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Resumo

Resultados recentes demonstram como fazer alocação de registradores baseada em co-

loração de grafos que desacopla o derramamento da atribuição de registradores. A

abordagem desacoplada tem duas vantagens: primeiro, simpli�ca os algoritmos de

alocação de registradores. Segundo, pode-se manter mais variáveis em registradores,

em vez de enviá-las para a memória. Apesar dessas vantagens, o modelo desacoplado

usando grafos de interferência, como descrito por trabalhos anteriores, não leva em con-

sideração o compartilhamento de registradores, um fenômeno presente em arquiteturas

como x86, ARM e SPARC. Um obstáculo importante é o fato de que os algoritmos

desacoplados existentes fazem uma extensiva divisão do tempo de vida das variáveis

para tratar de compartilhamento, o que aumenta os grafos de entrada por um fator

quadrático. Tais alocadores são ine�cientes em termos de consumo de memória, tempo

de compilação e qualidade de código produzido.

Esta dissertação introduz técnicas para contornar esse obstáculo. É descrito um

teste de derramamento para arquiteturas com compartilhamento melhor que o tradi-

cional teste de simpli�cação de Kempe. Foi usada uma heurística para fundir � ou

evitar a divisão � tempo de vida sempre que possível, e foram adaptados conhecidos

algoritmos de fusão de registradores. Para se determinar a melhor representação inter-

mediária para as técnicas descritas, as seguintes opções foram estudadas: Static Single

Assignment (SSA), Static Single Information (SSI), extended SSA (e-SSA) e Elemen-

tary Form. Nesse processo foi desenvolvido um algoritmo para e�cientemente criar SSI

e e-SSA.

Os resultados foram validados empiricamente ao mostrar que as técnicas descritas

melhoram dois conhecidos alocadores de registradores baseados em coloração de grafos

para arquiteturas com compartilhamento, são eles: a extensão de Smith et al. [SRH04]

do Iterated Register Coalescer (IRC) [GA96]; e o método de força bruta do Bouchez

et al. [BDR08]. Ao se executar as técnicas no SPEC CPU 2000, foi possível reduzir o

tamanho dos grafos de interferência dos alocadores por um fator de 4, e a qualidade

do IRC foi melhorada, em termos de cópias inseridas no programa assembly, de 1.5%

xi



para 0.54%.
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Compartilhamento de Registradores, Desacoplada.

xii



Abstract

Recent results have shown how to do graph-coloring-based register allocation in a way

that decouples spilling from register assignment. This decoupled approach has two

main advantages: �rst, it simpli�es register allocation algorithms. Second, it might

keep more variables in registers, instead of sending them to memory. In spite of these

advantages, the decoupled model using the graph coloring approach, as described in

previous works, do not handle register aliasing, a phenomenon present in architectures

such as x86, ARM and Sparc. An important obstacle is the fact that existing decou-

pled algorithms have to perform extensive live range splitting to deal with aliasing,

increasing the input graphs by a quadratic factor. Such allocators would be ine�cient

in terms of memory consumption, compilation time and the quality of the code they

produce.

In this thesis we introduce a number of techniques that overcome this obstacle.

We describe a spill test that deals with aliasing better than Kempe's traditional sim-

pli�cation test. We use heuristics to merge � or rather avoid splitting � live ranges

whenever possible, and we adapt well-known coalescing tests to the world of aliased

registers. In order to determine the best interference representation for the techniques,

we have studied the following options: Single Static Assignment (SSA), Single Static

Information (SSI), extended SSA (e-SSA) and Elementary Form. In this process we

have developed an algorithm to e�ciently create SSI and e-SSA.

We have empirically validated our results by showing how our techniques improve

two well known graph coloring based allocators that deal with aliased registers, namely

Smith et al.'s extension [SRH04] of the Iterated Register Coalescer (IRC) [GA96], and

Bouchez et al.'s brute force (BF) method [BDR08]. Running our techniques on a subset

SPEC CPU 2000, we have been able to reduce the size of the interference graphs that

the allocators would require by a factor of 4, and we have improved the quality of IRC,

in terms of proportion of copies left in the assembly program, from 1.5% to 0.54%.

Keywords: Compiler, Register Allocation, Register Coalescing, Aliasing, Decoupled.
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Chapter 1

Introduction

Register allocation is the problem of �nding storage locations to the values manipulated

by a program. Traditional computer architectures provide two storage alternatives:

memory or registers. Registers are much faster, yet, they come in very small num-

bers. For instance, the 32-bit x86 chip contains only seven general purpose registers.

Register allocation is an important compiler optimization. In the words of Hennessy

and Patterson: �Register Allocation adds the largest single performance improvement

to compiled programs� [HP02]. As an example, the di�erence, in terms of program

execution time, between a trivial allocator, that sends every variable to memory, and

an optimal, integer linear based approach, can be as high as 250% [NPP07].

Many recent register allocation algorithms follow a decoupled approach that sep-

arates spilling from register assignment [AG01; HG08; HGG06; PP05; PP08; Ron09;

SB07; WF10]. Spilling is a step in the register allocation algorithm, which moves to

memory those variables that could not be stored in registers. This model has impor-

tant advantages. First, the separation between these two phases tends to yield simpler

and more modular implementations: di�erent spilling heuristics can easily be combined

with di�erent strategies to do register assignment and coalescing. Second, as we will

illustrate in Chapter 3, decoupled designs have more �exibility to assign registers to

variables; hence, are more successful at avoiding spilling. A key factor behind the de-

coupled model is the concept of live range splitting, which allows allocating a variable

to di�erent registers along distinct parts of its live range. Although so fundamental,

this very notion of live range splitting makes it di�cult to extend decoupled algorithms

to computer architectures with aliased register banks.

Quoting Smith et al., �two register names alias when an assignment to one register

name can a�ect the value of the other� [SRH04]. Aliasing characterizes four general

purpose registers present in the x86: AX, BX, CX and DX. Each of these 16-bit

1



2 Chapter 1. Introduction

registers is divided in two sub-registers, which can be used independently on each

other. Aliasing is also present in the �oating point registers seen in ARM, PowerPC,

and Sparc. In these cases, we can combine two �oats into a double precision register.

Architectures such as ARM Neon go further, allowing the combination of two doubles

into a quad-precision register.

Decoupled register allocation relies on the fact that once we lower the register

pressure at any given program point to less than K � the number of available registers �

then no further spilling will be necessary during the assignment of registers to variables.

We de�ne a program point as any point between two consecutive program instructions.

Thus, a decoupled allocator requires the property which states that the maximum

register pressure at any program point be equal to the global register pressure. The

register pressure of a program point, in our case, is the minimum number of registers

necessary to allocate the variables alive in that region. An important result in compiler

theory [Bou05; BDJS06; HG06; PP05] is that for architectures with no aliased registers

we can satisfy this property by converting the source program into SSA-form [CFR+91].

This conversion is a way of doing live range splitting. However, in face of aliasing, the

SSA transformation is not enough: aliased register allocation is NP-complete, even for

straight-line programs in SSA form [LPP07].

Aliasing requires a more extensive kind of live range splitting: the conversion

to elementary-form [PP08], which splits live ranges between each pair of consecutive

instructions. There is one decoupled algorithm that deals with aliasing � register allo-

cation by puzzle solving [PP08]. This is a fast allocator, that traverses the dominator

tree of a program, converting it to elementary form on the �y, while visiting each in-

struction. Although good at avoiding spilling, the puzzle solver tends to insert many

copies in the assembly program that it produces, because it has a local view of the

source code, i.e, it only recognizes the variables alive across a single instruction at each

time.

There exist register coalescers that deal with aliasing and see the program as a

whole, but they are not decoupled algorithms. Among these allocators we cite integer

linear programming formulation [KW98], PBQP approach [SE02] and extensions to

graph coloring algorithms [SRH04]. These algorithms demand new techniques to de-

couple spilling from register assignment, because it is di�cult to adapt these methods

to handle elementary form programs. The elementary form conversion increases by a

quadratic factor the number of variables in the source program, and the traditional

approaches do not scale up. This project aims at �lling this gap.

The objective of this thesis is to describe a suite of techniques that make decoupled

graph coloring register allocation feasible and useful. In other words, we describe
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register allocators that:

1. can use live range splitting to avoid spilling;

2. are able to see the whole program, and the many dependencies between copy

instructions, to do better register coalescing.

We have adapted two di�erent allocators to follow the decoupled model: the

Iterated Register Coalescer [GA96], with extensions by Smith et al. [SRH04], and

Brute Force coalescer [BDR08]. Relying on the idea of conservative live range merging,

we mitigate the negative e�ects of live range splitting, while keeping its advantages.

1.1 Contributions

The main contributions of this thesis are:

1. A modi�cation to the graph coloring register allocators to decouple spilling from

register assignment in the presence of aliasing.

2. A pre-processing technique that avoids creating huge graphs during the conver-

sion of a program into elementary form.

3. An adaptation of the Brute Force coalescer of Bouchez et al. [BDR08] to deal

with aliasing.

4. An adaptation of the Iterated Register Coalescing of Appel and George [AG01]

to a decoupled approach.

5. Comparison and evaluation of Brute Force Coalescer and Iterated Register Coa-

lescing in face of aliasing and using a decoupled approach.

6. Developed an algorithm to e�ciently create SSI and e-SSA.

1.2 Text Organization

Following we describe how this thesis is organized:

• Chapter 2 presents in details four intermediate representations used in compilers

and register allocation. They are: SSA [CFR+91], SSI [Ana99], e-SSA [BGS00]

and Elementary Form [PP08].



4 Chapter 1. Introduction

• Chapter 3 describes the main algorithms present in the literature for register

allocation and coalescing.

• Chapter 4 presents the contributions of this thesis.

� Section 4.1: A modi�cation to the graph coloring register allocators to de-

couple spilling from register assignment in the presence of aliasing.

� Section 4.2: An adaptation of the Brute Force coalescer of Bouchez et al.

[BDR08] to deal with aliasing.

� Section 4.3: A pre-processing technique that avoids creating huge graphs

during the conversion of a program into elementary form.

• Chapter 5 presents the experiments realized to substantiate the evaluation of this

work.

• Chapter 6 summarizes our contributions and concludes this work.



Chapter 2

Intermediate Representations

The Intermediate Representation (IR) may have many forms. Aho et al. present the

most used IR [ALSU06]: syntax tree, pseudo-assembly and three address code. In

this chapter we describe three di�erent three address code representation commonly

used by compilers. They are Static Single Assignment (SSA) [CFR+91], Static Single

Information (SSI) [Ana99] and Elementary Form [AG01].

The intermediate representation at register allocation is relevant to the quality

of the allocation. Even more, there are some properties in these representations that

are fundamental for some register allocation approaches. While SSA-form programs

have chordal interference graphs, the interference graphs of SSI-form programs are

interval graphs and the interference graph of an elementary program is an elementary

graph. Spill-free register allocation is NP-complete for general programs [CAC+81]

because coloring general graphs is NP-complete. However, for architectures without

aliasing this problem has a polynomial time solution for SSA-form programs [Bou05;

BDMS05; HGG06] because chordal graphs can be colored in polynomial time [Mar06].

For architectures with aliasing it is necessary to have an elementary graph to allocate

registers in polynomial time. In this chapter we describe these representations and in

Chapter 3 we show how they relate to register allocation.

2.1 Static Single Assignment

Static Single Assignment (SSA) form is a program representation introduced by Alpern

et al. [AWZ88] and Rosen et al., [RWZ88]. Later, Cytron et al. [CFR+91] formally

described the intermediate representation and proposed construction algorithms.

The main concept of SSA is that every variable has a single de�nition. However it

is not su�cient only to rename variables. There are cases where two di�erent de�nitions

5



6 Chapter 2. Intermediate Representations

of the same variable reaches the same use. For these cases a special instruction is used,

the φ-functions. The φ-functions are an abstraction used to join the live ranges of

variables. An assignment such as:

(v1, . . . , vn) = φ[(v11, . . . , vn1) : L1, . . . (v1m, . . . , vnm) : Lm]

contains n φ-functions such as vi ← φ(vi1 : L1, . . . , vim : Lm). The φ symbol works as a

multiplexer. It will assign to each vi the value in vij, where j is determined by Lj, the

basic block last visited before reaching the φ assignment. Notice that these assignments

happen in parallel, that is, all the variables v1i, . . . , vni are simultaneously copied into

the variables v1, . . . , vn. Figure 2.1 shows an example of the SSA representation. The

original program presented in Figure 2.1 (a) is not in SSA form, as variables x and y are

de�ned twice in this example. The SSA version of this program, showed in Figure 2.1

(b), renamed both variables and created a φ-function for variable y. This φ-function

is necessary since the live range of the y1 and y2 are disjoint.

(a)

   x = 10

   x = x - 3

   ( • = x ) ? 

   y = x * 2    y = x - 3 

   w = x + y 

   x
1
 = 10

   x
2
 = x

1
 - 3

   ( • = x
2
 ) ? 

   y
1
 = x

2
 * 2    y

2
 = x

2
 - 3 

   y
3
 =  ( yϕ

1 
, y

2
 )

   w = x
2
 + y

3
 

(b)

Figure 2.1: Example of the use of SSA on information analysis. (a) Original program.
(b) SSA program.

As examples of SSA clients we have a more e�cient algorithm to eliminate dead

code and global value numbering optimization. Dead code elimination is a compiler

optimization that removes code that cannot be reached and also operations related to

dead variables, which have no e�ect on the program. This optimization reduces the code

size, which can be important in some contexts, and also can reduce the execution time,

by removing unnecessary operations. This optimization was historically performed

by data-�ow analysis [ALSU06; Muc97], however after SSA conversion approach, the
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algorithm was improved and is now based on the control �ow graph.

An optimization that depends on SSA is Global Value Numbering (GVN) [Sim96].

GVN evaluates variables assignments and expressions and de�nes a value range for each

variable. The value range of a variable can be later used for other optimizations. For

instance, in case the range of a variable is a single value, all uses of this variable can

be replaced by this value. The range can also be used to prove that some conditional

branches may always take a single decision, allowing to remove the other option of the

branch.

2.2 Static Single Information

Static Single Information (SSI) form is a program representation introduced by Ananian

[Ana99]; however, program representations with similar properties have been described

before by Johnson and Pigali [JP93]. Also, the SSU-form (Static Single Use), described

by Plevyak96 [Ple96] in his Ph.D dissertation seems to be equivalent to SSI, although

we cannot verify this claim due to the lack of a formal speci�cation of SSU. Benoit

et al. distinguish two main �avors of the SSI form [BBDR09], which are not equiv-

alent: strong, introduced by Ananian [Ana99] and weak, described by Singer [Sin06].

According to Boissinot et al., four properties characterize strong SSI form:

• pseudo-de�nition: there exists a de�nition of each variable at the starting point

of the program's control �ow graph.

• single reaching-de�nition: each program point is reached by at most one de�nition

of each variable.

• pseudo-use: there exists a use of each variable at the ending point of the program's

control �ow graph.

• single upward-exposed-use: from each program point it is possible to reach at

most one use of a variable, without passing by a previous use.

The weak SSI form di�ers from the strong SSI on the last property presented.

While strong SSI has the single upward-exposed-use property, weak SSI has the post-

dominance property. This property de�nes that each use of a variable must post-

dominate its de�nition. Any strong SSI form program is also a weak SSI form program.

Figure 2.2(a) shows a program written in a C like language, and Figure 2.2(b)

gives the control �ow graph of this program, in SSI form. The program in Figure 2.2(c)

is not in SSI form, as it contains a point exposed to two di�erent uses of a2.
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1 int a=read();

2 if (a == 0) {

3 if (...) {

4 print(a);

5 }

6 }

7 print(a);

a = •
(• = a)?

(a1, a2) =σ a

(a4, a5) =σ a2

• = a5

a3 =ϕ [a1,a4,a5]
• = a3

a = •
(• = a)?

(a1, a2) =σ a

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

(a) (b) (c)

Figure 2.2: Example of the use of SSI and e-SSA on information analysis. (a) Original
program. (b) SSI program. (c) e-SSA program.

