
ALGORITMO EFICIENTE DE ANÁLISE

ESTÁTICA PARA PROCURAR ATAQUES DO

TIPO VARIÁVEIS CONTAMINADAS

ANDREI RIMSA ÁLVARES

ALGORITMO EFICIENTE DE ANÁLISE

ESTÁTICA PARA PROCURAR ATAQUES DO

TIPO VARIÁVEIS CONTAMINADAS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como re-
quisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Roberto da Silva Bigonha

Co-Orientador: Fernando Magno Quintão Pereira

Belo Horizonte

03 de outubro de 2010

ANDREI RIMSA ÁLVARES

EFFICIENT STATIC ANALYSIS TO FIND

TAINTED VARIABLE ATTACKS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
ful�llment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Roberto da Silva Bigonha

Co-Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

October 3, 2010

c© 2010, Andrei Rimsa Álvares.
Todos os direitos reservados.

Álvares, Andrei Rimsa.

A473a Algoritmo e�ciente de análise estática para procurar
ataques do tipo variáveis contaminadas / Andrei Rimsa
Álvares. � Belo Horizonte, 2010.

xxvi, 72 f. : il. ; 29cm

Dissertação (mestrado) � Universidade Federal de
Minas Gerais. Departamento de Ciência da Computação.

Orientador: Roberto da Silva Bigonha.
Co-Orientador: Fernando Magno Quintão Pereira.

1. Computação - Tese. 2. Compiladores
(Computadores) - Tese. 3. Algoritmos - Tese.
I. Orientador II. Título.

CDU 519.6*33 (043)

I dedicate this work to my parents, Frederico and Zilza, and to my beloved girl-
friend, Anna Izabel.

ix

Acknowledgments

I would like to thank everyone that participated in this dissertation, either directly
or indirectly. I'm very thankful to have Fernando Pereira helping me during this
whole research. He believed in me and granted me the opportunity to pursuit the
problem tackled in this work that was something that I always wanted to do. I could
never forget the opportunity given to me for a three months internship at UFPE with
professor Marcelo d'Amorim. His insights along this work have played a crucial role to
its accomplishment. I thank Roberto Bigonha for taking me as a student in the early
stage of my masters, and allowing me to join as one of his students. Big thanks to all
my lab friends, in which we shared moments of despair and happiness during these two
years. They are, in no particular order, André Tavares, Rodrigo Sol, Ricardo Terra,
César Couto and Giselle Machado.

A special thanks goes to my girlfriend Anna Izabel, who is present in another
important step of my life. Her unconditional love and support in every moment of my
life has given me the strength to keep pursuing my dreams. Thanks to my parents that
always supported me and gave me the education that I will carry with me forever.

I am thankful to all of the phc compiler developers, who made an outstanding
job. In particular, to Paul Biggar who implemented an optimizer for PHP that we rely
so extensively in this work. Paul has helped me a lot during the initial di�culties in
understanding the compiler intrinsics and has trusted me as one of the phc developers
recently.

xi

�Program testing can be a very e�ective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence.�

(Edsger W. Dijkstra)

xiii

Resumo

Ataques do tipo variáveis contaminadas ocorrem quando entradas de programas são
manipuladas maliciosamente a �m de explorar falhas de segurança inerentes ao soft-
ware afetado. Ataques deste tipo são comuns em linguagens de scripts como PHP,
originadas no lado do servidor. Em 1997, Ørbæk e Palsberg formalizaram o problema
de detectar essas explorações como uma instância de veri�cação de tipo e mostraram
que um algoritmo com complexidade de tempo O(V 3) é capaz de resolver o problema.
Um algoritmo similar foi implementado dez anos depois pela ferramenta open source

Pixy para encontrar falhas de segurança em programas PHP. Este trabalho mostra que
o mesmo problema pode ser resolvido em tempo O(V 2). A solução proposta utiliza
uma representação intermediária chamada e-SSA (extended Static Single Assignment)
proposta por Bodik et al. em 2000. Essa representação pode ser computada e�ciente-
mente e permite que o problema seja tratado como um problema de alcance em grafos,
onde arestas modelam dependências de dados entre variáveis de programas. Usando a
mesma infra-estrutura de implementação, foi comparada a técnica proposta neste tra-
balho com e-SSA e a técnica que utiliza análise de �uxo de dados (data-�ow). Ambas as
abordagens possuem a mesma e�cácia e foram capazes de detectar 36 vulnerabilidades
em programas PHP conhecidos. Nos experimentos é possível observar que a abor-
dagem proposta neste trabalho tem um melhor desempenho que o algoritmo utilizando
data-�ow. As falhas de segurança encontradas foram reportadas e a implementação do
algoritmo proposto está disponível para o compilador de PHP open source phc.

Palavras-chave: Análise Estática, Detecção Automática de Falhas de Segurança,
PHP, compilador phc.

xv

Abstract

Tainted variable attacks are originated from program inputs maliciously crafted to
exploit software vulnerabilities. These attacks are common in server-side scripting
languages, such as PHP. In 1997, Ørbæk and Palsberg formalized the problem of de-
tecting these exploits as an instance of type-checking, and has give an O(V 3) algorithm
to solve it. A similar algorithm was, ten years later, implemented on the Pixy free-
software tool. In this dissertation we give an O(V 2) solution to the same problem. Our
solution uses Bodik et al.'s extended Static Single Assignment (e-SSA) program rep-
resentation that can be e�ciently computed and it enables us to treat the problem as
an instance of graph reachability, where graph edges model data dependencies between
program variables. Using the same infrastructure, we compared the data-�ow solution
with our technique. Both approaches have detected 36 vulnerabilities in well known
PHP programs, and our tests show that our approach tends to outperform the data-
�ow algorithm for larger PHP programs. We have reported the bugs that we found,
and the implementation of our algorithm is now available for the phc open source

PHP compiler.

Palavras-chave: Static Analysis, Automatic Security Vulnerability Detection, PHP,
phc compiler.

xvii

List of Figures

2.1 SSA algorithm on the original program (left) based on two steps. First,
insert phi-functions (center). Second, rename variables (right). 6

2.2 e-SSA construction (a) and SSI construction (b). 7
2.3 phc compiler internal pipeline, in which each stage represent an intermediate

representation that the pass could work upon. 11

3.1 A simple PHP program (left), its equivalent Nano-PHP version (middle)
and its control-�ow representation (right). We let DB to denote a global
database, and we assume that DB.get might produce tainted data. We use
label l9 to mark the end of the program. 18

3.2 Operational Semantics of Nano-PHP. 20
3.3 Worklist algorithm for data-�ow. 22
3.4 Partial (left) and full (right) computation of the data-�ow worklist algorithm

for the example in Figure 3.1. In the bottom we show the intermediate
worklist stages for each algorithm iteration. 23

4.1 The example of Figure 3.1 converted into e-SSA form. 27
4.2 The reachability graph for variable v (left) and x (right) built after the

program in Figure 4.1. 28
4.3 An example of how aliasing complicates the tainted �ow analysis. In the

right side we show the reachability graph built for the e-SSA form program. 29
4.4 (Left) input program in e-SSA form augmented with the results of alias

analyses. (Right) �nal reachability graph. 30
4.5 The algorithm that �nds bugs in Nano-PHP programs. 31

5.1 Average execution time for each benchmark in milliseconds for the data-�ow
analysis and our solution with e-SSA � split into build the IR and run the
analysis). 35

5.2 (Left) the Nano-PHP representation of the program in Figure 5.2 � we show
only the highlighted lines. (Right) The reachability graph. 37

5.3 An installation �le used by MODx CMS version 1.0.3. This �le contains a
XSS vulnerability, which we have highlighted in boldface. 38

xix

List of Tables

3.1 The Nano-PHP syntax. 18
3.2 De�nition of least upper bound over pairs of abstract values. 19
3.3 Data-�ow equations to solve the Tainted Flow Problem. 21

4.1 Mapping program instructions to nodes in the reachability graph. 28

5.1 List of PHP failure reasons for 32 benchmarks. 34
5.2 From the 1,122 PHP �les selected, we group larger �les in rates ranging

from 10% to 100% (Line 1). We compared the rate gain of our approach
versus data-�ow analysis (Line 2) and our approach gain without the time
to build the IR (Line 3). 36

5.3 Experimental results of subjects with true alarms. 37

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 3
1.3 Dissertation Organization . 3

2 Background 5
2.1 Intermediate Representation (IR) . 5

2.1.1 Static Single Assignment (SSA) 5
2.1.2 Extended Static Single Assignment (e-SSA) 6

2.2 PHP . 7
2.2.1 Language Features . 8
2.2.2 Static Analysis on PHP . 9
2.2.3 PHP Compilers . 10

2.3 Tainted Variable Attacks . 12
2.3.1 Cross-Site Scripting (XSS) . 13
2.3.2 SQL Injection Attacks . 14
2.3.3 Unwanted Command Execution 14
2.3.4 Unauthorized Filesystem Access 15
2.3.5 Other Attacks . 15

2.4 Conclusion . 15

3 Tainted Analysis as Data-�ow 17
3.1 Nano-PHP . 17
3.2 Semantics . 18
3.3 Data-�ow Analysis . 20
3.4 Conclusion . 23

xxiii

4 Tainted Analysis as Graph Reachability 25
4.1 e-SSA form is the Linchpin of Fast Tainted Flow Analysis 25
4.2 Graph Reachability Model . 28
4.3 Addressing Aliasing with HSSA . 29
4.4 A Solution Quadratic in Time and Space 30
4.5 Conclusion . 31

5 Experiments and Evaluation 33
5.1 Set Up . 33
5.2 Benchmarks . 34
5.3 E�ciency . 35
5.4 Precision . 36
5.5 An example of a real-world bug . 38
5.6 Conclusion . 39

6 Related Works 41
6.1 Web Applications Security . 41

6.1.1 Tainted Flow Analysis . 42
6.2 Graph Reachability . 44
6.3 Conclusion . 45

7 Conclusion 47
7.1 Limitations . 48
7.2 Future Works . 48

Bibliography 49

Appendix A Tainted Flow Analysis 55
A.1 Writing a Vulnerability Pass . 55
A.2 Registering the Vulnerability Pass . 55

Appendix B Security Advisories 57
B.1 MODx 1.0.3 . 57
B.2 Exponent CMS 0.97 . 58
B.3 DCP Portal 7.0beta . 59
B.4 Pligg 1.0.4 . 61
B.5 RunCMS 2.1 . 63

Attachment A Cross-Site Scripting (XSS) 65
A.1 XSS_attack.h . 65
A.2 XSS_attack.cpp . 65

Attachment B SQL Injection Attacks 67
B.1 SQL_injection.h . 67
B.2 SQL_injection.cpp . 67

Attachment C Unwanted Command Execution 69

xxiv

C.1 Command_exec.h . 69
C.2 Command_exec.cpp . 69

Attachment D Unauthorized Filesystem Access 71
D.1 Filesystem_access.h . 71
D.2 Filesystem_access.cpp . 71

xxv

Chapter 1

Introduction

Web applications are pervasive over the Internet. They permeate sites as diverse as
facebook, google and blogger, are broadly used, and often manipulate sensitive infor-
mation. It comes to no surprise that web applications are common targets of cyber
attacks, which typically initiate with a remote attacker carefully forging inputs to cor-
rupt or gain access to a running system. In a study from CVE1, is possible to observe
a shift between the type of vulnerabilities being reported over the years. In the past,
most of the attacks reported were caused by operational system vulnerabilities, such
as bu�er over�ows; while nowadays web application vulnerabilities are being more
commonly reported. Supposedly, web applications are being developed by less skilled
programmers and without the proper security awareness. This is also justi�ed by the
same study from CVE, focused on statistics for the year of 2006. Cross-site scripting
accounts for 18.5% of the vulnerabilities reported in that year. SQL injection and
PHP includes account for other 13.6% and 13.1% respectively of the bug reports. All
three vulnerabilities are commonly found in web applications and account for almost
50% of all bugs reported. To put the signi�cance of these threats in perspective, the
annual SANS's report2 estimates that a particular type of attack � malicious SQL in-
jection � has happened approximately 19 million times in July of 2009. Static detection
of potential vulnerabilities in web applications is therefore an important problem.

Many web vulnerabilities are described as Tainted Variable Attacks. Examples
include: SQL-injection, cross-site scripting, malicious �le inclusion, unwanted com-
mand executions, eval-injection, and �le system attacks (see Section 2.3) This pattern
consists of a remote individual exploring potential leaks in the system via its public
interface. In this context, the interface is the web and the leak is the lack of �sanity�
checks on user-provided data before using it on sensitive operations. To detect this
kind of attack one needs to answer the following question: does the target program
contains a path on which data �ows from some input to a sensitive place without going
through a sanitizer function? A sanitizer is a function that either �lters malicious data
or strips them completely. We call the previous question the Tainted Flow Problem.

1http://cve.mitre.org/docs/vuln-trends/index.html
2http://www.sans.org/top-cyber-security-risks/origin.php

1

2 Chapter 1. Introduction

The tainted �ow problem was formalized by Ørbæk and Palsberg [1997] as an
instance of type-checking. They wrote a type system to the λ-calculus, and proved
that if a program type-checks, then it is free of tainted �ow vulnerabilities. Ten years
later, Jovanovic et al. [2006b] provided an implementation of an algorithm that solves
the tainted �ow problem for PHP programs. This algorithm, embedded into the Pixy
tool, was a data-�ow version of Ørbæk et al.'s type system. This algorithm has an
average O(V 2) runtime complexity, yet, the Pixy's implementation su�ers from worst
case O(V 4) complexity, and Ørbæk and Palsberg's solution, when seen as a data-�ow
problem, admits a worst case O(V 3) solution [Ørbæk and Palsberg, 1997].

This work improves on the complexity of these previous results. The algorithm
that we propose is, in the worst case, quadratic on the number of variables in the source
program, both in terms of time and space. The low asymptotic complexity is justi�ed by
the use of a program representation called extended Static Single Assignment (e-SSA)
form, introduced by Bodik et al. [2000], which can be computed in linear time in the
program size. This intermediate representation makes it possible to solve the tainted
�ow problem as a sparse analysis, which associates constraints directly to program
variables, instead of associating them to variables at every program point as traditional
data-�ow based approaches. Therefore, it allow us to model the tainted �ow problem
as a graph with constraints binded to variables � a graph reachability based approach.

We chose to evaluate our solution on PHP applications, although our analysis
can be generalized to any other procedural languages. This choice was driven by two
reasons. First, it is a popular language for developing server-side web applications,
according to the TIOBE Index3. Also, PHP programs can be found in over 21 million
Internet domains worldwide4. Second, PHP has been the focus of previous research on
static detection of tainted �ow vulnerabilities. Since PHP is widely spread, there are
enormous resources available; hence benchmarks are easily found.

1.1 Objectives

We aimed at two main objectives in this work. We implemented our tainted �ow
analysis to be:

1. Precise: Our analysis has the same precision of other data-�ow based ap-
proaches. However, our analysis is accurate because it was able to �nd 36 previ-
ously unknown vulnerabilities in �ve well-know PHP packages. We reported our
�ndings to vendors and to the bugtraq5.

2. E�cient: Our analysis is e�cient because we rely on the e-SSA program rep-
resentation to model the problem as graph reachability. We improved the com-
plexity of previous solutions, from O(V 3) to O(V 2) in both terms of space and
time; whereas V is the number of variables on the program. We show that our
algorithm is faster than data-�ow in most cases for larger PHP �les.

3http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
4http://php.net/usage.php
5http://www.securityfocus.com

1.2. Contributions 3

1.2 Contributions

This work brings forward the following contributions:

• An e�cient algorithm to solve the tainted �ow problem. Two distinguishing
features of the algorithm are: (i) the use of the e-SSA representation to generate
constraints; and (ii) an on-demand constraint solving algorithm. See Section 4.4.

• An implementation of the algorithm on top of phc [Biggar et al., 2009a], an open

source PHP compiler6. During our research, we have found and �xed many bugs
and extended the compiler with new features by submitting patches to the phc

project.

• An evaluation of the proposed approach on public PHP applications, including
benchmarks used in previous works [Jovanovic et al., 2006a; Xie and Aiken, 2006].
See Chapter 5.

• The discovery of unknown bugs in �ve well-known PHP packages by our analysis.
We reported our �nds to both vendors and bugtraq. See Chapter 5.

• A comparative analysis between our approach and the standard data-�ow used
in previous works [Jovanovic et al., 2006a]. See Chapter 5.

This dissertation resulted in two papers: (i) a paper in the SBLP 2010 conference
that covers our graph reachability approach to the tainted �ow problem; and (ii) an
accepted paper to appear in the CC 2011 that compares our approach against the
standard data-�ow analysis. The SBLP paper was given the third best paper award in
the conference and received an invitation to be submitted to the Science of Computer
Programming journal.

