collection of machine learning algorithms for data mining tasks. We identified both GoF design pattern
and bad smell instances in Weka 3.6.9. As this project has not been evaluated in this manner in previous studies, we
decided to analyze its internal structure quality and investigate the existing of cooccurrences between design patterns and
bad smells on it.
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The software systems chosen to compose the data set were extracted from Qualitas.class Corpus,28 a compiled version
of Qualitas Corpus.29Qualitas Corpus is formed by a collection of open-source systems developed in Java that are made
available for empirical studies.18 Moreover, Qualitas.class Corpus contains software metrics already collected from 112
systems.

2.4 Data collection
The third step of this study was the data collection. Qualitas.class Corpus has XML files with metrics collected from the
systems. As most of the systems considered in our analysis are from the Qualitas.class Corpus, we used these metrics
already collected. Kolmafia 17.3 is the only system that does not belong to Qualitas.class Corpus. So, we had to download
its source code and collect its metrics value. We used the IDE Eclipse 4.2 Juno30 and Metrics 1.3.631 plugin to collect the
Kolmafia 17.3 metrics. After collecting the metrics, we exported and saved them in an XML file.

To verify the existence of the design patterns in the systems, we used the Design Pattern Detection* tool.32 According
to Tsantalis et al,32 this tool models all aspects of design patterns via directed graphs represented in quadratic matrices
and applies an algorithm called similarity scoring. This algorithm uses a system and a design pattern graph as input to
calculate the similarity scoring between the vertices. For Tsantalis et al,32 the main advantage of this approach is the
ability to detect not only design patterns in their base form, normally found in the literature, but also modified versions
of them. This tool was tested by its authors in three systems, namely, JHotDraw 5.1, JRefactory 2.6.24, and JUnit 3.7, and
false positives were not returned. False negatives were returned only for two design patterns: factory method and state.
The results presented by this tool indicate that it is effective in identifying design pattern instances. Moreover, among
the tools studied, Design Pattern Detection was identified in the literature as the one that recognizes a greater number
of GOF catalog design patterns, ie, 14 design patterns in total. However, adapter, command, state, and strategy could
not be separately identified by this tool. Instead, Design Pattern Detection identifies these design patterns as being an
adapter-command type of instance, and state-strategy being another type of instance, totaling 12 design pattern instances
identified by this tool. Also, Design Pattern Detection is one of the most used tool in researches that require design patterns
detection.

Filó et al24 developed a tool, RAFTool†, which performs the identification of methods, classes, and packages with anoma-
lous measurements of object-oriented software metrics. RAFTool was used in this research to implement the detection
strategies. The tool receives as input the XML file of the target system with its metrics and a detection strategy described
by a logic expression in a given format. RAFTool reports as results the classes or methods whose metric values fit the
detection strategy.

To collect the bad smell information from the systems, we transformed the detection strategies into filtering expressions
so that they could be used by RAFTool. RAFTool uses the Filó's catalog showed in Table 2. The threshold of the Filó's
catalog was divided into three types of range. To use RAFTool, we need to use the following keywords to attribute the
threshold, in consonance with the values exhibited in Table 2 - to the metrics:

• COMMON: It corresponds to the GOOD/COMMON range of the thresholds proposed by Filó et al.18 For instance, if
we attribute the COMMON keyword to the LCOM metric (COMMON[LCOM]), components with values of LCOM less
than or equal to 0.167 will be returned.

• CASUAL: It corresponds to the REGULAR/CASUAL range of the thresholds proposed by Filó et al.18 For instance, if
we attribute the CASUAL keyword to the LCOM metric (CASUAL[LCOM]), components with values of LCOM greater
than 0.167 and less than or equal to 0.725 will be returned.

• UNCOMMON: It corresponds to the BAD/UNCOMMON range of the thresholds proposed by Filó et al.18 For instance,
if we attribute the UNCOMMON keyword to the LCOM metric (UNCOMMON[LCOM]), components with values of
LCOM greater than 0.725 will be returned.

A metric with its respective threshold represents a specific characteristic of a bad smell and a little part of the detection
strategy. In general, a detection strategy is composed by several characteristics connected by composition mechanisms.
The composition mechanisms are logical operators used to connect the metrics and to establish the semantic between
the characteristics defined by the bad smells.17 Therefore, after connecting the metrics to their respective threshold, we

*https://users.encs.concordia∖unhbox∖voidb@x∖bgroup∖let∖unhbox∖voidb@x∖setbox∖@tempboxa∖hbox{c∖global∖mathchardef
∖accent@spacefactor∖spacefactor}∖accent10c∖egroup∖spacefactor∖accent@spacefactora/˜nikolaos/pattern_detection.html
†http://homepages.dcc.ufmg.br/~tfilo/raftool/

https://users.encs.concordia%5Cunhbox%5Cvoidb%40x%5Cbgroup%5Clet%5Cunhbox%5Cvoidb%40x%5Csetbox%5C%40tempboxa%5Chbox%7Bc%5Cglobal%5Cmathchardef%5Caccent%40spacefactor%5Cspacefactor%7D%5C accent10c%5Cegroup%5Cspacefactor%5Caccent%40spacefactora/~nikolaos%2Fpattern_detection.html
https://users.encs.concordia%5Cunhbox%5Cvoidb%40x%5Cbgroup%5Clet%5Cunhbox%5Cvoidb%40x%5Csetbox%5C%40tempboxa%5Chbox%7Bc%5Cglobal%5Cmathchardef%5Caccent%40spacefactor%5Cspacefactor%7D%5C accent10c%5Cegroup%5Cspacefactor%5Caccent%40spacefactora/~nikolaos%2Fpattern_detection.html
http://homepages.dcc.ufmg.br/~tfilo/raftool/
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used the AND and OR logical expressions to join different metrics and create the expressions according to the detec-
tion strategies proposed by Souza16 The final settings regarding the expressions used to detect the bad smells are as
follows:

Exp1 COMMON[NSC] AND COMMON[DIT] AND (UNCOMMON[NOF] OR CASUAL[NOF])
Exp2 UNCOMMON[LCOM]
Exp3 UNCOMMON[LCOM] AND UNCOMMON[WMC] AND UNCOMMON[NOF] AND UNCOMMON[NOM]
Exp4 UNCOMMON[MLOC] AND UNCOMMON[VG] AND UNCOMMON[NBD]
Exp5 UNCOMMON[SIX]

The first filtering expression refers to the data class bad smell. It is made up of a combination of good (COMMON) range
for the NSC and DIT metrics, and regular (CASUAL) and Bad (UNCOMMON) ranges for the NOF metric.

The second filtering expression refers to the feature envy bad smell. It is made up only by the LCOM metric using the
bad (UNCOMMON) range exhibited on Table 2.

The third filtering expression refers to the large class bad smell. It is made up of a combination of bad (UNCOMMON)
range with the four metrics: LCOM, WMC, NOF, and NOM associated with this bad smell.

The fourth filtering expression refers to the long method bad smell. It is made up of a combination of bad (UNCOM-
MON) range with the three metrics: MLOC, VG, and NBD associated with this bad smell.

The fifth filtering expression refers to the refused bequest bad smell. It is made up of only one metric, ie, SIX, using the
bad (UNCOMMON) range.

The design patterns' instances returned by Design Pattern Detection may be composed of one or more classes or meth-
ods. An example of this is the instance returned to the bridge design pattern. It has a class responsible for representing
the implementation part and another with the role of serving the abstraction part. To solve this problem, we developed
the Design Pattern Smell tool, described in Section 3, which counts the classes and methods in a design pattern instance
as well as identifies the components with a given design pattern and a given bad smell. This tool receives as input the files
in the XML format exported by Design Pattern Detection, containing the design patterns instances of a system, and the
CSV files generated by RAFTool, containing the classes or methods with a given bad smell.

2.5 Association rules
The fourth step of the study consisted of the association of design patterns and bad smell to identify the cooccurrences.
In this process, we applied association rules based on the data mining concept.33 We chose association rules because this
method combines items from a data set to extract knowledge about the analyzed data. Reinforcing this choice, previous
studies in the same context, Cardoso and Figueiredo11 and Walter and Alkhaeir13 also applied this method to identify the
cooccurrences between bad smells and design patterns.