In order to convert a program into SSI form we need two special types of in-

structions: φ-functions and σ-functions. The φ-functions are an abstraction used in

the Static Single Assignment form (SSA) [CFR+91] to join the live ranges of vari-

ables. Any SSI form program is a SSA form program. For instance, the assignment,

v = φ(v1, . . . , vn), at the beginning of a basic block B, works as a multiplexer. It will

assign to v the value in vi, if the program �ow reaches block B coming from the ith

predecessor of B.

The σ-functions are the dual of φ-functions. Whereas the latter has the func-

tionality of a variable multiplexer, the former is analogous to a demultiplexer, that

performs an assignment depending on the execution path taken. For instance, the

assignment, (v1, . . . , vn) = σ v, at the end of a basic block B, assigns to vi the value

in v if control �ows into the ith successor of B. Notice that variables alive in di�erent

branches of a basic block are given di�erent names by the σ-function that ends that

basic block.

There exists an interesting relationship between the live range of program vari-

ables and graphs. Chaitin et al. have shown that the intersection graph of the live

ranges of a general program can be any type of graph [CAC+81]. In 2005, researchers

have shown that the intersection graphs produced from programs in SSA form are

chordal [Bou05; PP05]. Recently, Benoit et al. showed that the interference graphs

of programs in SSI form are interval graphs, a subset of the family of chordal graphs

[BBDR09].
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Singer gives two examples of SSI clients [Sin03]: very busy expressions, and the

dual available expression analysis. An expression e is very busy at program point p if

e is computed in any path from p to the end of the program, before any variable that

is part of it is rede�ned. Such analysis, also called anticipatable expressions analysis

by Johnson and Pigali [JP93], is useful for performing optimizations such as partial

redundancy elimination. Conversely, an expression e is available at program point p if

it is computed in any path from the beginning of the program until p, and none of the

variables that are part of e are rede�ned thereafter.

A sparse analysis associates information to variables, instead of program points.

That is, busy expressions associated to variable v are the busy expressions at the

de�nition point of v. Similarly, available expressions associated to v are the expressions

available at the program point where v is last used. The SSI form allows us to perform

these analyses non-iteratively [Sin03]. As another example, Benoit et al. have shown

how SSI speeds up the computation of liveness analysis [BBDR09]. This is a data�ow

analysis that �nds which are the live variables at each program point.

Although the SSI representation suits the needs of many di�erent compilation

passes � henceforth called clients, the majority of these clients require only a subset

of the SSI properties. This observation is important, because converting a program to

SSI form is a time consuming endeavor. For instance, Bodik et al.'s ABCD algorithm

[BGS00] uses information from conditional branches to put bounds on the value of

variables used as array indices. Thus, it requires that only integer variables used in

conditionals bear SSI properties. Even less demanding is the sparse conditional con-

stant propagation algorithm described by Ananian [Ana99] and Singer [Sin06], which

demands that only variables used in equality comparisons be in SSI form.

Extended SSA (e-SSA) [BGS00], described by Bodik et al., is a subset of SSI.

Its clients do not require that variables be fully converted to SSI form. Instead, they

need a representation that restricts the value range of variables. The value range of a

variable is the set of values that the variable may assume during program execution. For

instance, variable a in Line 1 of Figure 2.2(a) may assume any value of the integer type

in the Java language, thus, its value range is [−231, 231 − 1]. However, the conditional

branch in Line 2 restricts the value range of a. Thus, in Line 3 of our example program,

this range is [0, 0]. There exist two main events that may restrict the value range of a

variable v: an assignment to v and a conditional branch that tests v.
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2.3 Elementary Form

Elementary form, described by Appel and George [AG01], is an intermediate repre-

sentation in which the live range of all variables are splitted between every pair of

consecutive instructions. Three steps are necessary to convert a program to elemen-

tary form. First, we insert a parallel copy between each pair of consecutive instruction.

Second, we insert a parallel copy between each consecutive basic block. Parallel copies

are necessary, because more than one instruction may be split in a program point.

Finally, we rename all variables according to the parallel copies. The second step can

be avoided in case the program code is already in SSI form. Appel and George used

the idea of inserting parallel copies everywhere in their ILP-based approach to register

allocation with optimal spilling [AG01].

Elementary form increases by a quadratic factor the amount of variables, however

their relation is simpli�ed. Considering a program with n variables and I instructions,

the worst case splitting would produce a program with nI variables, since each variable

would be splitted between each pair of instructions. Considering that each instruction

de�nes a new variable, it is possible to say that I = n, therefore the worst case would

produce n2 variables, which we call a quadratic factor. Figure 3.1(c) shows a program

in elementary form, while the original program is shown in Figure 3.1(a).

An example of client for the elementary form is the Register Allocation by Puzzle

Solving [PP08], developed by Pereira and Palsberg. This algorithm allocates each

instruction from the source code at a time. In order to be able to separate variables

live in each instruction, it is necessary to convert the program to elementary form.

More details on this client can be seen in Section 3.2.

2.4 Conclusion

In this chapter we have presented three intermediate representation that can be used in

a compiler implementation. SSA is a representation that allows only one de�nition for

each variable. For this purpose they introduced a special instruction called φ-function.

In order to augment SSA, Ananian proposed SSI. This new representation extends

the �rst one by de�ning that there should not be two di�erent non-consecutive uses

reaching a single instruction. The σ-functions are used with the opposite purpose as

φ-functions. Finally, we have presented the elementary form, that splits the live range

of all variables between every instruction.

In order to achieve our objective, we have studied the described intermediate

representations to �nd out which would be more appropriate for register allocation.
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In this process we have developed an algorithm to e�ciently create SSI and e-SSA

[TPBB10]. Since e-SSA is a subset of SSI, converting from one representation to the

other should be done with no collateral damage to the resulting code. We show, in

the referenced paper (Appendice A), how this can be achieved and also we propose an

approach in which the client is free to decide which representation and which variables

to convert.

We conclude from this research that the intermediate representation presented in

this chapter have several clients that bene�t from their properties. However only SSA

and Elementary form has been widely applied on the �eld of register allocation. Chap-

ter 3 presents advantages of using SSA and Elementary form for register allocation.





Chapter 3

State of Art on Register Allocation

Algorithms

Register allocation is an important compiler optimization. In the words of Hennessy

and Patterson: �Register Allocation adds the largest single performance improvement

to compiled programs" [HP02]. An important step of this optimization is the register

coalescing. In this chapter we present the main algorithm in the literature for these

optimizations.

There are several di�erent approaches to allocate registers. The classic approach,

created by Chaitin et al. [CAC+81; Cha82] and later improved by Briggs et al. [BCT94]

and Appel and George [AG01], models it as a graph coloring problem. Other ap-

proaches are Linear Scan Register Allocation [PS99], Register Allocation via Inte-

ger Linear Programming [DPV06; FW02; GW96], Register Allocation via Partitioned

Quadratic Programming [SE02], Register Allocation via Multi-Flow of Commodities

[KG06] and Register Allocation by Puzzle Solving [PP08].

Based on graph coloring register allocation we describe the following register co-

alescing algorithms: Aggressive Coalescing [Cha82]; Conservative Coalescing [BCT94];

Iterated Register Coalescing [AG01]; Brute-Force Conservative Coalescing [BDR08];

Optimistic Register Coalescing [PM04; PM98]; and Copy Coalescing by Graph Recol-

oring [HG08]. We also describe Punctual Coalescing [PP10], which is an extension to

Register Allocation by Puzzle Solving.

3.1 Register Allocation

The goal of register allocation is to map an unbounded number of variables from the

source code to a �nite number of registers. Considering that registers are fast and few,

13
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a great challenge of a register allocator is to store as many variables as possible in reg-

isters. As an example, Nandivada et al. shows that the di�erence, in terms of program

execution time, between a trivial allocator that sends every variable to memory, and an

optimal, integer linear programming based approach, can be as high as 250% [NPP07].

For completeness, we present in this section some basic de�nitions related to register

allocation and coalescing. Figure 3.1 is used to describe these de�nitions.
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Figure 3.1: An example program. (a) Original program. (b) Live Range of the
variables. (c) Program in Elementary Form.

Program Point. Program point is the point between two consecutive instructions.

There are also program points in the beggining and end of each basic block. In Figure

3.1(a), there are 6 program points named p0 to p5. We say a variable a is live at a

program point p if there is a path from p to a use of a without any rede�nition of a in

the path.

Program Region. A program region is a set of program points.

Live Range. The live range of a variable is the collection of all program points where

the variable is live. In Figure 3.1(a), the live range of variable a consists of the program

points {p1, p2}. The live range of each variable is represented in Figure 3.1(b).
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Pre-Coloring. Pre-Coloring is a phenomenon that forces a variable to be in a certain

register. For example, ARM architecture uses registers as arguments to functions, and

in x86 the result of a division must be placed in edx and eax. For example, in Figure

3.1(a), variable AX is pre-colored with register AX.

Spilling. Usually, the number of available registers to store variables from the source

program is limited. For this reason there are cases where there is not enough registers

to store all variables. If this happens some variables must be stored in memory, in

other words spilled to memory. In order to spill a variable it is necessary to insert

store functions to move the variable from a register to the memory, and load functions

every time it is necessary to rematerialize the variable in a register. These instructions

tend to be slow, compared to operations that do not access memory. Therefore, it is

desirable that the register allocator minimizes the number of variables spilled.

Coalescing. Coalescing is the act of mapping two non-interfering variables related by

a copy instruction to the same register. For instance, in Figure 3.1(a), the instruction

f = a can be removed in case variables f and a are assigned to the same register,

without changing the program semantic.

Aliasing. An architecture contains aliasing if changing the value of a register a�ects

the value of another register [SRH04]. In Figure 3.2 we show a subset of the registers

from x86 architecture. Each 16bits register is subdivided in two 8bit register, which

are called low address or high address. As a convention we will refer in lower case

variables that �ts in one register and in upper case variables that �t in two registers.

Therefore, in Figure 3.1(a), variables a and f �t in one register, while variables B and

AX �t in two.

8 bits

16 bits

AH

AX

AL

BX

BH BL

CX

CH CL

DX

DH DL

Figure 3.2: Subset of the register bank from the x86 architecture.

Register Pressure. The register pressure of a given program region is the amount

of registers required to allocate the live variables within the region. In case of the

architecture contains aliasing, the notion of register pressure is associated with each

register class. For example, in program point p2 (see Figure 3.1(a)) the register pressure

for registers of 16 bits and 8 bits is di�erent. For the class of 8bit registers the register
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pressure is 3, because 3 registers are necessary to hold variables a and B. However, for

the class of 16bit registers the register pressure is 4. This is due to the fact that if a

register is half occupied, we consider that the whole register is occupied, therefore two

16bit registers are occupied.

Live Range Splitting. The concept of live range splitting is the opposite of coalescing.

While coalescing joins the live range of two variables; live range splitting divides the

live range of a variable in two new live ranges. The splitting of live ranges tends to

lower the number of interferences between variables, which can facilitate the allocation

and decrease the number of spilled variables. An example of live range splitting is

shown in Figure 3.1(c). In program point p1 variable a is split. A copy is inserted at

this location separating two versions of the variable, a0 and a1, each with its own live

range.

3.1.1 Graph Coloring Approaches

Chaitin, proposed the approach to solve register allocation modeling as a graph coloring

problem [CAC+81; Cha82]. The idea is to represent the program as an interference

graph, where each variable present in the source code represents a node in the graph.

Two nodes are adjacent if the variables represented by these nodes interfere in the

source code, i.e., these variables are live at the same program point and cannot share

the same register. The coloring problem is to �nd a color for each node in the graph,

in order to guarantee that adjacent nodes do not share the same color. Each color

represents an available physical register from the architecture's register bank.

Additionally, two nodes related by a move instruction are connected by an a�nity

edge. This special edge does not make two nodes to be neighbors, apart from the case

when they interfere and have a normal edge. In case two nodes related by an a�nity

edge are colored with the same color the move instruction that relates them can be

removed from the source code. Figure 3.3 shows the �ve main steps in Chaitin's graph

coloring register allocator:

• Build graph: construct the interference graph for the source program. The live

range of each variable is created through a data�ow analysis. In case the live

range of two registers overlap, they cannot be allocated to the same register and

their respective nodes in the interference graph will be adjacent.

• Aggressive Coalesce: Any two not adjacent nodes related by an a�nity edge

are coalesced to form a new node. The original nodes are removed from the graph,
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while the new node is included. After any node coalescing the graph must be

rebuilt, which could also result in more opportunities for coalescing. Whenever

there is no more moves to be coalesced, the coalescing phase is over. More details

on aggressive coalescing can be found in Section 3.3.1.

• Simplify: simplify the graph using Kempe's heuristics [Kem79]. Consider a

graph G, an architecture with k available registers, and that each node has a

degree which is represented by the number of its neighbors. In case a node has

degree less than k, any possible coloring for its neighbors will leave at least one

available color for itself. Based on this assumption the algorithm repeatedly

removes nodes with degree less than k from the graph and inserts them in a

simplify stack. Each node removed from the graph will reduce the degree of its

neighbors, leading to more opportunity for simpli�cation. If the graph contains

only nodes with degree higher than k, a node is removed from the graph and

marked to be spilled. If any node has been marked to be spilled, the process

continues to the spill phase, and repeats all the process from the beginning,

otherwise, the select phase follows.

• Spill: For each spilled node, loads and stores are inserted in the source code.

This code will reduce the live range of the spilled variable and will create tiny live

ranges in the places where the variable is fetched from memory. These new live

ranges must be represented in the graph and the build phase is again executed.

• Select: assign color to nodes in the graph. Starting from the top of the simplify

stack, the original graph is rebuilt. For each node reintroduced in the graph, a

color, not yet used by its neighbors in the graph, is selected for it.

build
graph

aggressive
coalesce

spill

simplify select

Figure 3.3: Chaitin's graph coloring register allocator.

Figure 3.4 (a) shows an example program, and Figure 3.4 (b) outlines its interfer-

ence graph. In this example, we assume that lower-case names denote 8-bit variables,
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while upper-case names denote 16-bit variables. If we assume an architecture with two

16-bit registers, each having two 8-bit aliases, then the graph in Figure 3.4 (b) is not

colorable. That is, there is no register assignment that keeps all the variables simul-

taneously alive in registers. The register allocator normally solves this problem via

spilling. In Figure 3.4 (c) we have sent variable a to memory; thus, creating two new

variables, a0, at the de�nition point of a, and a1 at its use point. The new interference

graph, given in Figure 3.4 (d) is now colorable.
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Figure 3.4: Graph-coloring-based register allocation. (a) Example program. (b) Pro-
gram's interference graph; squares denote double precision values. (c) Program after
spilling variable a. (d) New interference graph.

The algorithm described by Chaitin successfully solves the allocation problem

using the abstraction of graph coloring. However the spilling decision is made too early

in the algorithm, which results in unnecessary spills. To address this issue, Briggs et al.

developed what they called optimistic coloring [BCT94]. This new approach embodies

two modi�cations on the original algorithm to postpone the decision to spill a node,

and the resulting allocator is shown in Figure 3.5:

• Simplify: the simpli�cation step removes nodes with degree less than k. When-

ever the graph remains with nodes of degree higher than k, a node is removed

from the graph and marked as a spill candidate. Instead of spilling the node

at this point, the algorithm optimistically stack the node in the simplify stack

hoping that a color will be available for this node and no spill will be necessary.

This process goes until the graph has no more nodes.
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• Select: in the select step, the allocator may discover there is no color left for a

certain node. In this case, it leaves this node uncolored and proceeds coloring

the next node. Only nodes marked as spill candidates can be in the situation

where no color is left, however for some of them a color will be available and a

spill will be saved. Whenever this process ends with a list of uncolored nodes,

the allocator insert spill code for each of them, and returns to the build graph

phase. In case all nodes are colored, the allocation has succeeded.

build
graph

conservative
coalesce

spill

simplify select

Figure 3.5: Briggs' graph coloring register allocator.