• Rimsa, A., d'Amorim, M., and Pereira, F. M. Q. E�cient Static Checker for
Tainted Variable Attacks. In SBLP 2010.

• Rimsa, A., d'Amorim, M., and Pereira, F. M. Q. E�cient Tainted Flow Analysis.
In CC 2011.

1.3 Dissertation Organization

This dissertation is organized into seven chapters. Below we list the remaining chapters
with a brief summary.

• Chapter 2: We provide background information on key aspects used along
this dissertation. We cover the SSA and e-SSA intermediate representations in
Section 2.1. We give an overview of the PHP languages in Section 2.2 discussing
its features, why is it di�cult to statically analyze PHP programs and a survey
of PHP compilers that we considered as baseline for our analysis. We introduce
the tainted variable attack with examples of real-world attacks in Section 2.3.

6http://www.phpcompiler.org/

4 Chapter 1. Introduction

• Chapter 3: This chapter covers how to model the tainted �ow using data-�ow.
We designed a small language called Nano-PHP in Section 3.1 to help us model
the problem. We provide the language semantics in Section 3.2 and the standard
data-�ow algorithm for the tainted �ow problem in Section 3.3. We give an
example to illustrate the algorithm and give its complexity in terms of time and
space.

• Chapter 4: This chapter discusses how to model the tainted �ow problem as
graph reachability using the e-SSA representation. In Section 3.1 we augment
the Nano-PHP language to cover the two new instructions inserted by this rep-
resentation: φ- and σ-functions. We show how to build the constraint graph
in Section 4.2. We handle alias in validators in Section 4.3. In Section 4.4 we
show an equivalent algorithm to solve the tainted �ow problem without actually
building the constraint graph and give its complexity in terms of space and time.

• Chapter 5: This chapter presents the evaluation of our proposed solution. We
list our experiment con�guration set-up in Section 5.1. In Section 5.2 we describe
the 32 benchmarks considered in our evaluation. Later, we discuss our solution
in terms of e�ciency (Chapter 5.3) and precision (Chapter 5.4). We show that
our approach is faster for larger PHP �les, and that it can actually �nd real
security vulnerabilities. We give a real-world example of a bug that we found in
the MODx CMS version 1.0.3 in Section 5.5.

• Chapter 6: In this chapter we review other works related to ours. We give an
historic overview of web application security in Section 6.1, and then we specialize
in works treating the tainted �ow problem in Section 6.1.1. We also review works
that modeled their problem using a graph reachability approach in Section 6.2.

• Chapter 7: We present the conclusions of our work in this chapter. We also
discuss the limitations and possible directions for future works.

Chapter 2

Background

In this chapter, we provide background information that covers key concepts used in
this dissertation. In Section 2.1 we describe the intermediate representation, namely
e-SSA (extended Static Single Assignment) proposed by Bodik et al. [2000]. This
representation is the core of our analysis that enable us to perform a sparse analysis
and decrease in one order-magnitude the complexity of standard data-�ow analysis on
tainted �ow problems, from O(V 3) to O(V 2) � details in Chapter 4.

In Section 2.2 we detail PHP features that fascinate users, but complicate static
analysis. Later, we provide a discussion of PHP compilers and the motivations behind
the choice of phc as our baseline compiler. In Section 2.3 we describe tainted variable
attacks in terms of sources, sinks and sanitizers with examples of security vulnerabilities
that �t this description. We conclude this chapter in Section 2.4.

2.1 Intermediate Representation (IR)

We rely on an intermediate program representation called extended Static Single As-
signment (e-SSA) proposed by Bodik et al. [2000] to build our analysis on. This
representation is a superset of the Static Single Assignment (SSA) proposed by Cytron
et al. [1989] that is addressed in Section 2.1.1. The e-SSA is the core of our analysis
that enabled us to treat the tainted �ow problem as a graph reachability problem. We
give further details about the e-SSA representation in Section 2.1.2 and how we model
it as a graph reachability problem in Chapter 4.

2.1.1 Static Single Assignment (SSA)

The Static Single Assignment is a program representation proposed by Cytron et al.
[1989] that stipulates that each variable on the program has a single de�nition; hence
the Single Assignment in the name. The Static means that the de�nition can be
computed statically. This representation simpli�es many compiler analyses, includ-
ing register allocation. Hack [2005] proved that programs in SSA form have chordal
interference graphs, which can be e�ciently colored in polynomial time [Pereira and
Palsberg, 2005].

5

6 Chapter 2. Background

x → ● x2 ← ●x1 ← ●

x3 ← (x1, x2)
 ● ← x3

(a) Original program.

x → ● x2 ← ●x1 ← ●

x3 ← (x1, x2)
 ● ← x3

(b) Insert phi-functions.

x → ● x2 ← ●x1 ← ●

x3 ← (x1, x2)
 ● ← x3

(c) Rename variable.

Figure 2.1: SSA algorithm on the original program (left) based on two steps. First,
insert phi-functions (center). Second, rename variables (right).

Because of SSA's single reaching de�nition property, a special function is required
on control-�ow join points. The phi-function is used to merge the live range of vari-
ables. Each phi-function receives as argument variables associated to each control-�ow
predecessor. In order to convert the program into SSA form, we must follow two steps
as exempli�ed by Figure 2.1. Given the original program, calculate the dominance
frontier [Appel and Palsberg, 2002; Cooper et al., 2001] to identify precisely the points
where phi-functions must be inserted. A block x is said to dominate a block y i� there
is no path from the entry point to y without passing through x. A block z is in the
dominance frontier of x i� x dominates the predecessor of z, but not z itself. For
instance, a de�nition of a variable v in block x has the e�ect of inserting a phi-function
in block z, since there is another path to z that does not pass through x � because z
is not dominated by x. These new phi-functions produce fresh de�nitions of v; thus,
the process continues until the program stabilizes. After all phi-functions are properly
inserted, a stack based algorithm renames the variables by assigning di�erent version
numbers. The renaming is based on the nearest reaching de�nition. There exist almost
linear time algorithms to convert programs to SSA form [Lengauer and Tarjan, 1979].

2.1.2 Extended Static Single Assignment (e-SSA)

In our work we use the e-SSA representation [Bodik et al., 2000] as baseline for the
algorithm we proposed in Chapter 4. This representation has similarities with the
Static Single Information (SSI) form, which was �rst proposed by Ananian [1999].
Later, Singer [2006] provided a high-level de�nition for SSI believing that his de�nition
matched Ananian's. Boissinot et al. [2009] proved that these two are not the same,
and reference Ananian's de�nition as strong SSI, and Singer's de�nition as weak SSI.
Interesting to say that the algorithm proposed by Singer [2006] in fact constructs the
strong SSI. We will use strong SSI to compare with e-SSA.

Both e-SSA and SSI include a special instruction that has the opposite e�ect of
SSA's phi-function. While phi-functions merge the live range of variables in blocks
with more than one predecessor, sigma-functions split them in blocks with more than
one successor, i.e., branch blocks. The di�erence between these two algorithms resorts
on how they �nd which variables to convert in sigma-functions. SSI algorithms rely on
the reverse dominance frontier to identify precisely the points where sigma-functions
must be inserted, while e-SSA only converts variables used in the conditional clause of

2.2. PHP 7

(b)

(a)

rename
variables

rename
variables

∃ unmarked
instruction
• = v
at block B

∀ B' at the iterated post-
dominance frontier of B,
create (v, ..., v) =σ v
and mark • = v at B

Singer'06

∃ unmarked
instruction
v = •
at block B

∀ B' at the iterated
dominance frontier of B,
create v =ϕ (v, ..., v),
if v is alive at B', and
mark v = • at B

Briggs'98Bodik'00
∀ block B that contains
branch where v is used.
add (v, ..., v) =σ v
at the end of B

∃ unmarked
instruction
v = •
at block B

∀ B' at the iterated
dominance frontier of B,
create v =ϕ (v, ..., v),
if v is alive at B', and
mark v = • at B

Briggs'98

Figure 2.2: e-SSA construction (a) and SSI construction (b).

branch blocks. Therefore, it is a straight-forward conversion that does not require the
calculation of the expensive reverse dominance frontier to �nd which variable must be
converted. Figure 2.2 summarizes the di�erences between these two algorithms. The
algorithm to construct e-SSA (algorithm a) does a single pass to insert sigma-functions
and then triggers the algorithm to construct SSA [Brisk, 2006] in a second stage, which
includes a pass to insert phi-function and to rename the variables. However, SSI con-
struction (algorithm b) iterates between the insertion of sigma- and phi-functions until
the program stabilizes � no new functions are inserted. Only then we can rename the
variables following SSA renaming algorithm. Therefore, we can build e-SSA faster than
SSI and possibly with less sigma-functions. It is possible to reduce the cost to trans-
form the program into SSI by choosing which variables to convert on demand [Tavares
et al., 2010]. In essence, their partial SSI works similarly to e-SSA, which can be com-
puted e�ciently. Later, full SSI can be requested which uses partial SSI as base; thus
avoiding the need to convert variables already in SSI form.

The e-SSA representation is useful for many static analysis: eliminate redundant
array bound checks [Bodik et al., 2000], bitwidth analysis [Stephenson et al., 2000]
and conditional constant propagation [Wegman and Zadeck, 1991]. In Section 4.1 we
clarify its advantages and show how we applied it in our problem domain.

2.2 PHP

In this Section we review the PHP1 programming language. We chose to �nd tainted
attacks in PHP because it is a popular language and it is widely used in web application.
We show this languague important features in Section 2.2.1 and why it is di�cult to
statically analyze in Section 2.2.2. As an early design decision, we chose to rely on a
mature compiler infra-structure to perform our analysis. In Section 2.2.3 we survey
many PHP compilers and discuss why we ultimately chose phc as our baseline compiler.

1http://www.php.net

8 Chapter 2. Background

2.2.1 Language Features

PHP is a general purpose language used mainly to create dynamic web pages. PHP
stands for the recursive acronym PHP: Hypertext Preprocessor. It was designed
by Rasmus Lerdorf in 1994 as a set of Perl2 scripts to organize his personal web
page. Because of that, PHP has substantial in�uence in Perl's syntax, semantics and
interpreted nature. In its early days, PHP was implemented as a Common Gateway
Interface3 (CGI) with the ability to work with web forms and embedded database
support. This �rst version was initially called Personal Home Page/Forms Interpreter,
or PHP/FI for short. This extension allowed programmers to build simple and dynamic
web applications. An example of a simple PHP script is shown below:

<?php

echo "Hello world!";

?>

PHP is been under constantly development ever since. There was a major refor-
mulation in 1997 that formed the base for PHP 3.0. In 2000, PHP 4.0 was released
powered by the Zend Engine 1.0 and in 2004 the PHP 5.0 was launched in Zend Engine
II with a complete new object-orientation model. PHP 6.0 is still under development
and will provide full unicode support.

PHP is a popular language4 and it is present in more than 20 millions of web
server world wide5. PHP most important features include:

• Open source

• Server-side programming language

• Embedded HTML support

• Embedded Database support

• Portability

One of PHP advantages is that it is an open source product. This means that
it is been actively developed by a community, referred to as the PHP group, and it
is free of charge. Anyone can download, install and start writing PHP application
with no costs involved. PHP has an extensive documentation of the language features
with many examples and user comments6. PHP is also a server-side language. Every
processing is done by the server and the result is the html code generated by the page
that will be rendered by the browser later. This allows hiding the business logic from
end users. PHP contains embedded html and database support. In a PHP script,
the presentation (html) logic can be separated from the code logic. PHP code must

2http://www.perl.org
3CGI: RFC 3875 - http://tools.ietf.org/html/rfc3875
4http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
5http://www.php.net/usage.php
6http://www.php.net/manual

2.2. PHP 9

be enclosed between the start (<?php) and end tags (?>). Everything else outside
these tags is considered html code to be dumped without processing. PHP program
can easily be integrated with databases. In fact, PHP has embed support for many
di�erent database vendors, such as MySQL7 and PostgreSQL8. This is another PHP
feature enjoyed by PHP developers, because they do not need to install third party
software to have seamless database connectivity. PHP is also portable across di�erent
operational systems. It runs on UNIX �avors and Windows machines.

2.2.2 Static Analysis on PHP

The �rst barrier to analyze PHP programs statically relies on the language interpreted
nature. Therefore, many features that only exist in interpreted languages are also
present in PHP, such as dynamic �le inclusion and run-time code evaluation. To com-
plicate matters further, the PHP language has no formal de�nition. If someone wants
to stay compatible with PHP, they must mirror the Zend reference implementation
provided by the latest release of PHP [PHP, 2010]. Below we list some of these fea-
tures that make static analysis complicated for scripting languages such as PHP. This
list was extracted from Biggar and Gregg [2009].

• Run-time source inclusion

• Run-time code evaluation

• Dynamic, weak, latent typing

• Duck-typed objects

• Implicit object and array creation

• Run-time aliasing

• Run-time symbol-table access

• Overloading of simple operations

The major di�culty to static analyze PHP programs relies on the ability to infer
values that can only be know at run-time. For example, PHP allows �les to be dynamic
included; where the intended �le name can sometimes only be know during execution.
In the other hand, languages such as Java and C can resolve these �les statically, and
include them at compile-time. PHP code evaluation dispatcher su�ers from the same
problem. PHP commands represented as string are executed by the PHP interpreter,
but sometimes we are unable to determine its content priorly. These two features
bring uncertainty to the analysis, that can no longer rely on the complete view of
the program. Therefore, we must do a very conservative analysis or, in worst case,
completely abort the analysis [Biggar et al., 2009a].

7http://www.mysql.org
8http://www.postgresql.org

10 Chapter 2. Background

Scripting languages such as PHP are famous for being dynamic typed. Program-
mers do not need to annotate type information to variables; thus making it harder to
static check. The type of the variable depends on its run-time value. To be able to
perform a type analysis, we must follow every value that a variable may hold in order
to estimate which types the variable can have. However, sometimes the type cannot be
inferred directly; for instance, objects and arrays can be implicit created. An assign-
ment $x->y = 0 � where x is unde�ned � has the e�ect of creating a standard PHP
object with y as attribute, while $x[0] = 0; creates an array with a single index. PHP
is also duck-typed, because it allows methods and attributes to be inserted in previous
de�ned classes at run-time; therefore changing the classes initial signature.

Another problem to cope with is alias analysis. Jovanovic et al. [2006b] acknowl-
edge that alias analysis for imperative languages is not suitable for PHP. PHP references
are mutable: can be created, used and destroyed during the program execution. The
alias is also bidirectional. In fact, a variable in the main scope, such as $x is an alias
of the global array $GLOBALS['x'] and vice versa. PHP's global symbol table is even
exported to the run-time environment, which can be used, modi�ed or even unset, i.e.
remove all its symbols. We can have alias between variables, formal parameters, global
variables, array elements. In order to model alias accurately, we need to keep track
of which variables may- or must-alias each other. A may-alias is a conditional alias
between two variables, while must-alias is unconditional.

All these complicated features from PHP make static analysis in this language
di�cult. To avoid dealing with all these features, we decided to rely on a compiler that
already tackles these issues. In the next section we review many PHP compilers and
discuss their advantages and limitations. We decided towards the phc compiler, which
handles many of these problems for us [Biggar et al., 2009a] .

2.2.3 PHP Compilers

Previous approaches to handle the tainted �ow problem in PHP programs followed a
similar strategy. The program is parsed into an abstract syntax tree (AST) using the
o�cial grammar obtained from the PHP group9. The syntactic elements are extracted
from the original source without syntactic sugar like commas and semi-colons; thus
making it easier to handle. However, this approach only does the syntactic parsing
of the program, leaving developers with the herculean task of writing their analysis
compatible with the language semantics from the ground-zero. The Pixy tool decided
towards this approach by creating their own alias analysis to increase the precision of
its tainted analysis for PHP programs [Jovanovic et al., 2006b] directly on the AST.
In our work, we would like to avoid the trouble of remodeling the whole language by
using a compiler infra-structure that already deals with the complex features of the
language. Note that we do not care about the compiler code generator, but the static
analysis that it may provide.

Working with the AST level has another disadvantage. Because the AST closely
resembles the original program, it uses the PHP commands exactly as they were on
the source, demanding the analysis to cope with many language constructs. We could

9http://www.php.net

2.2. PHP 11

AST HIR MIR

Figure 2.3: phc compiler internal pipeline, in which each stage represent an intermedi-
ate representation that the pass could work upon.

take advantage of a lower-level representation that deconstructs these instructions into
simpler ones. For instance, PHP foreach command could be transformed into a while
command. At the same time, a while command could be transformed into labeled
conditionals with gotos pointers. Hence, we could build a control-�ow graph (CFG)
using this lower-level representation to be used by our analysis.

