
GERAÇÃO DE CASOS DE TESTE PARA

LINGUAGENS COM ARITIMÉTICA DE

PONTEIRO

FRANCISCO DEMONTIÊ DOS SANTOS JUNIOR

GERAÇÃO DE CASOS DE TESTE PARA

LINGUAGENS COM ARITIMÉTICA DE

PONTEIRO

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Mariza Andrade da Silva Bigonha

Coorientador: Fernando Magno Quintão Pereira

Belo Horizonte, MG

Janeiro de 2016

FRANCISCO DEMONTIÊ DOS SANTOS JUNIOR

GENERATION OF TEST CASES FOR

LANGUAGES WITH POINTER ARITHMETICS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
ful�llment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Mariza Andrade da Silva Bigonha

Co-Advisor: Fernando Magno Quintão Pereira

Belo Horizonte, MG

January 2016

© 2016, Francisco Demontiê dos Santos Júnior
 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

Santos Júnior, Francisco Demontiê dos.

S237g Generation of test cases for languages with pointer

 arithmetics. / Francisco Demontiê dos Santos Júnior. —

 Belo Horizonte, 2016.

 xx, 65 f.: il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal de Minas

 Gerais – Departamento de Ciência da Computação.

 Orientadora: Mariza Andrade da Silva Bigonha

 Coorientador: Fernando Magno Quintão Pereira

 1. Computação – Teses. 2. Diagrama de fluxo de dados.

 3. Compiladores (Programas de computador). 4. Software

 – Validação. I. Orientadora. II. Coorientador. III. Título.

 CDU 519.6*32(043)

Agradecimentos

Abusando dos clichês, agradeço primeiramente a Deus, que me deu o dom da vida,

saúde e oportunidades para que eu pudesse chegar onde cheguei. Agradeço aos meus

pais, Clécia e Demontiê, que além de serem exemplos de dedicação e caráter, sempre

�zeram o possível e o impossível por mim e pelas minhas irmãs. Sacri�cando, muitas

vezes, o conforto próprio em favor do nosso. Me apoiando em cada decisão e me

acolhendo sempre que precisei de colo. Por esses e outros motivos, digo e sempre direi

que essa conquista é, também, deles. Muito obrigado, �painho� e �mainha�.

Agradeço à minha noiva, Izabela, que faz da minha vida algo muito mais alegre.

Que sempre me apoiou, por mais doloroso que fosse, e suportou 2 anos de uma relação

a distância (que não é fácil, mas, graças a ela, deu certo). Agradeço por todos os

momentos em que ofereceu a mão, todos os momentos em que me fez rir, em que se

alegrou com as minhas conquistas, ouviu meus desabafos. Sem ela, nada seria possível.

Agradeço às minhas irmãs, Ana Priscilla e Ana Carolina, por serem quem são.

Sempre dizendo que sentem orgulho de mim e me dando forças para perseguir meus

objetivos. Me alegrando sempre que estavamos juntos. Vocês são as melhores irmãs

que alguém poderia ter. Também agradeço ao meu cunhado Anderson por sempre

me receber de braços abertos e não medir esforços para me ajudar quando pôde. Às

minhas sobrinhas, Ana Clara e Ana Vitória, que são exemplos de carinho, alegria e que

sempre me surpreendem, seja com a sagacidade ou com as estripulias.

Agradeço os meus tios Vanda e Robério e meus primos Matheus e Johanna,

que foram minha segunda família no início da minha graduação (o primeiro passo na

minha formação acadêmica) e continuam sempre torcendo por mim. Também agradeço

ao meu tio José Assis, a Juliano e a Alfredo, por terem me acolhido em Belo Horizonte,

sendo sempre prestativos. Agradeço aos meus sogros Vanio e Elizabete e meu cunhado

Marcos, por terem me acolhido como parte da família e terem sempre me apoiado. Por

me fazerem sentir que em Maceió eu tenho uma terceira casa.

Agradeço aos meus avós Antônio Batista (in memoriam), Jacira, José Albino

(in memoriam) e Eunice (in memoriam), pelos ensinamentos que seguirão comigo

ix

pelo resto da vida. Um agradecimento especial ao meu primo Saulo (in memoriam),

que, além de ter sido para mim um exemplo de simplicidade, alegria, paciência e de

pro�ssional, me apresentou a computação e me incentivou nos meus estudos. Em nome

deles, agradeço a toda a minha família.

Agradeço ao professor Franklin Ramalho, que me apresentou a àrea de compi-

ladores, me orientou no meu primeiro projeto de pesquisa e foi compreensivo e apoiador

quando decidi fazer o mestrado em outra universidade. À minha orientadora, a profes-

sora Mariza, que sempre foi cuidadosa, compreensiva e paciente, mas também assertiva

sempre que precisei. Ao meu co-orientador, o professor Fernando, que me ensinou, me

acompanhou de perto e foi sempre prestativo. Além disso, agradeço-o, também, por

ter sempre buscado uma relação que vai além da pro�ssional, fazendo do meu mestrado

algo muito mais divertido.