The algorithm proposed by Briggs also introduced the notion of conservative co-

alescing. In the coalescing algorithm proposed by Chaitin, any two nodes related by

an a�nity were coalesced. This approach was very successful in eliminating move in-

structions, however it constrained the coalesced node, which result in more spilling. To

solve this issue Briggs proposes a conservative solution, where two nodes are coalesced

when it is safe to be done. More information on conservative coalescing can be found

in Section 3.3.2.

The algorithm proposed by Briggs was successful in coalescing conservatively.

However it was too conservative, which leads to too many uncoalesced nodes. George

and Appel proposed an structural change in the algorithm [GA96], to be able to coalesce

more nodes without compromising the colorability of the graph. The main contribution

of this approach is the freeze phase, described in sequence. The main steps of the

algorithm, shown in Figure 3.6, are:

• Build Graph: creates an interference graph, as in Briggs and Chaitin approach.

But also categorize each node as being move-related or not. A move-related node

is an operator of a move instruction.

• Simplify: simplify only those non-move-related with low degree.
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• Coalesce: perform conservative coalescing on the reduced graph obtained by

the simpli�cation phase. Since the degree of many nodes have been reduced,

the conservative strategy is likely to �nd more moves to coalesce than it would

possibly �nd in the initial graph. Any coalesced node that is no longer move-

related will be available for the next round of simpli�cation. Simplify and coalesce

are iterated until only move-related or signi�cant-degree nodes remain on the

graph.

• Freeze: in case neither simplify or coalesce applies, they select a low degree

move-related node and freeze its moves. To freeze a move means to give up on

that move, which will turn the node into a non-move-related node. Simplify is

called in case a node is freezed.

build
graph

simplify coalesce freeze
potential
spill select

actual
spill

Figure 3.6: Iterated Register Coalescing graph coloring register allocator.

The main contribution of this approach is to iterate the simplify and coalesce

steps, with simplify called �rst. This change leads to more conservative coalesced

nodes, since the graph used in the coalesce step is simpler. The authors also proposed

another conservative test. In the coalesce step they use Briggs conservative test, in

case it fails they use their new test, which is described in Section 3.3.3.

3.1.2 Graph Coloring for Architectures with Aliasing

Traditional graph coloring approaches, described in Section 3.1.1, do not handle an

important characteristic commonly found in commercial architectures, aliasing. Mul-

tiple register names may be aliases for a single hardware register. Smith et al., propose

a generalization of graph-coloring register allocation that handles this characteristic,

while preserving the elegance and practicality of traditional graph coloring [SRH04].

The proposed generalization is capable of working on top of any graph coloring al-

gorithm. The authors chose to experiment their algorithm using Appel and George's

Iterated Register Allocation [AG01].
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In the presence of aliasing, the simple test based on the node degree is not enough

to check for greedy K colorability. Smith et al. devised a correct test [SRH04], using

the idea of squeeze introduced by Fabri [Fab79]: a node v can be simpli�ed if the worst

case allocation of all neighbors of v (squeeze of v) is less than the number of registers

available for it.

3.1.3 Linear Scan Register Allocation

Poletto and Sarkar proposed a global algorithm, called Linear Scan [PS99], to solve

register allocation that is not based on graph coloring. The linear scan algorithm is

fast and easy to implement which makes it a good solution for just-in-time compilers

[Ayc03]. Some modern compilers, such as LLVM [Evl04] and Java HotSpot client

compiler [WM05], include implementations of this algorithm.

Linear Scan is a greedy algorithm that reduces the allocation problem of �nding a

coloring to a list of live intervals. Following we present the four steps of this approach:

• Order instructions: choose a linear order for the basic blocks in the program.

The order in which the basic blocks will be placed does not a�ect the correctness

of the algorithm, but can a�ect the quality of the resulting code.

• Create live intervals: with the program in linear form each variable has a live

interval with nonconsecutive program points, i.e., an unconnected live interval.

To simplify the process, they consider a continuous live interval that starts at the

�rst de�nition of the variable and ends at the last use.

• Allocate intervals: following the live intervals in order of creation, the algo-

rithm assigns a register to each live interval. In case no register is available, a

live interval is selected to be spilled.

• Rewrite code: with the assignment of registers or memory positions to live

intervals, the code is written. In this step variables are replaced by registers and

spill codes are inserted.

3.1.4 Other Register Allocation Approaches

Other register allocation approaches present in the literature are:

• Register allocation via Integer Linear Programming [DPV06; FW02;

GW96]: The basic idea of this approach is to model the interactions between

registers and variables as constraints in a system of integer linear equations. It
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produces code of very good quality; however, as integer linear programming is

NP-complete [Kar72], it presents a worst case exponential running time, and can

take hours to �nd an optimal solution.

• Register allocation via Partitioned Quadratic Programming [SE02]: This

approach associates a cost matrix C to each edge of the interference graph of

the source program. Each cost matrix Cuv describes the tradeo�s of assigning

di�erent registers to variables u and v.

• Register allocation via Multi-Flow of Commodities [KG06]: In this ap-

proach, a program is seem as a collection of K pipes, thru which the allocator

must pass a number of indivisible commodities. Each pipe corresponds to a phys-

ical location, either register or memory, and each commodity corresponds to a

variable. Thus, a �ow of a commodity represents the detailed allocation of the

variable that the commodity encodes.

3.1.5 Analysis

The literature on graph coloring approaches to solve register allocation have evolved

over the last 20 years. Many improvements were proposed. We have described the

main �avors on this approach. The algorithm described by Chaitin successfully solves

the allocation problem using the abstraction of graph coloring, however the coalescing

was aggressive and compromised the spilling. Later, Briggs and Appel improved the

original algorithm. The coalescing is now conservative and the spilling decision is

postponed which saves many nodes from being stored in memory. The disadvantage of

this approach is the graph structure, as its construction and maintenance is time and

space consuming.

Smith et al. proposed an extension for the graph based algorithms to handle

aliasing. With this generalization it is possible to better use the register bank of

architectures with aliasing. However the necessity of constructing and maintaining a

graph structure is still present, which is time and space consuming.

The main appeal of linear scan is the speed. Which makes it suited for JIT

architectures. However this advantage comes with a cost in terms of the quality of code

produced. The hard decision of this approach is the order in which the basic blocks are

linearized. The perfect order would reduce the number of false interferences1. However

1An interference is false when the linearization creates an ordering where there is a basic block

where a variable is not used between its de�nition and use.
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it is time consuming to �nd this perfect ordering, therefore the authors use an heuristic

to get the best ordering in a reasonable time.

3.2 Decoupled Register Allocation

Key to a decoupled register allocator is the following property:

Property 3.1. The maximum register pressure at any program point equals the global

register pressure.

Not every program provides this property; however, some representations, such

as SSA-form [CFR+91], provide it in the absence of aliasing. In this case, the local

register pressure at a given point is simply the cardinality of the set of variables alive

at that point. Due to this property, spilling � the lowering of register pressure � can

be done directly on the program, without the need of a data structure that gives a

global view of the program, such as an interference graph. This property has another

advantage, such as simplifying optimizations that impact the register pressure, like

partial redundancy elimination [KCL+99]. Decoupled register allocators, in general,

follow this four steps:

• Split Live Range: use live range splitting to guarantee Property 3.1. In general,
live range splitting will divide the program into regions, in such a way that

variables in di�erent regions do not interfere.

• Spill: lower the register pressure at each program point, via variable spilling,

until this local register pressure is less than or equal toK, the number of registers.

Any spilling heuristics works, although some might produce code of better quality

than others.

• Select: assign variables to registers. The register allocator must be able to �nd

a way to assign registers to variables without causing further spills.

• Insert Code: insert code between the regions to preserve the semantics of the

pre-live range splitting program. This code is necessary because part of a variable

might be allocated into di�erent registers across consecutive regions.

In face of aliasing, the SSA form conversion is not extensive enough to guarantee

Property 3.1; instead, one solution is to convert to elementary form [PP08]. We convert

a program to elementary form via the insertion of parallel copies between each pair

of consecutive instructions. Figure 3.7 (a) shows our running example in elementary
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form. The interference graph of the new program, conveniently called an elementary

graph, is given in Figure 3.7 (b). The dotted lines denote a�nity edges: it is bene�cial

to assign nodes linked by such edges to the same color, because every time we fail to do

it, a copy instruction will make its way into the �nal assembly program. Elementary

graphs have a very simple structure; thus, determining that the local register pressure

has a polynomial time solution, even when nodes are allowed to have weights 1, 2 or

4, as in the case of aliased register allocation. The variables in the program given

in Figure 3.7 (a) can be allocated into two aliased registers; an improvement on the

original program seen in Figure 3.4 (a), which requires three aliased registers. This

result is not a coincidence: any program can be transformed into the elementary form,

and the elementary form program never requires more registers than the original code

[PP08].

  a0 = •
p1 :a1 = a0

  B1,f1 = •

  c2 = •
p3:a3,B3,c3=a2,B2,c2

  d3 = B3

p4:a4,d4,c4=a3,d3,c3

  E4 = c4

• = ax,dx,Ex

  E6 = B6

p7:a7,E7,f7=a6,E6,f6

  d7 = a7,f7

L1

L2

L3

L4

(a)

p2:a2,B2 = a1,B1 p6:a6,B6,f6 = a1,B1,f1

p8:ax,dx,Ex=a7,d7,E7p5:ax,dx,Ex=a4,d4,E4

a0

a1

B1

a2 B2

c2

a3 B3

c3d3

a4c4

d4 E4

a6

B6

E6

a7E7

d7

axEx

dx

(b)

f1 f6

f7

Figure 3.7: (a) The program from Figure 3.4 in elementary form. (b) The interference
graph of the elementary program.

The �rst decoupled register allocator to run on elementary form programs was the

puzzle solver [PP08]. This allocator sees the problem of determining the local register

pressure as a puzzle. The puzzle pieces correspond to program variables. There are

three categories of pieces: K (kill), D (def), and A (live across). Pieces also have a

size, or spam, determined by the size of the variable they represent. The challenge

is to place all these pieces into a puzzle board, which corresponds to the register �le.

Figure 3.8 shows the pieces and board that describe an architecture in which a register

is divided into two aliases. Other decoupled register allocator approaches are described

in [WF10; SB07; AG01].
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. . . A
K

A
K

DD

areas size-2 size-1

Figure 3.8: Pereira and Palsberg's puzzle notation [PP08]: areas represent the register
bank, and pieces represent the program variables.

3.2.1 Analysis

Puzzle solving register allocation is an optimal local solution, which results in perfect

allocation for each instruction, but not for the entire program. It is a fast algorithm,

that is also suited for JIT machines. However, as in Linear Scan, the drawback is that

the quality of code produced is inferior compared to graph coloring approaches. For

example, the solution in Figure 3.9 (a) causes the insertion of three instructions to

preserve the semantics of the original program � an excess that could be reduced to

one by splitting the live range of variable d, instead of variable a at program point p4.

a

c

c

c

a

a

a

a

B

B

B
d

d
E

E ad

B

a

E

d

R0 = •
R1,R2R3 = •

R1 = •
R2 = R2R3

R3 = R1

R0R1 = R1

• = R3,R2,R0R1

R2R3 = R2R3

R1 = R0,R1

xchg(R0R1,R2R3)
xchg(R2,R3)E

L1

L2 L3

L4

(b) (c)

R0R1 R2R3

p1

p2
p6

p3

p4

px

p7

(a)

f

f

f

a

Figure 3.9: Register allocation by puzzle solving. (a) Each unconnected graph from
Figure 3.7 (b) is reduced to a puzzle, solvable in polynomial time. (b) Our hypothetical
architecture provides two aliased registers. (c) The solution of the puzzles is mapped
to assembly code. The bold instructions are code necessary to preserve the semantics
of the original program.
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3.3 Register Coalescing

The act of coalescing nodes can reduce substantially the number of instructions in

the source code, which reduces both the code size and the execution time. Not only

original move instructions can be removed from the code, but also move instructions

inserted by live range splitting. Bouchez et al. have shown that the problem of register

coalescing is NP-complete [BDR07]. In this section we describe the main heuristics

proposed for this problem.

3.3.1 Aggressive Coalescing

Aggressive register coalescing was described by Chaitin in the paper that �rst intro-

duced the graph based register allocation [Cha82]. As the focus of his work was to

create a new approach to allocate registers, Chaitin used a simple heuristic to solve

register coalescing, as follows: every two nodes that do not interfere and are related

by a copy instruction are coalesced. This approach coalesces a great number of nodes

from the graph, however it can increase the number of register spilling. Considering

that the coalescing of two nodes is done with no restrictions, a k-colorable graph can

became not k-colorable after the coalescing, which would lead to more registers spilled

to memory in order to color the graph.

In general a move instruction from register to memory is more costly then a move

between two registers. Therefore coalescing heuristics [Cha82] that increase spilling

may also increase the total execution time of the program. For this reason di�erent

approaches to coalesce registers were proposed in the literature with the purpose to

coalesce only those nodes that would not require any extra spilling.

3.3.2 Conservative Coalescing

In order to address the problem of the large amount of variables spilled to memory,

Briggs et al. developed an algorithm where only node coalescing considered conserva-

tive are performed [BCT94]. A coalescing is considered conservative when the resulting

graph is still k-colorable. The resulting graph is k-colorable when the coalesced node

has at most k neighbors of signi�cant degree, where signi�cant degree means a degree

equal or higher than k.

To understand why this heuristic is conservative it is necessary to recapitulate

the simpli�cation heuristic used by Chaitin [Cha82]. Nodes with degree less than k

are removed from the graph until the graph becomes empty, or the graph possess only

nodes with degree greater than k. In the latter case variables are spilled to memory.
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Therefore, only nodes with more than k neighbors with signi�cant degree in the original

graph can be spilled to memory.

3.3.3 Iterated Register Coalescing

The coalescing approach described by Briggs et al. [BCT94] is capable of coalescing

nodes without compromising the process of spilling, however it is too conservative

and many nodes are not coalesced. A structural modi�cation is proposed by George

and Appel [GA96] in order to have a higher number of nodes being coalesced in a

conservative fashion. Instead of coalescing nodes before the graph simpli�cation, as

done by Briggs, George and Appel proposes to �rst simplify the graph and coalesce

afterwards, and to iterate these two steps until a �xed point is reached. A �xed point

is reached when it is not possible to coalesce any node, neither to simplify the graph.

With this modi�cation the coalescing is performed each time in a simpler graph, which

allows a higher number of nodes to satisfy Briggs coalescing rule.

George and Appel also developed a new criteria to decide whether a coalesce

is conservative. Nodes u and v can be coalesced case all high degree neighbors of u

are also neighbors of v, and vice versa. This test is conservative, because when all

low degree nodes neighbor to the coalesced node u + v are simpli�ed, the result is a

sub-graph of the original graph, therefore it is also k-colorable.

3.3.4 Brute-Force Conservative Coalescing

Briggs et al. [BCT94] and George and Appel [GA96] have proposed two conserva-

tive coalescing algorithms, that can safely coalesce many move related nodes without

changing the colorability of the graph. However many other moves are left uncoalesced

when they could be coalesced conservatively. This happens due to the fact that both

algorithms are local, depending only on the degree of the neighbors.

To overcome this issue, Bouchez et al. proposed Brute-Force Conservative Coa-

lescing [BDR08]. In order to decide whether a move can be coalesced they perform a

more expensive test. First the two move related variables are aggressively coalesced. A

new graph will be obtained including the new node and excluding the two old nodes.

This new graph is tested for colorability. In case it is no longer k-colorable, the coalesce

is considered not safe, and the node is de-coalesced returning to the graph just before

this operation. A node that is considered unsafe is removed from the list and is never

tested again. Since this test is costly they use Briggs' and George's algorithm �rst, in

case they fail, brute force is used. A requirement of this algorithm is to start with a
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k-colorable graph.