The phc [Biggar et al., 2009a] compiler does this job for us precisely using a three
way transformation in the program, according to the pipeline in Figure 2.3. Initially,
the compiler was designed as a front-end for PHP, which they designed their own parser
for the AST [de Vries and Gilbert, 2007]. The compiler was later expanded to generate
C code using the embedded PHP library which turns phc resilient to changes in the PHP
reference implementation [Biggar et al., 2009b]. This addition introduced the other two
internal representations shown in Figure 2.3. The AST is transformed to three-address
code in the high-level IR (HIR). Later, high-level instructions are deconstructed to
form the medium-level IR (MIR). From the MIR, the compiler derivates a control-�ow
graph that it is used across its optimizations passes. We could enjoy this representation
to build our analysis on.

Other works on the tainted �ow problem transforms the program into a low-
level representation as well. Xie and Aiken [2006] and Wassermann and Su [2007]
represented their functions as control-�ow graphs to leverage their analysis. In the
latter, the CFG is even transformed into SSA form. However, neither works considered
the e�ect of aliases in their evaluation, possibly leading to an imprecise intermediate
representation. These limitations is addressed by the phc compiler that provides a
powerful alias analysis [Pioli et al., 1999] combined with the ability to transform the
CFG into SSA form [Chow et al., 1996]. Since e-SSA is a super-set of SSA, phc sounded
like a natural choice for our work.

We have surveyed other tools that parse PHP programs. The only open source

tool available that handles the tainted �ow problem that we are aware of is Pixy [Jo-
vanovic et al., 2006a]. Unfortunately, it is based on PHP 4.0 and has no support for
classes, a widely used feature by most PHP programs nowadays. The Roadsend com-
piler can generate binary code for x86 machines, but it is written in O'Caml making it
unsuitable for us [Roadsend, 2010]. As far as we know, this compiler does not provide
any analysis or optimization that we could bene�t from. A subproject of the Roadsend
compiler is the Roadsend Raven [Raven, 2010]. The compiler was completely rewritten
in C++ and is now capable of generating intermediate code for the industrial-strength
LLVM compiler10. The obvious advantage is that LLVM can generate code for a wide
number of target architectures. Unfortunately, their project is still incipient and does

10http://www.llvm.org

12 Chapter 2. Background

not aim for 100% compatibility with the Zend Engine [PHP, 2010]. They did a trade-o�
between di�cult language features to support, such as aliasing, to a more conservative
and simple analysis. A recently launched compiler HipHop11, that transforms PHP
to C++ code, followed a similar strategy by sacri�cing hardly used features, such as
code evaluation. They reported gains on CPU usage of 50% on average depending on
the web page12. Other tools compile PHP programs to be used by virtual machines.
Phalanger [Benda et al., 2006] ported PHP to run on .NET platforms13, while Quer-
cus [Quercus, 2010] did it for the JVM14. In Phalanger, PHP classes and interfaces
are represented directly into built-in models of classes and interfaces provided by the
.NET framework. PHP can also take advantage of features available only for ASP
scripts, an approach shared by Quercus that can bene�t from Java's database pooling,
for instance. Unfortunately, both tools decided to rewrite the entire PHP standard
library to stay compatible with the Zend implementation, a herculean and error-prone
task. Because of these limitations, we chose to write our analysis on the phc compiler.

2.3 Tainted Variable Attacks

A tainted variable attack is characterized by a sub-path from a source to a sink function
that does not include any calls to sanitizing function. A source is a program input which
holds user data, e.g. HTML form. The attacker's goal is to carefully craft these input
in order to circumvent the system to its own control � possibly leading to arbitrary
code execution � or to leverage other types of attack. Sinks are functions that perform
sensitive operations that may have security consequences to the running application,
e.g. database access. Sanitizers are functions that validate data, either by proving that
it does not contain harmful data, or by replacing dangerous characters with �ltered
values whenever possible. By setting these three parameters properly (sources, sinks
and sanitizers) we could con�gure our tool to statically �nd security vulnerabilities.
This problem is best known as the Tainted Flow Problem.

We can describe the tainted �ow problem as a tuple T = (P , SO , SI , SA), such
that: P is the subject program; SO is a set of input functions, referred to as sources;
SI is a set of security-sensitive operations, referred to as sinks; and SA is a set of
functions that validate inputs, referred to as sanitizers. The tainted �ow problem
consists of determining if program P can make a call to a sink function si ∈ SI passing
a value v, which has been generated by a source function so ∈ SO , and that has not
been sanitized by any function sa ∈ SA. In Section 3.2 we give a formal de�nition
(De�nition 1) of this problem by using a small language that we called Nano-PHP.

Usually, the same source inputs (SO) are shared between several instances of
tainted �ow attacks. The attacks usually originate from user-interaction between the
browser request and the requested web server, so they can be con�gured according to
these sources. In case of PHP, it can be con�gured through inputs such as get ($_GET)
and post ($_POST) http requests. The sanitizers (SA) can be further categorized into

11https://github.com/facebook/hiphop-php
12http://developers.facebook.com/blog/post/358
13http://www.microsoft.com/net
14http://www.oracle.com/technetwork/java/javase/overview/index.html

2.3. Tainted Variable Attacks 13

two types: (i) �lters; and (ii) validators. Filters are straight-forward functions that
strip malicious contents from a string or transform them into safe inputs to use. These
�lters are normally con�gured for each di�erent instance of tainted variable attacks. In
the other hand, validator functions ensure that an input is not harmful on conditional
branches; thus proving that a variable is free of tainted values for a speci�c branch.
These validators can also be shared across multiple instances of security vulnerabili-
ties, since these validators are commons PHP security routines, such as is_numeric.
The last con�gurable option, sinks (SI), is set dependending on the type of security
vulnerability intended to �nd. Di�erent security vulnerabilities have di�erent sensitive
operations; therefore sinks must be set according to each bug.

Many vulnerabilities described in the literature can �t this description of tainted
variable attacks. Some noticeable examples are cross-site scripting (XSS) [Chugh et al.,
2009], SQL injection attacks [Wassermann and Su, 2007; Xie and Aiken, 2006], mali-
cious evaluations15, local/remote �le inclusions16, and unwanted command execution17.
In the next sections we show examples of these vulnerabilities illustrating how can we
con�gured their respective sinks, sources and sanitizers.

2.3.1 Cross-Site Scripting (XSS)

Cross-site scripting typically occurs when a user is able to dump html code within a dy-
namically generated page. An attacker uses this vulnerability to inject JavaScript code
into the page, usually trying to steal cookie information to acquire session privileges.
As an example, the program below contains a vulnerability that allows an external user
to output any given text, including html commands.

<?php $name = $_GET['name']; echo $name; ?>

Consider the scenario where the user assigns the following data to variable name:
�<script>does.something.evil;</script>". A potentially malicious JavaScript
program might be executed in the client side of the application. A workaround for
this bug is to strip malicious html content from the user input. The built-in function
htmlentities does the trick by encoding special characters into their respective html
entities. For example, �<" gets translated to �<".

<?php $name = htmlentities($_GET['name']); echo $name; ?>

Cross-site scripting attacks �t the tainted �ow problem framework. A possible
input con�guration, in this case, would be:

Sources : $_GET, $_POST, . . .

Sinks : echo, print, printf.

Sanitizers : htmlentities, htmlspecialchars, strip_tags

15http://cwe.mitre.org/data/definitions/95.html
16http://projects.webappsec.org/Remote-File-Inclusion
17http://secunia.com/advisories/26201/

14 Chapter 2. Background

2.3.2 SQL Injection Attacks

The SQL injection attack is another common type of security �aw. The attacker
injects malicious database commands via SQL query parameters. The e�ect can go
from reporting incorrect results to the user to modifying the database. The program
below contains an example of SQL injection vulnerability:

<?php

$userid = $_GET['userid'];

$passwd = $_GET['passwd'];

...

$result = mysql_query("SELECT userid FROM users WHERE " .

"userid=$userid AND passwd='$passwd'");

?>

Note that this program does not sanitize its inputs. A malicious user could
obtain access to the application by providing the text 1 OR 1 = 1 -- in the userid

�eld. The double minuses start MySQL comments; hence, the resulting query will be
SELECT userid FROM users WHERE userid=1 OR 1 = 1 -- AND passwd='passwd',
which always outputs one row and therefore bypass the authentication procedure.

One can sanitize variable userid by ensuring that it contains only numerical
values; a task that we perform either casting it to integer or checking its value with
functions like is_numeric. One can sanitize variable $passwd using the addslashes

function, which inserts slashes (escape characters) before a prede�ned set of characters
including single quotes. A typical con�guration of SQL injection is given below:

Sources : $_GET, $_POST, . . .

Sinks : mysql_query, pg_query, *_query

Sanitizers : addslashes, mysql_real_escape_string, *_escape_string

2.3.3 Unwanted Command Execution

A PHP script may rely on an external program to compute data. PHP has a handful
of functions to trigger command execution. The example below illustrates the use of
the system function.

<?php

$file = $_GET['file'];

system("/usr/bin/file $file");

?>

An attacker could insert a semi-colon (;) to trick the system to execute another
program of its choice. In order to sanitize the input, we could escape the command
arguments via function escapeshellarg or in some cases escape the whole command
through escapeshellcmd. A possible description of this type of a attack is:

2.4. Conclusion 15

Sources : $_GET, $_POST, . . .

Sinks : exec, system, passthru, shell_exec, proc_open, pcntl_exec

Sanitizers : escapeshellarg, escapeshellcmd

2.3.4 Unauthorized Filesystem Access

Allowing PHP scripts to access the �le system is a desirable feature. PHP permits
many functions to handle the �le system, from reading a �le to change its properties,
like usernames and permissions. The following example shows the unlink function,
which is used to delete �les. Since no sanitizers are present, an attacker could delete
any �le that he has permission to.

<?php

$file = $_GET['file'];

unlink($file);

?>

There is no speci�c PHP built-in operator to sanitize inputs for this type of attack.
We could write our own regular expression for that purpose, or rely on validators to
do the trick. A possible con�guration for unauthorized �le system access could be:

Sources : $_GET, $_POST, . . .

Sinks : chdir, mkdir, rmdir, rename, unlink, copy, chgrp, chown, chmod,

touch, symlink, link, move_uploaded_file, show_source,highlight_file

readfile, file_get_contents

Sanitizers : is_numeric, type casts

2.3.5 Other Attacks

Other vulnerabilities can �t this same tainted analysis framework. Most noticeable
examples are local/remote �le includes and malicious evaluations. However, these
two type of security �aws have inner di�culties to our analysis that is addressed in
Section 7.1. Nevertheless, if we could solve these issues, we could enjoy the bene�ts of
our tainted �ow analysis (Chapter 4) for �nding these bugs.

2.4 Conclusion

In this chapter we covered important concepts used along this dissertation. We dis-
cussed the intermediate representation that is the core of the solution proposed by
this work. We provided background information concerning PHP, why it a language
suitable for the web and why is di�cult to static analyze. We survey several PHP
compilers, and decided towards phc as our baseline compiler. Finally, we reviewed the
tainted �ow problem giving example of security vulnerabilities.

Chapter 3

Tainted Analysis as Data-�ow

In this chapter we describe how to model the tainted �ow problem using data-�ow.
Data-�ow is not a new concept, and it has been used by compiler designers for
decades [Kam and Ullman, 1976]. Even in this same problem domain, in order to
�nd tainted variable attacks [Jovanovic et al., 2006b]. We implemented a data-�ow
analysis for the tainted �ow problem described in this chapter in order to compare
with our solution using e-SSA described in Chapter 4.

Data-�ow analysis usually relies on an algebraic structure called a lattice. A
lattice is simply a set, plus a partial ordering between the elements of this set. A
data-�ow analysis contains a number of equations, and each of these equations has
the e�ect of reading a point in the lattice and returning another � possibly di�erent
� point. We know that the data-�ow algorithm terminates when: (i) each equation is
a monotone function; and (ii) the lattice is �nite. A monotone function f(x) always
returns an element y, such that y ≥ x, given a total ordering between the elements
in f 's domain. To know more about the theoretical foundations of data-�ow analysis,
refer to [Aho et al., 2006, Chapter.9].

We design a small language called Nano-PHP used to model the data-�ow anal-
ysis. This language cover all the aspects of the original PHP language pertinent to
our analysis, but with less instructions. Therefore, we provide a concise semantics of
the language by means of an abstract state machine in Section 3.2. In Section 3.3, we
list the data-�ow equations that are used to solve the tainted �ow problem with the
associated complexity. We discuss in details a worklist algorithm with an example. We
conclude this chapter in Section 3.4.

3.1 Nano-PHP

We use the assembly-like Nano-PHP language to de�ne the tainted �ow problem. A
label l ∈ L refers to a program location and is associated to one instruction. A Nano-
PHP program is a sequence of labels, l0, l1 . . . , lexit. Table 3.1 shows the six instructions
of the language. We use the symbol ⊗ to denote any operation that (i) uses a num-
ber of variables, and (ii) de�nes a variable. We use two di�erent symbols to address
assignments from source (◦) and assignments to sink (•).

17

18 Chapter 3. Tainted Analysis as Data-flow

Name Instruction Example
Assignment from source x = ◦ $x = $_POST['content']

Assignment to sink • = v echo($v)

Simple assignment x = ⊗(x1, . . . , xn) $a = $t1 * $t2

Branch bra l1, . . . , ln general control �ow
Filter x = filter $a = htmlentities($t1)

Validator validate x, lc, lt if (!is_numeric($t1))

abort();

Table 3.1: The Nano-PHP syntax.

In Figure 3.1 we give an example of a simple PHP program (left) that uses a �c-
tional database structure to perform operations. We transform this program into Nano-
PHP (middle) and give its control-�ow graph representation (right). We will use this
example along this chapter to demonstrate the data-�ow algorithm.

<?php
 $v = DB.get($_GET['child']);
 $x = "";
 if (DB.isMember($v)) {
 while (DB.hasParent($v)) {
 echo $x;
 $x = $_POST['$v'];
 $v = DB.getParent($v);
 }
 echo($v);
}
?>

l0: v = ○
l1: x = filter
l2: validate(v, l3, l9)
l3: bra l4,l8
l4: ● = x
l5: x = ○
l6: v = ×(v)
l7: bra l3
l8: ● = v
l9: bra l9

l0: v = ○ l1: x = filter

l2: validate(v, l3, l9)

l3: bra l4,l8

l6: v = ×(v)

l7: bra l3

l4: ● = x l8: ● = v

l5: x = ○ l9: bra l9

Figure 3.1: A simple PHP program (left), its equivalent Nano-PHP version (middle)
and its control-�ow representation (right). We let DB to denote a global database, and
we assume that DB.get might produce tainted data. We use label l9 to mark the end
of the program.

3.2 Semantics

We de�ne the semantics of Nano-PHP programs by means of an abstract machine.
The state M of this machine is characterized by a tuple (Σ, F, I), informally de�ned
as follows:

Store Σ ⊆ Var → Abs e.g., {x1 7→ clean, . . . , xn 7→ tainted}
Code Heap F ⊆ L→ [Ins] e.g., {l1 7→ i1 . . . ia, . . . , ln 7→ ib}
Instruction Sequence I ⊆ [Ins] e.g., i5i6 . . . in

3.2. Semantics 19

u ⊥ clean tainted

⊥ ⊥ clean tainted
clean clean clean tainted
tainted tainted tainted tainted

Table 3.2: De�nition of least upper bound over pairs of abstract values.

The set Abs is a lattice formed with the following elements and order ⊥ < clean <
tainted. The ⊥ element is associated to yet unde�ned variables, while clean and tainted
states denote safe and dangerous variables. The order < describes the partial ordered
of the elements lattice. Table 3.2 shows the result of the pairwise join operation (u)
over lattice elements. For instance, the element clean when join with tainted result in
tainted.

The store Σ binds each variable name, say x ∈ Var , to an abstract value v ∈
Abs . The code heap F is a map from a program label to a sequence of instructions.
Each sequence corresponds to one basic block of the Nano-PHP program. Only labels
associated to entry basic block instructions appear in F . The list I denotes the next
instructions for execution. We say that the abstract machine can take a step if from a
state M it can make a transition to state M ′. More formally, we write M → M ′. We
say the machine is stuck at M if it cannot make any transition from M .

Figure 3.2 illustrates the transition rules describing the semantics of Nano-PHP
programs. Rule S-Source states that an assignment from source binds the left-hand
side variable to the tainted abstract state. Rule S-Sink is the only one that can
cause the machine to get stuck: to execute an assignment to sink the variable on
the right hand side must be bound to clean. Rule S-Simple says that, given an
assignment x = ⊗(x1, x2, . . . , xn), the abstract state of x is de�ned by folding the join
operation (as described on Table 3.2) onto the list of variables in the right hand side,
e.g: x1 u x2 . . . u xn. Rule S-Branch de�nes a non-deterministic branch choice: the
machine chooses one target in a range of possible targets and branches execution to
the leading instruction on its de�ning basic block.