Agradeço a Douglas, Henrique, Junio, Péricles, Rubens e Victor, que, além de

me ajudarem ao longo da minha pesquisa, foram essenciais na minha adaptação a Belo

Horizonte. Durante esses dois anos, pude conhecê-los mais de perto, ter bons momen-

tos de descontração, desabafar, escutar. Vocês foram muito importantes para mim e

eu serei eternamente grato. Aos amigos Adam, Augusto, Tiago, Catharine, Daniel,

Karol, Rodrigo, Marcela, Delano, Carlúcia, Natã e Savyo, por sempre demonstrarem

preocupação e fazerem meus dias mais felizes, mesmo com toda a distância.

Agradeço a Maxtrack, na pessoa de Felipe Provenzano, empresa que �nanciou e

que tornou esse projeto de pesquisa possível. Obrigado por todo o suporte prestado.

Agradeço também à CAPES, que �nanciou o primeiro ano do meu mestrado. Por �m,

a todos que não foram mencionados aqui e que, de alguma forma, �zeram parte da

minha vida durante esses últimos anos, meu muito obrigado.

x

Resumo

Testar e depurar software são tarefas difíceis. Em geral, é preciso esperar que o �uxo

de execução chegue a uma função de forma a poder testá-la. Nesse sentido, muito

esforço foi empregado no desenvolvimento de técnicas, tais como execução simbólica

e fuzz testing, para geração automática de casos de teste para analisar funções de

interesse. Entretanto, tais técnicas possuem limitações. Uma limitação que chama

a nossa atenção é o fato de que, até onde sabemos, nenhuma técnica atual relaciona

arranjos passados como entradas para funções com outras entradas que representem

seus tamanhos. Isso faz com que os casos de teste gerados, em algumas situações,

possam levar a acessos inválidos à memória que não aconteceriam em execuções reais

do programa sendo testado. Nessa dissertação, apresentamos duas análises estáticas

para inferência de tamanhos de arranjos, bem como um algoritmo para geração de

casos de teste capaz de gerar testes seguros usando tais análises. Como forma de

avaliar a efetividade da nossa técnica, realizamos dois experimentos. No primeiro

deles, as análises estáticas foram capazes de relacionar 34.6% dos tamanhos de arranjos

recebidos como parâmetro por funções dos programas contidos no SPEC CPU2006

(um conjunto de benchmarks contendo programas reais). No segundo, nós utilizamos

a ferramenta Asymptus, que realiza análise automática de complexidade de funções e

foi desenvolvida como um estudo preliminar deste mestrado, sobre os casos de teste

gerados pela nossa técnica. Asymptus foi capaz de inferir corretamente a complexidade

de funções desenvolvidas por nós e extraídas dos benchmarks do Polybench. Isso mostra

que nossa técnica de geração de entradas é útil para a execução automática de funções

de interesse.

xi

Abstract

Software testing and debugging are hard tasks. In general, it is necessary that the

execution �ow reaches a function in order to be able to test it. In this sense, much

e�ort was employed in the development of techniques, such as symbolic execution

and fuzz testing, to automatically generate test cases in a way to analyze functions

of interest. However, such techniques have limitations. A limitation which catches

our attention is the fact that, to the best of our knowledge, no current technique

relates arrays passed as inputs for functions with other inputs that represent their

sizes. Thus, existing techniques, in some cases, may generate test cases which result

in invalid memory accesses that would not happen in a real execution of the program

being tested. In this dissertation, we present two static analyses for inference of array

sizes, as well as an algorithm for generation of test cases capable of generating safe

tests by using such analyses. In order to evaluate the e�ectiveness of our technique,

we performed two experiments. In the �rst of them, we found that the static analyses

were able to bind 34.6% of the array sizes received as parameter by functions in the

SPEC CPU2006 benchmark suite (which contains real world programs). In the second,

we used Asymptus, a tool for automatic inference of function complexity which was

developed during this master's research as a preliminary work, over the test cases

generated by our technique. Asymptus was able to correctly infer the complexity of

functions both written by us and extracted from the Polybench benchmark suite. It

shows that our technique of input generation is useful for the automatic execution of

functions of interest.

