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Abstract—Understanding and using the functional paradigm is
a challenge for many programmers. Looking for logical errors
in code may take a lot of a developer’s time when a program
grows in size. In order to facilitate both processes, this paper
presents HaskellFL, a tool that uses fault localization techniques
to locate a logical error in Haskell code. The Haskell subset
used in this work is sufficiently expressive for those studying
Functional Programming to get immediate help debugging their
code and to answer questions about key concepts associated with
the functional paradigm. HaskellFL was tested against Functional
Programming assignments submitted by students enrolled at the
Functional Programming class at the Federal University of Minas
Gerais and against exercises from the Exercism Haskell track that
are publicly available in GitHub. This work also evaluated the
effectiveness of two fault localization techniques, Tarantula and
Ochiai, in the Haskell context. Furthermore, the EXAM score was
chosen to evaluate the tool’s effectiveness, and results showed that
HaskellFL reduced the effort needed to locate an error for all tested
scenarios. The results also showed that the Ochiai method was more
effective than Tarantula.

Keywords—Debug, fault localization, functional programming,
Haskell.

I. INTRODUCTION

FUNCTIONAL programming is a method of program

construction that emphasizes functions and their

application rather than commands and execution [5].

At first sight, the functional paradigm may confuse

programmers. It may be because they usually start by learning

the imperative paradigm, which has no particular way of

handling the state. In light of that, several difficulties may

appear when programmers try to learn a new way to write

code with different reasoning. If they do not address these

issues early, they might use the functional language as if

using an imperative one for a long time, taking no real

advantage of the functional paradigm. For instance, Fig. 1 (b)

exhibits an example of functional programming, a function

named fact which calculates the factorial of a given n.

It is written in Haskell, and it is as straightforward as

the mathematical factorial definition. Fig. 1 (a) shows an

implementation of fact in Java, which contrasts with the

Haskell definition, because it demands greater knowledge of

the language constructs from the developer writing it.

Additionally, functional languages are pure or impure. Pure

languages being the ones not allowing side effects anywhere

and impure languages being the ones allowing them. Examples

of pure functional languages are Haskell and Agda. Some

impure ones are Lisp, Scheme, Clojure, Standard ML, F#
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Fig. 1 Factorial function in Java (a) and in Haskell (b)

and OCaml. F# is integrated into the platform .NET and

reaches many users [12]. OCaml stands for Objective-ML and

it “is an industrial-strength programming language supporting

functional, imperative and object-oriented styles” [34]. Clojure

is used by Nubank [33]. Haskell is an excellent choice

for a functional language because it has a large and active

community. It also has built-in concurrency and parallelism

and supports integration with other languages [46].

Other two broadly used languages that implement functional

concepts are Java and Kotlin. Java 8 introduced lambda

expressions and functional interfaces, which profoundly

improved the language’s power. Kotlin offers both functional

and object-oriented concepts alongside a strong integration

with Java [13]. The latter allows Kotlin to be classified as

very promising language because it removes a large part

of migration and integration concerns for scalable systems.

Additionally, a considerable number of large companies are

already adopting Kotlin.

With that said, having good knowledge of the functional

paradigm is a valuable skill for developers, regardless if they

work directly with a purely functional language or with any

other language offering functional concepts. Also, Haskell

is an excellent first functional language because it allows

developers to have a clear view of functional concepts.

A. Problem Definition

Bugs are reality on software development, and while

experienced programmers may know their way among

several bugs, some beginners may feel discouraged by them.

Compilers are able to help detecting some simpler bugs. For

example, [4] conducted a study about the javac compiler

messages for students’ Java code. The top 10 student errors

they found in their study are:

(i) cannot find symbol

(ii) ‘)’ expected

(iii) ‘;’ expected

(iv) not a statement

(v) illegal start of expression

(vi) reached end of file while parsing
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(vii) illegal start of type

(viii) ‘else’ without ‘if’

(ix) bad operand types for binary operator

(x) <identifier> expected.

Some of the messages, such as ‘)’ expected and ‘;’
expected are really effective, other such as illegal
start of expression may be more tricky. Additionally,

[42] conducted a study focusing on Haskell novice

programmers and the kind of mistakes they make. Their results

are:

(i) Parenthesis mismatch: unbalanced

parenthesis characters.

(ii) Bad scoping: issues with let and where
constructs.

(iii) Misunderstanding do blocks: for instance,

trying to bind names in a do block as the final action.

(iv) Complex constructs: their interpreter did not

support data and type definitions and users

attempted to use it anyway. This was noted as a

mistake.

(v) Incorrect syntax for enumFromThenTo
syntactic sugar: there were issues with the

.. notation. The authors consider that may have

been problems with their tutorial material though.

All of the errors mentioned above are automatically

identified by a compiler. Becker et al. [4] also enhanced

error messages in their study to test how much an improved

message is able to help. Their results indicate that it does

help. Nonetheless, better messages do not extinguish the

errors, neither syntactic errors nor logical errors. Logical errors

are the ones a compiler can not automatically catch, and

for that reason, they are even harder to identify. In light

of that, this paper presents HaskellFL, a tool that locates

logical errors in functional programming assignments written

in Haskell. Starting from a source code with unexpected

behavior and a few test cases, some of which outputting

an unexpected result, and others producing the expected

output, HaskellFL calculates and returns a list containing the

most likely expressions to be triggering this unpredictable

behavior, and this list is sorted from most to less probable.

This suspiciousness list is created using fault localization

techniques, thus, this work also evaluates the effectiveness

of two different fault localization techniques in the Haskell

context.

The main reason for choosing functional programming for

this work is because the functional paradigm is less spread than

object-oriented concepts; consequently, the support material

for learning it is also less spread. The reasons for choosing

Haskell in particular pass through its expressiveness, great

dealing of complex data, and the fact that it is a purely

functional language that may effectively help developers

to grasp the concepts present in the functional paradigm.

Haskell’s laziness is also an advantage for this work because

it provides better visibility of the code execution.

Other data serving as motivation is [39] and [15] where

they analyzed the change history of a large software project

focusing on one line changes. Their results showed that 10%

of the total code changes involved a single line of code, and

50% were below ten lines. The study [15] specifically found

that for Haskell, localized changes are 62.7% of all changes.

So, a fault localization tool may be beneficial.

Adding remarks to Haskell as the right choice for studying;

there are plenty of companies using it. Enumerating few,

Facebook uses it internally in its advertising and spam filtering

internal products as well as Google, which published a paper

about their experience [38]. Intel has developed a Haskell

compiler as part of their research on multicore parallelism

at scale [31], Microsoft uses it in its compilers research, and

Tesla also uses it in its internal products. A list containing

several companies and the respective fields in which they use

Haskell may be found in Haskell Cosmos website1, including

some of the companies mentioned above are listed there.

B. Goals

This work’s primary goal is to evaluate the effectiveness of

two fault localization techniques in the literature, Tarantula

[21] and Ochiai [1], in the context of Haskell programs,

and additionally, create a tool to aid Functional Programming

beginners while debugging their Haskell problems.

This tool will receive a code written in Haskell containing

a yet unknown logical error and some test cases divided into

two sets, one set containing tests that evoke an error and the

other one containing tests that allow the code to run smoothly.

With these inputs, the tool will be able to run the tests and to

locate what expression is the error root cause.

The main contributions of this paper are:

(i) A tool, named HaskellFL, which is able to locate

logical errors in Haskell code.

(ii) The implementation of two fault localization

techniques: Tarantula and Ochiai.

(iii) A test suite covering the chosen Haskell grammar’s

subset.

(iv) The evaluation of HaskellFL against a test suite using

EXAM score.

(v) A Haskell interpreter for a subset of Haskell 2010

grammar.