Nano-PHP also divides the sanitizers into �lter and validator functions. Filters
correspond to functions that take a value, typically of string type, and return another
value after removing malicious fragments from the input. For simplicity we do not
show the input parameter in the syntax of Nano-PHP. Rule S-Filter shows that an
assignment from a �lter binds the variable on the left side to the clean state. Validators
are instructions that combine branching with a boolean function that checks the state
for tainting. The instruction validate(x, lc, lt) has two possible outcomes. If x is
bound to the clean state, the machine branches execution to F (lc). If x is bound to
the tainted state, execution branches to F (lt). Rules S-ValidC and S-ValidT de�ne
these cases. We assume that every Nano-PHP program is strict [Budimlic et al., 2002],
i.e., all variables must be de�ned before used; therefore, we rule out the possibility of
passing x to a validator when Σ ` x = ⊥.

20 Chapter 3. Tainted Analysis as Data-flow

[S-Source] (Σ, F, x = ◦;S)→ (Σ\[x 7→ tainted], F, S)

[S-Sink]
Σ ` t = clean

(Σ, F, • = v;S)→ (Σ, F, S)

[S-Simple]

Σ ` u(x1, . . . , xn) = v

(Σ, F, x = ⊗(x1, . . . , xn);S)→ (Σ\[x 7→ v], F, S)

[S-Branch]

{li} ⊆ dom(F) F (li) = S ′ 1 ≤ i ≤ n

(Σ, F, bra l1, . . . ln;S)→ (Σ, F, S ′)

[S-Filter] (Σ, F, x = filter;S)→ (Σ\[x 7→ clean], F, S)

[S-ValidC]

Σ ` x = clean {lc} ⊆ dom(F) F (lc) = S ′

(Σ, F, validate(x, lc, lt);S)→ (Σ, F, S ′)

[S-ValidT]

Σ ` x = tainted {lt} ⊆ dom(F) F (lt) = S ′

(Σ, F, validate(x, lc, lt);S)→ (Σ, F, S ′)

Figure 3.2: Operational Semantics of Nano-PHP.

We de�ne the tainted �ow problem as follows.

De�nition 1 The Tainted Flow Problem
Instance: a Nano-PHP program P .
Problem: determine if machine can get stuck with execution of P .

Before we move on to describe the previous solution to the tainted �ow problem,
a quick note about functions is in order. In this dissertation we describe an intraproce-
dural analysis. Hence, we conservatively consider that input parameters and the return
values of called functions are all de�nitions from source. A context insensitive, inter-
procedural version of the algorithms in this dissertation can be produced by simply
creating assignments from actual to formal parameters. We opted for not doing it due
to an engineering limitation: our limited knowledge of phc has hindered us so far from
crossing the boundaries of functions.

3.3 Data-�ow Analysis

Given a Nano-PHP program, we can solve the tainted �ow problem using a forward-
must data-�ow analysis. The analysis is forward, because data �ows from predecessors
to successors labels, and it is must, because properties must hold on all joined paths.

3.3. Data-flow Analysis 21

Our analysis binds information to program points. Following Appel and George [2001],
we de�ne a program point as the region between a pair of consecutive Nano-PHP
labels, i.e., edges on a control-�ow graph. We decided towards this approach, because
validators may bind di�erent taint values for each successor. We represent data-�ow
information with the function J_K : L→ L→ Var → Abs . This function associates to
each program point (l, l′) a map storing the abstract values of each program variable
at that program point. We use the notation Jl1, l2K to denote information at (l1, l2); it
abbreviates the function application ((J_Kl1)l2). It is important to note that J_K is a
lattice and that this lattice is �nite since the sets L, Var , and Abs are �nite.

Table 3.3 de�nes the transfer functions (Var → Abs)→ (Var → Abs) associated
to each instruction. The initial state of the analysis associates unde�ned (⊥) to all
program variables, i.e., J_K = λl1 . λl2 . λv . ⊥. We use Jl1, l2K in this de�nition as
abbreviation for the function application ((J_Kl1)l2). We let PRED(l) be the set of
program points immediately before label l, and we de�ne the auxiliary function JOIN
as follows:

JOIN (l) =
l

Jli, lK , li ∈ PRED(l)

Given two functions Jk′, kK and Jl′, lK, we de�ne
d

(Jk′, kK, Jl′, lK) as λv .(Jk′, kKv)u
(Jl′, lKv), where the meet operator u is given by Table 3.2. We denote the successor
of a given label l by l+, whenever this successor is unique. The combined transfer
function tr : J_K → J_K is de�ned as usual with the composition of all individual
transfer functions. Very important to note is that tr admits �x-point as the lattice is
�nite and all individual transfer functions are monotone.

The join operation denotes accumulation of information across control �ow edges;
in this case, predecessor edges. Note that we de�ne operation JOIN using the join
operator over function elements. The semantics of this operation is to apply the
join over abstract values elementwise on the image of the functions according to the
de�nition on Table 3.2. For example {x 7→ clean, y 7→ clean} t {x 7→ tainted} =
{x 7→ clean t tainted , y 7→ clean} = {x 7→ tainted , y 7→ clean}.

l J_K
x = ◦ Jl, l+K = JOIN (l) \ [x 7→ tainted]
• = x Jl, l+K = JOIN (l)

x = ⊗(x1, . . . , xn) Jl, l+K = JOIN (l) \ [x 7→ JOIN)(l)(x1) u . . . u JOIN (l)(xn)]
bra l1, . . . , ln Jl, liK = JOIN (l), 1 ≤ i ≤ n
x = filter Jl, l+K = JOIN (l) \ [x 7→ clean]

validate x, lc, lt Jl, lcK = JOIN (l) \ [x 7→ clean]
Jl, ltK = JOIN (l)

Table 3.3: Data-�ow equations to solve the Tainted Flow Problem.

22 Chapter 3. Tainted Analysis as Data-flow

worklist ← l0
while (not worklist.empty) do
 l ← worklist.pop
 foreach (l+, SUCC(l)) do
 execute 〚 l, l+ 〛
 if (changed l+)
 worklist.insert l+
 done
done

Figure 3.3: Worklist algorithm for data-�ow.

The data-�ow equations illustrated in Table 3.3 can be solved using a chaotic
algorithm [Schwartzbach, 2010]. Consider for instance a bag containing all data-�ow
equations required to solve our problem. We could remove from the bag and apply
one equation at a time. If the solution does not change, select another equation and
continue with the process. However, if the solution changes, we must throw all applied
equations back to the bag in order to be processed again. The algorithm reaches a
�x-point when the bag is empty. We can guarantee that the algorithm stops, because
we are using a �nite lattice. There is another algorithm based on a worklist that can
solve these equations e�ciently.

The worklist data-�ow algorithm is shown in Figure 3.3. The algorithm starts by
initializing a worklist with the �rst instruction, here represented by the label l0 ∈ L.
The algorithm ends when the list becomes empty. In every loop iteration, a label is
removed from the list, and for each of its successors (l+), we calculate their transfer
equation according to Table 3.3. Note that SUCC contain a list of successor labels,
like PRED's contains predecessors. After an equation is applied, we check whenever
the solution has changed for that edge. If it did, we must insert the successor on the
list to be processed later, so that its successors can account this new updates.

Illustrative Example: The right side of Figure 3.4 illustrates the result of the data-
�ow analysis for the program in Figure 3.1 using the worklist algorithm. On the left,
we interrupt the computation before processing the label l7 in order to demonstrate the
worklist algorithm in details. At this point, we process l7 and insert l3 in the list to be
processed again. Later, we remove l3 from the worklist head and execute its respective
data-�ow equation according to Table 3.3. We update its successors edges, (l3, l4) and
(l3, l8), with the new value of x obtained after processing l5, from clean to tainted. We
propagate the tainted value for x after processing l4 and l8. However, after executing
the transfer function Jl5, l6K we notice that the state has not changed, therefore we do
not insert l5 back to the list. In this example, we update twice the paths l3 → l4 → l5
and l3 → l8 → l9 before reaching a �x-point. Note that this example contains a tainted
�ow vulnerability, given by the path l5 → l6 → l7 → l3 → l4, along which it is possible
to feed a tainted value for variable x to a sink function.

3.4. Conclusion 23

Worklist =
 {l0} → {l1} → {l2} → {l3,l9} → {l9,l4,l8} →

 {l4,l8,l9} → {l8,l9,l5} → {l9,l5} → {l5} → {l6} → {l7}

Worklist =
 ••• → {l3} → {l4,l8} → {l8,l5} → {l5,l9} → {l9} → {l9} → {}

l0: v = ○ l1: x = filter

l2: validate(v, l3, l9)

l3: bra l4,l8

l4: ● = x

l5: x = ○l6: v = ×(v)

l7: bra l3

l8: ● = v

l9: bra l9

{v → T}

{v → T, x → C}

{v → C, x → C}

{v → C, x → T}

{v → C, x → C}

{v → C, x → C}

{v → C, x → T}

{v → T, x → C}

{v → C, x → C}

{v → C, x → C}

{v → T, x → C}

l0: v = ○ l1: x = filter

l2: validate(v, l3, l9)

l3: bra l4,l8

l4: ● = x

l5: x = ○l6: v = ×(v)

l7: bra l3

l8: ● = v

l9: bra l9

{v → T}

{v → T, x → C}

{v → C, x → C}

{v → C, x → T}

{v → C, x → T}

{v → C, x → T}

{v → C, x → T}

{v → T, x → C}

{v → C, x → T}

{v → C, x → T}

{v → T, x → T}

{v → C, x → T}

Figure 3.4: Partial (left) and full (right) computation of the data-�ow worklist algo-
rithm for the example in Figure 3.1. In the bottom we show the intermediate worklist
stages for each algorithm iteration.

Complexity: To estimate the worst-case complexity of this analysis, we notice that
if the control-�ow graph of the input program has N nodes and V variables then
we can perform at most 2 × N × V iterations, because we can change our abstract
state at most twice � from undefined to clean to tainted. Each union operation is
O(V), and for each iteration we may have to perform O(N) unions. Thus, our data-
�ow analysis has the standard [Schwartzbach, 2010] complexity O(V 2 × N2). Notice;
however, that it is possible to reduce this complexity by executing the transfer function
in a topological order of the program's dominator tree [Appel and Palsberg, 2002].
The worklist algorithm presented in Figure 3.3 cope with this ordering, because the
instructions are processed before their successors; thus respecting the dominance tree
ordering. In particular, Palsberg [1995]; Ørbæk and Palsberg [1997] give an O(N3)
type-inference algorithm that solves the tainted �ow problem.

3.4 Conclusion

In this chapter we gave a formal de�nition of the tainted �ow problem in terms of
data-�ow equations based on a small language de�nition designed speci�cally to deal
with PHP programs. We gave the semantics of this language in terms of an abstract
state machine. We implemented this approach to serve as a baseline to compare the
analysis that we proposed in this work in Chapter 4.

Chapter 4

Tainted Analysis as Graph
Reachability

In this chapter we describe our solution to the tainted �ow problem. Our approach
is divided into the three parts below. We determine time complexity in terms of the
number of variables (V) in the source program, discussed further in Section 4.4.

1. Convert the input program to the extended static single assignment (e-SSA) form.
The construction of the dominator tree is O(V α(V)), where α is the inverse
Ackerman function [Sundblad, 1971], normally regarded as constant, and the
insertion of φ-functions is O(V 2).

2. Traverse the e-SSA form program collecting use-chains: O(V).

3. Use the algorithm in Figure 4.5 to �nd tainted �ow vulnerabilities: O(V 2).

In Section 4.1 we show the bene�ts of using the e-SSA intermediate representation
and how to augment the Nano-PHP language to include two new instructions added
by this representation: φ- and σ-functions. In Section 4.2 we model the tainted �ow
problem as a graph reachability, and demonstrate how to build the constraint graph.
The SSA form used by the phc makes explicit the e�ect of alias for de�nitions, but
not for variable uses [Chow et al., 1996]. For validators, we must �lter variables and
its aliases that is addressed in Section 4.3. In Section 4.4 we provide an equivalent
algorithm to solve the tainted �ow problem without actually building the graph. We
discuss the complexity in terms of space and time with an illustrative example. We
conclude in Section 4.5.

4.1 e-SSA form is the Linchpin of Fast Tainted
Flow Analysis

We use the extended Static Single Assignment (e-SSA) representation to simplify our
tainted variable analysis. Information about this representation can be found in Sec-
tion 2.1. The e-SSA representation has two advantages:

25

26 Chapter 4. Tainted Analysis as Graph Reachability

1. Bind information to variables.

2. Validate inputs in conditionals.

The �rst advantage of e-SSA is that it is possible to bind information directly
to variables. In data-�ow algorithms, we must associate variables for every program
point turning the analysis dense. Since every variable de�nition is unique in this
representation, a state associated to a variable may persist unmodi�ed during the
whole analysis. In our work we associate information as either tainted, meaning the
variable may contain harmful data, or as clean, which indicates that it is safe to use.
Our analysis is spare because we avoid tracking pairs of variable with states for each
program point. The second advantage is the possibility of acquiring useful information
from the outcome of conditional tests. In our work, we identify function that validates
conditional inputs such as is_numeric and bind information accordingly.

In Section 3.1 we described a language called Nano-PHP to model data-�ow
algorithms. Now we convert a Nano-PHP program to e-SSA form using the following
algorithm:

1. For each instruction i = validate x, lc, lt:

a) replace i by a new instruction validate x, xc, lc, xl, lt, where xc and xl are
fresh variables;

b) rename every use of x dominated by lc to xc. A label l dominates a use of
variable x at label lu if, and only if, every path from the program's entry
point to lu goes across l.

c) rename every use of x dominated by lt to xt;

2. Convert the resulting program into SSA form. For a fast algorithm, see [Appel
and Palsberg, 2002, p.410].

In order to represent Nano-PHP program in e-SSA form, we modify the syntax of
this language in two ways. First, we extend the language with φ-functions according to
SSA standards [Cytron et al., 1989]. A φ-function such as xn = (x1, . . . , xm), placed at
label l has the e�ect of assigning xi, 1 ≤ i ≤ m to xn, depending on which predecessor
of l was last visited before execution reached l. Second, we modify the syntax of
the validator instruction, which become validator (x, xc, lc, xt, lt)

1. Conceptually, the
validator splits the live range of variable x in two parts, depending on whether or not
its abstract value is tainted. Note that when converting a program into e-SSA form,
we rename every use of x in labels dominated by lc to xc, and rename every use of x
in labels dominated by lt to xt. The new instruction has the following semantics:

1Bodik et al. [2000] use special instructions called π-functions to create xc and xt.

4.1. e-SSA form is the Linchpin of Fast Tainted Flow Analysis 27

[S-EssaC]

Σ ` x = clean {lc} ⊆ dom(F) F (lc) = S ′

(Σ, F, validate(x, xc, lc, xt, lt);S)→ (Σ \ [xc 7→ clean], F, S ′)

[S-EssaT]

Σ ` x = tainted {lt} ⊆ dom(F) F (lt) = S ′

(Σ, F, validate(x, xc, lc, xt, lt);S)→ (Σ \ [xt 7→ tainted], F, S ′)

Rule S-EssaC says that after passing a clean variable x through a validator we
can rely on the fact that it will be clean henceforth. Given that every use of x dominated
by lc has been renamed to xc beforehand, we simply continue the program execution
in an environment where xc is bound to clean. Rule S-EssaT does the opposite: if
a validator fails on a variable x, we know that x is tainted; hence, we continue the
program execution in an environment where xt is bound to tainted.

The e-SSA representation allows us to acquire static information from the out-
come of conditionals. Hence, we can associate unique constraints to variables, as Fig-
ure 4.1 illustrates. The original program in Figure 3.4 contains two variables, x and
v. We know that these variables are clean in some program points, but not all. The
e-SSA representation allows us to identify these program points precisely. The modi-
�ed program has �ve variables created after v: {v0, v2, v3, v4, v7}, plus three variables
created after x: {x1, x5, x6}. Let's consider this �rst group of variables. Given that
v0 is produced by source assignment, we know that it is tainted. Variable v2 must be
necessarily clean, as it is produced by the validation of v0. On the other hand, v3 must
be necessarily tainted, for the opposite reason. Variable v7, which results from the
application of an operation � assignment � on a clean variable, is also clean. Finally,
v4, which may be assigned either a clean or a tainted value, is tainted, as this is the
most conservative choice to detect security vulnerabilities.

l0: v0 = ○
l1: x1 = filter
l2: validate(v0, v2, l3, v3, l11)

l3: v4 = Φ(v2, v7)
l4: x5 = Φ(x1, x6)
l5: bra l6,l10

l10: ● = v4

l11: bra l11

l6: ● = x5
l7: x6 = ○
l8: v7 = ×(v4)
l9: bra l3

v0 → tainted
x1 → clean
v2 → clean
v3 → tainted
v4 → clean
x5 → tainted
x6 → tainted
v7 → clean

Figure 4.1: The example of Figure 3.1 converted into e-SSA form.