3.3.5 Optimistic Register Coalescing

The coalescing of nodes can increase their degree and compromise the colorability of a

graph. To overcome this issue, [BCT94] and [GA96] developed heuristics that coalesced

conservatively and do not compromised the graph colorability. However these heuristics

decide whether a coalesce is conservative too early, missing opportunities of coalescing

that would turn out to be safe. Further more, they ignore the fact that coalescing may

decrease the degree of neighbors and improve the colorability of the graph.

To pro�t from coalescing bene�ts without compromising the spilling process, Park

and Moon proposed Optimistic Register Coalescing [PM98; PM04], an algorithm which

optimistically coalesces all possible move related nodes following Chaitin's aggressive

approach. In case a coalesced node is selected to be spilled, this node is split back into

the original nodes, which there is a better chance of coloring one of them and spilling

only the other.

3.3.6 Copy Coalescing by Graph Recoloring

Copy coalescing by graph recoloring [HG08] was described by Hack and Goos and

coalesces nodes of programs in the SSA intermediate representation in a conservative

fashion. The �rst step of the algorithm is to transform the interference graph into a

k-colorable graph by spilling some variables. The graph is then colored with an initial

coloring. This initial coloring does not considers move related nodes, which could lead

them to have di�erent colors. In order to spare some move instructions, the algorithm

tries to re-color these nodes with the same color. This could lead to a graph with

neighbors having the same color. To solve this issue nodes are recursively re-colored

until no neighbors share the same color. This approach could lead to an in�nite loop

of recoloring. However they limit to one recoloring per variable in each recoloring

attempt. In case the graph has neighbor nodes with the same color in the end of a

recoloring attempt, this attempt is undone.

Instead of trying to recolor by each a�nity, the algorithm creates chunks of

a�nities. A chunk of a�nities is a set of nodes that are related by a�nities, but that

do not have interference between them, which means they can all have the same color.

So instead of having only two related nodes recolored, the algorithm tries to recolor

the whole chunk to the same color, and propagates the recoloring if necessary.
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3.3.7 Punctual Coalescing

Punctual Coalescing [PP10] was described by Pereira and Palsberg to complete their

register allocation algorithm based on puzzle solving [PP08]. As described in Section

3.2, their register allocator traverses the source code and allocates, variables to registers,

instruction by instruction without creating an interference graph. A puzzle is created

for each instruction, where each live variable represents a piece and the register bank

represents the board to be �lled with the pieces. In the puzzle solver allocator, each

instruction is allocated with no regards to the previous instruction. This could lead

to a variable being allocated to di�erent registers between to consecutive instructions,

which would require a copy instruction.

In order to reduce the number of copy instructions inserted by the register al-

locator, the authors developed the Punctual Coalescing. Instead of allocating each

instruction independently, the previous instruction is used as a guide to allocate the

current instruction. The objective of the algorithm is to keep the greatest number of

variables in the same register between the guider instruction and the current instruc-

tion.

3.3.8 Analysis

Aggressive Coalescing can coalesce a great number of nodes from the graph, however it

can increase the number of register spilling. Since instructions from register to memory

are often costly, the aggressive coalescing can in thesis slow down the execution time. To

address this problem Briggs et al. developed an approach which conservative coalesces

move instructions, without increasing the number of spilled variables, which results

in better performance most of the time. However it is too conservative and many

nodes are not coalesced. For this reason George and Appel proposed, Iterated Register

Coalescing, a new conservative heuristic and also a structural change in the allocator

design. These modi�cations increased the number of nodes coalesced in a conservative

fashion, however the complexity of the algorithm is increased, and may compromise the

interaction with other algorithms. Brute-Force Conservative Coalescing uses a global

view of the interference graph to decide whether a coalesce is conservative. Many

uncoalesced nodes by Briggs et al. and George and Appel are now coalesced, however

the algorithm covers the whole graph, which makes it very slow.

Optimistic Register Coalescing pro�ts from aggressive coalescing without com-

promising the colorability of the graph. However the author has concluded that it is

necessary further experiments to evaluate if the results can be better than the early

described conservative algorithms. Copy Coalescing by Graph Recoloring does not
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compromises the spilling process and has the advantage of having a valid coloring dur-

ing all steps of allocation. Therefore the algorithm can be stopped at any time that

a valid result will be returned. This can be useful for JIT compilers, where execu-

tion time is a restriction, and the algorithm can be stopped after a certain number

of recoloring was performed or a certain amount of time was spent. While this has a

direct impact on the code size, it does not seem to have a dramatic impact to the per-

formance of the compiled programs. Punctual Coalescing executes in linear time and

is an optimal local solution, which is a good option for environments with dynamic

compilation, where compilation time is important. Since the solution is not global,

many unnecessary copies are inserted, specially between basic blocks.

3.4 Conclusion

In this chapter we presented the main algorithms present in the literature for regis-

ter allocation and coalescing. Chaitin et al. introduced the notion of graph coloring

register allocation in 1981, [CAC+81]. Later, Briggs et al. improved this idea with a

better coalescing algorithm, in 1981 [BCT94]. In 2001, Appel and George changed the

structure of the algorithm in order to coalesce more nodes conservatively, creating the

Iterated Register Coalescing (IRC) [AG01]. On top of IRC, Smith et al. proposed, in

2004, an algorithm to deal with architectures with aliasing [SRH04]. In parallel, other

researchers have proposed to solve the problem without using the graph coloring ab-

straction: Poletto and Sarkar proposed Linear Scan Register Allocation [PS99], which

linearizes the live range of variables and allocates them; and Pereira and Palsberg pro-

posed Puzzle Solving Register Allocation [PP08], which allocates each instruction at a

time. The graph based approaches have a global view of the program, which results in

better code, however it is necessary to maintaining a graph structure. The other two

approaches have only local view of the problem, and therefore they do not have to deal

with a heavy structure, as an interference graph, which results in a faster algorithm.

The main coalescing approaches also came in the graph coloring paradigm. First,

Chaitin et al. proposed an aggressive coalescer [CAC+81], which lead to more spilling.

Later Briggs et al. [BCT94] and Appel and George [AG01] proposed two conservative

algorithms that coalesce nodes without compromising the colorability of the graph.

Finally, Bouchez et al. proposed a brute-force algorithm for conservative coalescing

[BDR08]. This algorithm has the advantage of coalescing a great number of nodes, and

also the structure of the algorithm is very simple, however it is slow. In parallel, Park

and Moon created an optimistic approach [PM98; PM04] and Hack and Goos created
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an algorithm with recoloring [HG08]. The �rst is based on aggressive coalescing, but

de-coalesces a node in case the colorability is a�ected. The second �nds a initial coloring

and tries to recolor the graph to improve the number of nodes coalesced.

In Chapter 4 we describe how the main aspects of the algorithms presented in this

Chapter, are combined to describe a suite of techniques that make decoupled graph

coloring register allocation, in the presence of aliasing, feasible and useful.





Chapter 4

Live Range Merging

In this chapter we describe the techniques that we use to design decoupled graph

coloring register allocators that handle aliasing in a practical way. In order to have

a decoupled approach, it is necessary to transform the interference graph into a k-

colorable graph. For architectures with aliased registers, one solution is to convert the

program into elementary form to make a k-colorable graph. As we show in Chapter

5, the conversion to this intermediate representation makes the interference graph, in

average, 8x bigger, which is impracticable for an graph coloring approach. In order to

maintain the elementary form properties without increasing too much the graph size,

we propose two live range merging techniques: simple and punctual. Both of them are

conservative and will never transform a k-colorable graph into a non-k-colorable graph.

4.1 Decoupling Spilling from Register Assignment

in Face of Aliasing

Figure 4.1 shows our version of the iterated register coalescer, whose original design

appears in Figure 3.6. A cursory comparison of the �gures reveals that the decoupled

version has less iterations between its phases. The simplify, coalesce, freeze and select

phases are the same detailed by George and Appel [GA96]. The split phase implements

the conversion of the source program into elementary-form and is described by Pereira

and Palsberg [PP08]. The decoupled version uses a phase called patch, related to the

implementation of parallel copies, not present in the original IRC algorithm. The

polynomial time coloring of SSA-based allocators is possible only if the compiler can

emulate the behavior of parallel copies [BCD+10; PP06]. After register allocation, the

compiler must implement these parallel copies, using the instructions available in the

33
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target architecture. Parallel copy patching has been thoroughly described by Pereira

and Palsberg [PP09]. Therefore, the only new step of our implementation is the spill

phase, which we describe in this section.

spill split simplify coalesce freeze select patch

Figure 4.1: A decoupled re-implementation of the Iterated Register Coalescer, which
we use in the experiments of Chapter 5.

Decoupled register allocation is interesting as long as it does not cause more

spilling than traditional graph-based register allocators. The elementary form is an

easy way to provide this guarantee. Given that the conversion to elementary form

divides the source program in regions that are very small and simple, the problem of

determining the local register pressure for each region has polynomial time solution

[PP08], at least for architectures with quad, double and single registers, such as x86,

ARM, PowerPC and SPARC. The polynomial time solution still hold in face of pre-

allocation, a phenomenon caused by architectural constraints that force variables to be

assigned particular registers [PP08].

Therefore, to bring the decoupled approach to Smith-style allocators, we convert

the source program into elementary form, and analyze each program point indepen-

dently, spilling variables until all the remaining variables are K-colorable. However,

not every variable can be removed from a given program point. In order to guarantee

that the �post-spilling" program will contain registers to re-load spilled variables, we

cannot remove variables de�ned or used at that point. Figure 4.2 (a) shows the graph

that corresponds to the instruction E6 = B6 in Figure 3.7 (b). Variables a6 or f6 can be

spilled, but the compiler must assign the other variables a register in order to produce

valid assembly code to that instruction. Notice that we do not ever have to build the

program interference graph during the spilling phase: we can work on the program

itself. We have experimented with two ways to perform the local register pressure test:

the original Smith simpli�cation test and a new version of this test, which we augment

with the possibility of doing live range merging.

1. Checking Colorability Via Smith's Simpli�cation Test.

Graph-based algorithms normally rely on Kempe's technique [Kem79] to remove

nodes with degree less than K � the number of registers � until either the graph is

empty, or all the nodes have higher degree. If a graph can be completely simpli�ed
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via Kempe's method, then the graph is called greedy K colorable [BDR07]. In the case

of both the Iterated Register Coalescer, and the Brute Force coalescer, the spilling

phase must guarantee that the program that passes forward to the other phases of the

register allocator has an interference graph that is greedy K colorable. In the presence

of aliasing, the simple test based on the node degree is not enough to check for greedy

K colorability. A correct test has been devised by Smith et al. [SRH04], using the idea

of squeeze factor introduced by Fabri [Fab79]: a node v can be simpli�ed if the worst

case allocation of all neighbors of v is less than v's squeeze factor. Figure 4.2 illustrates

this idea. Figure 4.2 (a) shows a subgraph of the graph given in Figure 3.7 (b). Each

vertex has been augmented with the squeeze factor of the variable that it represents, as

determined by Smith et al.'s simpli�cation criterion. The squeeze of a variable is the

maximum number of registers that could be denied to it, given a worst case allocation

of its neighbors. For instance, variable B6 has two neighbors, which could be assigned

di�erent double-precision registers; thus, its squeeze factor is 4. Using Smith's test,

we remove variables, until all the remaining variables have a squeeze factor less than

K. Notice that, in an elementary-form program the region in which variables interfere

is so simple that we do not need to build a graph to perform Smith's test: we simply

count the number of variables simultaneously alive.

a6

B6

E6

f6 a6

B6

E6

f6

f6

a6E6B6

E6B6

a6 f6

(b) (c)(a)

5 4

4 5
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✓
✓
✓
✓
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E6/B6f6

(d)

E6/B6 f6a6

E6

f6a6
B6

merging

Figure 4.2: Smith et al. Simpli�cation test. (a) A connected component of the graph
in Figure 3.7 (b). (b) Worst case allocation for each variable. (c) A tidy allocation
produced by a puzzle solver. (d) Variable merging guided by the puzzle solver.

2. Improving Smith's Test With Live Range Merging.

Assuming only two double-precision registers, the squeeze-based simpli�cation test

would fail to simplify any node in Figure 4.2 (a), and some variable would have to be

spilled. On the other hand, there exists a register assignment that accommodates all

the variables, as Figure 4.2 (c) shows. We say that a graph is colorable if there exists

a valid assignment of registers to nodes such that every node receives a register. Any
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greedy K-colorable graph is colorable; however, the opposite is not true, as the example

in Figure 4.2 demonstrates.

In order to improve Smith et al.'s simpli�cation test, we do live range merging

whenever we are unable to simplify any variable. We use the Algorithm 4.1.

Algorithm 4.1: Improving Smith's test with live range merging

Let P be the collection of pieces that form a puzzle in an elementary-form1

program. Assume that we group the pieces of P into three sets: A, K and D,
according to the notation in Figure 3.8
while P 6= ∅ do2

if ∃v ∈ P : v is simpli�able then3

simplify(v)4

P = P \ {v}5

else if ∃d ∈ D and k ∈ K : d.size= k.size then6

Let d, k be the largest pieces that ful�lled the condition7

a = merge(d, k)8

P = P \ {d, k} ∪ {a}9

else10

Let v ∈ A : v not used in the related instruction11

spill(v)12

P = P \ {v}13

When merging pieces, we choose the pair with pieces of largest spam because

this strategy reduces more drastically the squeeze factor of the other variables alive

in that program point. Another important detail of our algorithm is the fact that we

use live range merging with discretion. If we are stuck in the simpli�cation process,

then we choose only one pair of pieces, merge them, and re-try the simpli�cation test.

We proceed in this careful fashion because merged variables will be assigned the same

register. This restriction might have the undesirable side e�ect of constraining too

much the register coalescer that will run after spilling takes place.

We do no apply live range merging at program points that contain pre-allocated

variables. Pre-allocation might prohibit the merging of live ranges, and, in face of this

phenomenon we fall back to Smith et al.'s simpli�cation test.

4.2 Augmenting the Brute-Force Register Allocator

to Handle Aliasing

Smith et al's extensions have been designed to �t any graph coloring based algorithm.

However, to the best of our knowledge, the Iterated Register Coalescer is the only
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documented algorithm that has been adapted to use such extensions. We have added

one more member to this family: the brute force register coalescer of Bouchez et al..

Con�rming Smith et al.'s expectations, this adaptation was fairly straightforward.

The brute-force algorithm, outlined in Figure 4.3, has a more modular design

than the iterated register coalescer. After spilling is performed, we order the copies in

the source program according to their pro�tability, and try to coalesce them following

this ordering. The pro�tability of a copy is a measure of how much improvement its

deletion can bring to the target code, independent of how this elimination impacts the

other copies. Copies inside deeply nested loops tend to be more pro�table than copies

outside loops. We say that the coalescing of vertices a and b is conservative if the

interference graph that we obtain after collapsing these nodes into a single node ab is

greedy K-colorable. We use one of the following three tests, in order, to guarantee that

it is conservative to coalesce copy a = b:

1. Briggs(a, b) [BCT94]: the merging of a and b will create a node ab with fewer

than K neighbors with squeeze greater than K.

2. George(a, b) [GA96]: assuming that a is a pre-allocated variable, then every

neighbor of a already interferes with b, or has squeeze less than K. Notice that

we must also try George(b, a), as this rule is asymmetric.

3. Brute(a, b) [BDR08]: the graph that results from merging a and b is greedy

K-colorable.

The only di�erence from our tests to the original tests [BDR08; BCT94; GA96] is the

use of the node's squeeze factor instead of its degree.

spill split simplify briggs select patchgeorge
brute
force

Coalesce

Figure 4.3: Bouchez et al.'s brute-force register coalescer.
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4.3 Conservative Live Range Merging to Reduce

the Problem Size

The heavy price incurred by the conversion into elementary form is the growth in the

program size. As an example, whereas the interference graph in Figure 3.4 (b) has

six nodes, the corresponding elementary graph seen in Figure 3.7 (b) has 26. This

explosion is observed in actual benchmarks. Figure 4.4 compares the size of program

traces taken from SPEC CPU 2000 before and after the conversion into elementary

form. The puzzle solver avoids dealing with such big programs exactly because it only

sees one instruction at a time: the live ranges around an instruction are split on the

�y, during a traversal of the dominator tree of the source program. This is a luxury

that a Chaitin style graph coloring algorithm has not been designed to a�ord.
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Figure 4.4: The growth in the number of program variables due to the conversion to
elementary-form.