xiii

List of Figures

1.1 A function which iterates over an array. The function receives an array of

integers and its size. The array accesses are limited by the size argument. . 4

2.1 An iterative algorithm to calculate the nth Fibonacci number, and its CFG.

BB* identi�es basic blocks. The arrows between basic blocks, say from BB0

to BB1, mean that the execution may �ow from one basic block to the other. 8

2.2 The result of a liveness analysis on function fibonacci of Figure 2.1. The

result is shown only for the basic block BB4. 9

2.3 Function fibonacci of Figure 2.1 in SSA form. The graph was automat-

ically generated by LLVM. 10

3.1 The syntax of our core language. 20

3.2 Data �ow analysis equations. 21

3.3 A code snippet and the resulting abstract state after solving each corre-

sponding equation. 21

3.4 A struct which encapsulates arrays. 23

3.5 The relation between new and newpos is not identi�ed by the forward analysis. 24

3.6 A function which statically allocates an array. 25

3.7 A function which iterates over an array. This is the same example of Figure 1.1. 26

3.8 Percentage of arrays with known sizes. 27

3.9 Percentage of array accesses performed over arrays with known sizes. . . . 28

3.10 A data structure graph example. 29

3.11 A graphic representation of an array size. 30

3.12 The input generation algorithm. 31

3.13 A function which iterates over an array. This is the same example of Figure 1.1. 32

3.14 The LLVM's IR of the code snippet in Figure 3.13. 33

3.15 Code produced by the input generator to test function sum. Lines 2, 3, 4

and 8 are produced by the slice for the code snippet in Figure 3.13. 33

xv

4.1 Matrix multiplication � the running example that we shall use to explain

our contributions. 37

4.2 Gprof output for a simple program containing our example function. . . . 38

4.3 The output produced by the aprof input sensitive pro�ler. 39

4.4 A function to print duplicate lines containing a given key. The second loop

has a conditional execution. 42

4.5 (a) Program with a multi-path loop. (b) The cost-graph of the program.

Nodes represent program points and the edges' weights represent the num-

ber of executed instructions between two points. (c) The cost of each loop

iteration. 44

4.6 (a) Polynomials found for the loop at lines 18-25 of Figure 4.1. (b) Poly-

nomials found for the loop nest at lines 7-15. In each �gure, the �rst curve

that �ts the points in the veri�cation set is marked in gray. 45

4.7 Percentage of loops per benchmark of Rodinia that we could analyze. The

correctness of all these results have been checked manually. 46

4.8 An example of LLVM's IR and a code snippet of an LLVM pass. 47

4.9 The architecture of our implementation. 48

xvi

List of Tables

3.1 Reasons for ine�ectiveness of the forward analysis on randomly chosen func-

tions. 26

xvii

Contents

Agradecimentos ix

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

1 Introduction 3

1.1 Publications . 5

2 Literature Review 7

2.1 Data-�ow Analysis . 7

2.2 Static Single Assignment Form . 9

2.3 Automatic Inference of Program Complexy 10

2.4 Program Slicing . 12

2.5 Data Structure Graph . 12

2.6 Symbolic Execution . 13

2.7 Fuzz Testing . 15

2.8 Final Remarks . 17

3 Generation of Test Cases for Languages with Pointer Arithmetics 19

3.1 Array Size Inference in C . 19

3.1.1 Forward Size Analysis . 20

3.1.2 Backward Size Analysis . 24

3.2 Test Case Generation . 27

3.2.1 Data Structure Graph . 28

3.2.2 Input Generation . 29

xix

3.2.3 Slicing Technique . 31

3.3 Conclusion . 32

4 Case Study 35

4.1 Overview . 37

4.2 Automatic Inference of Loop Complexity through Polynomial Interpo-

lation . 39

4.2.1 Input Analysis . 40

4.2.2 Loop Dependence Analysis . 41

4.2.3 Code Instrumentation . 43

4.2.4 Polynomial Interpolation . 44

4.3 Evaluation . 45

4.3.1 An LLVM Pass . 46

4.3.2 Experiment . 48

4.4 Conclusion . 49

5 Conclusion 51

5.1 Contributions . 52

5.2 Future Work . 52

Bibliography 53

Appendix A Functions for the Input Generation Experiment 59

xx

Chapter 1

Introduction

Software testing and debugging are hard tasks. In general, to properly perform such

tasks, it is necessary to analyze all possible execution paths in the program. In this

sense, previous works [Cadar et al., 2008; Godefroid et al., 2005a; Godefroid, 2007; Sax-

ena et al., 2009] have proposed di�erent approaches to automatically generate inputs

(test cases) for programs. One of the most common techniques to this end is symbolic

execution [Cadar and Sen, 2013]. Usually, it is performed by means of a virtual machine

which replaces the operations that manipulate concrete values by ones which operate

over symbolic values. The program starts executing with symbolic values as inputs.

Whenever the execution �ow reaches a branch, both sides are symbolically executed

�simultaneously� and the conditions to execute such paths (called path conditions/con-

straints) are stored. At the end of the execution, or when it �nds a bug, a constraint

solver �nds concrete input values which follow the same execution �ow as the symbolic

values which produced a particular set of path conditions.