28 Chapter 4. Tainted Analysis as Graph Reachability

Instruction Example Nodes

v = ◦ $v = $_POST[`id']
v_POST['id']

• = v echo($v)
$v echo

v = ⊗(v1, . . . , vn) $a = $t1 * $t2

$t1

$t2
$a

v = filter $a = stripslashes($t1)
$a

stripslashes

v = φ(v1, . . . , vn) $v = phi($v1, $v2)

$v1

$v2
$v

validate (v, vc, lc, vt, lt) if(is_numeric($i))

$i $i2

$i1 is_num

Table 4.1: Mapping program instructions to nodes in the reachability graph.

4.2 Graph Reachability Model

Given a Nano-PHP program P , we represent it as a graph G, in which each node
nv ∈ G denotes a variable v ∈ P . We build the reachability graph directly from the e-
SSA form Nano-PHP program. Each particular type of instruction produces a speci�c
con�guration of nodes in the reachability graph, as Table 4.1 shows. Roughly, there is
an edge linking nu to nv if information �ows from variable u to v. Notice that, were it
not for �lters and validators, our reachability graph would represent the def-use chains
of the Nano-PHP program [Appel and Palsberg, 2002]. The program from Figure 4.1
gives origin to the disconnected reachability graph in Figure 4.2.

x5 SINK

x1FILTER

x6SOURCE

SOURCE

v2

v3

v0

v4

v7
SINK

SOURCE

VALIDATOR

Figure 4.2: The reachability graph for variable v (left) and x (right) built after the
program in Figure 4.1.

4.3. Addressing Aliasing with HSSA 29

De�nition 2 rephrases the tainted �ow problem as an instance of graph reach-
ability. The traversal of the reachability graph is related to the notion of program
slicing [Weiser, 1981]. Any node u that reaches a node v is part of the program slice
that de�nes the behavior of v.

De�nition 2 The Tainted Flow Problem as Graph Reachability
Instance: a graph G that describes a Nano-PHP program P .
Problem: determine if G contains a path from a source to a sink that does not

cross any sanitizer.

4.3 Addressing Aliasing with HSSA

Aliasing is a phenomenon typical of imperative languages, in which two names reference
the same memory location. Aliasing makes static analyses di�cult, because it requires
the analyzer to understand that updates in the state of a variable may also apply
to other variables. To see the implications of aliasing on tainted �ow analysis, let's
consider the PHP program in Figure 4.3 (Left). Assuming that $_GET is a source and
echo is a sink, then the program is logically bug free. That is, the name $i, which is
used in a sink, has been sanitized as name $j, because both names, $i and $j represent
the same variable. The ordinary e-SSA representation will not catch this subtlety, as
Figure 4.3 shows. There is a clear path from $i0 to the sink that does not go across
any sanitizer.

In order to deal with aliasing we use an augmented �avor of the e-SSA repre-
sentation that we derive from a representation called Hashed Static Single Assignment
(HSSA) form [Chow et al., 1996]. This last program representation is used internally
by phc. For each assignment v = E in a SSA form program, the equivalent HSSA form
program contains an assignment (v, a1, . . . , an) = E, where a1, . . . an are the aliases of
v at the assignment location. Following this strategy, our augmented representation
generates new names for each variable created by sanitizer. The literature contains a

$i0 $j2t

$_GET['var'] !is_clean

filter $j3 $j4

$j1

$j2c

echo

l0: i0 = οl1: j1 &= i0

l2: validate(j1, j2c, l4, j2t, l3)

$i = $_GET['var']

$j =& $i

if (!clean($j)) {

 $j = filter($i);

}

echo($i);

l3: j3 = filter

l5: • = i0

l4: j4 = ϕ(j2c, j3)

Figure 4.3: An example of how aliasing complicates the tainted �ow analysis. In the
right side we show the reachability graph built for the e-SSA form program.

30 Chapter 4. Tainted Analysis as Graph Reachability

plethora of methods to conservatively estimate the set of aliases of a variable. In our
implementation we use the �ow sensitive, interprocedural analysis [Pioli et al., 1999]
that we obtain from phc. Figure 4.4 shows the program and the reachability graph
after augmenting the e-SSA form program in Figure 4.3 with the results of alias anal-
ysis. In the new reachability graph there is no path from a source to a sink that does
not go across a sanitizer. Thus, we can prove that the program is bug-free.

4.4 A Solution Quadratic in Time and Space

The function markTaintedVars, given in Figure 4.5 �nds bugs in e-SSA form Nano-
PHP programs. We will be using SML/NJ's syntax to describe the algorithms, adding
Erlang's guards in pattern matching, as in the auxiliary function hasTaintedChild. This
function simulates a traversal of the reachability graph that we described in Section 4.2,
but it does not really build the graph. Instead, it relies on the use-chains of the variables
to guide the traversal. The use-chain of a variable x is a function USE that maps x to
every instruction where this variable is used.

The markTaintedVars function receives three parameters: a set {i, i1, . . . , in} of
instructions to process, an environment Σ that maps variables to one of the abstract
states clean or tainted, and a set of visited instructions, which we keep to avoid visiting
the same instruction twice. Function markTaintedVars processes each instruction for-
wardly, i.e., an instruction that de�nes a variable x is buggy if any of the instructions
that use x is buggy. We assume that every variable used in a sink function is buggy.
We use the auxiliary function hasTaintedChild to check if any of the instructions in the
use chain of a variable x de�nes a variable that has been set as tainted in the environ-
ment. Notice that neither markTaintedVars nor hasTaintedChild deals with switches
or �lter instructions. These instructions will never de�ne or use tainted variables, and
will never be found by any of these functions.

$i0 $j2t

$_GET['var'] !is_clean

filter

$j3 $j4

$j1

$j2c

l0: i0 = οl1: j1 &= i0

l2: validate(j1, {j2c,i2c}, l4, {j2t,i2t}, l3)

l3: {j3, i3} = filter

l5: • = i4

l4: j4 = ϕ(j2c, j3)
 i4 = ϕ(i2c, i3)

$i2c

$i2t

$i3 $i4

echo

Figure 4.4: (Left) input program in e-SSA form augmented with the results of alias
analyses. (Right) �nal reachability graph.

4.5. Conclusion 31

fun hasTaintedChild _ {. . . , (• = x), . . .} ⇒ true
| hasTaintedChild Σ {. . . , (x = ⊗(. . .)), . . .} ∧ Σ ` x = clean ⇒ true
| hasTaintedChild Σ {. . . , (x = φ(. . .)), . . .} ∧ Σ ` x = clean ⇒ true
| hasTaintedChild Σ {. . . , (validate(_,_,_, x,_)), . . .} ∧ Σ ` x = clean ⇒ true
| hasTaintedChild _ _ ⇒ false

fun markTaintedVars ∅ Σ _ ⇒ Σ
| markTaintedVars {i, i1, . . . , in} Σ V ⇒
let
val V ′ = {i} ∪ V
fun auxiliary v =
let
val N = USE (v) \ V ′

val Σ′ = markTaintedVars ({i1, . . . , in} ∪N) Σ V ′

in
if hasTaintedChild Σ′ USE (v)
then Σ′[v 7→ tainted]
else Σ′

end
in
case i of
• = x→ markTaintedVars {i1, . . . , in} Σ[x 7→ tainted] V ′

x = ◦ → auxiliary x
x = ⊗(. . .)→ auxiliary x
x = φ(. . .)→ auxiliary x
validate x, xc, lc, xt, lt → auxiliary xt

end

Figure 4.5: The algorithm that �nds bugs in Nano-PHP programs.

Complexity: The function markTaintedVars is quadratic in time and space. Because
markTaintedVars keeps the use-chains of every variable, this function uses O(V × I)
space, where V is the number of variables in the input program, and I is the number of
instructions in this program. The function is recursively called at most once per each
program instruction. When the function is called, it might do a linear search on the
use-chain of a variable, inside the function auxiliary. Therefore, this function has time
complexity O(I2).

4.5 Conclusion

In this chapter we augmented the Nano-PHP language designed in Section 3.1 to
cover the two new instructions added by the e-SSA representation: (i) φ-functions;
and (ii) σ-functions for validators. The e-SSA representation is the reason behind our

32 Chapter 4. Tainted Analysis as Graph Reachability

ability to model the tainted �ow problem as graph reachability discussed in Section 6.2.
We showed how to address aliasing in our program representation and provided an
algorithm to solve the tainted �ow problem without actually building the reachability
graph. We determined the algorithm complexity that is quadratic in terms of time and
space; hence improving the data-�ow complexity of O(V 3) to O(V 2), where V is given
by the number of program variables.

Chapter 5

Experiments and Evaluation

We implemented the data-�ow analysis discussed in Section 3 and our e-SSA based
analysis from Chapter 4 on top of the phc open source compiler [Biggar et al., 2009a].
Our e-SSA intermediate representation implementation is now part of this compiler
codebase. We use both implementations to evaluate our solution under two scopes: (i)
e�ciency; and (ii) precision. In Section 5.3, we compare our analysis in terms of time
against the data-�ow approach. We show that our approach is generally more e�cient
than its data-�ow counterpart for larger PHP programs. In Section 5.4, we show that
our tool is able to �nd real security vulnerabilities on well-known PHP programs. Both
approaches, our solution with e-SSA and the data-�ow, have the same precision; hence
they found exactly the same bugs. We describe our experiments set-up in Section 5.1
and the benchmarks used in this work in Section 5.2.

5.1 Set Up

We have con�gured our tool to use sets of sinks, sources and sanitizers to identify
two di�erent attack vectors. Cross-site scripting attacks, which we described in Sec-
tion 2.3.1, and SQL injections, described in Section 2.3.2. We implemented our tool to
be easily extensible to cover other types of bugs, such as unwanted command execution
(Section 2.3.4). We run the experiments shown in this work on a Pentium Core2Duo
2.0Ghz computer with 3Gb of RAM memory running Ubuntu 9.04.

The phc compiler considers each PHP �le as a possible entry point, exactly how
it happens on a web server. Every PHP �le is eligible to be executed as if it is the
main function. The phc compiler does a simple symbolic execution in order to follow
the instructions as they would execute, and only analyzes functions that are reachable
by the program's execution path. To analyze a PHP �le, we enter its directory base
and start the compiler with our analysis embedded. This permit us to resolve includes
relative to the execution path. To increase the ability of phc to resolve include �les
automatically, we transform the include query path into a regular expression and search
the �le system starting from the root directory of the PHP package. We wrote this
feature that it is now available for phc. We could resolve include �les manually, but
the enormous amount of PHP �les considered make this approach prohibitive.

33

34 Chapter 5. Experiments and Evaluation

5.2 Benchmarks

We have run our analysis on 32 publicly available PHP applications. All selected
benchmarks were content management systems (CMS) that contains user interaction
via the web page and extensive database connection and access. We tried to use as
many benchmarks seen in previous works as possible [Jovanovic et al., 2006a,b; Xie
and Aiken, 2006]. We installed these CMS on the target machine to simulate an actual
con�guration on a production server.

Out of the 20,900 PHP �les considered in our evaluation, our tool was able
to process 13,297 (63.6%). The Table 5.1 summarizes the problems that hinder us
to perform our analysis on the remaining 7,603 �les (36.4%). These failures occur
before we get the chance to run our tainted �ow analysis. The �rst two columns
describe the benchmark with their respective versions used in this work. The following
two columns indicate parsing and internal failures on the compiler. The �fth column
shows the number of failures due to insu�cient memory. Columns six and seven show
missing functions and missing classes respectively and a count of how many of them
had unresolved includes. The eighth column shows the number of missing features
not supported by the compiler. The ninth column sums the total failures with their
respective failures rate per benchmark.

CMS Version Parse Int. Mem. Funct.(Incl.) Class(Incl.) Feat. Total(%)

Wordpress 2.9.2 71 2 1 70(4) 62(34) 0 206(73.6%)
Drupal 6.16 0 0 0 14(0) 0(0) 5 19(30.2%)
Joomla 1.5.17 0 0 6 3(0) 420(74) 0 429(40.6%)

Frog CMS 0.9.5 0 0 0 24(0) 46(3) 4 74(58.3%)
SilverStripe 2.3.7 0 2 2 0(0) 449(15) 5 458(92.0%)

Mambo 4.6.5 6 0 3 16(5) 66(25) 0 91(19.8%)
TYPOlight 2.8.3 0 1 5 2(1) 306(28) 5 319(55.9%)
Concrete5 5.4.0.5 0 0 3 377(11) 471(196) 42 893(88.9%)

Textpattern 4.2.0 2 0 5 1(0) 15(7) 0 23(30.3%)
Symphony 2.0.7 0 1 0 3(0) 69(28) 45 118(77.1%)

MODx CMS 1.0.3 4 19 23 14(0) 24(11) 7 91(20.6%)
CMS Made Simple 1.7.1 1 0 103 68(29) 184(34) 0 356(38.8%)

ImpressCMS 1.2.1 0 1 56 14(2) 448(278) 18 537(49.8%)
Exponent CMS 0.97 127 1 2 75(56) 95(62) 8 308(8.9%)

Mia CMS 4.9.0 14 0 3 16(5) 65(19) 0 98(19.6%)
Jojo CMS 1.0rc2 0 2 3 18(1) 358(88) 6 387(63.6%)
Elxis CMS 2009.1 hecate 34 0 11 12(3) 635(38) 1 693(41.5%)

Chyrp 2.0 1 20 0 3(0) 31(3) 3 58(68.2%)
DCP Portal 7.0beta 3 0 3 22(2) 106(23) 1 135(25.2%)

Dragon Fly CMS 9.2.1 0 0 2 5(4) 15(8) 0 22(7.7%)
MemHT Portal 4.0.1 0 1 62 63(23) 36(4) 2 164(46.3%)

Pligg 1.0.4 2 0 3 103(73) 30(17) 1 139(39.6%)
RunCMS 2.1 4 0 5 15(1) 334(216) 0 358(49.3%)

SPIP 2.1.0 3 0 3 9(0) 14(12) 0 29(4.0%)
TangoCMS 2.5.3 0 1 0 1(0) 285(6) 6 293(84.9%)

WebsiteBaker 2.8.1 5 0 22 1(1) 17(4) 120 165(29.4%)
Xoops 2.4.4 1 0 2 9(2) 432(152) 5 449(45.5%)
sNews 1.7 0 0 0 0(0) 2(0) 0 2(66.7%)

PostNuke 0.764 1 1 42 55(5) 103(29) 1 203(21.0%)
Zikula 1.2.3 0 0 2 39(3) 167(29) 0 208(28.4%)

PHP Fusion 7.0 0 0 3 6(0) 84(84) 0 93(18.3%)
e107 0.7.20 0 1 15 165(162) 3(2) 1 185(24.6%)

Total - 279 53 390 1223(393) 5372(1529) 286 7603(36.4%)

Table 5.1: List of PHP failure reasons for 32 benchmarks.

5.3. Efficiency 35

We can see in Table 5.1 that we were unable to process 7,603 PHP �les. This
accounts for 36.4% of all �les considered in our evaluation, a relative high number. From
this, the most failures were caused by missing functions and classes: 6,595 (86.7% of the
total failures). Even if we resolve all the include �les we would still fail on 4,673 PHP
�les (61.5% of the total failures), possibly because these �les should not be reachable
directly, but through an inclusion. However, resolving this includes statically would
lead to a higher number of instructions to analyze, possibly failing later due to memory
restrictions because of phc's expensive whole-program analysis [Biggar et al., 2009a].
Therefore, we are limited to execute our analysis only on small PHP �les. Nevertheless,
the compiler was able to process a signi�cant fraction of �les and to report previously
unknown bugs when augmented with our analysis.

5.3 E�ciency

In order to show the e�ciency of our application, we selected PHP �les containing more
than 100 instructions. We striped the phc optimizer from its dead code elimination pass
in order to obtain even larger programs. We found 1,122 �les matching this criterion
along 30 benchmarks. The SilverStripe and Concrete5 had no candidates. We set both
the data-�ow and our solution with e-SSA to run 10 times for each of these �les, and
we collect average times for them. For our analysis, we calculated the average time to
build the intermediate representation (e-SSA) and to run our tainted �ow analysis.

Figure 5.1: Average execution time for each benchmark in milliseconds for the data-�ow
analysis and our solution with e-SSA � split into build the IR and run the analysis).