The organization of the remaining sections of this paper

is as follows. Section II presents the fault localization topic,

enumerating the techniques used in HaskellFL, showing how

to evaluate these techniques, and presenting related tools.

Section III introduces the SKI combinators. Section IV

discusses the related work and the remaining gaps that

motivated the present work. Section V presents the proposed

solution to the identified problem, discussing the requirements

and implementation of the HaskellFL tool for detection of

logical errors in Haskell. Section VI presents the test suite and

the obtained results while testing HaskellFL against it. Section

VIII concludes this paper, presenting its contribution and

suggestions for future works. It is followed by Appendix A,

which exhibits the subset of Haskell 2010 grammar supported

by HaskellFL, and the bibliography.

1https://haskellcosm.com/
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II. FAULT LOCALIZATION

This section brings an overview of two fault localization

approaches and it also presents methods to evaluate them.

Additionally, it shows fault localization tools in the literature.

A. Spectrum-Based Fault Localization

Jones et al. [22] presented a prototype tool that uses coloring

statements in the code to detect fault locations; this is classified

as a spectrum-based fault localization (SBFL) technique. The

authors have a piece of code with a logical error and some

test cases, a few producing the expected result for a given

input, and other few producing an unexpected output for

a different input. While executing the code, they color the

coding statements with colors inside the green, red, and yellow

spectrum.

In this scenario, red means the majority of test cases that run

that line fails to achieve the correct output; green means the

opposite; most test cases running that line succeed in achieving

the correct output. Furthermore, yellow means the test cases

executing that statement are the ones that succeed sometimes

and fail other times, both near to the same percentage. It

is worth remembering that the colors rely upon a spectrum,

which means that one statement that has 80% failing test cases

and 20% successful ones running it is colored in a darker

red contrasted to one with 65% failing test cases and 35%

successful test cases running it. Correspondingly, the same

applies to green in the reverse order. Figure 2 depicts the

example displayed in [22] that demonstrates what was just

explained. The mid function in the figure prints the central

element among three elements and will be used as an example

again in this paper. Moreover, in Fig. 2, P indicates the given

test case succeeds in achieving the expected output, i.e., it

passes. F indicates that the test case did not achieve the correct

output; thus, it fails. The black bullets in the intersections

between test cases and code statements show that the given

test case has executed that code statement. For example, test

cases 2, 1, 3, execute lines 1, 2, 3, 6, 7, 13, and

fail.

Fig. 2 Colored Code for Detecting Error Location, extracted from [22]

Lee et al. [29] adopted the same method, after adapting it to

functional programs, to detect possible error locations in the

process of correcting OCaml code. Their result is a set of pairs

consisting of a holed program and a score for each possible

error location. The lower the score, the more suspicious the

expression is. Additionally, as the name suggests, the holed

program contains holes in the expressions where an error may

occur. It is also worth mentioning that the authors consider the

size of the expression to calculate its score. They based their

motivation for this on the Occam’s razor principle [6], meaning

they want to replace an expression as small as possible.
Table I shows two formulas from different methods -

Tarantula [21], and Ochiai [1] - that were used to calculate the

error localization in HaskellFL; both fall in the SBFL category.

TABLE I
FAULT LOCALIZATION TECHNIQUES’ FORMULAS

Tarantula:
failed(s)

totalfailed
failed(s)

totalfailed
+

passed(s)
totalpassed

Ochiai: failed(s)√
totalFailed(failed(s)+passed(s))

Tarantula utilizes all the standard information used by other

testing tools: pass/fail information about each test case, the

entities that were executed by each test case, e.g., - statements,

branches, methods - and the program’s source code under test

[21]. Tarantula method intuition is that entities in a program

primarily executed by failed test cases are more likely to

be faulty than those primarily executed by passed test cases.

Additionally, the method also allows some tolerance for the

bug to be occasionally executed by passed test cases because

they claim it often provides more effective results.
In [1], they show that for software fault diagnosis, the

Ochiai similarity coefficient, known from the biology domain,

outperforms several other fault localization methods. They

attribute these results to the Ochiai coefficient being more

sensitive to potential fault locations in failed runs than to

activity in passed runs. This fact suits fine for fault localization

because the execution of incorrect code does not necessarily

lead to failures, while failures always involve a fault.

B. Mutation-Based Fault Localization
Another approach for finding logical errors are

mutation-based fault localization (MBFL) techniques.

In [35], the authors explain that this method works by

introducing defects - mutants - in the program under analysis.

The analysis relies on the assumption that most mutants form

realistic faults, even if artificially seeded. Furthermore, it

becomes possible to analyze the new code behavior against

the test cases with the mutants in place. A big disadvantage

of this method is that it is costly. To better measure this

fact, in a technical report [36], the authors evaluated different

techniques for finding faults’ localization. Their data set was

composed of 310 real faults and 2995 artificial faults in Java

code. They took 100,000 CPU hours to get their results,

mainly because of MBFL expensiveness.
In [28], the authors proposed a mutation testing tool for

Haskell programs and also named mutations they consider

suitable for functional programs. These mutations are:

(i) Replacing integer constant N with one of {0, 1,
-1, N + 1, N - 1}.
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(ii) Replacing an arithmetic, relational, logical,

bitwise logical, increment/decrement, or

arithmetic-assignment operator by another of

the same class.

(iii) Negating the conditional in if statements.

(iv) Deleting a statement.

(v) Reordering pattern matching.

(vi) Mutation of lists and list expressions.

(vii) Type-aware function replacement.

More precisely, the first four items were originally applied

for C programs, but [28] agreed they are still valid for

functional programs, and they added the last three specifically

for functional programming.

C. Faults Originated by Missing Code

Sometimes, bugs may be caused by the lack of an explicit

expression in the program instead of an error in its expressions.

Just et al. [25] cited by Pearson et al. [36] affirm that for 30%

of cases, a bug fix consists of adding new code rather than

changing existing code. Nonetheless, [49] states that even if

a bug originates from a missing part in the code, such as an

untreated corner case, fault localization techniques may still

be helpful to bring attention to suspicious parts of the code

by exposing possible control-flow anomalies.

Pearson et al. [36] evaluated the different fault localization

techniques regarding the missing code scenario considering

that the guideline for this case is to the technique to report

the immediately following statement. Ideally, this should be

exactly where the programmer should insert the code, and thus

fault localization techniques are still able to bring awareness to

the correct part of the code. Furthermore, [30] proposed a new

missing code-oriented fault localization (MCFL) approach,

which intuitively says that to identify a code-omission fault,

the missing code site between two specific adjacent statements

should be a candidate of fault localization. Such a site indicates

the position of missing code in the faulty program. In other

words, they consider both statements in the code and possible

new code locations to calculate their suspiciousness scores.

In conclusion, bugs caused by missing code are an essential

part of fault localization research. SBFL is still valid for

several scenarios, including the one in this work; however,

newer techniques as MCFL are improvements to the field.

D. Fault Localization Metrics

There are several literature methods for fault diagnosis in

software testing. The question which arises after that is how

to evaluate these different methods. Henderson [20] compiled

several evaluation methods; some of them are reproduced here.

(i) EXAM Score. It calculates the percentage of

program elements that a developer would have to

inspect until finding the first fault. Formally, let n be

the number of program elements and r(s) the rank

of a given element for a fault localization method,

the EXAM score is:

r(s)

n

(ii) Tarantula Effectiveness Score (Expense). It

calculates the percentage of program elements that

do not need to be inspected to find the fault.