Another used approach is the Fuzz Testing (or fuzzing), which was introduced

in the 90's [Miller et al., 1990] with the purpose of testing programs as a black box

providing random inputs. This technique was later improved by Godefroid et al. [2008]

with the ability of getting a feedback of the execution for some initial random inputs and

�nding new input values which follow di�erent paths. They called this new technique

as Whitebox Fuzz Testing. Although di�erent techniques are shown to be e�ective on

�nding bugs or achieving high code coverage, there exist limitations. A limitation

which catches our attention is regarding to the size of memory regions. Unlike some

strongly typed languages, allocated memory in C has no meta information. Consider

the example in Figure 1.1. If we pass to function sum an array with 10 elements, the

value of size has to be less than or equals to 10. If it is not the case, we will end up

reaching a bug which may never happen in a actual execution of the function in its

3

4 Chapter 1. Introduction

context - i.e. a false positive. For the best of our knowledge, no existing technique

handle it properly.

1: int sum(int *A, int size) {
2: int s = 0;
3: for (int i=0; i < size; i++) {
4: s += A[i];
5: }
6: return s;
7: }

Figure 1.1: A function which iterates over an array. The function receives an array of
integers and its size. The array accesses are limited by the size argument.

In this work we aim to solve this limitation by using static analyses to bind meta

information to memory regions. Our hypotheses is the following:

It is possible to reduce the false positive rate of current automatic test-

ing techniques if we can determine symbolic meta information for memory

regions which are inputs for the testing unit.

In this dissertation we present two static analyses to bind allocated memory regions

with their sizes. The �rst one, which we call forward size analysis, gets information

about the memory allocation instructions and propagates it forward. The second,

backward size analysis, gets information about the memory accesses and propagate it

backward. While the former is more precise to our goal, the latter has shown to be

able to bind more pairs of allocated memory and size.

In order to measure the e�ectiveness of the size analyses, we have executed ex-

periments over the benchmarks found at SPEC CPU2006. We have been able to bind

sizes for 22.7%, in average, of all arrays in SPEC passed as argument to functions.

Also, we have counted that for all array accesses in SPEC that are performed over

arguments of functions, 28% of them perform over arrays which we have been able to

�nd a size. It tells us that generating inputs for arrays using the result of this analysis

avoids memory errors in up to 28% of all array accesses.

We have purposed an algorithm to generate test cases, which is similar to the

one used in DART (Directed Automated Random Testing) [Godefroid et al., 2005a].

Basically, we �rst identify the interface of a function that we want to test. The interface

consists of the types of a function's inputs, which are its parameters and global variables

that are read before written inside the function. The types are represented by a graph,

which we call data structure graph. We then systematically and recursively generate

5

random values for each input. When our size analyses are able to bind an array with

its size, our algorithm generates values which are consistent for both arguments.

We have implemented our techniques on top of the LLVM compiler infrastruc-

ture [Lattner and Adve, 2004b]. Our approach has several possible uses. For instance,

we have used it to improve the e�ectiveness of a program complexity inference tool,

called Asymptus [Demontiê et al., 2015]. Asymptus is a tool for automatic inference

of loop complexity, which was developed during this master's research as a preliminary

work. It can be described in four main steps: (1) static analysis, (2) code instrumen-

tation, (3) dynamic information extraction and (4) polynomial interpolation. Since

this technique is novel, we have published a paper about it, which is partially restated

in Chapter 4. One of the Asymptus' limitations comes from the fact that it needs

to execute a function a certain number of times, with di�erent inputs, in order to be

able to analyze it. However, it may not happen for several reasons (lack of data-sets,

hardcoded inputs for functions, functions called only for speci�c inputs, among others).

We have executed Asymptus together with our input generator on functions that have

arrays, matrices and recursive data-structures as inputs and found that the technique

presented in this dissertation is e�ective on the execution of interest functions.

The main application of our work is in the design of a testing infra-structure for

Maxtrack, a Brazilian company which builds trackers for trucks. This infra-structure is

meant be used to test, in a Unix environment, the software developed to be embedded

into trackers. Because of that, we do not have the bodies of some library functions

and they are automatically generated to return a random value based on the function's

return type. We execute the test drivers generated for chosen functions together with

Valgrind [Nethercote and Seward, 2007a] in order to catch memory corruption errors.

When an error is found, we log the seed of the random functions, allowing the user to

later reproduce the test.

The rest of this dissertation is organized as follows. Section 1.1 shows the list

of publications related to the completion of the intended degree. Chapter 2 presents

the concepts needed to understand this work and a literature review about the related

themes. Chapter 3 presents our solution to the problem stated in this dissertation.

We show the array size analyses in Section 3.1 and our input generation approach in

Section 3.2. Chapter 4 presents a case study of our input generator using Asymptus.

We make our �nal thoughts in Chapter 5.