36 Chapter 5. Experiments and Evaluation

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
68.75% 57.14% 38.10% 31.25% 28.70% 26.00% 23.69% 21.40% 20.21% 18.98%
97.32% 97.32% 98.21% 98.66% 98.75% 98.81% 98.98% 99.11% 99.21% 99.23%

Table 5.2: From the 1,122 PHP �les selected, we group larger �les in rates ranging from
10% to 100% (Line 1). We compared the rate gain of our approach versus data-�ow
analysis (Line 2) and our approach gain without the time to build the IR (Line 3).

In Figure 5.1 we show the average execution time for our analysis, divided into
building the IR and running the tainted �ow analysis against the data-�ow approach.
Note that we are not considering the time consumed by the phc to perform its whole-
program analysis. It is possible to observe that our approach has executed faster in
13 (43.34%) of the total benchmarks used. If we do not take the time to build the
IR into consideration, our approach is only slower than the data-�ow on the Joomla
benchmark. If we implement the conversion to the e-SSA intermediate representation
more e�ciently [Cooper et al., 2001], we may achieve further improvements.

The largest function that we have analyzed contains 1,141 basic blocks � a small
size to stress the run-time of both solutions. Neither analyzed �le surpassed the thresh-
old of 1.5s � a very low limit. However, it is possible to observe that our approach has
stayed beneath 800ms, while two benchmarks using data-�ow almost reached 1.4s. We
speculate that once we cross the boundaries of functions, and start analyzing whole
PHP applications, which might contain thousands of functions, and millions of lines
of code, our analysis will be much more e�cient than the data-�ow approach. Our
base compiler, phc, does not give us enough infra-structure to perform whole program
analyses yet, but its developing community is working to overcome this limitation.

From the 1,122 PHP �les selected with more than 100 instructions, we organized
in Table 5.2 the largest �les ranging from 10% to 100% in order to show how fast our
analysis was compared to data-�ow analysis. For instance, for the 10% largest �les, our
analysis with e-SSA was faster than data-�ow almost 70% of times. As we increase the
number of �les, the average number of instructions per �le decreases; thus decreasing
the rate gain of our approach. We speculate that expressive gains could be achieved by
processing larger �les that could amortize the time to convert the program to e-SSA. If
we desconsider the time to build the IR, our approach consistently surpasses data-�ow
analysis as shown in line 3 of Table 5.2. This con�rms the low cost of our analysis.

5.4 Precision

Both our e-SSA based analysis and the data-�ow analysis have reported 63 warning
messages across 25 distinct PHP �les. Table 5.3 details these numbers for the subjects
that contain con�rmed vulnerabilities. Manual inspection of each of these warnings re-
vealed actual vulnerabilities in 36 of these reports; around 45% false positive ratio. We
used this list of bugs to perform malicious injections of html code containing JavaScript.
We submitted all these vulnerabilities to the bugtraq1. We show the original advisory
sent with detailed information about the bugs found in Appendix B.

1http://www.securityfocus.com/

5.4. Precision 37

subject version
�les warnings

total processed
a�ected TP FP

LOC / # # LOC /

MODx 1.0.3 472 231 308 228 3 1 1
Exponent CMS 0.97 3456 42 2833 32 3 28 11
DCP Portal 7.0beta 535 97 392 61 7 5 11

Pligg 1.0.4 380 146 179 154 3 1 0
RunCMS 2.1 737 134 361 86 2 1 6
avg. - - - - - 3.6 7.2 5.8

Table 5.3: Experimental results of subjects with true alarms.

Table 5.3 details these numbers for the subjects that contain con�rmed vulner-
abilities. Column subject and version list the vulnerable benchmark. Column total
(�les) shows the total number of �les in the programs, column processed shows the
total number of these �les that phc was able to process, and column a�ected shows the
number of �les involved in warning reports � for the purpose of inspection it is prefer-
able to have the warnings con�ned in a small set of �les. Average LOCs (commented
lines of code) per PHP �le are given by columns total and processed. Column TP: true
positive, (respectively, FP: false-positive) shows the number of con�rmed (respectively,
spurious) vulnerabilities. False positives arise due to several reasons including: the
imprecision of phc's analysis, our intraprocedural analysis, and the logical infeasibility
of some program paths, which static analysis typically fail to identify. Some of our
test applications use third party software. In particular, Exponent CMS and RunCMS
employed the same spell checking module � a library responsible for six false-positives
in each of these two benchmarks. Moreover, the 28 bugs reported for Exponent CMS
were produced by the output of the same tainted variable in di�erent points of the
same program. These are all di�erent, yet similar bugs.

l4: database_collation4 = ol5: output5 = ⊕(database_collation4)

l9: output9 = ⊗()

lϕ: outputϕ = ϕ(output5, output14) l17: • = outputϕ

l3: bra l9, lϕ

$database_collation4

$_POST['...']

echo$output5

$outputϕ

l3: bra l11, l3

l11: select11 = ⊗(database_collation4)

l12: output12 = ⊗(select11)l14: output14 = ⊗()

Figure 5.2: (Left) the Nano-PHP representation of the program in Figure 5.2 � we
show only the highlighted lines. (Right) The reachability graph.

38 Chapter 5. Experiments and Evaluation

5.5 An example of a real-world bug

In order to illustrate our analysis, we will show an actual bug that our implementation
found in the content management system MODx CMS version 1.0.3. We have reported
this bug to the developers2, and the bug has been �xed since. In this example we use
the PHP program of Figure 5.3, which was publicly available on May, 2010.

One of the steps of the installation process lets the user choose a database col-
lation from a small suite of options. Users specify this database via three param-
eters: host, uid and pwd. Users also specify their choice for a collation system
via a string, which the PHP program stores in the variable database_collation.
The PHP �le queries a database, using this variable as a key. However, in case
the parameters host, uid or pwd do not determine a valid database, the module
receives a single collation option from a variable originated from a post request,
i.e., a form. This form contains a string, which is never sanitized inside the pro-
gram in Figure 5.3. The string in database_collation is printed in the output,
as we can see in Line 17 of Figure 5.3. Therefore, in order to print a malicious
script in the user's webpage, we can choose an invalid host for the database, and
write the script code directly in the form that feeds database_collation. For in-
stance, we can steal cookies from the user's browsing environment with the string

2http://www.securityfocus.com/bid/41454

<?php
$host = $_POST['host'];
$uid = $_POST['uid'];
$pwd = $_POST['pwd'];
$database_collation = $_POST['database_collation'];
$output = '<select id="database_collation" name="database_collation">
<option value="'.$database_collation.'" selected >'
 .$database_collation.'</option></select>';
if ($conn = @ mysql_connect($host, $uid, $pwd)) {
 // get collation
 $getCol = mysql_query("SHOW COLLATION");
 if (@mysql_num_rows($getCol) > 0) {
 $output = '<select id="database_collationse_collation"
 name="database_collation">';
 while ($row = mysql_fetch_row($getCol)) {
 $selected = ($row[0]==$database_collation ? ' selected' : '');
 $output .= '<option value="'.$row[0].'"'.$selected.'>'.$row[0].
 '</option>';
 }
 $output .= '</select>';
 }
}
echo $output;
?>

1
2
3
4
5

6

7
8
9

10
11
12

13
14
15
16
17

Figure 5.3: An installation �le used by MODx CMS version 1.0.3. This �le contains a
XSS vulnerability, which we have highlighted in boldface.

5.6. Conclusion 39

�</option></select><script>window.alert(document.cookie);</script>". Our
analysis can easily �nd this vulnerability, as we illustrate in Figure 5.2. The reacha-
bility graph that we build for the example program contains a path from the variable
database_collation, which is initialized from a source, to the function echo, which
we qualify as a sink.

5.6 Conclusion

We did an evaluation of the tainted �ow analysis with the approach proposed by this
work using e-SSA against the data-�ow solution. We selected 32 open source PHP
CMS benchmarks to conduct both analyses on them. We have used two criteria in
our evaluation: (i) the precision of our analysis; and (ii) the e�ciency our of analysis
compared to data-�ow based approaches. Both approaches have the same precision,
and both were able to �nd the same bugs: 36 vulnerabilities across 5 di�erent CMS
systems. We explained in details one of these bugs, demonstrating how the tainted
values �ows from the source to the sanitizer without proper sanitization. We have
also discussed the e�ciency of our analysis. In large �les, our solution with e-SSA has
constantly improved the time to run the tainted �ow analysis.

Chapter 6

Related Works

In this chapter we review works that are related to ours. We have organized them into
two sections. On the �rst, we review the broad area of web applications security by
giving an historic overview of it. Then, we focus on the tainted �ow analysis that our
work is based on, and compare our analysis with other security approaches towards
improving overall web security in Section 6.1.1. On the last section of this chapter, we
discuss works that modeled other problems using a graph reachability approach.

6.1 Web Applications Security

The World Wide Web (WWW) was conceived by Tim Berners-Lee in 1990 to exchange
hypertext data between a web server and a web browser. The communication is typi-
cally initiated when a browser requests a web page located on the server through the
HTTP1 protocol. The web server identi�es the requested page and responds using
the same protocol. Initially, web servers were only capable of serving static contents
- physical �les located on the �le system. Therefore, there was no user interaction
besides the requesting of the page. To add dynamism to the web, a server extension
called Common Gateway Interface2 (CGI) was created to delegate the page generation
capability to a command-line application. This application, often called CGI script, is
now capable of processing user input that is carried along the request. CGI scripts are
commonly used to process web forms. However, security measures are necessary when
handling user data.

Perl3 has gained popularity as a language for writing CGI scripts. Perl is an
imperative dynamic-typed scripting language that is executed by an interpreter. As
it happens with other languages, Perl provides critical operations that can be abused
by attackers when no security enforcements are employed by the programmers. Puppy
[1999] provides a list with several attack venues for Perl scripts. When executed as
a CGI scripts, these programs can be exploited by attackers to take control over the

1HTTP: Hypertext Transfer Protocol
2CGI RFC: http://tools.ietf.org/html/rfc3875
3http://www.perl.org

41

42 Chapter 6. Related Works

a�ected web server. Perl has a security mechanism called tainted mode4 that can be
used to prevent attacks from succeeding. When enabled, Perl is executed in a special
mode that tracks program inputs across the program execution, marking as tainted
dangerous character often used to exploit security �aws. If a value marked as tainted
reaches a sensitive operation, Perl blocks that script; thus preventing it from harming
the system. However, the tainted mode adds overhead to the program execution and
to the web server. The most e�ective way to prevent such attacks is to identify bugs in
advance and �x them. Our approach tackles the latter, �nding bugs in source programs
so that vendors can provide patches for the security vulnerabilities encountered.

Nowadays, languages such as PHP, ASP, and JSP are directly embedded in web
servers through server-integrated modules. Nevertheless, web vulnerabilities in these
languages a�ect the web server in the same way as CGI scripts. In this work we pro-
posed an e�cient technique to identify security vulnerabilities described in Chapter 4.
Although we focused our e�orts in �nding bugs in PHP programs, our technique is
general enough to handle other languages. We have modeled our solution to �t the
tainted �ow problem framework discussed in Chapter 3 and we review other works that
handle web applications security in Section 6.1.1.

6.1.1 Tainted Flow Analysis

The foundations of the tainted �ow analysis were covered in Section 2.3. In this section,
we review other works that have used this model and compare to other techniques
that provide security to web applications. It is possible to organize di�erent security
approaches into three categories, as listed below:

• Whitebox vs. Blackbox Testing

• Server-side vs. Client-side Protection

• Static vs. Dynamic Analysis

Whitebox and blackbox are test design methods. Whitebox takes advantage of
the knowledge of the programs internal structure; thus requiring the original source
code to be available. In the other hand, blackbox techniques can test a program
without the actual source code, by stressing its inputs and observing its consequences
in order to spot problems [Godefroid et al., 2005]. Other security enforcements can
be provided according to client or server perspectives. The client-side perspective
focuses on prevention mechanism on the client browser [Vogt, 2006], while server-side
techniques provide security to web server. We can also perform our analysis statically
or dynamically. Dynamic analysis relies on the executed program behavior, while
static analysis tries to determine the program behavior without actually executing
the software. It is important to highlight that the analysis proposed by this work in
Chapter 4 is a whitebox, server-side static analysis to �nd security vulnerabilities in
PHP programs.

4http://perldoc.perl.org/perlsec.html#Taint-mode

6.1. Web Applications Security 43

The tainted �ow problem is well known in the literature [Jovanovic et al.,
2006a; Pistoia et al., 2005; Wassermann and Su, 2007; Xie and Aiken, 2006]. Web-
SSARI [Huang et al., 2004] is possibly the �rst tool to address the tainted �ow problem
in the context of web application vulnerabilities. It uses an intraprocedural analysis
based on user-speci�ed entries to �nd tainted variable attacks on PHP programs. How-
ever, incomplete or malformed speci�cations may lead to both false positives and false
negatives. Also, many PHP �les were not processed because of problems in their
parser. Their analysis is in fact a hybrid analysis, whereas they insert run-time guards
at critical points in the program that can prevent attacks from succeeding.

Static analysis has been used in another problem domain, to verify html con-
formance [Brabrand et al., 2001] generated by dynamic web pages. Christensen et al.
[2003] provided a string analysis that is capable of modeling every string operation
on Java programs using a regular language. Minamide [2005] coped with the same
problem, but for PHP programs. Unfortunately, string operations on PHP programs
cannot be modeled by a regular language; hence requiring a more expressive language.
Therefore, Minamide [2005] modeled its string analysis with context-free grammars. Su
and Wassermann [2006] borrowed his technique to verify that no tainted values �ow to
SQL queries in Java programs, while Wassermann and Su [2007] did the same for PHP
programs. Later, Wassermann and Su [2008] extended their analysis to �nd cross-site
scripting as well. Their approach di�ers from ours because it resorts to a string analysis
instead of a data-�ow analysis. Hence, it is more precise, yet more expensive.

Another strategy to solve the tainted �ow problem was proposed by Xie and
Aiken [2006] who use a three-tier architecture. Using symbolic execution [King, 1976]
it writes block summaries in the basic block level that is later consumed by the in-
traprocedural analysis. The intraprocedural analysis writes function summaries to be
used by the interprocedural analysis; thus making a clear separation between several
layers of the analysis. While our analysis has conditional validators powered by the e-
SSA representation, their approach tries to infer new functions as validators. However,
a direct comparison between their strategy and ours is not possible, because their tool
is not publicly available. We can only speculated that, by using symbolic execution,
their analysis is more expensive than ours, although possibly more precise.

However, there are publicly available tools that perform tainted variable analy-
sis. One of them is MARCO [Pistoia et al., 2005], a Java bytecode analyzer. Another
is Pixy [Jovanovic et al., 2006a], a PHP analyzer. MARCO relies on program slic-
ing [Weiser, 1981] to �nd the set of tainted variables, whereas Pixy uses a monotone
framework that associates to each variable, at each program point, a boolean state
that de�nes if the variable is tainted or clean. Neither tool takes the results of condi-
tional tests into consideration; hence, both are path insensitive � a problem that our
intermediate representation permits us to circumvent.

The Pixy tool improves on tainted �ow analysis problems because of its embedded
alias analysis [Jovanovic et al., 2006b]. They acknowledge that the alias analysis for
type-safe languages is unsuitable for PHP and precision can only be achieved with a
powerful alias analysis. We solve this issue by using the alias analysis provided by
the phc compiler, which uses an interprocedural analysis [Pioli et al., 1999]. We have
implemented Pixy's data-�ow analysis in phc in order to compare with our technique

44 Chapter 6. Related Works

using e-SSA. Data-�ow has been widely used, including on the same problem domain.
The ASPCW tool provides a data-�ow analysis combined with type-inference to �nd
XSS and SQL injectionvulnerabilities in ASP programs [Zhang and Wang, 2010]. We
relyed on phc's type-inference algorithm as well to decrease the number of false positives
in our analysis, as we show in Chapter 5.

Other works improved their bug �nding analysis by providing an e�cient inter-
procedural context-sensitive analysis. Nanda and Sinha [2009] tackles the problem of
�nding null dereference, a common problem in Java programs, by providing an accurate
interprocedural analysis. Livshits and Lam [2005] �nd security vulnerabilities in Java
programs using an e�cient context-sensitive representation [Whaley and Lam, 2004],
while Bond et al. [2010] did the same using another context representation [Bond and
McKinley, 2007]. Tripp et al. [2009] created an industrial-strength tool called TAJ
that scales to analyze larger programs in Java. Other works improved on the precision
of their tool, using a more accurate analysis. Cadar et al. [2008] created a tool that
symbolic executes LLVM intermediate code, while Fu and Qian [2008] applied symbolic
execution to �nd SQL injection in Java programs. However, neither of these techniques
is suitable to scripting languages that are di�cult to static analyze.