Formally, let n be the number of program elements

and r(s) the rank of a given element s for a fault

localization method, the Expense score is:

n− r(s)

n

(iii) LIL Probability Distribution. It uses a measure

of distribution divergence (Kullback-Leibler) to

compute a score of how different the constructed

distribution is from the ”perfect” expected

distribution. The advantage of the LIL framework

is, it does not depend on a list of ranked statements

and may be applied to non-statistical methods.

Formally, let τ be a suspicious metric normalized

to the [0,1] range of reals. Let n be the number

of statements in the program. Let S be the set of

statements. For all 1 ≤ i ≤ n let si ∈ S. The

probability distribution is:

Pτ (si) =
τ(si)∑n
j=1 τ(sj)

When evaluating a suspiciousness rank list, a fact to be

considered is the tied scores present in it. The approach used

in HaskellFL calculates the best and worst-case scenarios. The

best-case scenario happens when among several lines with

the same score, the developer starts examining them by the

line containing the bug. Conversely, the worst-case scenario

happens when a developer chooses to examine the line with

the bug last. To exemplify, consider there is a bug in Line 2
of a four lines’ program with a suspiciousness score list of

[0.5, 0.8, 0.8, 0.3], where the position in the array

holds its score. For instance Line 1 has a score of 0.5. In the

best case scenario, a programmer would find the bug at first

try, choosing to check Line 2 first, and the EXAM score for

this is:

EXAM =
1

4
= 25%

whereas for the worst-case scenario, a developer would chose

to examine Line 3 before Line 2, and the EXAM score for

this scenario is:

EXAM =
2

4
= 50%

In Section VI, results will be presented in terms of the

EXAM score. This choice was made because the EXAM score

is a great indicator of the effort level a developer needs to

apply in order to locate a bug, and this is the key point

HaskellFL aims to contribute.

E. Fault Localization Tools

To begin with, [43] introduced ProFL, a command-line

fault localization tool for Prolog models. As happens for

HaskellFL, ProFL takes a faulty Prolog model, a test suite for

that model, and calculates which statements are most likely to
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be faulty. It performs both Spectrum-Based Fault Localization

and Mutation-Based Fault Localization.

Chesley et al. [8] presented Crisp, an Eclipse plug-in tool

that allows a programmer to run regression tests after some

change in her Java code. If a test fails unexpectedly, the

programmer may edit parts of the code to ensure it still

compiles and reruns the test focusing on the modified part.

The programmer may interact with changes until finding the

set originating the fault.

The work [9] uses a method that takes advantage of the

information regarding method calls’ sequences during program

execution to calculate fault localization. It collects execution

data from Java programs considering incoming method calls,

i.e., how an object is used, and outgoing calls, i.e., how it

is implemented. Moreover, [47] presented a cross-tabulation

statistical method taking advantage of code coverage for test

cases. A hypothesis test is also used to infer if execution results

and each statement’s coverage are dependent or independent

of one another. Each statement’s suspiciousness score depends

on the degree of association between its coverage and the

execution results.

Le et al. [27] presented MuCheck, a mutation testing

tool for Haskell programs. The tool implements mutation

operators that are specifically designed for functional programs

(see Section II-B) and makes use of Haskell’s type system

to achieve a more relevant set of mutants. Besides that,

there are other relevant works about error localization. Jose

and Majumdar [24] present an algorithm for error cause

localization based on a reduction to the MAX-SAT2 problem;

Ball et al. [3] show an algorithm that explores the existence of

correct error traces among all the error traces pointed out by

a compiler in order to localize what is causing the error, and

Groce et al. [16] use distance metrics in order to better explain

the error location. Distance metrics for program executions

means a function d(a,b), where a and b are executions of

the same program, and d(a,b) is equal to the number of

variables to which a and b assign different values.

HaskellFL differs from [43], [8] and [9] in the supported

language. Additionally, [43] implemented a mutation-based

algorithm that HaskellFL does not. The work [8] is different

in the sense that their work is an interactive guide for

helping to locate an error root cause. It serves as a guide for

programming apprentices, similarly to Haskell, but they work

as an interactive Haskell guide instead of looking for the error

automatically. Furthermore, [9] implemented a different fault

localization technique that was not used in HaskellFL. Wong

et al. [47] also presented a new method which they compared

and contrasted against Tarantula, which is a method present

in HaskellFL. Le et al. [27] also used Haskell in their work,

however, they implemented mutation-based fault localization

while HaskellFL offers spectrum-based fault localization.

Finally, [49] compiled several Ph.D. and Master’s Theses,

techniques and tools about the fault localization topic, which

makes it an excellent reference for related work. It contains

the majority of the works mentioned above.

2MAX-SAT is the problem of determining the maximum number of clauses
of a Boolean formula in conjunctive normal form, that may be made valid by
an assignment of truth values to its variables.

III. SKI COMBINATORS

A key concept used in HaskellFL is the SKI combinators

[37]. S, K, I are supercombinators - functions with no

free variables - that allows interpreting code. All expressions

can be reduced to a combination of these. Listing 1 depicts

the combinators as Haskell functions. Summarizing, the S
combinator replicates one argument to two different functions.

The K combinator is used when a value is constant regarding

another value. To put it another way, in Listing 1, if x is

constant regards y, y may be disregarded and x kept. And last

but not least, the I combinator is just the identity function.

1 s f g x = f x (g x)
2 k x y = x
3 i x = x

Listing 1 SKI combinators in Haskell Notation

To better illustrate the SKI compilation algorithm, observe

the following example. Given a function \x -> x * x,

applied to the integer 10, the algorithm will follow the

reduction steps in Listing 2. First, it will apply S, spreading

the input to two instances in the body - a variable x and

an application (* x) - after that, another application of S
happens, in order to further spread the input thought the

multiplication operation. Now, there is two \x -> x in the

code, that may be reduced to supercombinator I. Finally, there

is just multiplication, which is constant regarding x and may

be reduced using the K combinator. After all the reductions, the

expression S (S (K *) I) I is obtained, and it contains

only operations that are straightforward to compute.

1 S (\x -> * x) (\x -> x) 10
2 S (S (\x -> *) (\x -> x)) (\x -> x) 10
3 S (S (\x -> *) I) (\x -> x) 10
4 S (S (\x -> *) I) I 10
5 S (S (K *) I) I 10

Listing 2 Example of SKI compilation

IV. RELATED WORK

This section describes works related to HaskellFL and the

process used to build it. Subsection IV-A talks about the

state-of-the-art in Haskell compilers. Subsection IV-B cites

several works on type errors and how to provide better

feedback to them. Section IV-C mentions Haskell tutors and

Section IV-D names some selected tools on automatic program

repair.

A. Compilers

The most well-known and popular Haskell compiler is

the Glasgow Haskell Compiler (GHC). The default compiler

on the Haskell platform also includes tools to manage

project building and packaging libraries. They also offer an

interactive development environment, named GHCi, which

may be used for incremental programming in the command

line and provides handy tools for debugging. The original

paper [23], which introduced the compiler, reinforces the fact

the compiler is most written in Haskell, and its target language

is C. Exemplifying its popularity, GHC is the recommended

compiler on the introductory books to Haskell, ”Haskell:
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The Craft of Functional Programming” [44] and ”Thinking

Functionally with Haskell” [5].

GHC is an open-source project3, it is on Version 9.0.1 to

this date, and it is continually updated. It is an excellent tool

for all the motives cited above, but there is still room to

improve, as seen regarding the confusing type error feedback

depicted in Fig. 3, further scrutinized in Section IV-B. Another

widely known Haskell compiler is Hugs (Haskell User’s Gofer

System), which was the compiler reference for Haskell prior to

GHC. It is no longer in development; its last release is from

May 2006. Furthermore, there is a compiler named Helium

created by [18], which has educational purposes and provides

more detailed feedback. For example, given the remove
function in Listing 3 with an error in Line 4, where a developer

wrote n = x instead of n == x, the feedback returned by

Helium, according to its creators, is the one displayed in

Listing 4. It points to an error in the second equal sign and says

that it may not exist another attribution after a first one. The

expected input is an expression, an operator, or a constructor

operator. It does not detect the most probable error cause;

however, it gives better feedback showing a double attribution

problem.