A simple way to shrink the size of elementary programs is to apply some fast

coalescing criterion, i.e, Briggs's or George's to each a�nity edge of the elementary
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graph. However, even this approach is too slow: each of these tests is O(K), and the

elementary graph contain O(I×K+B2×K) a�nities, where B is the number of basic

blocks in the program. Thus, this trivial elimination of a�nities is O(K2 × (B2 + I)).

We want to perform this merging in batches, simultaneously eliminating many a�nities

at the expenses of a single and e�cient conservative test. In this section we describe a

way of doing it.

In order to perform live range merging, we traverse the dominator tree of the

source program, eliminating all the a�nities between an instruction, the guider, and

its successor, the follower, whenever we can prove that it is conservative to do so.

Otherwise, we keep all the a�nities between the guider and the follower. We have

tested two di�erent criteria to ensure a conservative merging of live ranges. We call

these tests simple and punctual.

4.3.1 The Simple Test

An elementary graph is formed by many unconnected components, which represent

the live ranges of variables at some particular program point. Therefore, we expect a

lot of redundancies between graphs formed from consecutive instructions. Given two

instructions, the guider and the follower, all the vertices that correspond to variables

live-in at the follower are connected through a�nity edges to the vertices in the guider.

A variable is live-in (out) at some instruction i if its live range contains any program

point before (after) i. The only vertices in the follower's graph which have no a�nities

for vertices in the guider's are those nodes that represent variables de�ned in the

follower instruction. We call them critical nodes. Normally an instruction de�nes at

most one variable; hence, we expect to �nd at most one critical node in the follower.

In light of these observations, the simple merging test is presented in Algorithm 4.2

Algorithm 4.2: Simple Test

if every critical vertex s in the follower's graph has a squeeze factor less than1

K then
for any vertex v in the follower's graph that has an a�nity for a vertex u2

in the guider's graph do
collapse v and u into a node uv3

Theorem 4.1. Let guider (g) and follower (f) be two consecutive instructions. Let

Gg be the interference graph of the variables live-in and live-out at g, and Gf be the

interference graph of the variables live-in and live-out at f . If Gg is greedy K colorable,
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Figure 4.5: Simple live range merging applied on part of the graph of Figure 3.7.
Considering two double precision registers available, we can merge all the subgraphs
but the last, because the squeeze of E4 is 4.

then the graph that results from merging Gg and Gf via the simple test is greedy K

colorable.

Proof. The proof is straightforward: if the merging is done, the resulting graph is

formed by all the nodes from Gg plus the critical nodes in the follower. Because of

the test in line 1 Algorithm 4.2, we know that every critical node can be simpli�ed.

Once they are simpli�ed, we fall back into Gg, which, by hypothesis, is greedy K

colorable.

Figure 4.5 illustrates the simple live range merging technique applied to the se-

quence of instructions from program point p1 to p5 in Figure 3.7 (a). We have aug-

mented the graphs in Figure 4.5 (a) with the squeeze factor of each node, and we have

highlighted the squeeze factor of each critical node in the next �gures.

4.3.2 The Punctual Test

The simple test only merges the live ranges of variables that are connected by a�nity

edges. However, in order to further reduce the size of the interference graph, we

can also merge non-a�nity related variables, using a technique based on punctual

coalescing [PP10], which we call punctual merging. Punctual coalescing is a strategy

used in conjunction with puzzle-based register allocation to remove copies in the target

code. The punctual coalescer tries to �t variables related by a�nities into the same
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columns of two consecutive puzzle boards, and it is able to �nd the largest number

of matches that do not compromise the solvability of these two puzzles. We con�ne

punctual merging to the boundaries of basic blocks, because, by merging non-a�nity

related variables, we may eliminate coalescing opportunities. As we show in Chapter 5,

punctual merging decreases the capacity of both, the Iterated Register Coalescer and

the Brute Force Coalescer to eliminate copies in the �nal assembly code. Our live range

merging technique based on punctual coalescing is presented in Algorithm 4.3.

Algorithm 4.3: Punctual Test

for each instruction guider in a top-to-bottom visit of the basic block do1

Let follower be the instruction after guider2

Let merges be an empty list3

puzzleBoard = punctualCoalesce(guider, follower)4

for each column r in puzzleBoard do5

Let prevNode be unde�ned6

for currentNode in that order in guider.r.{K,A,D},7

follower.r.{K,A,D} do
if prevNode is de�ned and prevNode.size = currentNode.size then8

prevNode = merge(prevNode, currentNode)9

else if currentNode is de�ned then10

prevNode = currentNode11

for each node s that contains follower 's critical vertex do12

if squeeze(s) > |s.register_class.registers| then13

undo merges14

Figure 4.6 illustrates punctual merging. We have used a di�erent example this

time, because our running example from Figure 3.7 is not complex enough to exercise

the interesting aspects of punctual merging. Notice that the simple merging technique,

when applied on Figure 4.6 (b) would only merge the variables C's and f's. However,

assuming a solution of punctual coalescing that places variables f0, f1 and g1 into the

same column, we can also merge these pieces. The same happen with � non-contiguous

� variables d0 and e1. On the other hand, we cannot merge variables a0 and b1, because

there are pieces in the puzzle rows between these two variables, i.e, C0 and C1.

4.4 Conclusion

In this chapter we described the techniques that we use to design decoupled graph

coloring register allocators that handle aliasing in a practical way. We propose two live
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Figure 4.6: A constructed example showing punctual merging. (a) The elementary-
form program. (b) The interference graph. (c) The solution of punctual coalescing.
(d) The solution of punctual merging.

range merging algorithms that can reduce the graph size in a conservative fashion. It

is important to have such algorithms to reduce the huge graphs created by elementary

form.

We have adapted Bouchez et al.'s Brute Force coalescer [BDR08] to deal with

aliasing, using Smith et al.'s. Con�rming Smith et al.'s expectations, this adaptation

was fairly straightforward.

We have also described an approach to improve Smith's spilling test. Using his

squeeze-based simpli�cation test, the graph for an instruction could be considered k-

colorable, and still be colorable. In this case a variable would be spilled unnecessarily.

To prevent this from happening, we now check if a graph is colorable, which means

that there exists a valid assignment of registers to nodes such that every node receives

a register. In case a graph is colorable but not k-colorable, we repeatedly merge nodes

until the graph becomes k-colorable.
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Experiments

We chose to run our experiments on SPEC CPU 2000, which we have compiled into

MinIR using LLVM 2.7 [LA04]. Most of the functions that we found in SPEC do not

possess enough aliasing to exercise our algorithms; therefore, in these tests we only

show results for the functions with at least 10% of instructions with live variables of

di�erent sizes, i.e, 8 and 16 bits.

For the sake of simplicity, we have executed our experiments in an arti�cial ar-

chitecture, MinIR, described in Section 5.1; thus, we will not show run-time numbers.

Nevertheless, we have checked the validity of each register allocation using the type-

system of Nandivada et al. [NPP07].

5.1 MINimal IR Architecture

In this section we describe a prototype architecture called MINimal IR (MinIR)1, which

is based on the YAML2 serialization format. YAML is used by STMicroelectronics

Inc to quickly prototype hardware. The algorithms proposed in this chapter were

implemented in Python, producing code to MinIR. MinIR provides a minimalist textual

machine level intermediate representation to be used for experimental tools.

We have chosen to work with MinIR to reduce development time. The MinIR

architecture provides simple structures and methods to access information on the source

code. Furthermore, like any other dynamic language, Python can be used for scripting

which facilitates the job of implementing the algorithms.

From the perspective of a compiler's writer, a scripting language permits rapid

prototyping of compiler algorithms. With the use of MinIR and Python it was possible

1http://www.assembla.com/wiki/show/minir-dev
2http://www.yaml.org/

43
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to implement the di�erent forms of live range merging presented in this dissertion, as

well as all the register allocation algorithms used to support the work. In this chapter

we present experiments realized to substantiate this work.

Our target has the same instructions as x86; however, it uses a di�erent register

bank, which we outline in Figure 3.2. This register bank, presented in Algorithm 5.1 is

a subset of the registers found in x86, showing two classes of registers. The �rst class,

called G8, contains eight 8-bit registers, while the other class, called G16, contains four

16-bit register, as illustrated in Figure 3.2.

Algorithm 5.1: Register Bank from Figure 3.2 written for MinIR

regclasses:1

- name: G82

registers: [AH, AL, BH, BL, CH, CL, DH, DL]3

- name: G164

registers: [AX, BX, CX, DX]5

elements: {AX: [AH, AL], BX: [BH, BL], CX: [CH, CL], DX: [DH,6

DL]}

YAML provides two main structures to store information. The �rst is the hash

table, which is represented as {key1: value1, key2: value2, ...}. The second structure is

an array, which is represented as [value1, value2, ... ]. The elements of arrays/hashes

can also be listed one element per line way using "-" for arrays.

We will be using an example to describe the structure of a MinIR program. The

algorithm for a non-recursive factorial is presented in Figure 5.1(a), while its control

�ow graph is shown in Figure 5.1(b). Algorithm 5.2 shows the code for the non-recursive

factorial written for MinIR, which computes the factorial of a positive interger n as the

product of all positive integers less than or equal to n.

Following we present the main elements of a program written for MinIR:

• Function: Each function must have a label (line 1), a list of entry (Line 2) and

exit (Line 3) points, and also a list of basic blocks (Lines 4-21). A function can

have one or more entry and exit points.

• Basic Block: Each basic block is constituted of a label (Line 5) and a list of

operations (Lines 6-9).

• Operation: The only mandatory information for an operation is its name, which

is represented by op. The list of de�ned variables (defs) and the list of used

variables (uses) are optional. There are also other optional information that
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int fact(int n) {

int k, p;

p = 1;

for (k=1 ; k<=n ; ++k) {

p = p * k;

}

return p;

}

   p
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Figure 5.1: Example of non-recursive factorial. (a) Factorial in C. (b) Control �ow
graph of the program.

are used for speci�c types of operations. Below we describe the main types of

operations:

� φ-function: The φ-functions must always be the �rst operations in a basic

block, as seen in Lines 12-13 for BB2. It is mandatory to present the list

of used and de�ned variables. As described in Section 2.1, depending on

the control �ow, one of the variables in the use list will be assigned to the

de�ned variable. Therefore each used variable must be followed by the basic

block it came from. For example, in Line 12, variable p3 will be attributed

p1 case the control �ow comes from BB1, and p2 case it comes from BB3.

� Branch: A branch instruction has the power to alter the control �ow of

the program. Two information are important for these instructions: the

basic block to go in case the branch is taken (target), and the basic block to

continue in case the branch is not taken (fallthru). For example, in Line 14,
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we have a gbt operation. Case k3 is greater than n the control �ow will go

to BB4, in any other case the control �ow will continue to BB3. A branch

operation is always the last instruction of a basic block, and case it is not

present, the control �ow will continue to the next basic block of the list.

� General: These are all operations that do not �t in any of the above. An

example is the addition operation in Line 18. Variable k2 will receive the

result of the addition between variable k3 and 1.

• Operand: There are three types of operands:

� Variable: A variable is represented by its name followed by its register

class. For example, in Line 8, variable p1 is de�ned and its register class is

G16.

� Register: In case a variable is precolored by a register, we only show the

register. If p1 was precolored to AX, we would replace p1.G16 by AX

everywhere.

� Immediate: An immediate is represented surrounded by single quotes, as

the use operand in Line 8.

5.2 Experimental Results

Live Range Merging

The chart in Figure 5.2 illustrates the power of our live range merging techniques.

The conversion to elementary form, on average, creates graphs 800% bigger than the

original graphs. Simple live range merging reduces this di�erence to about 200%.

Punctual merging is more aggressive, generating graphs that are even smaller than the

graphs manipulated by the original implementation of iterated register coalescing.

Measuring the E�ectiveness of Live Range Merging on the Register Coalescers

Live range merging, be it simple or punctual, not only reduces the size of the in-

terference graph, but also improves the e�ectiveness of copy coalescing, as we show in

Figure 5.3. This �gure compares the brute force coalescer [BDR08], the iterated register

coalescer [GA96] and the punctual coalescer [PP10]. The �rst two algorithms were im-

plemented using Smith et al.'s extensions, as we have described in Section 4.2. Whereas

punctual coalescing runs directly on elementary-form programs, we have tested the
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Algorithm 5.2: Non-recursive Factorial written for MinIR

- label: factorial1

entries: [BB1]2

exit: [BB4]3

bbs:4

- label: BB15

ops:6

- { defs: [n.G16], op: entry }7

- { defs: [p1.G16], op: mov, uses: ['1'] }8

- { defs: [k1.G16], op: mov, uses: ['1'] }9

- label: BB210

ops:11

- { defs: [p3.G16], op: phi, uses: [p1.G16<BB1>, p2.G16<BB3>] }12

- { defs: [k3.G16], op: phi, uses: [k1.G16<BB1>, k2.G16<BB3>] }13

- { op: bgt, fallthru: BB3, target: BB4, uses: [k3.G16, n.GR16] }14

- label: BB315

ops:16

- { defs: [p2.G16], op: mult, uses: [p3.G16, k3.G16] }17

- { defs: [k2.G16], op: add, uses: [k3.G16, '1'] }18

- label: BB419

ops:20

- { op: return, uses: [p3.G16] }21

other algorithms with three di�erent inputs: elementary graph, graph after simple live

range merging, and graph after punctual live range merging.

Figure 5.3 shows only the result of IRC using Smith et al.'s extensions. The

algorithm executing over elementary graphs increased the size of the original program

code, due to the insertion of register copies, by about 1,5%. Using simple live range

merging this number shrinks down to about 0,54%. Graphs after punctual live range

merging also yield better results than pure elementary graphs: 0,7%. Notice that in all

three cases, this increase is the result of doing live range splitting: there are situations,

like in the example in Figure 3.4, when splitting the live ranges of variables via copy

instructions is necessary to avoid spills. Simple live range merging tends to produce

better result than punctual live range merging. We speculate that this happens because

the punctual merging constrains too much the interference graph, creating nodes with

larger squeeze factors.

Figure 5.4 shows the e�ectiveness of the brute force coalescer implemented using

the modi�cations from Section 4.2. Running the algorithm directly on elementary-form

programs increased the code size by 0,34%. If we precede the execution of the algorithm

with simple live range merging, than the number of copy instructions decreased to
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Figure 5.2: Comparison of the live range merging techniques. The bars represents the
number of nodes in the interference graph (values are normalized to normal). Normal:
input graph passed to the normal iterated register coalescing algorithm � the number of
nodes is the number of variables in the source program. Normal (spill): the largest
graph that the iterated register coalescer had to manipulate due to new variables
created after spilling. Elementary: graph in elementary form. Simple: graph after
the simple live range merging algorithm. Punctual: graph after punctual live range
merging algorithm.
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Figure 5.3: The e�ect of live range merging on the coalescing power of the iterated
register coalescer (IRC). The graph shows the percentage of copies, used to convert the
input program into elementary form, that were not coalesced by IRC.

0,33%. Contrary to IRC, in the case of Brute Force, punctual live range merging

degrades the ability of the coalescer to eliminate copies: it increases the �nal code size

in 0,58% � 0.24% more than running the coalescer on the original elementary-form
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programs.
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Figure 5.4: The e�ect of live range merging on the coalescing power of the brute force
coalescer (BF). The graph shows the percentage of copies, used to convert the input
program into elementary form, that were not coalesced by BF.

Figure 5.5 presents the comparison between the three algorithms: brute force

(BF), iterated register coalescing (IRC) and punctual coalescing [PP10] in terms of the

number of copies that each algorithm can eliminate via register coalescing. We have

chosen the best con�guration for each algorithm: IRC and BF run after simple live

range merging, while punctual coalescing can only run on elementary-form programs.