6 Chapter 1. Introduction

1.1 Publications

• Francisco Demontiê, Filipe de Lima Arcanjo, and Mariza A. S. Bigonha. Um

Algoritmo para Emparelhamento de Chamadas de Função. Brazilian Symposium

on Programming Languages (SBLP). 2014.

• Francisco Demontiê, Junio Cezar, Mariza A. S. Bigonha, Frederico Campos, Fer-

nando Magno Quintão Pereira, Automatic Inference of Loop Complexity Through

Polynomial Interpolation. Brazilian Symposium on Programming Languages

(SBLP), pp. 1-15. 2015.

� This paper was chosen as the 3rd (third) best paper of the Brazilian Sym-

posium on Programming Languages 2015.

• Junio Cezar, Francisco Demontiê, Mariza A. S. Bigonha, and Fernando Magno

Quintão Pereira, Asymptus - A Tool for Automatic Inference of Loop Complexity.

CBSoft, Tools Session, pp. 89-96. 2015.

Chapter 2

Literature Review

This chapter presents a literature review about the subjects and concepts related to

this work. We start with the necessary background for the reader in order to better

understand this dissertation and end presenting the works that are most related to

ours.

2.1 Data-�ow Analysis

To infer the sizes of arrays, we resort to data-�ow analysis. To better understand the

concept of data-�ow analysis, it is necessary to know what is a Control Flow Graph

(CFG) [Allen, 1970]. A CFG is a program representation consisting of a directed graph

where nodes are basic blocks and there is an edge between two basic blocks BB1 and

BB2 if the execution can �ow to BB2 right after the end of BB1. A basic block is

the maximum set of consecutive instructions with basically two properties: (i) the

execution of a basic block only starts from the �rst instruction (there are no jumps to

the middle of a basic block) and (ii) the execution of a basic block only ends in the last

instruction (there are also no jumps from the middle of a basic block). It means that

any branch instruction is the end of a basic block and the target of any branch is the �rst

instruction of a basic block. Figure 2.1 shows a function, which implements the iterative

algorithm to calculate the nth Fibonacci number, and a graphical representation of its

CFG.

Data-�ow analysis [Kildall, 1973] is a technique for analyzing an interest property

at several points of a program. The goal is to approximate properties of the dynamic

behavior of a program by analyzing it statically. The properties are associated to

variables and this association is called abstract state. Data-�ow analyses make use of

the program's CFG, to determine how the data �ows in the program, and are expressed

7

8 Chapter 2. Literature Review

1: int fibonacci(int n) {
2: if (n <= 1)
3: return n;
4:
5: int n_1 = 1, n_2 = 0, fib;
6: for (int i=2; i <= n; i++) {
7: fib = n_1 + n_2;
8: n_2 = n_1;
9: n_1 = fib;

10: }
11: return fib;
12: }

BB0:
 n <= 1?

T F

BB1:
 return n

BB2:
 n_1 = 1
 n_2 = 0
 i = 2

BB3:
 i <= n

T F

BB4:
 fib = n_1 + n_2
 n_2 = n_1
 n_1 = fib

BB6:
 return fib

BB5:
 i++

Figure 2.1: An iterative algorithm to calculate the nth Fibonacci number, and its CFG.
BB* identi�es basic blocks. The arrows between basic blocks, say from BB0 to BB1,
mean that the execution may �ow from one basic block to the other.

as transfer functions. A transfer function computes the abstract state of a variable at

a program point using as input the variables involved in the analyzed instruction and

the abstract state calculated at the neighbor instructions.

A classic example of data-�ow analysis is the liveness analysis which calculates

what variables are alive at any program point. A variable is alive at a program point

if it was already de�ned, is not out of scope and will still be used in a further program

point. Thus, the liveness analysis starts with the last instruction, in a topological order,

and go backward. At the initial program point, after the last instruction, all variables

are dead. During the analysis, the variables used as operands in a instruction are

considered to be alive in the program point right above it, while the assigned variable,

if there is one, is considered dead.

It is possible to describe the liveness analysis using two transfer functions:

JpKin = (JpKout − {v}) ∪ vars(E) (2.1)

JpKout =
⋃

ps∈succ(p)

JpsKin (2.2)

where p is a program point of the form p : v = E (with v being a variable and E

2.2. Static Single Assignment Form 9

an expression), JpKin and JpKout the abstract state of p (i.e., the set of alive variables

right before and right after p, respectively), vars(E) the variables that appear in E,

succ(p) the set of program points which are immediate successors of p. Notice that,

from the Equation 2.2, when a point with multiple successors is found, e.g. a branch

instruction of an if-then-else, we get as result the union of the abstract states of the

successors. We do it because if a variable may be alive in at least one possible path

from the program point p to the end of the program, it has to be considered alive

right after p. Otherwise, some compiler optimizations could make a wrong decision.