In general, association rules may be extracted based on three different metrics: support,33 confidence,33 and conviction.34

All of them use the following concepts:

• Transaction: It is defined as a set of items.
• Antecedent: It is an item that appears on the left side of the association rule.
• Consequent: It is an item that appears on the right side of the association rule.

An association rule has the following form: Antecedent ⇒ Consequent. The support (sup) metric in an association rule,
which indicates the frequency that an item occurs in a transaction (Equation (1)).

sup(X ⇒ Y ) = P(x, 𝑦) (1)

For instance, consider a shopping base in a supermarket. Suppose that there is a data set with the records from 1000
transactions, which are the set of purchased items. In it, the pasta and tomato items appear together in 100 of these
records. Thus, the support of this relationship is 0.1, ie, 10%.

The confidence metric (conf) expresses the probability of a consequent occurring since the antecedent occurs. In other
words, it indicates the chance of the right side of the rule to happen, given the occurrence of the left side (Equation (2)).

conf(X ⇒ Y ) =
sup(X ⇒ Y )

sup(X)
(2)
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In the example mentioned above, let us consider that the pasta item is found alone in 200 of 1000 transactions of the
data set. To compute the confidence of the pasta ⇒ tomato association rule, it is necessary to divide the support of
this rule, 0.1, by the support of pasta (Antecedent in the association rule), 0.2, resulting in a confidence of 0.5, ie, 50%.
Confidence is very sensitive to the frequency on the right side of the association rule, ie, a very high value in the right side
of the association rule may generate a high confidence value, even if the items do not have any relation.

To solve this problem, Brin et al34 proposed the conviction metric. This metric uses the support in both the antecedent
and the consequent (Equation (3)).

conv(X ⇒ Y ) =
sup(X) ∗ (1 − sup(Y ))
sup(X) − sup(X ⇒ Y )

. (3)

In the given example, let us consider that the item tomato is found alone in 300 of 1000 transactions of the data set. Thus,
the tomato support, sup(tomato), is 0.3 and the confidence, conf(pasta⇒ tomato), is 0.5. Applying these values in
the Equation (3), the conviction conv(pasta ⇒ tomato) is 1.4. When the conviction value is 1.0, it indicates that the
antecedent and the consequent have no relationship at all. When the conviction value is less than 1.0, it indicates that if
the antecedent occurs, the consequent tends not to occur. When the conviction value is greater than 1.0, it means that the
antecedent and the consequent have a relationship; the greater the conviction value, the greater the relationship between
the antecedent and the consequent. An infinite result indicates that the antecedent never appears in the transactions.

To apply the association rules, we considered antecedent, consequent, and transaction as follows:

• Transaction: It represents each class in the analyzed system.
• Antecedent: It represents each design pattern explored in this study and belongs to the GOF catalog.
• Consequent: It represents each bad smell explored in this study.

2.6 Analysis of the results
Figure 2 illustrates the method used to analyze the data obtained in this study. The first step identifies presence of the
design patterns in the systems. To distinguish them, we used the Design Pattern Detection32 and stored the results obtained
in a table.

The second step applies the Exp1, Exp2, Exp3, Exp4, and Exp5 (Section 2.4) filtering expressions in RAFTool. The
goal of this step is to identify classes and methods with problematic metric values and with the presence of the bad smells
investigated.

The third step identifies the cooccurrences between the design patterns and bad smells and the application of the
association rules. To accomplish these two tasks, we used the Design Pattern Smell tool, which is presented in Section 3.

Design Patterns
identification

DPDSS

Data set systems

Bad Smells
identification

RAFTool

Software metrics

Application of
association rules

Design Patterns instances Components with Bad Smells

Design Pattern Smell

Manual inspection

Components with
co-occurrences

Analysis of the results

Design Patterns instances

Components with Bad Smells

Components with
co-occurrences

FIGURE 2 Method of the results analysis
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The fourth step consists of the manual inspection of methods and classes with cooccurrence, to identify situations that
favored the presence of these relationships in such components.

In the fifth step, we analyzed the data to answer the RQs.

• RQ1: Do the design patterns defined by the GOF catalog avoid bad smell occurrences in software systems?
• RQ2: Which design patterns of the GOF catalog have cooccurrence with bad smells?
• RQ3: What are the more common situations in which bad smells appear in software systems that apply GOF design

patterns?

We consider cooccurrence as a class or method that is part of a design pattern instance and has the presence of a bad
smell. These components are identified by Design Pattern Smell, which matches the design pattern components with the
bad smell components. Design Pattern Smell detects the cooccurrences according to the bad smell level. For instance,
large class is a bad smell at the class level. Therefore, to identify it, Design Pattern Smell inspects the classes listed in
the XML files, in order to match them with the bad smells data reported by RAFTool in a CSV file. For bad smells at the
method level, eg, long method, Design Pattern Smell performs the same process considering methods instead of classes.
It is important to highlight the methods analyzed here are the ones that play some role within the design patterns, such as
the notifier methods existing in the Observer design pattern instance. After identifying the cooccurrences and applying the
association rules, we carried out a manual inspection on the components belonging to the highest intensity relationship
to determine the situations in the systems source code that might have contributed to the emergence of the cooccurrences.

3 DESIGN PATTERN SMELL

Design Pattern Smell is a static analysis tool proposed for identifying cooccurrences between GoF design patterns and bad
smells based on information extracted from the source code. The main motivation to propose Design Pattern Smell was
the lack of tools and techniques in the literature to support developers and researchers in the detection of cooccurrences
between design patterns and bad smells. The main contributions provided by Design Pattern Smell are as follows: (1) It
allows developers and researchers to identify the existing cooccurrences between GoF design patterns and bad smells, and
(2) it supports to carry out an exploratory analysis to understand the reasons that lead to the cooccurrence emergence.

Therefore, the principal purpose of Design Pattern Smell is to support the evaluation of software quality by identifying
code structures whose presence of bad smells may degenerate the application of GoF design patterns. Currently, Design
Pattern Smell supports detection of 14 GoF design patterns with any bad smell in both class or method level. To do that,
the bad smell instances must be previously computed and supplied to Design Pattern Smell via a CSV file.

3.1 Main features
We described the main features of the Design Pattern Smell as follows.

Import computed design pattern instances. To identify the cooccurrences between GoF design patterns and bad
smells, Design Pattern Smell requires the user to import XML files with GoF design pattern instances regarding a given
system. This input file follows the same format exported by the Design Pattern Detection tool,32 and we described it
on the Design Pattern Smell's website.35

Import computed bad smell instances. Design Pattern Smell also requires the user to provide a CSV file containing
classes/methods with the presence of bad smell. After importing this file, Design Pattern Smell extracts all compo-
nents existing in the input files and performs the matching between the design pattern and bad smell components,
by analyzing and comparing their names, signatures, and path to identify those that have the cooccurrence of these
two structures. The user needs to write the CSV input file according to the format specified on the tool's website.35

Application of association rules. To identify the cooccurrence between design patterns and bad smells, we used
an important concept of data mining, called association rules.33,34 The association rule allows you to combine items
from a data set through some metrics such as support,33 confidence,33 lift 34 and conviction,34 and extract a knowl-
edge about these data. To apply the association rules, one needs to know some important terms used by these rules,
such as transaction, antecedent, and consequent, as we have explained in Section 2.5. In the context of cooccurrence
in Design Pattern Smell, the antecedent is considered a GoF design pattern, the consequent is considered a bad smell,
and a transaction is a class or method of a system according to the granularity of the bad smell used. For instance,



SOUSA ET AL 1089

if the bad smell analyzed is in the class level, the transaction is the classes of the system. In contrast, if the bad smell
analyzed is in the method level, the transaction is the methods of the system. The user should apply association rules
in the data used, to analyze the intensity of cooccurrence between design patterns and bad smells. The Association
Rules Calculator is a module of Design Pattern Smell that allows the user to apply the association rules automat-
ically. Design Pattern Smell uses GoF design pattern and bad smell instances precomputed provided by the user;
therefore, the tool does not recognize the total number of classes (NOC) or NOM existing in the system. Considering
that this information is essential to calculate the association rules metrics, to use this feature, Design Pattern Smell
requires the user to enter the NOC or NOM metrics via a field. These metrics may be easily computed with the sup-
port of some tools such as Metrics‡, which analyzes a source code of the system and extracts these values. Moreover,
we also make available a panel with four kinds of association rules'33,34 so that the user may choose which metrics
he/she wants the Design Pattern Smell calculates. To compute these metrics, Design Pattern Smell uses the metrics
defined in Section 2.5, and applies to them the information extracted from the input files provided by the user, such
as the NOC/NOM regarding the GoF design patterns, NOC/NOM regarding the bad smells, among others, and the
NOC/NOF metrics provided by the user in this feature. These metrics point out the intensity of cooccurrences in the
source code, and through them, it is possible to identify which GoF design patterns present cooccurrences with bad
smells. By default, these metrics are preselected to be computed in this feature. However, the users may compute only
those that are of their concern.