Fig. 3 Type Error pointed by GHCi

1 remove :: Int -> [Int] -> [Int]
2 remove n [] = []
3 remove n (x:xs)
4 | n = x = rest
5 | otherwise = x : rest
6 where rest = remove n xs

Listing 3 Remove function with an error in Haskell

1 (4,16): Syntax error:
2 unexpected ’=’
3 expecting expression, operator, constructor
4 operator, ’::’,
5 ’|’, keyword ’where’, next in block (based
6 on layout), ’;’
7 or end of block (based on layout)

Listing 4 Feedback provided by Helium extracted from [18]

GHCi also points to a parser error on the second equal sign

with no hints on how to fix it. Some other interesting remarks

about Helium are that as the compiler aims to stimulate

functional languages, they look for being as modular and

straightforward as possible. Their code and idea are not very

hard to follow, and as usual, type inference is the challenging

and compelling section of their work, and their solution passes

by tight constraint solving and global constraint solving.

3https://gitlab.haskell.org/ghc/ghc/

B. Type Errors

There are several works on compilation errors and how to

provide appropriate feedback to them. To cite a few, there are

[50], [7], [19], [41] and [4].

To exemplify the topic, look at the following function in

Haskell to calculate the factorial of n:

1 fac n = if n == 0
2 then 1
3 else n * fac (n == 1)

Listing 5 Factorial function with error in Haskell

This function has a type error on Line 2, more precisely,

in the expression fac (n == 1), but as depicted in Fig.

3, the error accused by GHCi, the interactive development

environment provided by GHC compiler, is in Line 1 when

n is checked against 0; this happens because, in the else
clause, fac is called with a boolean parameter, binding the

input to the boolean type. The comparison with integer
0 fails on the following iteration, and this may be solved by

declaring the type of the function explicitly instead of allowing

the compiler to infer it. However, this will most likely confuse

novice programmers, who may not be aware of this behavior.

In [50], the authors propose improving compiler error

messages by looking at all possible errors as a whole and

just reporting the most likely error instead of the first one

encountered; the latter is how compilers handle their error

messages usually. Their work uses Haskell. Fig. 4, illustrated

in their paper, is used to explain their approach to the problem.

Fig. 4 Graph for Diagnosing Type Errors, extracted from [50]

A brief explanation: first, they model the set of constraints in

the code as a constraint graph. Fig. 4 represents the erroneous

factorial code, depicted in Listing 5. The nodes α0, α1,
αn and α∗ represents the types of 0, 1, n and the first

parameter of multiplication (∗), respectively. The bidirectional

edges mean type equality between nodes, for instance, αn and

α0 are supposed to have the same type.

Each edge is also annotated with the expression that

generates it. The direct edges represent type classes, the edge

between α1 and Num indicates that α1 must be of type Num.

The dashed edges are derived by transitivity. Furthermore, the

edges are then classified as satisfiable or unsatisfiable. The red

X means unsatisfiable. Exemplifying, Bool, and Num may not

be the same.

The last pass is to use Bayesian principles, from the

probability domain, to detect which edge is the most likely

error source; the correct answer, in this case, is (n ==
1). In conclusion, it is an easy to follow method that may

improve type error localization and help users in a topic that

traditionally causes great confusion.
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C. Haskell Tutors

This section mentions researches in building systems

that offer a more driven feedback for tutoring functional

programming apprentices such as [18], [14] and [17].

The tutor created by [14] is an excellent tool for Haskell

and functional programming beginners. Their tutor offers

incremental feedback, which means that at any point, a student

feels stuck with a problem; he may ask the tutor for a hint.

The tricky part is that an instructor must provide well-written

solutions to the tutor and a configuration file, customizing

the feedback with tips he believes would help his students

to better comprehend the proposed solution and the process

leading to it; this is a must to make the tutor effective.

Otherwise, students may continue confused about the best path

to follow to solve their problems. If more than one solution

is applicable, the instructor must submit all the solutions he

wants his students to know. Another remark about their work

is that their tutor is a web application, making it accessible

to everybody. They also use a compiler with improved error

feedback, which is described in Section IV-A. Their model

tracing and property-based test strategies have similarities with

the strategies adopted by [29]. Their goal is to provide correct

guidance that will allow the programmer to fill the holes he

may have left in his code by not knowing what expression to

use in a specific part of the program. To achieve that, they

rely on the provided instructor’s solution and in the language

grammar, trying to fill the blanks with constructs available

in the target functional language and with lambda calculus

concepts. The latter may find equivalent expressions in the

code, making it more straightforward for the tutor to interpret.

Finally, there is the project Try Haskell [10], which is worth

to be mentioned. This project does not provide customized

feedback about the logical errors in the code. However, it is

an excellent way to start with Haskell, having a friendly and

interactive tutorial about its basics.

D. Automatic Program Repair

Automatic program repair is likely the next step for research

after finding code bugs automatically. This section brings up

works on automatic program repair.

Lee et al. [29] created a system named FixML to diagnose

and correct logical errors in OCaml. To do so, they need

four inputs: an incorrect resolution for a program, a solution,

the function name for the problem, and a file containing

passing and failing test cases. As a result, FixML produces a

repaired program consisting of the incorrect program modified

to function correctly. The provided solution not necessarily

follows the same structure of the program the system is trying

to fix. The authors used the solution while rebuilding the code,

but it is not at all a plain copy.

Kneuss et al. [26] wrote other paper on the subject to

repair programs written in a Scala subset. Their process to

locate a code fault starts by doing dynamic analysis using test

inputs generated automatically. They combine enumeration

and SMT-based techniques. Additionally, they collect traces

from erroneous executions and compute common prefixes of

branching decisions. On the program repair angle, they use

the existing program structure as a hint to guide it. They

rely on user-specified tests and automatically generated ones

to localize the fault and speed up synthesis. Moreover, [45]

presents a tool to find and fix bugs in Liquid Haskell. Liquid

Haskell is a framework for annotating Haskell programs with

refinement types, which are types decorated with predicates

[45]. In their master thesis, the authors introduced a fault

localization algorithm for constraint-based type systems,

which searches for a minimal unsatisfiable constraint set using

the type checker as guidance. To optimize the search process,

they exploited the structure of Liquid Haskell constraint

sets. They also presented a predicate discovery algorithm for

constraint-based type systems, which allows the type checker

to verify additional correct implementations.

V. DETECTING LOGICAL ERRORS IN HASKELL

Fig. 5 HaskellFL architecture

Fig. 5 exhibits the architecture of the proposed solution to

locate logical errors in Haskell. The tool is called HaskellFL.

HaskellFL expects three file paths as inputs, (i) one for the

faulty Haskell code, (ii) another for the text file containing the

passing test cases, and (iii) the last one for the text file with

the failing test cases. Cabal, the standard package system for

Haskell, was used in HaskellFL. Figure 6 exhibits an example

of HaskellFL execution using this package. In other words,

cabal run is invoked indicating the target to be executed,

which is in this case HaskellFL, followed by the args expected

by the program itself, i.e., the three files enumerated above.

Optionally, it is possible to specify the technique of choice:

Tarantula or Ochiai. If this information is omitted here, the

program will prompt for it later. Furthermore, HaskellFL can

also interpret the test cases, and expose their results. To do

that, HaskellFL must be called as in Figure 7, with the code

and test case paths, followed by the keyword run and the

name of the function to be interpreted.