Con�rming previous results [BDR08; PP10], the brute force coalescer is the most e�ec-

tive algorithm, adding only 0,33% new instructions into the �nal assembly code. IRC

comes next, with an increase of 0,55%. The punctual coalescer increases the target

code by almost 2.0%. This relatively bad result of the punctual algorithm is due to the

fact that it is a local approach, which does not attempt to eliminate copies between

basic blocks.

Spilling

The objective of this section is to show the e�ect of the technique discussed in

Section 4.1 on spilling. Figure 5.6 presents the number of variables spilled with and

without merging. We have set to 100% the number of variables spilled without merging.

From the graph we can conclude that less than 0,5% of the variables spilled were saved

using node merging. We attribute this low e�ectiveness of node merging to two factors.

First there is a small number of instructions with aliasing in SPEC 2000. Second, the

spilling algorithm used (spill everywhere) reduces too much the register pressure at

each program point shadowing the need of a more advanced spilling heuristics. A
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Figure 5.5: Comparing the e�ectiveness of three di�erent register coalescing ap-
proaches. The graph shows the percentage of non-coalesced copies used to convert
the input program into elementary form.

better algorithm to insert loads and stores would substantially increase the register

pressure [AG01]. We believe that in such scenario many graphs would not be K-

colorable, while still being colorable, boosting up the need of node merging.
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Figure 5.6: Number of variables spilled with and without node merging.

5.3 Evaluation

Many register allocation algorithms follow a decoupled approach that separates spilling

from register assignment. This model has important advantages. First, the separation
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between these two phases tends to yield simpler and more modular implementations:

di�erent spilling heuristics can easily be combined with di�erent strategies to do register

assignment and coalescing. Second, as we have illustrated in Chapter 3, decoupled

designs have more �exibility to assign registers to variables; hence, are more successful

at avoiding spilling. Although so fundamental, this very notion of live range splitting

makes it di�cult to extend decoupled algorithms to computer architectures with aliased

register banks.

In order to implement a decoupled approach for architectures with aliasing, it

is necessary to convert the program to elementary form. As shown in Figure 5.2, an

interference graph of a program in elementary form is in average 8x bigger than the

graph of the original program. This impressive increase in graph size is unfeasible for

graph coloring approaches.

The solution found to keep a decoupled approach and a representation with the

same properties as an elementary form was to conservatively merge live ranges. Simple

live range merging produced graphs only 2x bigger than the original program's graph.

Even better was the result of punctual live range merging, that produced graphs smaller

than the largest graph the iterated register coalescer had to manipulate due to new

variables created after spilling. Reduced graph size shows that our live range merging

techniques are e�ective, however we still have to evaluate whether they are e�cient.

To evaluate the e�ciency of our techniques, we have executed them with di�erent

register allocation algorithms. Since spilling is now decoupled and executed before live

range splitting, the number of spilled variables is not a good measure for our e�ciency

test. Therefore, we have decided to measure the number of variables coalesced in each

case.

For both register allocation algorithms, IRC and Brute Force, the use of simple

live range merging resulted in more variables coalesced than in an elementary form

program, as showed in Figures 5.3 and 5.4. However we cannot say the same for punc-

tual live range merging. For iterated register coalescing, it resulted in more coalescing

than in elementary form, but for brute force, it coalesced less than in elementary form.

And for both register allocation algorithms, simple live range merging coalesced more

than punctual live range merging.

With this evaluation it is possible to say that these techniques should be used in

di�erent situation. Punctual live range merging produced the smallest graphs, while

simple live range merging resulted in a code with more instructions coalesced and

consequently a better �nal code. Therefore, we can say that the �rst technique is

better suited for environments where the compilation time is an issue. And the second

technique is indicated in case the best �nal code is sought.
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We also proposed a merging technique to improve spilling. The motivation for

this technique is that with Smith's squeeze test some graphs are considered not k-

colorable, while they can be colored using other algorithms, for example Punctual

Coalescing. This often happens in instructions where the register pressure is close

to the maximum register pressure for the architecture. To combine both ideas, we

presented a technique that merges variables in an instruction to make all instructions

colorable by Punctual Coalescing, also k-colorable by Smith's squeeze test. However,

as shown in Figure 5.6, the number of spilled variables saved by this new idea was not

satisfactory. Since, the spilling algorithm used (spill everywhere) reduces substantially

the register pressure of each instruction, there were few opportunities to apply the

merging technique presented. Even though, we consider that this technique can be

useful when used with an e�cient spilling heuristic.



Chapter 6

Conclusion

This thesis has introduced a number of techniques that make graph coloring-based reg-

ister allocation more practical and e�ective in the presence of live range splitting. Live

range splitting helps to decrease the number of variables spilled during register alloca-

tion. However, in order to produce code to architectures with aliased register banks,

register allocation algorithms demand a very aggressive form of live range splitting �

the elementary format � which would increase too much the size of the program's inter-

ference graph, in addition of potentially causing the insertion of too many copies into

the �nal assembly code. Our new techniques allows the register allocators to use all

the power of the elementary format, while at the same time avoiding the size explosion,

and decreasing the amount of copies into the assembly program.

6.1 Contributions

The main contributions of this thesis are:

• A modi�cation to the graph coloring register allocators to decouple

spilling from register assignment in the presence of aliasing.

We describe, in Section 4.1, two ways to check that the register pressure at a

given program point is low enough that no further spilling will be required once

register assignment starts. The �rst test is based on Smith et al. extensions

[SRH04] of Kempe's simpli�cation test [Kem79]. The second test does live range

merging to increase the ability of the spiller to keep more variables in registers.

• A pre-processing technique that avoids creating huge graphs during

the conversion of a program into elementary form.
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We call this method conservative live range merging, and we provide two versions,

described in Section 4.3, which we call simple and punctual.

� Simple merging: Merges nodes from consecutive instructions, connected

by a�nity edges, in case it is considered conservative.

� Punctual merging: Merges nodes as in simple merging, and also merge

non-a�nity related variables, using a technique based on punctual coalesc-

ing [PP10].

One point that must be made clear is that we do not convert a program to

elementary form, build its interference graph, and then merge nodes. Rather, we

avoid splitting nodes when producing the elementary-form program.

• An adaptation of the Brute Force coalescer of Bouchez et al. [BDR08]

to deal with aliasing.

This is a straightforward use of Smith et al. notion of variable squeeze on Briggs

et al. and George and Appel coalescing rules. We believe that Smith et al.'s im-

plementation of the Iterated Register Coalescer already uses this rules; however,

given that they are not described in the literature, we have explained them in

Chapter 4 for the sake of completeness.

• An adaptation of the Iterated Register Coalescing [AG01] to a decou-

pled approach.

Smith et al. described an algorithm for architectures with aliasing and imple-

mented it on top of IRC. We have adapted this version to a decoupled approach,

described in Chapter 4.

• Comparison and evaluation of Brute Force coalescer and Iterated Reg-

ister Coalescing in face of aliasing and using a decoupled approach.

We have implemented both coalescer algorithms using Smith's notion of variable

squeeze and in a decoupled fashion. We tested these algorithms using SPEC

2000 on MinIR architecture. The results and evaluation of these experiments are

described in Chapter 5.

• Developed an algorithm to e�ciently create SSI and e-SSA.

During the research process of �nding the best representation to use in register

allocation, described in Chapter 2, we have developed an algorithm to e�ciently

create SSI and e-SSA [TPBB10]. We show, in the referenced paper, how this can
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be achieved and also we propose an approach where the client is free to decide

which representation and which variables to convert.

In addition to the concrete contribuitions listed above, this project had the positive

side-e�ect of creating an environment favorable of cooperation between Brazilian and

French Institutes, once the subject of this thesis is part of the activities of the cooper-

ation project between Fapemig and Inria, whose project team includes a brazilian and

french researchers and students. Yet from the academic point of view, besides these

contribuitions, this thesis resulted in 2 papers:

• E�cient SSI conversion, in Appendix A [TPBB10] which was published in SBLP

2010 and awarded the second best paper in the conference.

• Decoupled Graph-Coloring Register Allocation with Hierarchical Aliasing (to be

submitted to SCOPES 2011).

6.2 Future Work

Following we present the list of possible future work:

• Implement a better spilling algorithm. As we described in Section 5.3, one

possible reason for the spilling merging technique have performed so badly, could

be that the spilling algorithm was not good enough. With a good algorithm that

can keep the register pressure as high as possible, we expect that our technique

will be able to merge more nodes and spare more spilling.

• Implement the proposed algorithms in an industrial compiler. We have

implemented the algorithms we described Chapter 4, in an experimental archi-

tecture, called MinIR. For this reason we do not have execution time results. If

implemented in an industrial compiler, as GCC [Gou05] or LLVM [LA04], we

could have experimental results, and also compare it with the current register

allocator for these compilers.

• Study the reason why simple merging produced better code, while

punctual merging produced smaller graphs. We would like to study the

results presented in Chapter 5 for the two proposed merging algorithms, to de-

velop a new merging technique that could combine the qualities of both.





Bibliography

[AG01] Andrew W. Appel and Lal George. Optimal spilling for CISC machines

with few registers. SIGPLAN Not., 36(5):243�253, 2001.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. Com-

pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,

2006.

[Ana99] Scott Ananian. The static single information form. Master's thesis, MIT,

September 1999.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of vari-

ables in programs. In POPL '88: Proceedings of the 15th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 1�11,

New York, NY, USA, 1988. ACM.

[Ayc03] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97�

113, 2003.

[BBDR09] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. SSI prop-

erties revisited. Technical Report 00404236, LIP Research Report, 2009.

[BCD+10] Florent Bouchez, Quentin Colombet, Alain Darte, Fabrice Rastello, and

Christophe Guillon. Parallel copy motion. In SCOPES, pages 1�10. ACM,

2010.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to

graph coloring register allocation. ACM Trans. Program. Lang. Syst.,

16(3):428�455, 1994.

[BDJS06] Philip Brisk, Foad Dabiri, Roozbeh Jafari, and Majid Sarrafzadeh. Optimal

register sharing for high-level synthesis of SSA form programs. TCAD,

25(5):772�779, 2006.

57



58 BIBLIOGRAPHY

[BDMS05] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh.

Polynomial-time graph coloring register allocation. In 14th International

Workshop on Logic and Synthesis. ACM Press, 2005.

[BDR07] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of

register coalescing. In CGO, pages 102 � 104. IEEE, 2007.

[BDR08] Florent Bouchez, Alain Darte, and Fabrice Rastello. Advanced conserva-

tive and optimistic register coalescing. In CASES '08: Proceedings of the

2008 international conference on Compilers, architectures and synthesis for

embedded systems, pages 147�156, New York, NY, USA, 2008. ACM.

[BGS00] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating array

bounds checks on demand. In PLDI, pages 321�333. ACM, 2000.

[Bou05] Florent Bouchez. Allocation de registres et vidage en mémoire. Master's

thesis, ENS Lyon, October 2005.

[CAC+81] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,

Martin E. Hopkins, and Peter W. Markstein. Register allocation via color-

ing. Computer Languages, 6(1):47�57, 1981.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. E�ciently computing static single assignment form

and the control dependence graph. TOPLAS, 13(4):451�490, 1991.

[Cha82] G. J. Chaitin. Register allocation & spilling via graph coloring. SIGPLAN

Not., 17(6):98�101, 1982.

[DPV06] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algo-

rithms. McGraw-Hill Science/Engineering/Math, 2006.

[Evl04] Alkis Evlogimenos. Improvements to linear scan register allocation. Tech-

nical report, University of Illinois, Urbana-Champaign, 2004.

[Fab79] Janet Fabri. Automatic storage optimization. In CC, pages 83�91. ACM,

1979.

[FW02] Changqing Fu and Kent Wilken. A faster optimal register allocator. In

Proceedings of the 35th annual ACM/IEEE international symposium on Mi-

croarchitecture, MICRO 35, pages 245�256, Los Alamitos, CA, USA, 2002.

IEEE Computer Society Press.



59

[GA96] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans.

Program. Lang. Syst., 18(3):300�324, 1996.

[Gou05] Brian J. Gough. An Introduction to GCC. Network Theory Ltd, 1st edition,

2005.

[GW96] David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global

register allocations using 01 integer programming. Softw. Pract. Exper.,

26:929�965, August 1996.

[HG06] Sebastian Hack and Gerhard Goos. Optimal register allocation for SSA-form

programs in polynomial time. Information Processing Letters, 98(4):150�

155, 2006.

[HG08] Sebastian Hack and Gerhard Goos. Copy coalescing by graph recoloring.

SIGPLAN Not., 43(6):227�237, 2008.

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for

programs in SSA-form. In CC, pages 247�262. Springer-Verlag, 2006.

[HP02] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach (The Morgan Kaufmann Series in Computer Architecture

and Design). Morgan Kaufmann, 2002.

[JP93] Richard Johnson and Keshav Pingali. Dependence-based program analysis.

In PLDI, pages 78�89. ACM, 1993.

[Kar72] R. Karp. Reducibility among combinatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pages 85�103.

Plenum Press, 1972.

[KCL+99] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and

Fred C. Chow. Partial redundancy elimination in SSA form. ACM Trans.

Program. Lang. Syst., 21(3):627�676, 1999.

[Kem79] A. B. Kempe. On the geographical problem of the four colors. Amer. J.

Mathematics, 2:193�200, 1879.

[KG06] David Ryan Koes and Seth Copen Goldstein. A global progressive register

allocator. In Proceedings of the 2006 ACM SIGPLAN conference on Pro-

gramming language design and implementation, PLDI '06, pages 204�215,

New York, NY, USA, 2006. ACM.



60 BIBLIOGRAPHY

[KW98] Timothy Kong and Kent D Wilken. Precise register allocation for irregular

architectures. In MICRO, pages 297�307. IEEE, 1998.

[LA04] Chris Lattner and Vikram S. Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In CGO, pages 75�88. IEEE,

2004.

[LPP07] Jonathan K. Lee, Jens Palsberg, and Fernando M. Q. Pereira. Aliased

register allocation. In ICALP, 2007.

[Mar06] Dániel Marx. Precoloring extension on unit interval graphs. Discrete Appl.

Math., 154(6):995�1002, 2006.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-

gan Kaufmann, 1997.

[NPP07] V. Krishna Nandivada, Fernando Pereira, and Jens Palsberg. A framework

for end-to-end veri�cation and evaluation of register allocators. In SAS,

pages 153�169. Springer, Kongens Lyngby, Denmark, August 2007.

[Ple96] John Bradley Plevyak. Optimization of Object-Oriented and Concurrent

Programs. PhD thesis, University of Illinois at Urbana-Champaign, 1996.

[PM98] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In In

Proceedings of the 1998 International Conference on Parallel Architecture

and Compilation Techniques, pages 196�204, 1998.

[PM04] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. ACM

Trans. Program. Lang. Syst., 26(4):735�765, 2004.

[PP05] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation

via coloring of chordal graphs. In APLAS, pages 315�329. Springer, 2005.

[PP06] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation

after classic SSA elimination is np-complete. In Foundations of Software

Science and Computation Structures. Springer, 2006.

[PP08] Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation by

puzzle solving. In PLDI '08: Proceedings of the 2008 ACM SIGPLAN con-

ference on Programming language design and implementation, pages 216�

226, New York, NY, USA, 2008. ACM.



61

[PP09] Fernando Magno Quintao Pereira and Jens Palsberg. SSA elimination after

register allocation. In CC, pages 158 � 173, 2009.

[PP10] Fernando Magno Quintão Pereira and Jens Palsberg. Punctual coalescing.

In Compiler Construction, volume 6011 of Lecture Notes in Computer Sci-

ence, pages 165�184. Springer Berlin / Heidelberg, 2010.

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.

TOPLAS, 21(5):895�913, 1999.

[Ron09] Hongbo Rong. Tree register allocation. In MICRO, pages 67�77. ACM,

2009.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers

and redundant computations. In POPL '88: Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 12�27, New York, NY, USA, 1988. ACM.