Result Generation, Visualization, and Export. After performing the matching of the components and identifying
the cooccurrences, the user may consult the following reports: (1) the number of design pattern instances in the
system, and (2) the amount and information about the components that presented cooccurrences between design
patterns and bad smell. Moreover, after applying the association rules, the report with the results are displayed to
the user. These reports are presented in a data grid view. Design Pattern Smell exports these results to a CSV file for
further analysis and manipulation.

Data Management. This functionality allows the user to use data from GoF design pattern already stored in Design
Pattern Smell to perform the matching of design pattern instances with other bad smell instances. In this case, the
user must clear old information regarding to the bad smell under analysis and import other CSV files. This process
may also be performed for design patterns when the user wants to change the system under review.

Help. For users unfamiliar with association rules, this functionality describes this method of analysis, the formulas
used to identify the cooccurrences, an overview of how to analyze results, and the definition of technical terms used
to calculate formulas. Moreover, this feature presents general information about the version of this tool and provides
a link to a video tutorial that presents a running example of the tool.

3.2 Architecture
The Design Pattern Smell's architecture consists of six internal modules, as shown in Figure 3.

Input Manager. This module is responsible for managing the input files as well as performing the verification and
validation of the required format. It receives one or more XML files with precomputed GoF design pattern instances
from a software and a CSV file with precomputed bad smell instances from the same system. The XML file follows the
format exported by the Design Pattern Detection.32 We decided to use this format because it shows the GoF design pat-
tern instances and details the components that compose each instance. Both XML and CSV format files are described
in Design Pattern Smell's website.35 Moreover, this module allows cleaning the information of the GoF design patterns
and bad smells kept in the tool and entering information about GoF design patterns and bad smells from another
system.

Data Parser. This module is responsible for performing a static analysis of the input files to identify and extract the
software components existing in them. The GoF design pattern instances presented in the XML files may be composed
of several components that play a certain role within these instances. For instance, bridge instance contains two
kinds of classes. One of them is responsible for representing the abstraction part, and the other class is responsible
for representing the implementation part. Then, when this module identifies a bridge instance, it separates these
components and extracts the following information about them: name, path, granularity, and the roles played by
each component from this design pattern instance. The granularity of the components is divided into package, class,

‡http://metrics.sourceforge.net

http://metrics.sourceforge.net
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FIGURE 3 Design Pattern Smell's architecture

method, or attribute. Finally, the CSV file is also analyzed to extract the following information of each component:
name, path, and granularity. Information extracted in this module is persisted in the memory and used by the other
modules.

Data Crossing. This module identifies the cooccurrences between GoF design patterns and bad smells. Cooccurrence
is a class or method that makes part of a GoF design pattern instance and contains some bad smell. So, this module
analyzes the components extracted from the XML and CSV files. During this analysis, the name and the signature of
each GoF design pattern component are checked and compared with the bad smell components to perform matching
of them. After this process, the classes and the methods identified in both GoF design pattern and bad smell instances
are considered cooccurrences and returned as a list of components.

Association Rules Calculator. This module implements the application of the association rules to identify the
intensity of cooccurrences between GoF design patterns and bad smell. Through the data provided by the Design
Pattern Smell, this module computes some quantitative information, such as total NOC/NOM regarding to the bad
smells, the total NOC/NOM regarding to the design patterns, NOC/NOM with cooccurrence, among others. To com-
pute the rules, Design Pattern Smell uses the information computed by this module to calculate the metrics support,33

confidence,33 lift34 and conviction,34 and therefore, identify the intensity of the cooccurrences. Finally, as the user
provides to the Design Pattern Smell the bad smells and GoF design patterns components precomputed, it does not
have access to the total NOC/NOM existing in the analyzed system. This number is important because the associa-
tion rules metrics uses it. So, to solve this problem, this module requires the user enters the total NOC/NOM existing
in the system so that the metrics may be computed and the cooccurrences may be discovered.

Data Viewer. This module allows reporting the results in a data grid view format. From there, the user can navigate in
the list of affected components identified with cooccurrence. Also, it is possible to generate other types of reports with
the information computed by both the Data Crossing module and the Association Rules Calculator, such as design
pattern instances in a system, rate of artifacts affected by cooccurrence, and intensity of cooccurrence identified in
each pattern existing in the system.

Output Data Parser. This module parses the reports emitted by the Data Viewer and generates an output CSV file
stored in a user-defined location on the user machine. This file contains the same information of the data grid view,
and it may be useful to analyze cooccurrences.

3.3 Implementation
Design Pattern Smell was developed in Java programming language with support of JDK 1.7 and the Java Swing API
to create the graphical user interface. We chose Java due to its portability and because it is a popular language both in
academia and industry. To parse the input XML files, we used the JDOM API§ to interpret and manipulate XML data from
Java source code. To compute the association rules, we implemented the metrics of association rules: support, confidence,
lift, and conviction, in Design Pattern Smell and considered only rules from a design pattern to a bad smell. We did not
consider rules with more than one design pattern. After calculating the metrics, the tool displays the metrics values for
cooccurrence analysis. To present the metrics of association rules, in the Help option, we used the JLaTeXMath 1.0.3 API¶

§http://www.jdom.org/
¶https://forge.scilab.org/index.php/p/jlatexmath/

http://www.jdom.org/
https://forge.scilab.org/index.php/p/jlatexmath/
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to show the mathematical formulas used in each of its metrics. Design Pattern Smell was constructed using the Netbeans
IDE 8.0.2# , which provides drag-and-drop functionality for constructing user interfaces. Design Pattern Smell is available
in version 1.0 on the tool's website.35

4 RESULTS

This section presents the study performed in this research and its results. We organized it as follows. Section 4.1 describes
the case study carried out in the paper. Section 4.2 presents the results and answers the RQs.

4.1 Case study
To perform an exploratory analysis, we designed a case study to analyze the presence of cooccurrences between a design
pattern and bad smell in oriented-object systems. This case study considered a data set composed of five open-source Java
systems. Initially, we collected the design pattern instances by using Design Pattern Detection.32 Next, we created five
filtering expressions based on the detection strategies proposed by Souza16 and implemented them in RAFTool to collect
the bad smell instances.

We manually validated the bad smell instances returned by the detection strategies to remove the inconsistencies and
possible imprecisions. We based our analysis on the implementation of the components returned as bad smell instances
and made the appropriate corrections in the own CSV file with these components provided by the RAFTool. Moreover,
our results could be affected by the presence of false negatives. However, the sample of the bad smell instances identified is
large enough to support our conclusions. We summarized the final result of bad smell instances collected in the appendix
of this paper (see Section 1).

After collecting the design pattern and bad smell instances, we used Design Pattern Smell to identify the cooccurrences
between these two structures. We summarized the number of cooccurrences detected in the appendix of this paper (see
Section 2). To identify the intensity of the cooccurrences between the design patterns and bad smells, we applied the
association rules in the data summarized in Section 2. We based our analysis on the conviction metric because it measures
how important and accurate one given rule is in a data set. Moreover, this metric has been used by previous studies11,13

to evaluate cooccurrences between design patterns and bad smells. Figures 4, 5, 6, 7 and 8 show the results of conviction
metric for the data class, feature envy, large class, long method, and refused bequest bad smells, respectively. These results
are discussed in details in Sections 4.2.1 to 4.2.3. The charts in Figures 4 to 8 aim to show which design patterns had the
highest cooccurrences with each one of the bad smells. We created them as ranking charts, where the design patterns are
organized from the highest to the lowest cooccurrences. Therefore, the order which design pattern appears in the figures
may change.

4.2 Experimental results
This section aims to answer the RQs. Section 4.2.1 presents the analysis and discusses the arguments used to answer RQ1.
Section 4.2.2 presents the answer to RQ2 and summarizes the design patterns that presented cooccurrences with each of
the five bad smells used in this study. Section 4.2.3 presents the analysis that has led to the answer of RQ3.