1 cabal run HaskellFL faulty-code.hs tests-pass.txt
2 tests-fail.txt [method]

Listing 6 HaskellFL execution command using Cabal

1 cabal run HaskellFL faulty-code.hs tests-pass.txt
2 tests-fail.txt run function-name

Listing 7 Command for HaskellFL interpreting the test cases

After having the needed inputs to run HaskellFL, it is

necessary to obtain the code coverage for the buggy Haskell

code regarding every test case separately. The count is divided

between two independent sets representing the passing and the

failing test cases. In possession of these two sets’ data, the next
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step is to feed them to the formulas exhibited in Table I to

calculate the suspiciousness rank for each fault localization

method.

A. HaskellFL Tool

This section details HaskellFL requirements. The first one

is the Haskell 2010 grammar subset to be contemplated

in HaskellFL. The notable parts of Haskell 2010 left out

of HaskellFL are list comprehensions and do notation.

However, they may be included as extensions for future work.

Nevertheless, HaskellFL covers abstract data types, pattern

matching, guards, case, if-then-else, let and lambda

expressions, among several other features which are enough

to support and guide Haskell beginners. It is important to say

that the tool handles Haskell’s layout rules. Moreover, the

full grammar accepted by HaskellFL is available in full in

Appendix A.

Secondly, HaskellFL needs to calculate the bug location

using one or more fault localization techniques. To do

so, it was necessary to first calculate and make available

the coverage count for each statement, making note if the

generated coverage corresponds to a passing or a failing test

case. This feature’s implementation allows additional fault

localization methods to be easily added to HaskellFL in the

future.

Thirdly, a Haskell interpreter needed to be created to

obtain the code coverage map. The primary reason behind

this decision was to allow the extension of HaskellFL in

the future to repair Haskell code, as it is done for other

programming languages as described in Section IV-D. Another

viable extension to HaskellFL is to implement mutation-based

fault localization techniques, also mentioned before in Section

II-B.

B. Implementation

Fig. 6 exhibits HaskellFL high level block diagram.

The diagram is divided into four main blocks representing

four processes: Parser, Transformation, Interpreter, and Fault

Localization.

The first block encapsulates the parsing process. The lexer

was built using Alex4 and the parser using Happy5. These are

the Haskell equivalents for Lex and YACC respectively, and

they also are the same tools used by Haskell compiler GHC.

An alternative approach was to use one of the several libraries

of parser combinators available such as Parsec6. The first

option is restricted to LALR parsing, and the latter favors

LL parsing [11]. In the end, the combo Alex and Happy was

chosen because besides being more robust and offering better

support for LR grammars, it also offers better visibility and

control of each step, facilitating HaskellFL extension to repair

logical errors in the future. It is also worth mentioning the

BNF Converter7, which is a powerful tool with uncomplicated

4https://www.haskell.org/alex/
5https://www.haskell.org/happy/
6https://wiki.haskell.org/Parsec
7http://bnfc.digitalgrammars.com/

Fig. 6 HaskellFL high level block diagram

implementation, even though it is not suitable for Haskell

grammar.

The parser maps tokens to a set of Haskell abstract

data types. It was fundamental to HaskellFL to keep the

expressions’ lines while parsing the tokens to further calculate

code coverage.

The second block is responsible for transforming the

data types generated during the parsing process into SKI
combinators. These data types are as close as the lambda

calculus terms as possible. The parser already returns

application, variable and lambda abstraction types, but it

also returns data types corresponding to let, case and

if-then-else expressions, that are later transformed in

terms of the first three during the desugar phase. All the

needed rules to translate a high-level functional language

into lambda calculus are in Peyton Jones [37]. Additionally,

before reaching the desugar step, pattern matching needs

to be addressed. This goal was achieved by implementing the

match function, also provided in detail in Peyton Jones [37].

Moreover, desugar step was also responsible for simplifying

the fixed-point combinator and the other built-in functions.

Compile step for its turn, is responsible for transforming

the desugared code into SKI combinators. This function

implements the transformation rules presented in Section III.

With that said, the second block outcome is formed by a set

containing the SKI combinators alongside the final literals and

the new local functions.

In the following block, there is the interpreter step,

where evaluator function orchestrates calls to the previous

blocks’ functions. Evaluator extends the small prelude

with the locally declared functions. This step is composed of

constant exchanges between its internal blocks, represented in

Fig. 6 for dashed arrows for organization purposes only. These

exchanges reflect the process of getting and adding functions

to the prelude and the constant execution stack updates.

And last but not least, in the fourth block, the faulty

line in the Haskell code is calculated using the chosen

fault localization techniques. These, for their turn, use the
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coverage map exposed by the third block. This step may

easily include other different coverage-based fault localization

methods. Furthermore, an absence in the HaskellFL tool

is type checking. Type checking was not implemented in

HaskellFL because this would be an overkill for the need

to obtain code coverage. However, to extend HaskellFL
for repairing Haskell code, this is an important step. One

important heuristic used to speed up finding a new bugless

expression to replace a bug is to cut all candidates that are

not type compliant out of the search.

C. Walkthrough

To better understand the complete process that HaskellFL
follows, look at the example in Listing 8. A small piece

of LinkedList module was extracted from a problem

present in the test suite. This small part does not contain

any bugs, but it serves to understand the whole process. The

module has a generic data type LinkedList a, written

using record syntax, and a function fromList that creates a

LinkedList from a regular Haskell list.

1 module LinkedList (LinkedList, fromList) where
2

3 data LinkedList a =
4 Nul
5 | LinkedList { datum :: a,
6 next :: LinkedList a }
7 deriving (Eq, Show)
8

9 fromList [] = Nul
10 fromList (x:xs) = LinkedList x (fromList xs)

Listing 8 LinkedList module

Fig. 7 shows the generated AST for LinkedList source

code after the parsing process. Some details were omitted,

such as every terminal knowing its own position for better

clarity in the figure, nonetheless, there are one data type

declaration under the DataDecl set and two function

bindings under FunDecl set. The LinkedList DataDecl
has two constructors, Nul and LinkedList, with different

arities and fromList FunDecl has two different bindings,

one matching an empty list, i.e. Nil, and the other matching

a non-empty list, i.e. Cons x xs. MatchPat is the label

indicating the pattern matching for each specific function and

MatchBody keeps the body of function binding for that

respective pattern.

In the example, Nul is the MatchBody for the empty

list, and an application of two other applications is the

MatchBody for the non-empty list. The internal nodes

representing the lambda calculus applications are displayed

in yellow. Adding to the MatchBody for the non-empty list,

the first application is of the constructor LinkedList to the

head of its MatchPat and the second application is of the

function fromList to the tail of its MatchPat. In light of

that, it is important to restate that MatchBody was already

transformed into a lambda calculus expression.

Once parsing is done, match function can be called.

match transforms the pattern matching function bindings in a

case expression such as the one exposed in Fig. 8. Colored in

blue in the diagram, there are two concepts presented in Peyton

Fig. 7 LinkedList AST

Jones [37] and introduced to the code during this step. Firstly,

the idea of pattern matching failing, i.e. a pattern mismatch,

represented by Fail. Secondly, the FatBar operator, also

represented for [], which obeys the following rules: In other

words, if FatBar operator is applied to two expressions,

the result will be the first expression that is not Fail. It is

essential to say that if the first expression fails to terminate,

[] will also fail. Finally, the resultant case expression is

attached to a lambda abstraction, as the body of the same, and

added to the extended prelude, after being wrapped to another

layer composed of the fixed-point combinator, responsible for

taking care of recursion.

a[]b = a, if a �= Fail

Fail[]b = b

Fig. 8 Pattern Matching case Expression

In sum, after the process demonstrated in this section,

fromList may be called from another function in the

LinkedList module, or with input test cases from

HaskellFL, such as the illustrative example shown in Listing

9 and this way it is possible to obtain LinkedList code

coverage.
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1 fromList ["UFMG", "UFV"]
2 fromList [False, True, True, True]

Listing 9 test-cases.txt

Concluding, HaskellFL is publicly available in GitHub8,

together with the test suite.