[SB07] Vivek Sarkar and Rajkishore Barik. Extended linear scan: an alternate

foundation for global register allocation. In LCTES/CC, pages 141�155.

ACM, 2007.

[SE02] Bernhard Scholz and Erik Eckstein. Register allocation for irregular archi-

tectures. In LCTES/SCOPES, pages 139�148. ACM, 2002.

[Sim96] Loren Taylor Simpson. Value-driven redundancy elimination. PhD thesis,

Rice University, Houston, TX, USA, 1996. Chair-Cooper, Keith D.

[Sin03] Jeremy Singer. SSI extends SSA. In PACT (Work in Progress Session),

pages XX�YY, 2003.

[Sin06] Jeremy Singer. Static Program Analysis Based on Virtual Register Renam-

ing. PhD thesis, University of Cambridge, 2006.

[SRH04] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized

algorithm for graph-coloring register allocation. In PLDI '04: Proceedings

of the ACM SIGPLAN 2004 conference on Programming language design

and implementation, pages 277�288, New York, NY, USA, 2004. ACM.

[TPBB10] André Tavares, Fernando Magno Pereira, Mariza Bigonha, and Roberto

Bigonha. E�cient ssi conversion. In SBLP 2010, sep 2010.



62 BIBLIOGRAPHY

[WF10] Christian Wimmer and Michael Franz. Linear scan register allocation on

ssa form. In CGO, pages 170�179. ACM, 2010.

[WM05] Christian Wimmer and Hanspeter Mossenbock. Optimized interval splitting

in a linear scan register allocator. In VEE, pages 132�141. ACM, 2005.



Appendix A: E�cient SSI

Conversion

63



Efficient SSI Conversion
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Abstract. Static Single Information form (SSI) is a program representation that
enables optimizations such as array bound checking elimination and condi-
tional constant propagation. Transforming a program into SSI form has a non-
negligible impact on compilation time; but, only a few SSI clients, that is, op-
timizations that use SSI, require a full conversion. This paper describes the
SSI framework we have implemented for the LLVM compiler, and that is now
part of this compiler’s standard distribution. In our design, optimizing passes
inform the compiler a list of variables of interest, which are then transformed
to present, fully or partially, the SSI properties. It is provided to each client
only the subset of SSI that the client needs. Our implementation orchestrates
the execution of clients in sequence, avoiding redundant work when two clients
request the conversion of the same variable. As empirically demonstrated, in
the context of an industrial strength compiler, our approach saves compilation
time and keeps the program representation small, while enabling a vast array of
code optimizations.

1. Introduction
Static Single Information (SSI) form is a program representation introduced by Scott
Ananian [Ananian 1999]. This program representation redefines some variables at
program split points, which are basic blocks with two or more successors. SSI
form enables many compiler optimizations, because it allows an analyzer to aug-
ment variables with information inferred from the result of conditional branches.
A non-exhaustive list of potential SSI clients includes array bounds check elimina-
tion [Bodik et al. 2000], bitwidth analysis [Stephenson et al. 2000], flow sensitive range
interval analysis [Su and Wagner 2005], conditional constant propagation [Ananian 1999,
Wegman and Zadeck 1991], partial redundancy elimination [Johnson and Pingali 1993],
faster liveness analysis [Boissinot et al. 2009, Singer 2006], and busy expression elimi-
nation [Singer 2003].

Although the SSI representation suits the needs of many different compilation
passes – henceforth called clients, the majority of these clients require only a subset of
the SSI properties instead of a full conversion. This observation is important, because
converting a program to full SSI form is a time consuming endeavor. For instance, Bodik
et al. [Bodik et al. 2000]’s ABCD algorithm uses information from conditional branches
to put bounds on the value of variables used as array indices. Thus, it requires that only
integer variables used in conditionals bear SSI properties. Even less demanding is the
sparse conditional constant propagation algorithm described by Ananian [Ananian 1999]



and Singer [Singer 2006], which demands that variables used in equality comparisons be
in SSI form. On the other hand, the partial redundancy elimination algorithm described by
Johnson et al. [Johnson and Mycroft 2003] uses an analysis called anticipability. A non-
iterative computation of the anticipatable variables requires that all program variables be
in SSI form.

In this paper we describe an on-demand SSI conversion framework, which saves
compilation time and space in three different ways. First, it converts only a subset of
variables in the source program to SSI form. Clients provide to our module a list of
variables that must have the SSI properties, and only these variables are transformed.
Second, we provide two conversion modes for each variable: full and partial. If a
variable is fully converted into SSI form, then it presents the SSI properties tradition-
ally described in the literature [Ananian 1999, Boissinot et al. 2009, Singer 2006]. On
the other hand, if a variable is partially transformed, then it presents a restricted set
of properties, that we describe in this paper. The partial conversion fits the needs of
many SSI clients [Ananian 1999, Bodik et al. 2000, Singer 2006, Stephenson et al. 2000,
Su and Wagner 2005, Wegman and Zadeck 1991], and, contrary to the full conversion, it
uses a non-iterative algorithm, which is faster, as we empirically demonstrate. Third, our
SSI conversion algorithm is a state-full black-box. Because we allow different clients
invoking our converter in sequence, we log the SSI conversions that we perform, so that
subsequent requests on the same variable do not lead to redundant work being performed.

Our SSI framework is now part of the default distribution of the Low Level
Virtual Machine [Lattner and Adve 2004] (LLVM), version 2.6. LLVM is an indus-
trial strength compiler, used by companies like Cray 1 and Apple 2. We have imple-
mented two SSI clients: the ABCD algorithm of Bodik et al. [Bodik et al. 2000], and a
sparse conditional constant propagation (CCP) algorithm, similar to the one described by
Singer [Singer 2006, p.59]. When compiling the SPEC CPU 2000 benchmark suite, the
partial transformations that ABCD and CCP request are about 15 and 24 times faster than
fully converting a program to SSI. The SSI conversion is based on the insertion of spe-
cial instructions – σ-functions and φ-functions – in the source program. ABCD and CCP
generate approximately 6.5 and 10 times less special instructions than the full conversion.
We emphasize that the same infrastructure is used in the three transformations that we
have compared: CCP, ABCD and full; however, because we build the SSI representation
on demand, we give to each client only the program properties that it requires.

In Section 2 we review the SSI representation. In Section 3 we analyze the proper-
ties that many compiler optimizations previously described in the literature require from
a program representation, and we show how different subsets of SSI suit these needs. In
Section 4 we discuss our approach to build the SSI representation on demand. Section 5
validates our work with a series of experiments, and Section 6 concludes this paper.

2. Background on SSI
The term Static Single Information form seems to have been coined by Scott Ananian in
his master thesis [Ananian 1999]; however, program representations with similar proper-
ties have been described before [Johnson and Pingali 1993]. For instance, the SSU-form

1http://blogs.rapidmind.com/2009/05/27/why-we-chose-llvm/
2http://arstechnica.com/apple/news/2007/03/apple-putting-llvm-to-good-use.ars



1 int a=read();
2 if (a == 0) {
3 if (...) {
4 print(a);
5 }
6 }
7 print(a);

a = •
(• = a)?

(a1, a2) =σ a

(a4, a5) =σ a2

• = a5

a3 =ϕ [a1,a4,a5]
• = a3

a = •
(• = a)?

(a1, a2) =σ a

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

(a) (b) (c)

Figure 1. Example of the use of SSI on information analysis.

(Single Static Use), described by Plevyak in his Ph.D dissertation, [Plevyak 1996], seems
to be equivalent to SSI, although we cannot verify this claim due to the lack of a formal
specification of SSU. Boissinot et al. [Boissinot et al. 2009] distinguish two main flavors
of the SSI form, which are not equivalent: strong, introduced by Ananian [Ananian 1999]
and weak, described by Singer [Singer 2006]. Any strong SSI form program is also a
weak SSI form program; thus, we will be using SSI as a synonym for Strong SSI. Ac-
cording to Boissinot et al., four properties characterize strong SSI form:

• pseudo-definition: there exists a definition of each variable at the starting point of
the program’s control flow graph.
• single reaching-definition: each program point is reached by at most one definition

of each variable.
• pseudo-use: there exists a use of each variable at the ending point of the program’s

control flow graph.
• single upward-exposed-use: from each program point it is possible to reach at

most one use of a variable, without passing by a previous use.

Figure 1(a) shows a program written in a C like language, and Figure 1(b) gives the control
flow graph of this program, in SSI form. The program in Figure 1(c) is not in SSI form,
as it contains a point exposed to two different uses of a2.

In order to convert a program into SSI form we need two special types of instruc-
tions: φ-functions and σ-functions. φ-functions are an abstraction used in the Static Single
Assignment form (SSA) [Cytron et al. 1991] to join the live ranges of variables. Any SSI
form program is a SSA form program. For instance, the assignment, v = φ(v1, . . . , vn),
at the beginning of a basic block B, works as a multiplexer. It will assign to v the value
in vi, if the program flow reaches block B coming from the ith predecessor of B.

The σ-functions are the dual of φ-functions. Whereas the latter has the functional-
ity of a variable multiplexer, the former is analogous to a demultiplexer, that performs
an assignment depending on the execution path taken. For instance, the assignment,
(v1, . . . , vn) = σ v, at the end of a basic block B, assigns to vi the value in v if con-
trol flows into the ith successor of B. Notice that variables alive in different branches of
a basic block are given different names by the σ-function that ends that basic block.

The insertion of φ and σ functions is a form of live range splitting. The live range
of a variable is the set of program points where that variable is alive. Variable v is said to
be alive at program point p if there is a path from p to a use of v that does not go through



any definition of v. Two algorithms for converting a program into SSI form have been
described in the literature: we have Ananian’s [Ananian 1999] pessimistic algorithm, and
Singer’s [Singer 2006] optimistic approach. We use the latter, as it subsumes the former.

There exists an interesting relationship between the live range of program vari-
ables and graphs. Chaitin et al. [Chaitin et al. 1981] have shown the intersection graph
of the live ranges of a general program can be any type of graph. In 2005, re-
searchers have shown that the intersection graphs produced from programs in SSA
form are chordal [Bouchez 2005, Pereira and Palsberg 2005]. Recently, Boissinot et
al. [Boissinot et al. 2009] showed that the interference graphs of programs in SSI form
are interval graphs, a subset of the family of chordal graphs.

3. Examples of SSI Clients
This section shows examples of compiler optimizations that use the SSI representation,
giving emphasis on the subset of SSI that each client needs. The SSI facilitates two types
of program analyses. First, it helps analyses that extract information from conditional
statements, such as constant propagation and array bound checks elimination. Second, it
facilitates sparse backwards analyses that associate information with the uses of variables.
Section 3.1 discusses examples in the former class, and Section 3.2 goes over the latter.

3.1. Information Analyses

Information analyses are among the main reasons behind the design of the SSI repre-
sentation. These analyses use information from conditional branches to enable com-
piler optimizations, such as removing redundancies inserted to ensure language safety.
For instance, Figure 2(a-c) shows three common Java idioms where exceptional cases
are identified by the programmer via conditional tests. However, similar tests will be
implicitly created by the java compiler to enforce the strongly typed nature of the lan-
guage [Arnold et al. 2005]. In the figures, these tests appear in bold face. In another
example, Figure 2(d) shows a Ruby program where a runtime test is used to handle in-
teger overflows. The code in Lines 3-4 is implicitly performed, at runtime, by the Ruby
interpreter; but, given the loop boundaries, this test will never be true.

Among the examples of redundant code elimination based on information anal-
yses we cite Bodik et al.’s ABCD algorithm [Bodik et al. 2000] and the sparse condi-
tional constant propagation method of Wegman and Zadeck [Wegman and Zadeck 1991].
Ananian describes a long list of information analyses when introducing the SSI represen-
tation [Ananian 1999]. Furthermore, many compilers already perform simple forms of
redundant check elimination. For instance, LLVM is able to eliminate simple boundary
checks inserted by the GNAT front-end used in the compilation of ADA programs.

In addition to removing redundant code, information analyses are also useful
to detect security vulnerabilities in programs [Rimsa et al. 2010], and to discover the
range of values that variables might assume. For instance, in Figure 2(a) we know
that any value of variable v used in the true branch of the conditional is less than
v.length. Examples of range analyses are the bitwidth inference engine of Stephen-
son et al. [Stephenson et al. 2000], the range propagation algorithm of Su and Wag-
ner [Su and Wagner 2005], and the range analyzis used by Patterson to predict the out-
come of branches [Patterson 1995].



1  int array[];
2  void s(int i, int v) {
3   if (i < v.length) {
4     if (i >= v.length)
5       throw new ArrayIndex-
        OutOfBoundsException();
6     v[i] = v;
7   } else {
8     // handle error
9   }
10 }

1  void f(Object o) {
2    if (o instanceof V)
3      if (o.getClass() != V)
4        throw new Class-
         CastException();
5      ((V) o).m();
6    else {
7      // handle error
8    }
9  }

1  int div(int a, int b) {
2    if (b != 0) {
3      if (b == 0)
4        throw new
         ArithmeticException()
6      return a / b;
7    } else {
8      // handle error
9    }
10 }

1  sum = 0
2  (1..10).each do |i|
3    if (sum + i > MAX_INT)
4      change sum to BigInt
5    sum += i
6  end

(a) (b)

(c) (d)

Figure 2. Examples of defensive programming idioms.

Although well known in the literature, these analysis and heuristics are described
using different program representations, whereas they all can be elegantly modeled as
constraint systems built on top of some subset of SSI form. In this sense, different clients
have different needs, and not every variable in the source program needs to be transformed
to meet the SSI properties. For instance:

• ABCD algorithm that removes redundant array bound checks [Bodik et al. 2000],
as in Figure 2(a), requires only that variables used in conditionals, and that repre-
sent either array indices or array lengths have SSI properties;
• in order to remove redundant type casts, as in Figure 2(b), a client must require

that variables used as operands of the instanceof function be in SSI form;
• in order to remove redundant divide-by-zero tests, as in Figure 2(c), we need that

numeric variables used in conditionals be in SSI form;
• the ABCD version we implemented requires any variable used in branches to be in

SSI form. So, the algorithm is used as a more general redundant test elimination,
that allows, for instance, to remove the test in Line 3 in Figure 2(d).

In general, information analyses require that only variables used inside condition-
als have the SSI properties. Furthermore, these variables do not have to show the SSI
properties in all the program points where they are alive. Consider, for example, the pro-
gram in Figure 1(a). It is possible to infer that the value of variable a, inside the innermost
if statement, is always 0. An SSI based constant propagation analysis would produce the
program in Figure 1(b), and would derive the constraints 〈a2 = 0〉 and 〈a4 = a2〉. But the
second constraint only exists because variable a4 was created to guarantee the SSI prop-
erty that no program point is reached by two different uses of the same variable. Thus, in
order to avoid redundancies, we allow clients to specify the representation in Figure 1(c),
which yields only the constraint 〈a2 = 0〉.



3.2. Backward Analyses

In addition to being useful for information analyses, the SSI representation also facilitates
sparse backward analyses. Singer [Singer 2003] gives two examples of such analyses:
very busy expressions, and the dual available expression analysis. An expression e is very
busy at program point p if e is computed in any path from p to the end of the program,
before any variable that is part of it is redefined. Such analysis, also called anticipatable
expressions analysis by Johnson and Pingali [Johnson and Pingali 1993], is useful for per-
forming optimizations such as partial redundancy elimination. Conversely, an expression
e is available at program point p if it is computed in any path from the beginning of the
program until p, and none of the variables that are part of e are redefined thereafter.

A sparse analysis associates information to variables, instead of program points.
That is, busy expressions associated to variable v are the busy expressions at the definition
point of v. Similarly, available expressions associated to v are the expressions available at
the program point where v is last used. The SSI form allows us to perform these analyses
non-iteratively [Singer 2003]. As another example, Boissinot et al. [Boissinot et al. 2009]
have shown how SSI speeds up the computation of liveness analysis. This is a dataflow
analysis that finds which are the live variables at each program point.