4.2.1 Research question 1
RQ1: “Do the design patterns defined by the GOF catalog avoid bad smell occurrences in software systems?”

The GoF design patterns investigated in this paper were proposed and validated by Gamma et al.1 They have a modular
structure, and its usage is highly encouraged, since they help to design software with low internal coupling, and they favor
the creation of flexible and reusable software.

These solutions are highly encouraged by developers and researchers, and they bring several benefits to the internal
quality of software. However, it is necessary to have attention to apply them. They are available in the literature as a
general template. To be used, the developers need to adapt them so that these solutions fit in the problem context to be
solved. Sometimes, when the adaptation process of these solutions is performed, complex structures may be inserted in
the internal structure of the software, degrading the design patterns and resulting in bad smells.

# https://netbeans.org/

https://netbeans.org/
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FIGURE 4 Result of the association (Design Pattern ⇒ Data Class) [Colour figure can be viewed at wileyonlinelibrary.com]

As we described in Section 2.5, we used the association rules to evaluate the intensity of the cooccurrences between the
GoF design patterns with bad smells and focused our analysis on the conviction metric. When the value of the convic-
tion metric is less than 1.0, it indicates that if the antecedent occurs, the consequent tends not to happen, ie, conviction
values less than 1.0 suggest that the use of a given design pattern tends to avoid the occurrence of a given bad smell.
In contrast, when the value of the conviction metric is higher than 1.0, it indicates that there is a positive relationship
between antecedent and consequent, and the higher the conviction value, the higher the relation between antecedent and
consequent. Therefore, the number of conviction metric greater than 1.0 indicates that there is a relationship between a
given design pattern and a given bad smell. Finally, the conviction value equal to 1.0 means that the antecedent and the
consequent are independent.

Analyzing Figures 4 to 8, we identified two design patterns that presented low cooccurrence with the bad smells con-
sidered in this study: composite and factory method. We concluded this because for most of the systems, each bad smell

http://wileyonlinelibrary.com
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FIGURE 5 Results of the association (Design Pattern ⇒ Feature Envy) [Colour figure can be viewed at wileyonlinelibrary.com]

presented a conviction value less than 1.0. We inspected the Composite and Factory Method instances returned in this
study to identify the reasons why these two design patterns presented low cooccurrences. The idea of the composite design
pattern is to build complex objects via simpler objects. These simpler objects are defined in modules so that the intelligence
of the object is divided between them, reducing the complexity of classes. The Factory Method design pattern simulates
the idea of a factory where there is an interface for creating objects, but the creation itself is performed by the subclass that
implements such interface. Thus, it is possible to create several modules, each one responsible for creating and managing
the information of a set of objects in the system, removing the workload from a single class. The composite and factory
method design patterns did not present high cooccurrence with bad smells because they allow creating complex objects
from other smaller and simpler objects. In this way, they reduce the coupling and complexity of the system.

Among the five bad smells evaluated, singleton presented low cooccurrence with three of them: data class, feature envy,
and large class. This result suggests that singleton may be a good choice when it is desired to avoid occurrences of bad

http://wileyonlinelibrary.com
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FIGURE 6 Result of the association (Design Pattern ⇒ Large Class) [Colour figure can be viewed at wileyonlinelibrary.com]

smells referring to the class-level complexity in software systems. In relation to long method bad smell, singleton is a
particular case. Although the result displayed in Figure 7 shows that there is a low cooccurrence of this design pattern
with long method, it is considered a false negative, because the instances of this design pattern identified by Design
Pattern Detection are based only on the static attribute presented in the class. This tool does not consider any method as
characteristic of this design pattern. For this reason, when we performed the matching of the design pattern and the bad
smell information, it returned zero. However, when singleton classes were manually inspected, we found some instances
of long method within their classes.

Summary of RQ1. Although the factory method, composite and singleton design patterns have presented low cooc-
currence with the bad smells studied, we identified that most of GoF design patterns are associated with the bad smells
considered in this study. Therefore, in response to RQ1, we conclude that the GoF design patterns studied in this work do
not necessarily avoid bad smell occurrences.

http://wileyonlinelibrary.com
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FIGURE 7 Result of the association (Design Pattern ⇒ Long Method) [Colour figure can be viewed at wileyonlinelibrary.com]

4.2.2 Research question 2
The analysis performed in this section aims to answer the RQ2: “Which design patterns of the GOF catalog have
cooccurrence with bad smells?”

To analyze the associations between design patterns and bad smells, we considered the conviction values. The choice of
this metric occurred because this metric was able to establish a relationship between the support and confidence metrics.
In addition, conviction has the best sensibility in identifying the cooccurrences relationship between antecedent and
consequent. Thus, to identify the cooccurrence relationship between design patterns and bad smells, we considered the
thresholds of the conviction metric, mentioned in Section 2.5. The criterion used to identify cooccurrences consists of
observing prevalent cases, that is, cases in which design patterns presented a conviction value greater than 1.0 for most
of the systems that had instances of the respective design patterns.

http://wileyonlinelibrary.com
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FIGURE 8 Result of the association (Design Pattern ⇒ Refused Bequest) [Colour figure can be viewed at wileyonlinelibrary.com]

Analyzing the results of Figure 4, we noticed that proxy, adapter-command, and state-strategy design patterns were
the ones that presented the highest cooccurrence relationship with the data class bad smell. The observer design pattern
had a high cooccurrence rate in only two systems, JHotDraw and Hibernate. However, by the criteria used to identify
cooccurrences, it is not possible to state that the observer design pattern presented cooccurrence with data class. The
template method and bridge also had high cooccurrence in a single system, Webmail, but in general, the cooccurrence
relationship was not very intense like for proxy, adapter-command, and state-strategy. Therefore, these results suggest that
the proxy, adapter-command, and state-strategy were those that presented the highest cooccurrence relationship with the
data class bad smell.

Figure 5 shows a chart with the results of the conviction metric calculated for the feature envy bad smell. Analyzing this
chart, we noticed that several design patterns have a cooccurrence relationship with this bad smell. Among these rela-
tionships, it is possible to highlight six design patterns with high cooccurrence: template method, bridge, proxy, observer,

http://wileyonlinelibrary.com
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TABLE 6 Summarization of identified cooccurrences

Bad Smell Cooccurrence Identified with the Design Patterns

Proxy
Data class Adapter-comand

State-strategy
Template method

Bridge
Feature envy Proxy

Observer
Adapter-command

State-strategy
Observer

Proxy
State-strategy

Large class Adapter-command
Bridge

Template method
Decorator

State-strategy
Long method Template method

Adapter-command
Bridge

Refused bequest Proxy
Singleton

adapter-command, and state-strategy. However, the Template Method ⇒ Feature Envy relationship was the one
that presented a higher intensity in this study, since for all the systems of the data set used, it was the design pattern that
presented higher conviction Values.

Figure 6 displays a chart with the results of the conviction metric calculated for the large class bad smel. Analyzing this
chart, we noticed that, as well as for the feature envy bad smell, there are several design patterns with strong cooccurrence.
Among the relationships displayed, it is possible to list seven design patterns that presented cooccurrences: observer,
proxy, state-strategy, adapter-command, bridge, template method, and decorator. However, the Observer ⇒ Large
Class relationship was the one that presented a greater intensity compared with the other cooccurrences.

Figure 7 presents the results obtained the long method bad smell, via a chart with the conviction metric. In this chart,
we may see that the design patterns did not present a relationship as high as for the other bad smells. The design patterns
that presented the highest cooccurrence with the long method bad smells were: state-strategy, template method, bridge,
and adapter-command. However, when comparing the cooccurrences intensity, we observed that the State-Strategy
⇒ Long Method was the one that presented the highest intensity.

Finally, the results obtained for the refused bequest bad smell (see Figure 8) suggest that two design patterns, ie, proxy
and singleton, presented the highest cooccurrence with this bad smell. The decorator design pattern had a high conviction
value for a single system, Weka. However, for the other systems, this value remained low, and in general, the cooccurrence
of this design pattern was not as intense as the cooccurrence obtained for proxy and singleton.