6.2 Graph Reachability

Data-�ow analyses are old allies of compiler designers [Kam and Ullman, 1976]. The
�rst in�uential work to see data-�ow analysis as a graph reachability problem was
introduced by Reps et al. [1995]. The mapping adopted by Reps et al. [1995] deals
with general programs, whereas we use programs in e-SSA form. A disadvantage of
the previous approach was the size of the graph that it produces: the number of nodes
in the graph is O(V × B), where V is the number of variables and B is the number
of basic blocks in the source program. We avoid this growth, because the e-SSA form
tends to increase linearly on the number of variables in the source program, and our
graph contains O(V) nodes.

Scholz et al. [2008] have also mapped a �ow problem, the user-input dependence
analysis [Snelting et al., 2006] to an instance of graph reachability. Scholz et al. are
interested in �nding which program variables might be in�uenced by input data. Con-
trary to our approach, Scholz et al. use a program representation called Augmented
Static Single Assignment (a-SSA) form. The a-SSA form provides information not
present in e-SSA form, because it determines which control structures in�uence pro-
gram data. That is, in the program a := read(); c := (a > 0) ? b[0] : 0;

the value of a in�uences the value of c, even though these two variables are not related
in e-SSA form. However the user-input dependence analysis does not take sanitizers,
e.g., validators, into consideration. Thus, Scholz et al.'s a-SSA cannot use information
learnt from the outcome of conditionals to bind constraints to variables.

6.3. Conclusion 45

6.3 Conclusion

In this chapter we discussed related works that covered security in web applications.
We compared our approach with several others found in the literature. Then we focused
on the tainted �ow analysis covering works that �nd security vulnerabilities in PHP
applications. We also covered works that solve �ow analyses using a reachability graph
approach.

Chapter 7

Conclusion

This dissertation has presented a new static analysis technique to identify security
vulnerabilities related to tainted variable attacks in PHP programs. We model the
tainted �ow problem as an instance of a graph reachability that was only possible due to
the intermediate program representation called e-SSA [Bodik et al., 2000]. In addition,
this representation allowed us to bind tainting information directly to variables avoiding
the need to track pairs of variables and programs points; thus making our analysis
sparse. Moreover, the e-SSA representation facilitates our analysis to be path-sensitive,
because we can take into consideration the outcome of conditional validators.

To evaluate the solution proposed in this work, we decided to implement an
iterative data-�ow algorithm to cope with the tainted �ow problem that has already
been addressed in the literature by Pixy [Jovanovic et al., 2006b]. Although data-
�ow algorithms are not a new concept, the formal model provided in Chapter 3 is a
contribution of our work. We have designed a small language subset called Nano-PHP
with its operational semantics included. We gave the algorithm in terms of data-�ow
equations that are used to solve the tainted �ow problem.

We have implemented both approaches on top of phc, an open source PHP
compiler. Although Pixy is also an open source tool, we decided to re-implement its
data-�ow algorithm using the same infra-structure in order to perform a more con-
trollable evaluation. We have assessed our solution under two scopes: precision and
e�ciency. Our tool is precise, because it was able to �nd real security vulnerabilities in
well-known web applications. We have reported the bugs that we found to the main-
tainers of the a�ected applications, and some of these developers have acknowledged
and �xed the vulnerabilities. Our tool is more precise than Pixy's [Jovanovic et al.,
2006b], because our analysis is path-sensitive, but we did not improve the precision
compared to other works [Xie and Aiken, 2006; Wassermann and Su, 2007]. It is im-
portant to note that our analysis with e-SSA and data-�ow are similar in precision;
therefore they found exactly the same vulnerabilities. Our analysis is e�cient, because
it is equivalent to a graph reachability problem, which we have been able to code as a
non-iterative data-�ow algorithm. In our experiments, we show that our solution with
e-SSA tends to become faster than its data-�ow counterpart when processing larger
PHP �les. Our implementation is currently available for the phc compiler, and can be
found at http://homepages.dcc.ufmg.br/~rimsa/.

47

48 Chapter 7. Conclusion

7.1 Limitations

We decided to perform our tainted �ow analysis for PHP programs because its is a
widespread language to write web applications. Unfortunately, this language presents
unique challenges to static analyzers. To avoid the herculean task of modeling the
whole language semantics, we decided to rely on a compiler infra-structure that already
performs many useful analyses. We choose the phc compiler [Biggar et al., 2009a] for
our purposes. Unfortunately, our analysis is conditioned to the same limitations of the
compiler [Biggar et al., 2009a, p.9]. Unsupported or missing features a�ect our pass
directly, specially in two of PHP most complicated features to analyze statically: (i)
run-time code inclusion; and (ii) run-time code evaluation. These two functionalities
can be abused by attackers to gain access to a running system. The phc compiler copes
with such features by resolving their values at compile-time, if they can be inferred
statically. Otherwise, the analyzer is forced to abort due to an incomplete view of the
whole program [Biggar et al., 2009a]. Once resolved, the original instruction include or
evaluate is replaced with the correspondent PHP code, leaving us crippled to analyze
the original call in search for tainted attacks. Nevertheless, if we could cope with these
limitations, these two security vulnerabilities could �t the tainted �ow problem and
enjoy the bene�ts of our tainted �ow analysis (Chapter 4).

7.2 Future Works

As future works, we would like to transform our analysis from intra- to inter-procedural,
to become more precise, and hence report fewer false positives. To achieve this goal,
we must modify phc whole program analysis to convert the program into SSA (and
in e-SSA) on demand, as described in [Biggar and Gregg, 2009, p.63]. The conver-
sion must run alongside other client analysis, such as alias-analysis and type-inference.
However, we must overcome phc scalability issues concerning memory management
before attempting to modify our analysis to surpass the function boundaries. The
inter-procedural analysis can only be bene�cial if we can process larger �les, which
unfortunately we still cannot with phc. We could modify the compiler points-to anal-
ysis to a more e�cient context-sensitive analysis by using the bddbddb [Whaley and
Lam, 2004] technique or the probabilistic calling contexts [Bond and McKinley, 2007].
Nevertheless, our algorithm is general enough to handle tainted variable attacks in
di�erent programming languages and in di�erent application domains.

Bibliography

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley.

Ananian, S. (1999). The static single information form. Master's thesis, MIT.

Appel, A. W. and George, L. (2001). Optimal spilling for CISC machines with few
registers. In PLDI, pages 243�253. ACM.

Appel, A. W. and Palsberg, J. (2002). Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition.

Benda, J., Matousek, T., and Prosek, L. (2006). Phalanger: Compiling and running
PHP applications on the microsoft .net platform. In .NET Technologies 2006, pages
31--38.

Biggar, P., de Vries, E., and Gregg, D. (2009a). A practical solution for scripting
language compilers. In SAC, pages 1916�1923. ACM.

Biggar, P., de Vries, E., and Gregg, D. (2009b). A practical solution for scripting
language compilers. In SAC '09: Proceedings of the 2009 ACM symposium on Applied
Computing, pages 1916--1923, New York, NY, USA. ACM.

Biggar, P. and Gregg, D. (2009). Static analysis of dynamic scripting languages. Paper
Draft.

Bodik, R., Gupta, R., and Sarkar, V. (2000). ABCD: eliminating array bounds checks
on demand. In PLDI, pages 321�333. ACM.

Boissinot, B., Brisk, P., Darte, A., and Rastello, F. (2009). SSI properties revisited.
Technical Report 00404236, LIP Research Report.

Bond, M. D., Baker, G. Z., and Guyer, S. Z. (2010). Breadcrumbs: E�cient context
sensitivity for dynamic bug detection analyses. SIGPLAN Not., 45(6):13--24.

Bond, M. D. and McKinley, K. S. (2007). Probabilistic calling context. In Proceed-
ings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA '07, pages 97--112, New York, NY, USA. ACM.

49

50 Bibliography

Brabrand, C., Møller, A., and Schwartzbach, M. I. (2001). Static validation of dynam-
ically generated HTML. In Proc. ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE '01, pages 221--231.

Brisk, P. (2006). Advances in Static Single Assignment Form and Register Allocation.
PhD thesis, UCLA - University of California, Los Angeles.

Budimlic, Z., Cooper, K. D., Harvey, T. J., Kennedy, K., Oberg, T. S., and Reeves,
S. W. (2002). Fast copy coalescing and live-range identi�cation. In PLDI, pages
25�32. ACM.

Cadar, C., Dunbar, D., and Engler, D. (2008). Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In Proceedings of the
8th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 209--224. USENIX Association.

Chow, F. C., Chan, S., Liu, S.-M., Lo, R., and Streich, M. (1996). E�ective represen-
tation of aliases and indirect memory operations in ssa form. In CC, pages 253--267.
Springer.

Christensen, A. S., Møller, A., and Schwartzbach, M. I. (2003). Precise analysis of
string expressions. In SAS'03: Proceedings of the 10th international conference on
Static analysis, pages 1--18, Berlin, Heidelberg. Springer-Verlag.

Chugh, R., Meister, J. A., Jhala, R., and Lerner, S. (2009). Staged information �ow
for javascript. In PLDI, pages 50--62. ACM.

Cooper, K. D., Harvey, T. J., and Kennedy, K. (2001). A simple, fast dominance
algorithm. Submitted to Software�Practice and Experience.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1989). An
e�cient method of computing static single assignment form. In POPL, pages 25�35.

de Vries, E. and Gilbert, J. (2007). Design and implementation of a PHP compiler
front-end. Technical Report TR-2007-47, Dept. of Computer Science, Trinity College
Dublin.

Fu, X. and Qian, K. (2008). Safeli: Sql injection scanner using symbolic execution.
In Proceedings of the 2008 workshop on Testing, analysis, and veri�cation of web
services and applications, TAV-WEB '08, pages 34--39, New York, NY, USA. ACM.

Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart: directed automated random
testing. In PLDI '05: Proceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 213--223, New York, NY, USA.
ACM.

Hack, S. (2005). Interference graphs of programs in SSA-form. Technical Report ISSN
1432-7864, Universitat Karlsruhe.

Bibliography 51

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo, S.-Y. (2004).
Securing web application code by static analysis and runtime protection. In WWW
'04: Proceedings of the 13th international conference on World Wide Web, pages
40--52, New York, NY, USA. ACM.

Jovanovic, N., Kruegel, C., and Kirda, E. (2006a). Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In S&P, pages 258--263.
IEEE.

Jovanovic, N., Kruegel, C., and Kirda, E. (2006b). Precise alias analysis for static
detection of web application vulnerabilities. In PLAS, pages 27--36. ACM.

Kam, J. B. and Ullman, J. D. (1976). Global data �ow analysis and iterative algorithms.
Journal of the ACM, 23(1):158--171.

King, J. C. (1976). Symbolic execution and program testing. Commun. ACM,
19(7):385--394.

Lengauer, T. and Tarjan, R. E. (1979). A fast algorithm for �nding dominators in a
�owgraph. ACM Trans. Program. Lang. Syst., 1(1):121--141.

Livshits, V. B. and Lam, M. S. (2005). Finding security vulnerabilities in java applica-
tions with static analysis. In Proceedings of the 14th conference on USENIX Security
Symposium - Volume 14, pages 18--18, Berkeley, CA, USA. USENIX Association.

Minamide, Y. (2005). Static approximation of dynamically generated web pages. In
WWW, pages 432--441. ACM.

Nanda, M. G. and Sinha, S. (2009). Accurate interprocedural null-dereference analysis
for java. In Proceedings of the 31st International Conference on Software Engineering,
ICSE '09, pages 133--143, Washington, DC, USA. IEEE Computer Society.

Ørbæk, P. and Palsberg, J. (1997). Trust in the λ-calculus. Journal of Functional
Programming, 7(6):557--591.

Palsberg, J. (1995). E�cient inference of object types. Inf. Comput., 123(2):198--209.

Pereira, F. M. Q. and Palsberg, J. (2005). Register allocation via coloring of chordal
graphs. In APLAS, pages 315�329. Springer.

PHP (2010). Zend engine: PHP interpreter. http://www.zend.com.

Pioli, A., Burke, M., and Hind, M. (1999). Conditional pointer aliasing and constant
propagation. Technical Report 99-102, SUNY at New Paltz.

Pistoia, M., Flynn, R., Koved, L., and Sreedhar, V. (2005). Interprocedural analysis
for privileged code placement and tainted variable detection. In ECOOP, pages
362--386.

Puppy, R. F. (1999). Perl cgi problems. http://www.phrack.org/issues.php?issue=
55&id=7#article.

http://www.phrack.org/issues.php?issue=55&id=7#article
http://www.phrack.org/issues.php?issue=55&id=7#article

52 Bibliography

Quercus (2010). Quercus: PHP in Java. http://quercus.caucho.com.

Raven (2010). Roadsend PHP: Raven (rphp). http://code.roadsend.com/rphp.

Reps, T., Horwitz, S., and Sagiv, M. (1995). Precise interprocedural data�ow analysis
via graph reachability. In POPL, pages 49--61. ACM.

Roadsend (2010). Roadsend PHP. http://www.roadsend.com.

Scholz, B., Zhang, C., and Cifuentes, C. (2008). User-input dependence analysis via
graph reachability. Technical report, Sun Microsystems, Inc.

Schwartzbach, M. I. (2010). Lecture notes on static analysis. http://www.brics.dk/
~mis/static/.

Singer, J. (2006). Static Program Analysis Based on Virtual Register Renaming. PhD
thesis, University of Cambridge.

Snelting, G., Robschink, T., and Krinke, J. (2006). E�cient path conditions in depen-
dence graphs for software safety analysis. TOSEM, 15(4):410--457.

Stephenson, M., Babb, J., and Amarasinghe, S. (2000). Bidwidth analysis with appli-
cation to silicon compilation. In PLDI, pages 108--120. ACM.

Su, Z. and Wassermann, G. (2006). The essence of command injection attacks in web
applications. In POPL '06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 372--382, New York, NY,
USA. ACM.

Sundblad, Y. (1971). The ackermann function. a theoretical, computational,
and formula manipulative study. BIT Numerical Mathematics, 11:107�119.
10.1007/BF01935330.

Tavares, A. L. C., Pereira, F. M. Q., Bigonha, M. A. S., and Bigonha, R. (2010).
E�cient SSI conversion. In SBLP.

Tripp, O., Pistoia, M., Fink, S. J., Sridharan, M., and Weisman, O. (2009). TAJ: E�ec-
tive taint analysis of web applications. In Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation, PLDI '09, pages
87--97, New York, NY, USA. ACM.

Vogt, P. (2006). Cross Site Scripting (XSS) Attack Prevention with Dynamic Data
Tainting on the Client Side. PhD thesis, Technical University of Vienna.

Wassermann, G. and Su, Z. (2007). Sound and precise analysis of web applications for
injection vulnerabilities. In PLDI, pages 32--41. ACM.

Wassermann, G. and Su, Z. (2008). Static detection of cross-site scripting vulnerabili-
ties. In ICSE, pages 171--180. ACM.

http://www.brics.dk/~mis/static/
http://www.brics.dk/~mis/static/

Bibliography 53

Wegman, M. N. and Zadeck, F. K. (1991). Constant propagation with conditional
branches. TOPLAS, 13(2).

Weiser, M. (1981). Program slicing. In ICSE, pages 439--449. IEEE.

Whaley, J. and Lam, M. S. (2004). Cloning-based context-sensitive pointer alias anal-
ysis using binary decision diagrams. In PLDI, pages 131�144. ACM.

Xie, Y. and Aiken, A. (2006). Static detection of security vulnerabilities in scripting
languages. In USENIX-SS. USENIX Association.

Zhang, X. and Wang, Z. (2010). A static analysis tool for detecting web application
injection vulnerabilities for asp program. In e-Business and Information System
Security (EBISS), 2010 2nd International Conference on, pages 1--5.

Appendix A

Tainted Flow Analysis

In this appendix we show how to write a pass to �nd a speci�c type of vulnerability
desired and how to register the pass to be executed by our tainted �ow analysis on phc.

A.1 Writing a Vulnerability Pass

In order to write a tainted �ow pass, �rst we must de�ne the set of sanitizers, validators
and sinks for the type of security vulnerability we want to �nd. To write the pass
we must inherit from Tainted_problem and provide implementation for the abstract
function initialize. This function will be used to load the set of sanitizers, validators
and sinks. Note that you do not need to specify the sources, since they are the same
for every type of security vulnerability; hence shared by every tainted �ow pass. We
provide a set of common sanitizers and �lters as well, that can be used by calling
the functions load_default_sanitizers and load_default_validators. The sinks
are bug speci�c and have no default values. We must de�ne which sink parameters
are sensitive so that our analysis can report bugs if taint values reach them. The
default behavior of insert_sink is to consider only the �rst argument, unless the
second argument is set to true, which has the e�ect of marking every sink argument as
sensitive. Another option is to specify which sink arguments are sensitive through the
insert_sink_arg function. We have implemented four tainted �ow passes according to
the discussion on Section 2.3: (i) Cross-Site Scripting (XSS); (ii) SQL Injection Attacks;
(iii) Unwanted Command Execution; and (iv) Unauthorized Filesystem Access. The
implementation of each one of them can be found in the attachments at the end of this
dissertation (Attachments A through D).