Contrary to the analyses described in Section 3.1, the backward dataflow analyses
demand the full SSI representation. That is, every program variable must present the SSI
properties discussed in Section 2. We show that the same infrastructure that supports
information analyses also supports the backward analyses described in this section.

4. Building Partial SSI
We convert a program into SSI form on demand. This means that a client gives to our
transformation pass a list of variables of interest, and we modify only these variables.
There are two modes of conversion, partial and full. We convert a variable to SSI form
via live range splitting and renaming. The difference between partial and full conversion
is the amount of live range splitting required.

4.1. Converting a Program to Full SSI Form

If a variable is fully converted to SSI form, then it meets the definition of strong SSI form.
This type of conversion is useful for the backward analyses described in Section 3.2.
To perform the full conversion, we use the algorithm designed by Singer [Singer 2006,
p.46]. This method, shown in Figure 3(a), combines Cytron et al.’s algorithm to insert φ-
functions [Cytron et al. 1991], and Singer’s algorithm to insert σ-functions [Singer 2006].

The insertion of σ-functions guarantees the single upward-exposed-use property.
This phase happens as follows: for each use of a variable v, Singer inserts a σ-function in
each basic block in the post dominance frontier of v. A basic block B2 post-dominates a
basic block B1 if every path, from the exit of the source program to B1 contains B2. If B2

post-dominates a predecessor of basic block B0, but does not post-dominates B0, then B0

is in the post-dominance frontier of B2. The σ-functions produce new uses of v, which
cause the insertion of more σ-functions. This process iterates until a fix-point is reached.

The insertion of φ-functions, necessary to guarantee the single reaching-definition
property, is the dual of the insertion of σ-functions, and it follows Cytron’s algo-
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add (v, ..., v)  =σ  v
at the end of B
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∃ unmarked
instruction
v = •
at block B

∀ B' at the iterated 
dominance frontier of B, 
create v  =ϕ  (v, ..., v)
and mark v = • at B

Cytron'91

Figure 3. (a) Singer optimistic algorithm to convert a program into SSI form (b)
Our algorithm to produce partial SSI form.

rithm [Cytron et al. 1991]. Whereas the insertion of σ’s requires post-dominance fron-
tiers and tracks uses of variables, the insertion of φ’s uses dominance frontiers and tracks
variable definitions. Iterations between the two boxes in Figure 3(a) happen because
the insertion of σ-functions create new definitions of variables, and force a new round
of placement of φ-functions. Additionally, the insertion of φ-functions also leads to the
insertion of σ-functions, because it creates new uses of variables. Once a fix-point is
reached, meaning that the properties stated in Section 2 have been attained, a renaming
pass converts the program into SSI form.

4.2. Converting a Program to Partial SSI Form

The information analyses described in Section 3.1 do not require that variables be fully
converted to SSI form. Instead, they need a representation that restricts the value range of
variables. The value range of a variable is the set of values that the variable may assume
during program execution. For instance, variable a in Line 1 of Figure 1(a) may assume
any value of the integer type in the Java language, thus, its value range is [−231, 231 − 1].
However, the conditional branch in Line 2 restricts the value range of a. Thus, in Line 3
of our example program, this range is [0, 0]. There exist two main events that may restrict
the value range of a variable v: an assignment to v and a conditional branch that tests v.

In order to be in partial SSI form, a variable must meet four properties. Three of
them were seen in Section 2: pseudo-definition, single reaching-definition and pseudo-
use. We call the fourth property the single upward-exposed-conditional. This property,
which is less general than Section 2’s single upward-exposed-use, is stated as follows:

• single upward-exposed-conditional: if v is used at a branch instruction i, then
from i it is possible to reach only one use of v without passing across another use.

Thus, in order to partially convert a variable v to SSI form we can add σ-functions at the
boundaries of basic blocks that end with a conditional branch where v is used. Returning
to our first example, variable a is fully converted to SSI form in Figure 1(b). On the other
hand, the same variable is only partially converted to SSI form in Figure 1(c). The branch
instruction (• = a)? is post-dominated by the use (a1, a2) = σ a.

The algorithm that we use to convert a program to partial SSI form is shown in
Figure 3(b). This algorithm has lower complexity than Singer’s, because the placement of
σ-functions is simpler. In order to convert a variable v to partial SSI form, we loop over
the uses of v, and for each use that is a conditional instruction, we create a σ-function in
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• = a3

1

2

3

4

Figure 4. Partially converting a program for information analysis. Full is given in
Figure 1(b).

the basic block that contains that use. Once all the uses of v have been visited, we proceed
to the insertion of φ-functions. The placement of φ-functions is the same as in Singer’s
method, but in the partial transformation this phase happens only once.

Figure 4 illustrates these concepts. Figure 4(a) shows the control flow graph of the
program used in Figure 1(a). We are interested in partially converting variable a into SSI
form. Variable a is used in Blocks 1, 3 and 4. Only the first use is a branch, so we insert a
σ-function after Block 1, (see Figure 4(b)). This σ-function defines two new instances of
variable a, because Block 1 has two successors. After σ-functions have been inserted, we
move on to the insertion of φ-functions. Since we now have two definitions of variable
a reaching Block 4, we insert a φ-function in the beginning of this block, as shown in
Figure 4(c). Finally, a renaming step will produce the program in Figure 4(d).

The algorithm in Figure 3(b) might insert more σ-functions than the minimal num-
ber necessary to guarantee the single-upward-exposed-conditional property. For instance,
we would insert a σ-function after the conditional in Figure 4(a), even if there were no
uses of variable a inside Block 3. In this case, variable a already has the single upward-
exposed-conditional property, but our algorithm is unable to see this fact. Tracing an
analogy with the SSA conversion algorithm, our method produces what we would call
the “maximal” [Briggs et al. 1998, p.7] partial-SSI representation. We opted to build
this simple representation, instead of the pruned form because the simpler approach is
faster [Singer 2006]. Whereas the latter construction requires an analysis to identify
which uses of variables reach branching points, the former simply inserts σ-functions
after conditionals.

4.3. Complexity Analysis

The complexity of converting a single variable to SSI form, using the algorithm in Fig-
ure 3(a) is computed as follows. The complexity of a round of insertion of σ-functions,
or φ-functions, is O(B2) [Cytron et al. 1991], where B is the number of basic blocks in
the source program. But as empirically demonstrated [Singer 2006], this algorithm is
O(B) in practice. There are, indeed, true O(B) algorithms for the placement of φ and
σ-functions (see Sreedhar et al [Sreedhar and Gao 1995]). The maximum number of al-
ternations between the insertion of φ and σ-functions is O(B); so, the total complexity of
the algorithm is O(B3).

The partial conversion has lower complexity. Inserting σ-functions is O(U),
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Figure 5. Preventing clients that run in sequence from performing redundant
work.

where U is the number of conditional instructions using v. The complexity of insert-
ing φ-functions is O(B2). As in the full conversion, it is O(B) in practice. There is no
alternation between the insertion of φ and σ-functions; thus, the total complexity of the
partial conversion algorithm is O(U) +O(B2).

4.4. Orchestrating the Execution of Different Clients

A compiler might perform several passes on the same code, in order to carry out different
optimizations. This includes the possibility of separate clients of our SSI transformation
framework running on the same program. Hence, one of the objectives of our design is to
allow clients to execute in sequence, without having to perform redundant work.

Our implementation guarantees that SSI clients running in sequence will never
insert redundant σ or φ-functions into the source program. That is, let c1 and c2 be two
SSI clients running in sequence. Lets assume that c1 causes the insertion of σ1 or φ1

at program Point p1 to transform a variable v. If c2 also requests the conversion of v,
leading to the insertion of another σ instruction at p1, then nothing will happen, because
our SSI converter knows that instruction σ1 is already breaking the live range of v. To
avoid redundancy, our SSI implementation keeps an internal state: it maps each variable
to a table of pairs. Each pair consists of the identifier of either a σ or a φ-function, plus
a program point. Figure 5 shows these concepts. Figure 5(b) shows the table created
for variable a after some client requests the partial conversion of this variable, yielding
the program in Figure 5(a). Once a second client requests the full conversion of a, we
already know that no σ-function must be inserted at program Point 1. But the insertion
of a σ-function at program Point 2 would lead to the creation of a φ-function at program
Point 4. Again, we check a’s table to avoid inserting a new φ-function. Upon discovering
the instruction a3 = φ(a1, a2, a2), we change the two occurrences of a2 to a4 and a5,
as seen in Figure 5(c). Figure 5(d) shows the new table of variable a. Notice that this
data structure is not essential to avoid inserting redundant σ and φ instructions; we could
avoid it by looking at the current state of the intermediate representation. But it speeds
up redundancy checks: if not for the data structure we would have to go through the
parameters of φ and σ functions looking for occurrences of a variable before changing it.

5. Experimental Results
This section describes experiments that we have performed to validate our SSI framework.
Our experiments were conducted on a dual core Intel Pentium D of 2.80GHz of
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Figure 6. Execution time of partial compared with full SSI conversion. 100% is
the time of doing the full SSI transformation. The shorter the bar, the faster the
partial conversion when compared to the full conversion.

clock, 1GB of memory, running Linux Gentoo, version 2.6.27. Our framework runs
in LLVM 2.5 [Lattner and Adve 2004], and it passes all the tests that LLVM does. The
LLVM test suite consists of over 1.3 million lines of C code. In this paper we will be
showing only the results of compiling SPEC CPU 2000. We will use three different
clients of our SSI framework:

1. Full: converts a program to strong SSI form with the algorithm of Figure 3(a).
2. ABCD: generalizes ABCD algorithm for array bound checking elimina-

tion [Bodik et al. 2000]. We eliminate conditional branches on numeric inequali-
ties that can prove redundant, such as the redundant tests in Figures 2(a) and 2(d).

3. CCP: does conditional constant propagation, that is, it replaces the use of variables
that have a value range equal to a zero length interval [c, c] by the constant c. As an
example, this optimization replaces the use of variable a in Line 4 of Figure 1(a)
by the constant 0. This client requires that only variables used in equality tests,
e.g, ==, be converted to SSI.

When reporting the time of ABCD or CCP we show the time of running the algorithm in
Figure 3(b). The time of performing redundant branch elimination or conditional constant
propagation is not shown. Similarly, time reports for the full conversion include only the
time to run the algorithm in Figure 3(a).

The chart in Figure 6 compares the execution time of the three SSI clients. The
bars are normalized to the running time of the full SSI conversion. On the average, the
ABCD client runs in 6.8% and the CCP client runs in 4.1% of the time of the full conver-
sion. The numbers on top of the bars are absolute running times. The partial conversions
tends to run faster in clients with sparse control flow graphs, which present fewer condi-
tional branches, and therefore fewer opportunities to restrict the value ranges of variables.

Figure 7 compares the running time of our partial conversion algorithm with the
running time of the opt tool. This tool is part of the LLVM framework, and it performs
target independent code optimizations. Opt receives a LLVM bytecode file, optimizes it,
and outputs the modified file, still in LLVM bytecode format. The SSI clients are opt



0
,0
8
s

0
,2
1
s 3
,2
4
s

0
,8
6
s

0
,0
2
s

0
,0
2
s

0
,0
3
s 0
,3
1
s

0
,2
7
s

0
,2
6
s

1
,1
4
s

1
,6
0
s

0
,0
5
s

0
,4
2
s

8
,5
2
s

0
,0
3
s

0
,0
1
s 1
,8
5
s

0
,4
6
s

0
,0
1
s

0
,0
1
s

0
,0
0
4
s

0
,1
9
s

0
,1
2
s 0
,1
6
s

0
,6
4
s

1
,2
3
s

0
,0
2
s

4
,9
4
s

0
,1
5
s

Figure 7. Execution time of partial SSI conversion compared to the total time
taken by machine independent LLVM optimization passes (opt). 100% is the total
time taken by opt. The shorter the bar, the faster the partial conversion.

passes. The bars are normalized to the opt time, which consists on the time taken by
machine independent optimizations plus the time taken by one of the SSI clients, e.g,
ABCD or CCP. Among the optimizations performed by opt we list partial redundancy
elimination, unreachable basic block elimination and loop invariant code motion. The
ABCD client takes 1.48% of opt’s time, and the CCP client takes 0.9%. To emphasize
the speed of these passes, we notice that the bars do not include the time of doing machine
dependent optimizations such as register allocation.

Figure 8 compares the number of σ and φ-functions inserted by the SSI clients.
The bars are the sum of these instructions, as inserted by each partial conversion, divided
by the number of σ and φ-functions inserted by the full SSI transformation. The numbers
on top of the bars are the absolute quantity of σ and φ-functions inserted. The CCP client
created 67.3K σ-functions, and 28.4K φ-functions. The ABCD client created 98.8K σ-
functions, and 42.0K φ-functions. The full conversion inserted 697.6K σ-functions, and
220.6K σ-functions. There is an apparent mismatch between the number of instructions
inserted and the time to do it. That is, in Figure 8 we see that about 10% to 15% of the
nodes are inserted for ABCD and CCP when compared to full SSI. But in Figure 6 we
see that this only takes 4% to 6% of the computation time. This fact happens because
full SSI requires iterations between the insertion of σ and φ nodes, whereas the partial
construction does not.

The chart in Figure 9 shows the number of σ and φ-functions that each SSI client
inserts per variable. The figure emphasizes the difference between the partial conversion
required by the two information analyses and the full SSI transformation. On the average,
for each variable whose conversion is requested by either the ABCD or the CCP client,
we will create 0.6 φ-functions, and 1.3 σ-functions. On the other hand, the full SSI
conversion will insert 6.1 σ-functions and 2.7 φ-functions per variable.

Figure 10 shows the number of variables that have been transformed by each
client. In two benchmarks, gcc and vortex, ABCD client has transformed more vari-
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Figure 8. Number of φ and σ-functions produced by partial SSI conversion com-
pared with full conversion. Values on top of bars denote absolute number of
instructions. 100% is the number of instructions inserted by the full conversion.

Figure 9. Average number of φ and σ-functions produced per variable.

gzip vpr gcc mes art mcf eqk crfty ammp par gap vor bzp2 twolf Total

ABCD 968 2K 38K 7K 361 292 211 4K 3K 3K 14K 20K 686 5K 100K

CCP 296 1K 24K 5K 56 78 74 2K 2K 2K 7K 17K 169 2K 62K

Full 1K 4K 36K 12K 376 360 807 4K 5K 4K 15K 13K 1K 6K 101K

Figure 10. Number of variables converted to SSI. We use shorter names.

ables than the full client. This fact happens because the full client transforms only vari-
ables that are alive across different basic blocks. ABCD and CCP clients, on the other
hand, use the partial conversion algorithm from Figure 3(b), which converts variables
used in conditionals, even when those variables are not alive outside the basic block where
they are used. Notice that, in this case, we will not have any use of the variable after the
conditional, and no σ or φ-functions will be inserted by the algorithm of Figure 3.



Figure 11. Percentage of σ and φ-functions saved by running clients in sequence.

The chart in Figure 11 compares the number of σ and φ-functions that we save by
running different SSI clients in sequence. We compute the bars as follows. Let c1 and c2
be two SSI clients, such that c1 inserts n1 special instructions (φ or σ functions) into the
source program, and c2 inserts n2. Let n1,2 be the number of special instructions generated
when both clients run in sequence. The bars represent the formula 1− (n1,2/(n1 + n2)).
This measure denotes the number of repeated instructions that are inserted by both clients
running independently, and that are saved when these clients run in sequence. Our frame-
work avoids the insertion of redundant instructions by keeping a record of variables that
each client transforms, as described in Section 4.

6. Conclusion

This paper has presented the design and implementation of a SSI conversion framework,
which is useful to several analysis and optimizations present in compiler back-ends. Our
implementation differs from previous works because it allows the client to specify which
variables should be converted into SSI. Furthermore, it allows a variable to be converted
into SSI partially, that is, only at those program points where SSI properties are required.
These two capacities of our framework allows it to be one order of magnitude faster than
traditional approaches to SSI generation. Our implementation has been deployed on the
LLVM compiler, and now is part of its official distribution.
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