VI. RESULT DISCUSSION

This section studies two different buggy versions of mid
function displayed in Listing 10. Mid calculates the middle

element among three given elements. In the first faulty version,

mid has a bug in Line 2. The if block is if y < z - 1
instead of if y < z. The second buggy version presents a

bug in Line 6 where we have then y instead of then x.

1 module Main where
2 mid x y z = if y < z
3 then if x < y
4 then y
5 else if x < z
6 then x
7 else z
8 else if x > y
9 then y

10 else if x > z
11 then x
12 else z

Listing 10 Mid function in Haskell

Table II maps the code coverage for each function call for

a given input. For instance, a mid Version 1 call with inputs

3, 3 and 5 run lines 2, 3, 5 and 6. The P/F column

indicates if the output for the given input is the expected one

of a non-faulty version of the code, i.e., it is a passing test

case represented by P, or if it is an unexpected output for the

specified input, i.e., it is a failing test case, represented here

by F.

TABLE II
CODE COVERAGE AND FAULT RANK FOR MID

Test cases/Lines 1 2 3 4 5 6 7 8 9 10 11 12 P/F

V
er

si
o

n
1

3 3 5 � � � � P
1 2 3 � � � � F
3 2 1 � � � P
5 5 5 � � � � P
5 3 4 � � � F
2 1 3 � � � � P

Tarantula 0.0 0.50 0.0 0.0 0.0 0.0 0.0 0.67 0.67 0.67 0.0 0.67
Ochiai 0.0 0.58 0.0 0.0 0.0 0.0 0.0 0.71 0.50 0.50 0.0 0.50

V
er

si
o

n
2

3 3 5 � � � � P
1 2 3 � � � P
3 2 1 � � � P
5 5 5 � � � � P
5 3 4 � � � � P
2 1 3 � � � � F

Tarantula 0.0 0.50 0.63 0.0 0.71 0.83 0.0 0.0 0.0 0.0 0.0 0.0
Ochiai 0.0 0.41 0.5 0.0 0.58 0.71 0.0 0.0 0.0 0.0 0.0 0.0

Finally, under its respective labels, there are the

suspiciousness scores for each statement for Tarantula and

Ochiai techniques according to the formulas presented in Table

I.

Describing the calculus, there are in total one failing

and five passing test cases, thus totalfailed = 1 and

8https://github.com/VanessaCristiny/HaskellFL

totalpassed = 5. For instance, for the fifth line from

second mid version, there are two passing test cases covering

it, as well as one failing test case, therefore, failed(5) =
1 and passed(5) = 2, with this, Tarantula score for Line

5 is:

Tarantula(5) =

failed(5)
totalfailed

failed(5)
totalfailed + passed(5)

totalpassed

=
1

1 + 2
5

=
5

7
≈ 0.71

Similarly, the calculus for Ochiai suspiciousness score is:

Ochiai(5) =
failed(5)

√
totalfailed(failed(5) + passed(5))

=
1√
3
≈ 0.58

Furthermore, the scores highlighted in bold are the ones for

the statement containing the error. For Version 2, both methods

assign a higher score for Line 6, finding the correct error

localization. On the other hand, for Version 1, the methods

do not rank the line with the error first. Ochiai assigns the

highest score for Line 8, and Tarantula ranks Lines 8, 9, 10,

and 12 higher than the correct error localization, that is Line

2.

Despite scores for the buggy lines in both versions of mid
not being repeated in the results, several other statements

received matching suspiciousness scores. As explained in

Section II-D, one approach for this situation is to calculate

the best and worst-case scenarios.

In the first case, a programmer would guess right the line

containing the bug the first time while going through the list

of even scores, and in the latter, a programmer would verify

all the other lines with the same score before examining the

buggy line.

In the final analysis, the EXAM score was calculated. This

score indicates the percentage of the program that should be

checked until the error location is reached. The results for

mid function are displayed in Table III. For mid Version 1,

a programmer would have to analyze 42% of the program

if she follows Tarantula scores and 17% of it if she follows

Ochiai scores. For mid Version 2 the results are even better.

A programmer would have to analyze 8% of the program

for both methods. To put it another way, in the worst of the

studied scenarios, a Haskell developer would have to look for

the bug in less than half the original amount of code lines

before finding the bug.

TABLE III
EXAM SCORE FOR MID FUNCTION

Tarantula Ochiai
Mid Version 1 42% 17%
Mid Version 2 8% 8%

A. Test Suite

The test suite is composed of 24 problems covering

Haskell’s chosen subset shown in Appendix A. These

problems are submissions from students in the Functional

Programming class at UFMG, together with both versions

of mid function presented in Section VI and code publicly
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available on GitHub that were submissions for Exercism’s

Haskell exercises track9. The 24 problems’ source code

is available in GitHub together with the source code for

HaskellFL.

TABLE IV
TEST SUITE

Program #Lines #Tests Ranking
Tarantula Ochiai

mid (Version 1) 12 6 5 2
mid (Version 2) 12 6 1 1
dropWhileClone 33 10 3 1

dropWhile 10 9 1 1
break (Version 1) 27 5 1 1
break (Version 2) 27 8 1 1

toTuples 28 10 1 1
remdupsReducer 27 7 1 1

joinr 16 12 1 1
separateTuplesByType 23 7 1 1

flip 20 5 1 1
unzip 13 3 1 1

maxSumLength 8 11 1 1
binary-search-tree 55 8 2 2

grade-school 67 7 1 1
luhn 45 6 2 2

raindrops 34 8 1 1
resistor-color-duo 44 7 1 1
robot-simulator 69 9 1 1
roman-numerals 23 8 1 1
simple-linked-list 40 6 1 1

space-age 28 7 1 1
sum-of-multiples 34 7 3 1

triangle 35 8 6 5

Once the examples used to run the tests were the students’

final submitted versions, they did not have errors that needed

to be fixed in their majority, so the bugs were introduced in

the code base, to be later detected by the fault localization

techniques. The introduced bugs were not repeated.

Table IV names all the programs on the suite. As explained

before, mid calculates the middle element among three

elements. Regarding to the Functional Programming class

submissions, the names chosen by the students were kept and

their content is as follows:

(i) dropWhileClone/dropWhile. It drops

elements while a condition is true and then

stops returning the remaining elements once the

condition is false.

(ii) break. It divides a list into a tuple of lists, breaking

it at the point where a given condition is true.

(iii) toTuples. It transforms two lists into a list of

tuples.

(iv) remdupsReducer. It removes the first element of

a list if it is equal to the second one.

(v) joinr. It adds an element to the head of a list if it

is not equal to the list’s current head.

(vi) separateTuplesByType. It transforms a list of

tuples into a tuple of lists, one list with all the first

components and the other one with the second’s tuple

components.

(vii) unzip. Same as separateTuplesByType.

(viii) flip. It flips a function chain order.

9https://exercism.io/tracks/haskell/exercises

(ix) maxSumLength. It calculates a tuple with three

elements. The first one being the maximum between

two elements, the second being their sum and the

third being a given length increased by one.

In addition, the description for the problems from Exercism

in their website is as follows:

(i) binary-search-tree. It inserts and searches

for numbers in a binary search tree.