A.2 Registering the Vulnerability Pass

We can write a tainted pass directly on the compiler codebase, or we could use phc

ability to load passes on-the-�y and write the tainted pass as a plugin. Either way, we
must register our pass so that the phc can identify and execute it. Below we show how
to insert the pass into the phc pass manager.

55

56 Appendix A. Tainted Flow Analysis

// tainted attack passes

pm->add_tainted_analysis(new XSS_attack(), s("xss-attack"),

s("Search for XSS attacks"));

pm->add_tainted_analysis(new SQL_injection(), s("sql-injection"),

s("Search for SQL injections"));

pm->add_tainted_analysis(new Command_exec(), s("cmd-exec"),

s("Search for command execution injections"));

pm->add_tainted_analysis(new Filesystem_access(), s("fs-access"),

s("Search for unauthorized filesystem access"));

Appendix B

Security Advisories

In our evaluation (Chapter 5), we showed that our tool was able to �nd 36 previously
unknown vulnerabilities in 5 commercial CMS products. In order to disclosure the bugs
we found, �rst we contact the vendors with detailed information about the discovered
�aw. Hence, vendors can acknowledge the bug and provide a �x for the problem. Later,
we send a security advisory to speci�c security lists. In our case, we wrote and sent 5
advisories to the security focus bugtraq1. We list the original advisories below.

B.1 MODx 1.0.3

Title: MODx Instalation File XSS Vulnerability

Vendor: MODx

Product: MODx CMF

Tested Versions: 1.0.3, 1.0.4

Threat Class: XSS

Severity: Medium

Remote: yes

Local: no

Discovered By: Andrei Rimsa Alvares

===== Description =====

MODx CMF is prone to a XSS vulnerability caused by unsanitized user

input data. The bug occurs in a file used in the installation process.

A description of the affected file is shown below:

--- install/connection.collation.php ----

01: <?php

...

06: $database_collation = $_POST['database_collation'];

...

1http://www.securityfocus.com/archive/1

57

58 Appendix B. Security Advisories

08: $output = '<select id="database_collation" name="database_collation">

09: <option value="'.$database_collation.'" selected >'.$database_collation.

'</option></select>';

...

23: echo $output;

24: ?>

--- install/connection.collation.php ----

The variable $database_collaction (line 6) receives user data via

http post request and gets propagated to variable $output (line 9)

without proper sanitization. Later the $output variable is outputted

to the page in every program path causing the bug (line 23).

===== Impact =====

Malicious java script code can be executed in the context of the

affected web site.

===== Proof of Concept =====

<form action="http://target/install/connection.collation.php"

name="evil" method="post">

<input type="hidden" name="database_collation" value="</option></select>

<script>window.alert(String.fromCharCode(88,83,83));</script>" />

</form>

<script>

document.evil.submit();

</script>

===== Workaround =====

Remove all installation files after MODx is successfuly installed.

===== Disclosure Timeline =====

June, 16 2010 - Vendor notification.

July, 06 2010 - No vendor reply. Public disclosure.

===== References =====

http://modxcms.com

B.2 Exponent CMS 0.97

Title: Exponent Slideshow XSS Vulnerability

B.3. DCP Portal 7.0beta 59

Vendor: Exponent

Product: Exponent CMS

Tested Version: 0.97.0

Threat Class: XSS

Severity: High

Remote: yes

Local: no

Discovered By: Andrei Rimsa Alvares

===== Description =====

The file "modules/slideshowmodule/slideshow.js.php" is prone to

a XSS vulnerability. Multiple instance of variable $_GET['u'] gets

outputted to the page without proper sanitization.

===== Impact =====

Malicious java script code can be executed in the context of the

affected web site.

===== Proof of Concept =====

http://target/modules/slideshowmodule/slideshow.js.php?

u=%3Cscript%3Ewindow.alert(String.fromCharCode(88,83,83));%3C/script%3E

===== Workaround =====

No workaround is available at the time.

===== Disclosure Timeline =====

June, 16 2010 - Vendor notification.

July, 06 2010 - No vendor reply. Public disclosure.

===== References =====

http://www.exponentcms.org

B.3 DCP Portal 7.0beta

Title: DCP-Portal Multiple XSS Vulnerabilities

Vendor: Worxware

Product: DCP-Portal

Tested Version: 7.0beta

Threat Class: XSS

60 Appendix B. Security Advisories

Severity: High

Remote: yes

Local: no

Discovered By: Andrei Rimsa Alvares

===== Description =====

Multiple XSS vulnerabilities encountered in the DCP-Portal.

1. common/components/editor/insert_image.php,

modules/newsletter/insert_image.php, php/editor.php

The variable $upload_failure_report gets user input from http

get request variable "Image" when the action of deleting an

uploaded file fails. Later this variable is outputted to the

page without proper sanitization.

2. modules/gallery/view_img.php

Page title can be modified by changing the http request variable

"imgtitle". Since no sanitizer is used, an XSS occurs on line 2.

Another vulnerability exists if magic quotes is turned off.

The http request variable "imagename" gets outputted on the java

script function document.write between simple quotes on line 27.

3. modules/tips/show_tip.php

Http request variable "newsId" gets outputted to the page without

proper sanitization on line 14.

===== Impact =====

Malicious java script code can be executed in the context of the

affected web site.

===== Proof of Concept =====

All proof of concepts display a java script alert containing the

message "XSS".

1. common/components/editor/insert_image.php,

modules/newsletter/insert_image.php, php/editor.php

http://target/common/components/editor/insert_image.php?MyAction=Delete&

Image=%3Cscript%3Ewindow.alert(String.fromCharCode(88,83,83));%3C/script%3E

http://target/modules/newsletter/insert_image.php?MyAction=Delete&

Image=%3Cscript%3Ewindow.alert(String.fromCharCode(88,83,83));%3C/script%3E

http://target/php/editor.php?MyAction=Delete&

Image=%3Cscript%3Ewindow.alert(String.fromCharCode(88,83,83));%3C/script%3E

B.4. Pligg 1.0.4 61

2. modules/gallery/view_img.php

http://target/modules/gallery/view_img.php?imgtitle=

%3C/title%3E%3Cscript%3Ewindow.alert(String.fromCharCode(88,83,83));%3C/script%3E

(requires magic_quotes_gpc = off) http://target/modules/gallery/view_img.php?

imagename=%22');window.alert('XSS');document.write('%22

3. modules/tips/show_tip.php

http://target/modules/tips/show_tip.php?

newsId=%3Cscript%3Ewindow.alert(String.fromCharCode(88,83,83));%3C/script%3E

===== Workaround =====

No workaround is available at the time.

===== Disclosure Timeline =====

June, 16 2010 - Vendor notification.

July, 06 2010 - No vendo reply. Public disclosure.

===== References =====

http://www.dcp-portal.org

http://www.worxware.com

B.4 Pligg 1.0.4

Title: Pligg Instalation File XSS Vulnerability

Vendor: Pligg

Product: Pligg CMS

Tested Version: 1.0.4

Threat Class: XSS

Severity: Medium

Remote: yes

Local: no

Discovered By: Andrei Rimsa Alvares

===== Description =====

Pligg is prone to a XSS vulnerability in the installation file:

install/install1.php. The variable "language" - obtained from a

http request - can be manipulated to execute java script code via

onmouseover like functions. Even with the two sanitizers used

(strip_tags and addslashes) is possible to bypass the double quote

jail of the value field in the input tag by passing a double quote

62 Appendix B. Security Advisories

via the "language" variable.

----- install/install1.php -----

20: <input type="hidden" name="language"

value="<?php echo addslashes(strip_tags($_REQUEST['language'])); ?>">

----- install/install1.php -----

The sanitizer strip_tags prevents new tags to be used (like <script>

and </script>) but it can still be abused to pass onmouseover style

attacks. Addslashes adds backslashes to escape special characters like

double quote, but since html does not process escape sequences, this

sanitizer is useless to prevent breaking the double quote jail.

===== Impact =====

Malicious java script code can be executed in the context of the

affected web site.

===== Proof of Concept =====

Attack vector extracted from [1]. This attack attempts to increase the

area of the affected input field to cover the whole screen. Once the

mouse is moved anywhere on the screen, the onmouseover java script can

be triggered to execute the malicious code. In this proof of concept,

an alert containing the message "XSS" should be shown on the screen once

the mouse is moved on the screen.

http://target/install/install1.php?language=%22%20style=a:b;

margin-top:-1000px;margin-left:-100px;width:4000px;height:4000px;

display:block;%20onmouseover=alert%28String.fromCharCode%2888,83,83%29%29;%3E

This attack venue exploited in this proof of concept had no effect on

Google Chrome web browser, because the input field is hidden. But can

be exploited on Mozilla Firefox and possibly others.

===== Workaround =====

Remove the instalation directory after installation, as recommended

during installation.

===== Disclosure Timeline =====

June, 16 2010 - Vendor notification.

June, 22 2010 - Vendor replied but did not acknowledging the bug.

June, 22 2010 - New contact attempted to further explainining the bug.

B.5. RunCMS 2.1 63

July, 06 2010 - No vendor reply. Public disclosure.

===== References =====

1. http://www.packetstormsecurity.org/papers/bypass/workaround-xss.txt

2. http://www.pligg.com

B.5 RunCMS 2.1

Title: RunCMS XSS Vulnerability via User Agent

Vendor: RunCMS

Product: RunCMS

Tested Version: 2.1

Threat Class: XSS

Severity: Medium

Remote: yes

Local: no

Discovered By: Andrei Rimsa Alvares

===== Description =====

RunCMS is proned to a XSS vulnerability by mangling the user-agent

field on a http request to a script within the forum module.

----- modules/forum/check.php -----

01: <?php

...

10: echo "BROWSER: ".$_SERVER['HTTP_USER_AGENT'];

----- modules/forum/check.php -----

===== Impact =====

Malicious java script code can be executed in the context of the

affected web site.

===== Proof of Concept =====

wget --user-agent="<script>window.alert('XSS');</script>"

http://target/modules/forum/check.php

===== Workaround =====

Remove the affected file form the system: modules/forum/check.php.

===== Disclosure Timeline =====

64 Appendix B. Security Advisories

June, 16 2010 - Vendor notification.

June, 17 2010 - Vendor response.

July, 06 2010 - Public disclosure.

===== References =====

http://www.runcms.org

Attachment A

Cross-Site Scripting (XSS)

A.1 XSS_attack.h

#ifndef PHC_XSS_ATTACK

#define PHC_XSS_ATTACK

#include "tainted/Tainted_problem.h"

class CFG;

class XSS_attack : public Tainted_problem {

public:

XSS_attack();

void initialize();

};

#endif // PHC_XSS_ATTACK

A.2 XSS_attack.cpp

#include "XSS_attack.h"

XSS_attack::XSS_attack() : Tainted_problem("XSS Attacks") {

}

void XSS_attack::initialize() {

// Sanitizers.

load_default_sanitizers();

insert_sanitizer("htmlentities");

insert_sanitizer("htmlspecialchars");

insert_sanitizer("strip_tags");

insert_sanitizer("highlight_string");

65

66 Attachment A. Cross-Site Scripting (XSS)

// Validators.

load_default_validators();

// Sinks.

insert_sink("print");

insert_sink("printf", true);

}

Attachment B

SQL Injection Attacks

B.1 SQL_injection.h

#ifndef PHC_SQL_INJECTION

#define PHC_SQL_INJECTION

#include "tainted/Tainted_problem.h"

class CFG;

class SQL_injection : public Tainted_problem {

public:

SQL_injection();

void initialize();

};

#endif // PHC_SQL_INJECTION

B.2 SQL_injection.cpp

#include "SQL_injection.h"

SQL_injection::SQL_injection() : Tainted_problem("SQL Injection") {

}

void SQL_injection::initialize() {

// Sanitizers.

load_default_sanitizers();

insert_sanitizer("addslashes");

insert_sanitizer("mysql_escape_string"); // deprecated.

insert_sanitizer("mysql_real_escape_string");

insert_sanitizer("pg_escape_string");

67

68 Attachment B. SQL Injection Attacks

// Validators.

load_default_validators();

// Sinks.

insert_sink("mysql_query", true);

insert_sink("pg_query", true);

}

Attachment C

Unwanted Command Execution

C.1 Command_exec.h

#ifndef PHC_CMD_EXEC

#define PHC_CMS_EXEC

#include "tainted/Tainted_problem.h"

class CFG;

class Command_exec : public Tainted_problem {

public:

Command_exec();

void initialize();

};

#endif // PHC_CMD_EXEC

C.2 Command_exec.cpp

#include "Command_exec.h"

Command_exec::Command_exec()

: Tainted_problem("Unwanted Command Execution") {

}

void Command_exec::initialize() {

// Sanitizers.

load_default_sanitizers();

insert_sanitizer("escapeshellarg");

insert_sanitizer("escapeshellcmd");

69

70 Attachment C. Unwanted Command Execution

// Validators.

load_default_validators();

// Sinks.

insert_sink("exec");

insert_sink("system");

insert_sink("passthru");

insert_sink("shell_exec");

insert_sink("proc_open");

insert_sink("pcntl_exec");

}

Attachment D

Unauthorized Filesystem Access

D.1 Filesystem_access.h

#ifndef PHC_FS_ACCESS

#define PHC_FS_ACCESS

#include "tainted/Tainted_problem.h"

class CFG;

class Filesystem_access : public Tainted_problem {

public:

Filesystem_access();

void initialize();

};

#endif // PHC_FS_ACCESS

D.2 Filesystem_access.cpp

#include "Filesystem_access.h"

Filesystem_access::Filesystem_access()

: Tainted_problem("Unauthorized Filesystem Access") {

}

void Filesystem_access::initialize() {

// Sanitizers.

load_default_sanitizers();

// Validators.

load_default_validators();

71

72 Attachment D. Unauthorized Filesystem Access

// Sinks.

insert_sink("chdir");

insert_sink("mkdir");

insert_sink("rmdir");

insert_sink("rename");

insert_sink("unlink");

insert_sink("copy");

insert_sink("chgrp");

insert_sink("chown");

insert_sink("chmod");

insert_sink("touch");

insert_sink("symlink");

insert_sink("link");

insert_sink("move_uploaded_file");

insert_sink("show_source");

insert_sink("highlight_file");

insert_sink("readfile");

insert_sink("file_get_contents");

}

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Dissertation Organization

	2 Background
	2.1 Intermediate Representation (IR)
	2.1.1 Static Single Assignment (SSA)
	2.1.2 Extended Static Single Assignment (e-SSA)

	2.2 PHP
	2.2.1 Language Features
	2.2.2 Static Analysis on PHP
	2.2.3 PHP Compilers

	2.3 Tainted Variable Attacks
	2.3.1 Cross-Site Scripting (XSS)
	2.3.2 SQL Injection Attacks
	2.3.3 Unwanted Command Execution
	2.3.4 Unauthorized Filesystem Access
	2.3.5 Other Attacks

	2.4 Conclusion

	3 Tainted Analysis as Data-flow
	3.1 Nano-PHP
	3.2 Semantics
	3.3 Data-flow Analysis
	3.4 Conclusion

	4 Tainted Analysis as Graph Reachability
	4.1 e-SSA form is the Linchpin of Fast Tainted Flow Analysis
	4.2 Graph Reachability Model
	4.3 Addressing Aliasing with HSSA
	4.4 A Solution Quadratic in Time and Space
	4.5 Conclusion

	5 Experiments and Evaluation
	5.1 Set Up
	5.2 Benchmarks
	5.3 Efficiency
	5.4 Precision
	5.5 An example of a real-world bug
	5.6 Conclusion

	6 Related Works
	6.1 Web Applications Security
	6.1.1 Tainted Flow Analysis

	6.2 Graph Reachability
	6.3 Conclusion

	7 Conclusion
	7.1 Limitations
	7.2 Future Works

	Bibliography
	A Tainted Flow Analysis
	A.1 Writing a Vulnerability Pass
	A.2 Registering the Vulnerability Pass

	B Security Advisories
	B.1 MODx 1.0.3
	B.2 Exponent CMS 0.97
	B.3 DCP Portal 7.0beta
	B.4 Pligg 1.0.4
	B.5 RunCMS 2.1

	A Cross-Site Scripting (XSS)
	A.1 XSS_attack.h
	A.2 XSS_attack.cpp

	B SQL Injection Attacks
	B.1 SQL_injection.h
	B.2 SQL_injection.cpp

	C Unwanted Command Execution
	C.1 Command_exec.h
	C.2 Command_exec.cpp

	D Unauthorized Filesystem Access
	D.1 Filesystem_access.h
	D.2 Filesystem_access.cpp