Summary of RQ2. The GOF design patterns that presented cooccurrence with bad smells are adapter-command,
bridge, decorator, observer, proxy, singleton, state-strategy, and template method. The cooccurrences identified in this
study are summarized in Table 6.

4.2.3 Research question 3
The analysis performed in this section aims to answer RQ3: “What are the more common situations in which bad smells
appear in software systems that apply GOF design patterns?” For each bad smell, we discuss an example of cooccurrence
and present a class diagram to support our discussion. The class diagrams are presented in Section 3 of the Appendix. The
following examples are explained.

Data class. The results found in this paper indicate that proxy, adapter-command, and state-strategy design patterns
were those that presented the highest cooccurrence relationship with the data class bad smell. To identify the reason
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for such cooccurrences, we performed a manual inspection into the classes that had the Proxy ⇒ Data Class
relationship.

The proxy design pattern is a solution whose purpose is to provide a substitute or marker for other object's location to
control access to itself. This solution is composed by a set of classes in which the class that plays the Subject role is respon-
sible for standardizing the access interface for the RealSubject and Proxy classes. The RealSubject class represents the real
object over which the Proxy class will exercise an access control. The Proxy class is the one responsible for controlling
access to an object, which in this case is RealSubject.

When analyzing the classes that presented Proxy ⇒ Data Class relationship, we noticed that all classes with
cooccurrence played the RealSubject role. Moreover, we performed a manual inspection in these classes to identify situ-
ations that led to the emergence of this relationship. We found that these classes have a large number of attributes and
many occurrences of gets and sets methods for assigning and accessing the values stored in these classes, configuring the
symbolic role of a database within the systems.

Figure C1 shows a class diagram extracted from Hibernate, containing a class that presented the Proxy ⇒ Data
Class cooccurrence. The design pattern has one class, FromReferenceNode, which plays the Proxy role, and another
responsible for playing the RealSubject role, FromElement. In this diagram, the FromElement class has a large amount of
data, characterizing the occurrence of data class bad smell. Based on this, we may conclude that the implementation of
RealSubject class within the proxy design pattern was the factor that contributed to the emergence of Proxy ⇒ Data
Class cooccurrence.

Summary. The main situation that contributes to the emergence of Proxy ⇒ Data Class cooccurrence is the
implementation of the RealSubject class within the Proxy design pattern, maintaining a large amount of data and few
functionalities over the data

Feature envy. We found six design patterns that presented cooccurrence with feature envy. To identify the reason for
this relationship, we performed a manual inspection in the classes with the Template Method ⇒ Feature Envy
cooccurrence, since it was the highest intensity relationship for this bad smell.

The template method is a solution that defines the skeleton of an algorithm via an operation, transferring some steps to
the subclasses, which have the power to redefine the characteristics of this algorithm without changing its structure. This
design pattern consists of a set of classes. One of them is the AbstractClass class, which defines the primitive and generic
operations for all subclasses. In the AbstractClass, a template method is defined to implement the skeleton of the desired
algorithm. The other classes in this design pattern are named ConcreteClass. They are subclasses of the AbstractClass and
are responsible for redefining the characteristics of an object, using the template method defined in the AbstractClass.
This design pattern uses a modular structure, in which the behavior of an object is modeled in subclasses and assigned
to it via polymorphism. The advantage of this implementation is the reduction of the complexity in the superclass, since
the definitions of conditional structures like if and switch may be replaced by polymorphism.

When analyzing the classes that presented the Template Method ⇒ Feature Envy, we noticed that the classes
with this cooccurrence play the AbstractClass role within this design pattern. Besides, some template methods in
these classes contain a high amount of access to methods allocated to other classes, increasing the coupling level of
AbstractClass and reducing its cohesion. Therefore, we may conclude that the implementation of these methods in inap-
propriate classes was the central situation that contributed to the emergence of this characteristic. A solution to this
problem is to apply methods extraction refactoring in the template methods and to reallocate the implementation of
an “envious” characteristic to its respective class. Thus, it seems that these cooccurrences could be mitigated in the
systems.

Figure C2 shows a class diagram extracted from Webmail, containing a class that presented the Template Method
⇒ Feature Envy cooccurrence. In this diagram, the WebmailServer class is responsible for playing the AbstractClass
role and making the template methods with a predefined algorithm. This class has three kinds of template methods: doInit,
restart, and shutdown. The WebmailServlet class plays the ConcreteClass role, which is free to define a specific feature for
the algorithm defined in the AbstractClasstemplate methods. However, during the manual inspection, we observed that
two out of three template methods, restart and shutdown methods, make use only of features related to the storage object
instantiated in this same class. Due to these facts, it seems that the implementation of these methods contributed to the
emergence of feature envy bad smell in this class, since they should be allocated within the class referring to the used
object, Storage.

Summary. The main situation that contributed to the emergence of Template Method ⇒ Feature Envy was
the implementation of methods accessed by the template method outside of the AbstractClass class. Such methods
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implement the feature of the same concern of the AbstractClass class and, therefore, should have been implemented
within that class.

Large class. Regarding large class, seven design patterns presented cooccurrence with this bad smell: observer,
proxy, bridge, state-strategy, adapter-command, template method, and decorator. To identify the situation that caused
this relationship, we performed a manual inspection in the classes that presented the Observer ⇒ Large Class
cooccurrence.

The observer design pattern is a solution that defines a one-to-many dependency between objects. This design pattern
is composed of a set of classes, where each one is responsible for playing the Subject role and storing information that
is used by the Observer classes. The Subject class of this design pattern has a list of all Observer classes that use its data.
When some information is changed by any Observer class, the Subject class is triggered, changing the other Observer
objects. The purpose of this design pattern is to synchronize data and update objects in real time. This updating occurs
via polymorphism of inclusion, avoiding the increase in the complexity that usually occurs with the use of conditional
structures.

When analyzing the classes that presented the Observer ⇒ Large Class, we noticed that all components with
cooccurrence played the Subject role within the design pattern. Moreover, during the manual inspection, it was observed
that the inappropriate implementation of this class increased its complexity and, consequently, implied the emergence of
this cooccurrence.

Figure C3 shows a class diagram extracted from Weka, containing a class that presented the Observer ⇒ Large
Class. Analyzing the class diagram in Figure C3, we observed that the class responsible for playing the Subject role,
represented by the Classifier class, within theObserver design pattern, has an inappropriate implementation. Moreover,
due to a large amount of data, we identified through the class diagram that it works with several kinds of observers which
are likely to have different responsibilities. Therefore, the best practice, in this case, would be the creation of several
Subject components, one for each concern, and connect them with their respective observers. This action would avoid
several concerns from being dealt with by a single Subject and would reduce the complexity of these classes. For instance,
a Subject should be implemented to interact with GraphListener, another to interact with IncrementerClassifierListener,
and so on. The notification methods and the attributes and methods used by each of the observers must be extracted to
others classes, implying the application of a class extraction refactoring.

Summary. The main situation that contributed to the emergence of Observer ⇒ Large Class was the inappro-
priate implementation of the Subject component within the Observer design pattern, which increased the complexity
of the Subject class and generated the occurrence of the Large Class bad smell with the observer design pattern.

Long method. For the long method, we identified two design patterns, state-strategy and template method, which
presented a high cooccurrence rate. Therefore, we manually inspected the State-Strategy ⇒ Long Method
relationship to identify the situations that caused these cooccurrences.

Considering that Design Pattern Detection does not separate the strategy and state design patterns, initially, it was not
possible to know whether one of them or both cooccurred with the long method bad smell. However, when we performed
the manual inspection in the systems' source code, we identified that the strategy design pattern appears much more
frequently than state design pattern; hence, it has a higher cooccurrence rate with the long method bad smell.

Gamma et al1 propose the strategy design pattern with the purpose of defining a family of algorithms, encapsulating
each one and making them interchangeable. This design pattern allows the algorithm to vary regardless the clients that
use it. Strategy is composed of a set of classes in such a way that each one is responsible for playing the strategy role
and defining a common interface for the family of algorithms so that the Context class may use them. The Concrete-
Strategy class is responsible for implementing each of the algorithms defined as “strategy.” The Context class is config-
ured as a ConcreteStrategy object, and it is responsible for passing requests from its clients to the configured “strategy.”
The advantage of this solution is the flexibility provided by the partitioning of the business rules of a system into small
components. Moreover, in the case of inclusion of new rules or algorithms, this solution allows them to be added easily
without changing the source code.