(ii) grade-school. It creates a roster for the school

given students’ names and the grade they are in.

(iii) luhn. It determines whether or not a given number

is valid per the Luhn formula.

(iv) raindrops. It converts a number to a string

depending on the number’s factors.

(v) resistor-color-duo. It converts color codes,

as used on resistors, to a numeric value.

(vi) robot-simulator. It writes a robot simulator.

(vii) roman-numerals. It converts natural numbers to

Roman Numerals.

(viii) simple-linked-list. It implements a singly

linked list.

(ix) space-age. It calculates how old someone is in

terms of a given planet’s solar years.

(x) sum-of-multiples. It finds the sum of all the

multiples of a particular number up to, but not

including that number itself.

(xi) triangle. Given three sides lengths, it determines

if they can form an equilateral, isosceles or scalene

triangle, or if they can not be a triangle at all.

Moreover, Table IV displays the programs’ length in the

test suite. This information works alongside the EXAM score

results to offer a more precise dimension of the effort level

needed by a programmer while locating a bug using HaskellFL
tool. The test suite’s mean program length is 30.4 lines, and

the median program length is 27.5 lines.

The test cases were manually chosen and written and ranged

between 3 and 12 test cases per problem, as detailed in Table

IV. Even though time execution is not tracked, the test cases

were balanced between passing and failing. This is based

on [40], which states that the expense of fault localization

for most formulas will increase with the increase of class

imbalance. In light of that, this is a factor to be considered.

Furthermore, Table IV also presents the faulty line rank for

both Tarantula and Ochiai methods, considering the best case

scenario among drawing statements for every program we

tested.

1) Test Setup: To allow the tests to be interpreted by

HaskellFL, some small code pieces in the test suite were

rewrote. Fig. 11 shows in the SumOfMultiples module, an

example of a change made in an original test in the test suite

to allow its interpretation by HaskellFL. This example was

extracted from the problems in the Exercism’s Haskell track.

HaskellFL still does not interpret the operator $, which is an

operator indicating precedence among operations. Thus, this

operator can be safe replaced by parenthesis without any loss

in the program semantics, as shown in Fig. 12. The version

using parenthesis is the one present in the test suite after a
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bug insertion.

1 module SumOfMultiples (sumOfMultiples) where
2

3 import Data.List(nub)
4

5 sumOfMultiples :: [Integer] -> Integer -> Integer
6 sumOfMultiples [] limit = 0
7 sumOfMultiples factors limit =
8 sum $ distinctFactors factors limit
9

10 distinctFactors :: (Integral a) => [a] -> a -> [a]
11 distinctFactors [] limit = []
12 distinctFactors (x:xs) limit =
13 nub $
14 (distinctFactors xs limit) ++
15 (appendFactor x limit 1)
16

17 appendFactor :: (Integral a) => a -> a -> a -> [a]
18 appendFactor factor limit index
19 | factor * index >= limit = []
20 | factor == 0 = []
21 | otherwise = (factor * index) :
22 appendFactor factor limit (index + 1)

Listing 11 SumOfMultiples module as available on GitHub

1 module SumOfMultiples (sumOfMultiples) where
2

3 filter :: (a -> Bool) -> [a] -> [a]
4 filter _ [] = []
5 filter f (x:xs)
6 | f x = x : (filter f xs)
7 | otherwise = filter f xs
8

9 nub :: (Eq a) => [a] -> [a]
10 nub [] = []
11 nub (x:xs) = x : nub (filter (\y -> y /= x) xs)
12

13 sum :: [Int] -> Int
14 sum [] = 0
15 sum (x:xs) = x + sum xs
16

17 appendFactor :: (Integral a) => a -> a -> a -> [a]
18 appendFactor factor limit index
19 | (factor * index) >= limit = []
20 | factor == 0 = []
21 | otherwise = (factor * index) :
22 appendFactor factor limit (index + 1)
23

24 distinctFactors :: (Integral a) => [a] -> a -> [a]
25 distinctFactors [] limit = []
26 distinctFactors (x:xs) limit =
27 nub ((distinctFactors xs limit) ++ (appendFactor x limit 1))

28

29 sumOfMultiples :: [Integer] -> Integer -> Integer
30 sumOfMultiples [] limit = 0
31 sumOfMultiples factors limit = sum (distinctFactors factors limit)

Listing 12 SumOfMultiples module equivalent to the module in Fig. 11

It is important to say that the Haskell Prelude module

is absent from HaskellFL. Prelude is a standard Haskell

module that is generally imported by default into all Haskell

modules. It implements and exports several basic functions.

This absence leads to the need to create Prelude functions

when using HaskellFL, as may be seen in Fig. 12, with

the functions filter and sum. They were imported

from Haskell Prelude in the first SumOfMultiples
module in Fig. 11. Similarly, nub function was imported

from Data.List module in the original version of

SumOfMultiples and it was implemented in the version

used in HaskellFL. Several Prelude functions can be

implemented with the constructs offered by HaskellFL, so

this absence does not prevent the tool from being used.

Additionally, the creation of a similar standard module for

HaskellFL should not take much extra effort. Furthermore,

the bugs inserted into the programs in the test suite followed

the techniques mentioned in Section II-B. For instance, for

the SumOfMultiples module shown in Fig. 12, a bug was

inserted into Line 19, in the appendFactor function. The

operator >= was replaced by the operator >.

Finally, the passing and failing test cases were wrote for

every problem present in the test suite. To illustrate the

process, the passing test cases for the sumOfMultiples
module may be seen in Fig. 13 and the failing test cases for

the same module in Fig. 14. As previously mentioned, the tests

were chosen trying to keep them balanced between passing and

failing test cases, to cover every branch in the code.

1 sumOfMultiples [4,5] 6
2 sumOfMultiples [] 5
3 sumOfMultiples [2,5] 3
4 sumOfMultiples [0,2,5] 3

Listing 13 Passing sumOfMultiples test cases

1 sumOfMultiples [2,5] 2
2 sumOfMultiples [0,2,4] 2
3 sumOfMultiples [2,4] 4

Listing 14 Failing sumOfMultiples test cases

In conclusion, for sumOfMultiples function, the Ochiai

method ranked the buggy line first, tied with several other

lines, and the Tarantula method ranked it in the third position,

also in a tie with other lines.

B. Results

Table V shows the EXAM score distribution for the test

suite, considering best and worst-case scenarios, for Tarantula

and Ochiai methods. It shows which percentage of the suite’s

programs is inside a specific EXAM score segment. The table

is divided into segments of 5%. To demonstrate, considering

the Tarantula formula and the best-case scenario, 50% of the

programs secured an EXAM score between 0% and 4.9%. To

put it more simply, for 50% of the programs in the suite in

the best-case scenario, a student would have to examine less

than 5% of his Haskell code to find the buggy line in his

assignment.