Figure 2.2 shows the result of a liveness analysis for the instructions of the basic block

BB4 of Figure 2.1. The values between curly brackets are the alive variables in each

program point. For instance, the variable n_2 is not alive right before the instruction

n_2 = n_1, since this instruction rede�nes the variable and any information about

the variable is lost. Obviously, it is alive after the de�nition.

Figure 2.2: The result of a liveness analysis on function fibonacci of Figure 2.1.
The result is shown only for the basic block BB4.

If in a data-�ow analysis the abstract state has to be associated to each variable

at each program point, we say that the analysis is dense. Otherwise, if the abstract

state of a variable is the same for the whole program, the analysis is sparse. Sparse

analyses are faster than dense ones and require less space in memory. Often, there are

ways to make a dense analysis to become sparse by changing the program.

2.2 Static Single Assignment Form

A common approach to make a data-�ow analysis sparse is to break the live range of

variables in interest points, in order to be able to assign results for variables. To this

purpose, Cytron et al. [1989] have proposed the Static Single Assignment Form (SSA).

A program representation is in the SSA form if, and only if, each variable has exactly

one assignment and every variable is de�ned before being used. Thus, the main idea is

to split a variable into two versions whenever a reassignment is found. However, it is

10 Chapter 2. Literature Review

possible that we have di�erent versions of the same original variable in di�erent sides of

a branch. In this case, we need to have a way to identify the value reaching a use. This

is done by PHI (φ) functions. A φ function is only a concept (it does not exist in the

concrete implementation) which receives a list of versions of a variable - one for each

di�erent path reaching the point - and returns the proper value for a given execution.

Figure 2.3 shows the example of Figure 2.1 in SSA form. It is worth to mention that

all the analyses presented in this dissertation are performed over LLVM's intermediate

representation in SSA form.

entry:
 %cmp = icmp sle i32 %n, 1
 br i1 %cmp, label %if.then, label %if.end

T F

if.then:
 br label %return

if.end:
 br label %for.cond

return:
 %retval.0 = phi i32 [%n, %if.then], [%fib.0, %for.end]
 ret i32 %retval.0

for.cond:
 %fib.0 = phi i32 [undef, %if.end], [%add, %for.inc]
 %n_2.0 = phi i32 [1, %if.end], [%n_1.0, %for.inc]
 %n_1.0 = phi i32 [0, %if.end], [%add, %for.inc]
 %i.0 = phi i32 [2, %if.end], [%inc, %for.inc]
 %cmp1 = icmp slt i32 %i.0, %n
 br i1 %cmp1, label %for.body, label %for.end

T F

for.body:
 %add = add nsw i32 %n_1.0, %n_2.0
 br label %for.inc

for.end:
 br label %return

for.inc:
 %inc = add nsw i32 %i.0, 1
 br label %for.cond

Figure 2.3: Function fibonacci of Figure 2.1 in SSA form. The graph was automat-
ically generated by LLVM.

2.3 Automatic Inference of Program Complexy

In this section we describe works related to Asymptus, the program complexity in-

ference tool, developed as a preliminary work during this master's research, that we

use to evaluate the e�ectiveness of our input generation approach. Recent work has

attempted to improve the state of the art on complexity analysis. Particularly, pro�ler-

based approaches have been able to give interesting results. Goldsmith et al. [2007]

2.3. Automatic Inference of Program Complexy 11

proposed a technique which consists in executing the target program over workloads

with di�erent orders of magnitude and tracking how many times each program location

was executed. They use polynomial regression to �t the data into a linear or power-law

model. However, the user has to specify, for each workload, the value of features - a

feature is an input property which a�ects the algorithm execution, e.g. the size of an

array or the height of a tree. Our technique is able to automatically infer loops' inputs;

hence, it does not require this type of user intervention.

Zaparanuks and Hauswirth [2012] proposed the concept of algorithmic pro�ler.

Their approach consists in grouping the basic blocks of a loop and the functions which

make a cycle in the call-graph into the so called repetition nodes. Those nodes are then

combined in units that they have named algorithms. The technique is able, for example,

to identify if an algorithm is modifying or traversing a list or an array. In order to

estimate the complexity of an algorithm, they retrieve the size of the inputs and some

performance metrics for each execution of the repetition nodes. This modus operandi

leads to a signi�cant overhead, since the analyzer iterates over the entire data structure

to calculate its size. The automatic reconstruction of data-structures is still an incipient

area of research. Therefore, Zaparanuks et al. have implemented a prototype which,

up to this point, can analyze only toy examples. We cannot reconstruct recursive data-

structures as Zaparanuks does; however, our approach is able to infer the complexity

of most of the loops in a real-world benchmark suite.