When analyzing the methods that presented theStrategy ⇒ Long Method relationship, we found that all of them
were located inside the Context classes, in the same place the strategies to be used by the clients were defined. These meth-
ods have an excess of code because the strategies were determined by conditional structures rather than polymorphism.
This practice generated high-complexity methods and made the code difficult to read and understand.

Figure C4 shows a class diagram extracted from Hibernate, containing an instance of the Strategy design pattern with
long method cooccurrence. The Mappings and ExtendedMappings interfaces play the Strategy role and define a common
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service interface for all the strategies. The MappingsImpl class plays the ConcreteStrategy role and implements the services
defined by the Strategy interfaces, according to the strategy assigned to this class. The SimpleValueBinder class plays
the Context role and implements the strategies defined by the client. However, SimpleValueBinder has a long method
bad smell. The setType method of the SimpleValueBinder class, responsible for implementing a strategy requested by the
client, is an instance of this occurrence. This method has a large amount of code and uses conditional structures to define
implementation choices. The best practice, in this case, would be to create several smaller components, one for each
conditional structure defined within the method, with a default interface, and instantiate them within the method as
needed. This practice would make the code less complex and improve its readability and understanding.

Summary. The main situation that contributes to the emergence of Strategy ⇒ Long Method cooccurrence is
the code excess implemented in the methods that define the strategies. This excess is due to the excessive use of conditional
structures used to define the steps and behaviors performed by each of the strategy algorithms. This code excess impaired
the readability and understanding of the source code.

Refused bequest. We identified two design patterns, proxy and singleton, that presented the highest cooccurrence
rate with refused bequest. So, we manually inspected the Proxy ⇒ Refused Bequest relationship to identify some
situations that caused these cooccurrences.

When analyzing the classes that presented the Proxy ⇒ Refused Bequest relationship, we noticed that most of
the classes that introduced cooccurrence played the Proxy role in the design pattern. Furthermore, we identified two main
situations that caused the emergence of this relationship. The first one was the use of inheritance as a reuse mechanism.
Inheritance is a mechanism that should only be used when the superclass and the subclass have an “is a” relation-
ship. However, several classes of the systems analyzed apply inheritance to reuse codes already implemented in other
classes, without an “is a” relationship between the classes. The second situation identified was the inappropriate use
of inheritance between classes. When this resource is not used correctly, the class in the lowest level of the hierarchy
begins to overwrite a large number of services from its parent classes, something that should not happen when using this
mechanism.

Based on this, the main solution to remove cooccurrences in these classes would be the application of refactoring,
changing the inheritance relationship by the composition relationship. This action would be a good practice for reducing
method overriding and rejection of features defined in the superclass.

Figure C5 shows a class diagram extracted from Kolmafia, containing an instance of proxy design pattern that presented
refused bequest bad smell. In this diagram, the Value class plays the RealSubject role inside the design pattern. The ForE-
achLoop class plays the Proxy role. By analyzing the class diagram, we may see that the ForEachLoop class is positioned at
the lowest level of the inheritance hierarchy. During the manual inspection, we noticed that this class is positioned at the
wrong level. This class overrides a method already implemented by its parent class, Loop, thus rejecting an already defined
feature. This class should be refactored and moved to the same level of the Loop class in this hierarchy, ie, it should have
a direct inheritance relationship with the ParseTreeNode class, since it uses features only of that class and implements a
method that is only defined as abstract by this class.

Summary. The main situation that contributed to the emergence of Proxy ⇒ Refused Bequest cooccur-
rence is the inappropriate use of the inheritance, especially when components are located at an inappropriate level
in the inheritance hierarchy. Such situations have contributed to components rejecting features provided by their
superclasses.

5 LESSONS LEARNED

Analyzing the results, we verified that the application of design pattern in systems does not necessarily avoid bad smell
cooccurrences. However, some design patterns had a low relationship with the bad smells evaluated in this study. They
are factory method, composite, and singleton. Factory method and composite design patterns are expected to exhibit low
cooccurrence, since they are intrinsically modular design patterns. However, it was a surprise to see the results indicat-
ing that the singleton design pattern presents low cooccurring with bad smells when dealing with large complex data.
Singleto's main purpose is to provide a unique global point of access for one class. According to the previous work, this
design pattern tends to centralize the intelligence of the system and consequently to increase the complexity of its inter-
nal components generating bad smell occurrences.36 The results obtained in the present study contradict the results of
Vokac.36



SOUSA ET AL 1101

Moreover, we extracted a lot of cooccurrences between the GoF design patterns and bad smells. Analyzing these rela-
tionships (see Table 6), we observed that proxy, adapter-command, and state-strategy were those that were most frequent
in the relationship identified for each bad smell. They presented cooccurrences with four out of five bad smells consid-
ered in this study, and for data class and refused bequest, the design pattern that presented the highest cooccurrence with
them was proxy. Bridge and TEMPLATE METHOD APPEAR IN THE SECOND PLACE, presenting cooccurrence with
three out of five bad smells.

Finally, each relationship of higher cooccurrence with each of the bad smells was manually inspected to identify situa-
tions that impacted on the emergence of this relationship. Although these situations are case-specific, we concluded they
arose due to misuse and inappropriate implementation of the design patterns in the analyzed systems. Therefore, using
design patterns requires special attention and proper planning of them to avoid bad smells occurrences.

6 THREATS TO VALIDITY

This section presents the threats to validity according to the guidelines proposed by Wohlin et al.37 We discuss threats to
external, internal, and construct validity.

External validity. According to Wohlin et al,37 external validity is “concerned with to what extent it is possible to
generalize the findings and to what extent the findings are of interest to other people outside the investigated case.” We
presented a study carried out with a data set composed of five open-source Java systems. From these five systems, four
of them were extracted from a large data set, called Qualitas Corpus. Our sample of systems has small, medium, and
large systems. However, due to the small size of the sample, we are not able to generalize the results found in this study.
Nevertheless, the results obtained are important because they show that the use of design patterns do not necessarily
avoid bad smells in object-oriented systems.

Internal validity. This kind of validity is of concern when causal relations are examined, ie, whether there is a risk of
some factor to affect in the investigation of a causal relation between two variable of the experiment.37 Our data collection
was carried out by tools. To identify the methods and classes that compose the design patterns instances, we used Design
Pattern Detection. To identify the methods and classes that have bad smell occurrences, we used detection strategies and
implemented them in RAFTool. Finally, to identify the cooccurrences, we used the Design Pattern Smell.38 Although
all these tools have been evaluated and presented good results, we are not able to ensure that their results are error
free. However, to mitigate these threats, we chose tools that have good accuracy in detecting design pattern and bad
smells. Moreover, we manually analyzed the results obtained by these tools and removed the false positives based on our
knowledge of bad smells and design patterns.

Construct validity. It refers to the extent to which the experiment setting reflects the theory that the researcher has
in mind.37 To identify the situations that caused the emergence of cooccurrence between design patterns and bad smells,
we manually inspected the classes and methods involved in such cooccurrences. This inspection was carried out by one
of the authors of this paper, and the results were discussed among the other authors. Although the inspector has a high
level of knowledge of all the concepts involved in the analysis, the manual inspection might be error-prone. To overcome
this threat, we decided to analyze a small number of systems in this work.

7 RELATED WORK

Several studies have been developed to investigate the relationship between design patterns and bad smells. We previously
conducted a systematic literature mapping15 and found that the literature has approached this topic in three different
ways: impact on software quality, refactoring, and cooccurrence. Moreover, we concluded that cooccurrence between
design patterns and bad smells is a current topic and have been little explored. In this section, we provide an overview
of the studies identified in this systematic literature mapping, highlighting the main differences between them and the
work we presented in this paper.

7.1 Empirical studies on design patterns
Since design patterns were proposed, several studies have investigated the effectiveness of these solutions regarding the
software quality. For instance, Wendorff 39 analyzed a commercial system developed in C++ language to find negative
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impacts provided by the design pattern in the development context. He concluded that the lack of logic comprehension
of the design patterns implementation is one of the main factors that lead developers to misuse them. Moreover, he
considered that the application of unneeded design pattern and requirements portability impact the internal software
structure in a negative manner.