TABLE V
EXAM SCORE FOR HASKELL TEST SUITE

EXAM Score Tarantula Best Tarantula Worst Ochiai Best Ochiai Worst
(0-4.9)% 58.33% 33.33% 66.67% 33.33%
(5-9.9)% 25.00% 20.83% 16.67% 20.83%
(10-14.9)% 8.33% 12.50% 12.50% 16.67%
(15-19.9)% 4.17% 8.33% 4.17% 16.67%
(20-24.9)% 0.00% 8.33% 0.00% 4.17%
(25-29.9)% 0.00% 4.17% 0.00% 0.00%
(30-34.9)% 0.00% 0.00% 0.00% 0.00%
(35-39.9)% 0.00% 0.00% 0.00% 4.17%
(40-44.9)% 4.17% 8.33% 0.00% 0.00%
(45-49.9)% 0.00% 0.00% 0.00% 0.00%
(50-54.9)% 0.00% 0.00% 0.00% 4.17%
(55-59.9)% 0.00% 4.17% 0.00% 0.00%
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Fig. 9 illustrates Tarantula and Ochiai methods’

effectiveness for best and worst-case scenarios. The graph

is built in a way that for a given x value, its corresponding

y value is the cumulative percentage of the faulty versions

whose EXAM score is less than or equal to x, similarly to

what [47] did. Table V displays the scores used to build

the graph. To better exemplify, in the Ochai method in

the best-case scenario, HaskellFL was able to find all the

incorrect statements in the test suite examining less than 20%

of the source code for each problem. Furthermore, Table

VI presents the mean, median, and standard deviation of

the calculated EXAM scores for the test suite. The highest

median value is 8.7% of the source code for the Tarantula

method in the worst-case scenario. The smaller median value

appeared for the Ochiai method in the best-case scenario

with 3.7% of the source code, and its standard deviation is

equal to 4.0%, which indicates that the results are close to

the median value.

Fig. 9 Comparison between Ochiai and Tarantula methods for the test suite

TABLE VI
MEAN, MEDIAN AND STANDARD DEVIATION OF THE TEST SUITE

Mean Median Standard Deviation
Tarantula Best 7.2% 4.0% 8.1%
Tarantula Worst 14.4% 8.7% 14.0%
Ochiai Best 5.5% 3.7% 4.0%
Ochiai Worst 12.0% 7.7% 11.7%

VII. THREATS TO VALIDITY

This section discusses the main threats to the validity of this

work and the strategies to mitigate them.

As previously mentioned, the test suite programs did not

have bugs that need to be found, so the bugs were introduced

into the code. To mitigate this threat, the mutants’ guidelines

shown in Section II-B were followed. The guidelines assume

that most mutants form realistic faults, even if they are

artificially seeded. Therefore, the inserted bugs represent

mistakes that real students make.

Another threat is related to the passing and failing test cases

used as input for the studied fault localization techniques; they

were wrote by the researches conducting this work. To mitigate

this threat, the number of tests between passing and failing

test cases were balanced. Also, the researchers carefully and

manually worked on finding test cases to cover every branch

in the code, whenever this was possible, keeping the odds as

fair and unbiased as possible.

Additionally, one of the goals in this work is to aid

beginning students with the functional paradigm, so HaskellFL
was tested with smaller and simpler Haskell code. With that

said, there are no guarantees that the results found in this work

will be applicable for larger and more complex programs.

Finally, this project used Tarantula and Ochiai fault

localization techniques. There are several different techniques

in the literature, for instance, Barinel [2], Op2 [32] and DStar

[48]. Nevertheless, [21] conducted a study on the Siemens

suite which showed that Tarantula is a more effective fault

localization technique when compared to others such as set

union, set intersection, nearest neighbor, and cause transition.

Hence, it is a great and recognized baseline for testing.

Furthermore, the Ochiai similarity coefficient-based technique

is generally considered more effective than Tarantula; hence

it is a great choice to measure the effectiveness of fault

localization techniques in the Haskell context.

VIII. CONCLUSION

This paper presented HaskellFL, a command-line tool to

locate logical errors in Haskell using spectrum-based fault

localization techniques.

The results, described in Section VI, showed that HaskellFL
located the errors for both studied methods, having to examine

very few lines for the majority of the test suite. Also, Ochiai

presented better results than Tarantula in terms of the EXAM

Score.

A test suite suitable to the Haskell subset used in this

project was also compiled. This Haskell subset is diverse and

contains abstract data types that were not supported on Singer

and Archibald [42]. The test suite is available together with

HaskellFL as an open-source project.

An interpreter that supports the grammar displayed in

Appendix A and Haskell’s layout rules was built. Haskell’s

layout rules were also mentioned as a point of confusion for

students in Singer and Archibald [42].

Finally, HaskellFL was carefully designed to allow its future

extension. Potential areas for future work are:

(i) Extend the grammar to include do notation and

list comprehensions. Two constructs that novices to

Haskell may find confusing.

(ii) Implement additional spectrum-based fault

localization techniques.

(iii) Implement missing code-oriented fault localization

techniques.

(iv) Share HaskellFL with Haskell beginners and measure

how much the tool is able to aid in real time.

(v) Implement techniques to repair the code.
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〈program〉 ::= ‘module’ X ‘where’ ‘{’ decls ‘}’

| decls

〈decls〉 ::= decl decls | d decls | decl | d

〈decl〉 ::= var ‘=’ e ‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’

| var ‘=’ e

| var ‘=’ p ‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’

| var ‘=’ p

| var ‘|’ ei ‘=’ ej ... ‘|’ e(i + k) ‘=’ e(j + k)

‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’

| var ‘|’ ei ‘=’ ej ... ‘|’ e(i + k) ‘=’ e(j + k)

〈d〉 ::= ‘data’ X ‘=’ C1 τ1 ... τk | ... | Cn τ1 ... τk
| ‘newtype’ X ‘=’ C τ

〈e〉 ::= τ | λ p ‘->’ e | e1 ‘+’ e2 | e1 ‘-’ e2 | e1 ‘*’ e2
| e1 ‘\’ e2 | e1 ‘ˆ’ e2

| ‘[’e1‘]’ ‘++’ ‘[’e2‘]’ | e1 ‘:’ ‘[’e1‘]’ | e1 ‘||’

e2 | e1 ‘&&’ e2 | e1 ‘>’ e2
| e1 ‘<’ e2 | e1 ‘<=’ e2 | e1 ‘>=’ e2 | e1 ‘==’ e2

| e1 ‘\=’ e2 | e1 e2
| ‘(’e1‘,’ ... ‘,’ ek‘)’ | ‘[’e1‘,’ ... ‘,’ ek‘]’ |

‘if’ e1 ‘then’ e2 ‘else’ e3
| ‘case’ e ‘of’ ‘{’ p1 ‘->’ e1 ... pk ‘->’ ek ‘}’ | ‘let’ ‘{’ 
p1 ‘=’ e1 ... pk ‘=’ ek ‘}’ ‘in’ e

〈p〉 ::= const | var | C p1 ... pk |

〈τ〉 ::= Integer | Boolean | String | Char | Float | [τ] |
(τ1, ..., τk) | C 

τ1 ... τk
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[25] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database
of existing faults to enable controlled testing studies for java programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 437–440, 2014.

[26] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. Deductive
program repair. In Lecture Notes in Computer Science, 9207, 217-233.
Presented at: 27th International Conference on Computer-Aided
Verificationn, pages 217–233, San Francisco, CA, USA, July 18-24,
2015. Springer.

[27] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce.
Mucheck: An extensible tool for mutation testing of haskell programs.
In Proceedings of the 2014 international symposium on software testing
and analysis, pages 429–432, 2014.

[28] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce.
Mutation testing of functional programming languages. Oregon State
University, Tech. Rep, 2014.

[29] Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh. Automatic
diagnosis and correction of logical errors for functional programming
assignments. Proceedings of the ACM on Programming Languages,
2(OOPSLA):158, 2018.

[30] Zijie Li, Long Zhang, Zhenyu Zhang, and Bo Jiang. Mcfl: Improving
fault localization by differentiating missing code and other faults.
In 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC), pages 943–952. IEEE, 2020.

[31] Hai Liu, Neal Glew, Leaf Petersen, and Todd A Anderson. The intel
labs haskell research compiler. In ACM SIGPLAN Notices, volume 48,
pages 105–116. ACM, 2013.

[32] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model
for spectra-based software diagnosis. ACM Transactions on software
engineering and methodology (TOSEM), 20(3):1–32, 2011.
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