The work that is more related to the technique described in Chapter 4 is Coppa

et al. [2012]'s input sensitive pro�ler. This work has materialized itself into a tool

called aprof. Core to aprof's work is the notion of Read Memory Size (RMS). This

metric represents the number of memory locations which are read before they have

been written inside a function. Aprof was implemented as a Valgrind [Nethercote and

Seward, 2007b] extension. We believe that aprof is the most practical tool available

nowadays to infer the complexity of general purpose programs. Nevertheless, it has the

following shortcomings: (i) the granularity of results is at the function, not at the loop,

level; (ii) users have to �t equation by hand in aprof's results to �nd the complexity

of a function; and (iii) results are given in terms of RMS, which may not be signi�cant

to the developer. Our technique is capable of addressing these drawbacks.

There exists a plethora of work related to the static estimation of complexity of

code [Alves et al., 2015b; Danielsson, 2008; Gulavani and Gulwani, 2008; Gulwani et al.,

2009b; Monniaux and Gonnord, 2011]. Our work is essentially di�erent from these

approaches, because our results are based on program behavior observed at runtime.

In other words, our approach is dynamic: we execute and pro�le the program to infer

its computational complexity. The downside of our approach is that we are not able

12 Chapter 2. Literature Review

to prove properties about the program's complexity: there are no guarantees that we

will be able to observe every possible execution path within the program code. The

upside is precision: our approach is able to reason about typical programming language

features such as dynamically allocated memory, multiple paths in loops, non-structured

control �ow graphs and pointer arithmetics. So far, these real-world constructs have

been challenging adversaries to the purely static analyses.

2.4 Program Slicing

Program slicing, as de�ned by Weiser [1981], consists of segmenting a program extract-

ing only the instructions which a�ect the computed value at an interest point, called

slicing criterion. There are basically two kinds of slicing techniques: static and dynamic

slicing. The static techniques [Horwitz et al., 1988; Danicic et al., 1995; Reps, 1998],

in general, statically generate a dependence graph [Ottenstein and Ottenstein, 1984]

for a program's instructions and, starting from the slicing criterion, traverse the graph

getting the instructions which a�ect it. The dynamic approaches [Korel and Laski,

1988, 1990; Agrawal and Horgan, 1990; Kamkar et al., 1993] use runtime information

to compute the instructions which a�ect the slicing criterion in a particular execution.

Dynamic slices tend to be smaller and more signi�cant than the static ones for some

programs/inputs and are useful to reduce the search space of a bug known to happen

for a given input. Another technique which aims to reduce the size of a slice is called

conditioned slicing [De Lucia et al., 1996]. Firstly, it computes a reduced version of the

program containing only the reachable instructions given an initial input set - using,

for instance, symbolic execution [Ja�ar et al., 2012]. Then, the slicing is performed in

the so called conditioned program. The di�erent program slicing techniques are used

for decades in di�erent areas of computer science for several ends, as debugging, refac-

toring, parallelism and compiler optimizations. We have used static program slicing

when generating test cases in order to reuse a program's instructions which calculate

the size of an array.

2.5 Data Structure Graph

Lattner and Adve [2003] have proposed a data structures analysis in order to enable

transformations which need to disambiguate entire instances of data structures, such

as lists, trees or graphs. For this analysis, they proposed a data structure graph. We

borrowed the idea of a data structure graph in order to identify the types of a function's

2.6. Symbolic Execution 13

inputs and generate test cases. However, besides some structural di�erences of our

graph, our approach to build it di�ers from Lattner and Adve [2003]'s. Their approach

iterates over each instruction of a function. For each instruction of memory allocation,

it creates a graph node with a �ag corresponding to its memory region (heap or stack).

For loads and stores it merges the nodes involved in the operation. For instructions

corresponding to a struct �eld access or an array indexing, it updates type information

of the accessed node. With this technique they are able to have precise information

about the memory regions. Our approach, described in Section 3.2.1, is not focused on

memory and we use the LLVM type information to generate the data structure graph

for the inputs of a function.

2.6 Symbolic Execution

Symbolic Execution, although introduced more than 3 decades ago [Boyer et al., 1975;

King, 1976], has been used in the past years for automatic test case generation, mostly

because of the improvements on constraint solving. Techniques based on symbolic exe-

cution are capable of �nding concrete inputs which execute a large part of the possible

execution �ows of a program. The classic symbolic execution consists of execution a

program using symbolic values as inputs, instead of concrete ones. The operations

in the program are changed to deal with symbolic value, generating as output sym-

bolic expressions which are represented as functions of its inputs. The results of the

execution are kept as path conditions or path constraints, which represents the condi-

tions (input values) for an execution �ow to be taken. Such constraints are written as

�rst-order logic formulas, thus it is possible to use constraint solvers in order to �nd

concrete inputs to take the same execution �ows. More recent techniques [Godefroid

et al., 2005a; Godefroid, 2007; Cadar et al., 2008], however, perform symbolic execution

and concrete execution side-by-side, what is called concolic testing ;