In the same line, McNatt and Bieman40 and Izurieta and Bieman41 also identified some other factors that negatively
impact on the design patterns quality. McNatt and Bieman found that occurrences of design patterns coupling, ie, design
patterns with the same component in their instances hinder the modularization of these solutions and make the system
hard to modify since they increase the coupling in the system. Izurieta and Bieman investigated how design patterns
behaved during the evolution of systems and analyzed whether they maintain the software structure flexible and easy to
maintain. They concluded that the design pattern quality tends to deteriorate during the software evolution and pointed
out the accumulation of components unrelated to classes that play roles in design patterns as the main reason that impairs
the design pattern quality.

Khomh and Gueheneuce42 carried out a study more specific than Wendorff,39 McNatt and Bieman,40 and Izurieta and
Bieman.41 They evaluated the impact of the GoF design patterns on some external quality attributes, such as reuse,
comprehension, and modularity, among others. Through this study, they identified that the GoF design pattern do not
always improve the software quality and pointed out that Flyweight negatively affects all attributes, except scalability.
Wagey et al43 also investigated the impact of design patterns on quality external attributes, but they focused only on the
maintainability. They proposed a quality model based on design patterns and, through it, they identified that these solu-
tions positively affect the software maintainability and the higher the use of the design pattern in software, the better its
internal structure and the greater its maintainability, reducing part of the costs in the software maintenance phase.

Vokac36 analyzed the corrective maintenance of a large commercial software system to identify possible defects gen-
erated in software due to the design pattern application. The author discovered that the observer and singleton design
patterns are the ones that are correlated with the highest defect rate. In contrast, the factory method design pattern was
identified as the least prone to errors because the classes that play the factory role are more compact and less coupled.
Finally, the template method design pattern did not present any clear trend for the occurrence of the defects in the study
of Vokac.

The previous studies presented in this section investigated the impact of design patterns on software quality. In sum-
mary, Werdoff,39 McNatt and Bieman,40 and Izurieta and Bieman41 analyzed negative impacts caused by these solution
both in software quality and software evolution. Khomh and Gueheneuce,42 and Wagey et al43 investigated whether design
patterns improve the external attributes of the software systems and what is improved. Finally, Vokac36 analyzed whether
GoF design patterns may cause defects and what of them is the most prone to present defects. The present study also
evaluated the impact of design pattern on software quality. However, the main goal of this study was to analyze whether
design patterns might cooccur with bad smells, and what situations might contribute to the cooccurrence of these two
structures.

7.2 Cooccurrence
The investigation of cooccurrence between design patterns and bad smell is a current research topic on software engineer-
ing, and it has been explored since 2013.15 As it is a recent topic, few studies in the literature have approached this theme.
In our previous study, we identified only four studies available on the research on this topic. Therefore, in this section,
we present these papers and discuss the main differences between them and the study we have presented in this paper.

Cardoso and Figueiredo11 performed an exploratory study to identify bad smells cooccurrences in systems that apply
design patterns. The authors considered the god class and duplicate code bad smells and 11 of 23 of GOF design patterns.
As results, Cardoso and Figueiredo11 identified the cooccurrence of command design pattern with the god class bad smell
and the template method design pattern with the duplicate code bad smell. They analyzed the components that presented
cooccurrence and identified that in the case of the command design pattern, the use of a single receiving class for dif-
ferent concerns caused the God Class emergence. For the template method design pattern, the several duplications of
implementation within the design pattern were responsible for the appearance of duplicate code bad smell.

Jaafar et al10 investigated the evolution of three open-source Java systems to identify the existence of the static relation-
ship between a design pattern and antipatterns and to evaluate the impact and the behavior of these relationships during
the evolution of the systems. They discovered that the relationship existing between these two structures are not casual
since they are continually growing during the software evolution. The command design pattern was identified as those
that presented the highest static relationship with antipatterns. Finally, Jaafar et al10 concluded that classes representing
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a static relationship between design patterns and antipatterns are more likely to change and less likely to fail than classes
that do not participate in such relationships.

Jaafar et al12 analyzed the impact of static and cochange dependency in classes with design patterns and bad smells,
and verify the relationship of these dependencies with software failures. Cochange dependency consists of changes made
in one class that directly impact another. Jaafar et al12 observed the evolution of three open-source Java systems and
concluded that classes that have a static and cochange relationship with design patterns or bad smells have significantly
more failures and, consequently, are more likely to structural changes and code addition.

Walter and Alkhaeir13 performed an exploratory study to determine and investigate whether the presence of design
patterns is related to the presence of bad smells and whether these relationships change during the code evolution. They
evaluated the evolution of two open-source Java systems and identified that the presence of the design pattern is related
to the absence of bad smells in the same classes. Moreover, some design patterns as adapter, command, factory method,
state, strategy, and singleton were pointed out as those that are more likely to not present bad smell occurrence. On the
other hand, the composite design pattern was pointed out as prone to bad smell occurrences.

In a preliminary study conducted with the god class and long method bad smells,14 we identified indications that GoF
design patterns are not able to avoid bad smells. In the present study, we expanded our sample of bad smells to deter-
mine other types of existing cooccurrences. This paper differs from the research of Cardoso and Figueiredo11 and of
Jaafar et al10,12 because we investigated cooccurrence between GoF design patterns with other kinds of bad smells. More-
over, we applied a different approach regarding the reported studies to detect the bad smells. We used detection strategies
to identify bad smells that were previously proposed and evaluated by Souza.16 Regarding the study carried out by Walter
and Alkhaeir,13 the present work differs from it because we investigated some different kind of bad smells; moreover, we
achieved insights not obtained by them.

8 CONCLUSION

In this study, we performed an evaluation of object-oriented systems with the purpose of: (1) investigating whether the
use of GOF design pattern avoid cooccurrences of bad smells, (2) identifying possible design patterns that present cooc-
currences with bad smell, and (3) identifying situations present in the source code that led to the emergence of these
cooccurrences. This study considered a sample of five open-source Java systems, 14 GoF catalog design patterns, and five
bad smells described by Fowler and Beck.2

We applied the detection strategies proposed by Souza16 to identify the following bad smells: data class, feature envy,
large class, long method, and refused bequest. The detection strategies contain well-known software metrics and were
previously evaluated.

The results of this study indicate that the use of GoF design pattern does not necessarily avoid bad smells occurrence.
However, we identified that some design patterns as composite, factory method, and singleton presented a low cooccur-
rence rate with the bad smells because they have a modular structure that allows dividing the intelligence of the systems in
several classes. For this reason, these design patterns may be a good choice for the creation of systems with good internal
quality and flexible structure. In contrast, several design patterns presented cooccurrence with the bad smells considered
in this work. The cooccurrences identified in this study are summarized in Table 6. Analyzing these relationships, we
perceived that the adapter-command, proxy and state-strategy design patterns are those that have a higher frequency of
cooccurrences with bad smells. This insight indicates that these solutions need special attention to avoid the occurrence
of bad smells.

We collected the data of design patterns, bad smells, and cooccurrences from the systems to analyze the intensity of
cooccurrences between the GoF design patterns and bad smells in the software, via association rules. Finally, we per-
formed a manual inspection of the components that presented these cooccurrences and identified the main situations
that led to the emergence of these relationships within the systems source code. Although the situations analyzed in
this manual inspection are specific to each case, we noted some similarities between them, such as classes with a lot of
responsibilities and tasks, complex methods, and excessive repetition of code. Thus, it is possible to point out that these
cooccurrences are due to poor planning and inadequate implementation of these design patterns. Other possible reasons
are the lack of experience of the developers with these solutions and excessive system maintenance. These results indi-
cate that special attention in the implementation of design pattern and better planning of the software design are needed
to avoid the occurrence of bad smells.
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Based on the main results, we may summarize the findings as follows:

• The use of design patterns does not avoid the bad smell occurrences.
• The composite, factory method, and singleton design patterns are intrinsically modular; thus, they presented a low rate

of cooccurrences with bad smells.
• The adapter-command, proxy and state-strategy design patterns appeared most frequently related to the five explored

bad smells, and for this reason, the application of these design patterns demand special attention.
• Poor planning and inadequate implementation of design patterns were the main situations identified that contributed

to the emergence of cooccurrences with bad smells.

This study should help the software engineering community to comprehend better the internal structure of software
systems that apply design patterns. As future work, we suggest to extend this research to a more significant amount of
software sample, investigate design patterns cooccurrences with other bad smells, and examine the relationships of design
patterns, bad smells, and software failures.
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APPENDIX A

RESULTS OF THE BAD SMELL COLLECTION

Here, we present the results obtained during the data collection step, and the classes diagram on the cooccurrence
examples.

This section presents the results obtained after executing the detection strategies with the RAFTool Support. We sum-
marized the results in Tables A1 to A5. Each table brings the results concerning to a bad smell and obtained in each

TABLE A1 Results for data class

Software # Classes with Data Class # Total of Classes % Classes with Data Class

Hibernate 825 7711 10.70%
JHotDraw 70 1061 6.60%
Kolmafia 441 3225 13.67%
Webmail 14 129 10.85%
Weka 348 2401 14.49%

TABLE A2 Results for feature envy

Software # Classes with Feature Envy # Total of Classes % Classes with Feature Envy

Hibernate 1099 7711 14.25%
JHotDraw 101 1061 9.52%
Kolmafia 422 3225 13.09%
Webmail 17 129 13.18%
Weka 421 2401 17.53%

TABLE A3 Results for large class

Software # Classes with Large Class # Total of Classes % Classes with Large Class

Hibernate 79 7711 1.02%
JHotDraw 15 1061 1.41%
Kolmafia 103 3225 3.19%
Webmail 2 129 1.55%
Weka 175 2401 7.29%

TABLE A4 Results for long method

Software # Methods with Long Method # Total of Methods % Methods with Long Method

Hibernate 331 48 234 0.69%
JHotDraw 133 7633 1.74%
Kolmafia 1015 28 214 3.60%
Webmail 24 1091 2.20%
Weka 860 20 871 4.12%

TABLE A5 Results for refused bequest

Software # Classes with Refused Bequest # Total of Classes % Classes with Refused Bequest

Hibernate 2050 7711 26.59%
JHotDraw 411 1061 38.74%
Kolmafia 960 3225 29.77%
Webmail 29 129 22.48%
Weka 1025 2401 42.69%
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system. The first column indicates the NOC/NOM affected by bad smell. The second column shows the total NOC/NOM
existing in the analyzed system. Finally, the third column shows the percentage of the system that was affected by the bad
smell.

APPENDIX B

RESULTS OF THE COOCCURRENCES

This section presents the results obtained after identifying the cooccurrences between GoF design patterns and bad smells
with the Design Pattern Smell support. We summarized the results in Tables B1 to B5. We organized these tables as the
GoF design patterns being the lines and the systems being the columns. For each system, there are two different infor-
mation. The “T” column indicates the total NOC/NOM that make part of the design pattern instances identified in this
study. The “DP&BS” column indicates the NOC/NOM that presented cooccurrence between GoF design patterns and bad
smells.

TABLE B1 Total number of classes with design pattern and amount of classes with cooccurrences between design pattern and data class

Design Pattern Hibernate 4.2.0 JHotDraw 7.5.1 Kolmafia 17.3 Webmail 0.7.10 Weka 3.6.9
T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS

Adapter-command 228 40 53 13 386 75 40 8 152 23
Bridge 56 2 40 0 14 1 6 3 0 0
Composite 12 0 12 1 8 0 0 0 0 0
Decorator 37 2 10 1 67 7 0 0 32 10
Factory method 37 0 5 0 31 0 2 0 22 1
Observer 4 2 2 1 8 1 0 0 36 1
Prototype 0 0 21 4 0 0 0 0 0 0
Proxy 8 3 0 0 18 6 0 0 35 10
Singleton 232 3 13 1 77 9 1 1 34 0
State-strategy 271 51 121 24 334 52 23 3 93 18
Template method 87 5 16 2 54 3 4 2 22 1

Abbreviation: DP&BS, design pattern and bad smells.

TABLE B2 Total number of classes with design pattern and amount of classes with cooccurrence between design pattern and
feature envy

Design Pattern Hibernate 4.2.0 JHotDraw 7.5.1 Kolmafia 17.3 Webmail 0.7.10 Weka 3.6.9
T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS

Adapter-command 228 36 53 14 386 74 40 6 152 64
Bridge 56 18 40 7 14 4 6 2 0 0
Composite 12 0 12 4 8 0 0 0 0 0
Decorator 37 3 10 2 67 5 0 0 32 9
Factory method 37 2 5 0 31 3 2 0 22 3
Observer 4 1 2 1 8 2 0 0 36 11
Prototype 0 0 21 5 0 0 0 0 0 0
Proxy 8 1 0 0 18 6 0 0 35 16
Singleton 232 2 13 0 77 5 1 1 34 5
State-strategy 271 41 121 31 334 54 23 2 93 43
Template method 87 27 16 5 54 14 4 1 22 8

Abbreviation: DP&BS, design pattern and bad smells.
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TABLE B3 Total number of classes with design pattern and amount of classes with cooccurrence between design pattern and large
class

Design Pattern Hibernate 4.2.0 JHotDraw 7.5.1 Kolmafia 17.3 Webmail 0.7.10 Weka 3.6.9
T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS

Adapter-command 228 13 53 6 386 33 40 2 152 35
Bridge 56 8 40 2 14 3 6 0 0 0
Composite 12 0 12 1 8 0 0 0 0 0
Decorator 37 2 10 1 67 2 0 0 32 7
Factory method 37 1 5 0 31 2 2 0 22 0
Observer 4 1 2 0 8 1 0 0 36 7
Prototype 0 0 21 1 0 0 0 0 0 0
Proxy 8 1 0 0 18 1 0 0 35 9
Singleton 232 0 13 0 77 2 1 0 34 3
State-strategy 271 21 121 7 334 30 23 1 93 29
Template method 87 6 16 2 54 4 4 0 22 2

Abbreviation: DP&BS, design pattern and bad smells.

TABLE B4 Total number of methods with design pattern and amount of methods with cooccurrence between design pattern
and long method

Design Pattern Hibernate 4.2.0 JHotDraw 7.5.1 Kolmafia 17.3 Webmail 0.7.10 Weka 3.6.9
T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS

Adapter-command 271 12 73 0 703 44 50 0 222 20
Bridge 61 3 51 2 19 3 8 0 0 0
Composite 8 0 29 0 37 0 0 0 0 0
Decorator 115 1 31 0 255 2 0 0 61 6
Factory method 58 0 23 0 45 0 2 0 27 0
Observer 8 0 2 0 7 1 0 0 24 0
Prototype 0 0 16 2 0 0 0 0 0 0
Proxy 6 0 0 0 31 1 0 0 37 1
Singleton 340 0 15 0 672 0 1 0 83 0
State-strategy 343 24 227 21 974 61 19 0 173 31
Template method 275 8 47 2 161 19 14 0 34 4

Abbreviation: DP&BS, design pattern and bad smells.

TABLE B5 Total number of classes with design pattern and amount of classes with cooccurrence between design pattern and
refused bequest

Design Pattern Hibernate 4.2.0 JHotDraw 7.5.1 Kolmafia 17.3 Webmail 0.7.10 Weka 3.6.9
T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS

Adapter-command 228 22 53 5 386 30 40 5 152 39
Bridge 56 4 40 4 14 0 6 1 0 0
Composite 12 1 12 5 8 0 0 0 0 0
Decorator 37 5 10 3 67 0 0 0 32 22
Factory method 37 1 5 0 31 1 2 0 22 6
Observer 4 0 2 0 8 0 0 0 36 0
Prototype 0 0 21 8 0 0 0 0 0 0
Proxy 8 4 0 0 18 9 0 0 35 23
Singleton 232 59 13 7 77 34 1 0 34 3
State-strategy 271 23 121 31 334 19 23 2 93 31
Template method 87 14 16 6 54 6 4 0 22 10

Abbreviation: DP&BS, design pattern and bad smells.
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APPENDIX C

CLASS DIAGRAMS OF THE COOCCURRENCES

This section presents the visual representation regarding the cases discussed in Section 4.2.3.

FIGURE C1 Class diagram that represents the Proxy ⇒ Data Class relationship
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FIGURE C2 Class diagram that represents the Template Method ⇒ Feature Envy relationship
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FIGURE C3 Class diagram that represents the Observer ⇒ Large Class relationship
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FIGURE C4 Class diagram that represents the Strategy ⇒ Long Method relationship
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FIGURE C5 Class diagram that represents the Proxy ⇒ Refused Bequest relationship
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