Cadar et al. [2008] noticed that previous work usually did not allow interaction

with the external environment, or, when they did, the execution of external functions

where limited to use only concrete inputs. In this context, Cadar et al. [2008] im-

plemented KLEE (KLEE LLVM Execution Engine), a symbolic execution tool which

aims to improve the interaction with the external environment making the use of sym-

bolic execution more e�ective in real systems. The method used by KLEE consists on

modeling the system call API at the C language's standard library level. Basically,

the necessary standard library functions are modi�ed to treat symbolic values. For

instance, KLEE has a �le system with a single directory. The number of �les and their

14 Chapter 2. Literature Review

sizes are speci�ed by the user which wants to make use of it during the symbolic exe-

cution. If the function fopen, which originally opens a �le in the system's �le system

and returns a pointer to it, is called using concrete parameters, it is executed normally.

Otherwise, if the call is performed using symbolic values as parameters, the function's

behavior is simulated using KLEE's symbolic �le system. KLEE uses a version (mod-

i�ed by the authors) of uClibc1, a small implementation of the C's standard library.

Therefore, in order to make a proper use of KLEE on programs which use the standard

library, it is necessary to compile the program pointing to the modi�ed uClibc.

Besides modeling the system's API, using search heuristics and representing sym-

bolic states in a compact way allow the use of KLEE on real systems to generate test

cases with high code coverage and to �nd non-trivial bugs. KLEE was executed over

the 89 programs of GNU Coreutils2 for a period of time limited to 60 minutes each.

KLEE was able to generate test cases which covered, in average, 90% of the programs'

code lines and found 10 bugs which were undiscovered. However, the tool was not ex-

ecuted over large systems and it is not clear its real e�ectiveness and e�ciency. Also,

to ensure covering the several paths of a function, the execution �ow has to reach this

function. Although, in some cases KLEE need to exercise a large number of program

paths until it �nd inputs to make the execution �ow to reach a particular program

point.

The closest related work to ours was done by Godefroid et al. [2005a]. They pro-

posed a hybrid technique for test input generation called Directed Automated Random

Testing (DART). Their technique consists of three main steps: (i) statically identify

the input interface of a program with its external environment, (ii) randomly generate

inputs for the program based on its interface, and (iii) analyze the dynamic execu-

tion of the program to generate new inputs in order to exercise other program paths.

For step (ii), Godefroid et al. [2005a] have implemented an algorithm which takes a

memory location and a type as inputs. If the type is a primitive type, the algorithm

initializes the memory location with as many random bits as the type requires. If it

is a pointer to another type T, the algorithm will either lets the pointer to be null or

allocate a new memory region. In the second case, the algorithm will recurse passing

the newly allocated region and T. If the type is a struct or an array, every sub-element

is initialized recursively.

For step (iii), DART instruments the program and executes it both concretely

and symbolically. With this side-by-side execution, DART generates path constraints

on the �y depending on how predicates of branches evaluate. The constraints gen-

1www.uclibc.org
2www.gnu.org/software/coreutils

2.6. Symbolic Execution 15

erated during an execution represent an equivalence class of all input vectors which

will drive the program through the executed paths. DART then begins to change

predicates in the path constraint to guide the generation of inputs for the next ex-

ecution, which will take a di�erent path. Godefroid et al. [2005a] claim that, using

a dynamic analysis to generate new inputs, DART is able to improve code coverage

when compared to pure random testing. However, since this technique su�ers of path

explosion, Godefroid [2007] proposed an extension of DART, which is called Systematic

Modular Automated Random Testing (SMART). Basically, SMART executes functions

isolated and generates summaries in form of preconditions and postconditions. The

summaries of lower level functions are re-used when testing higher level functions to

avoid re-testing functions.

Our approach is mostly based on DART, in the sense that our algorithm to gener-

ate random values is similar to DART's. However, we have addressed some limitations.

The main limitation is that DART cannot relate an array with its size when generating

inputs for a function call. It means that it can generate test cases which lead to invalid

memory accesses that would not occur in practice. It will increase the number of false

positives when looking for bugs. In our approach, we statically identify such relations

using either a forward analysis (which propagates information starting on memory allo-

cations) or a backward analysis (which calculates symbolic upper bounds for variables

which indexes a given array). Also, according to the algorithm, DART only treats

arrays with �xed size. In our approach, we identify pointer arithmetics and thus can

treat pointers as arrays. In this case, we allocate a memory space of random size.

In order to address some of the limitations of DART, Godefroid et al. [2008] have

implemented SAGE (Scalable Automated Guided Execution). The main contribution

of their work is a so called generational search, which aims to improve code coverage

faster and enable analyzing larger programs. The key idea behind SAGE's generational

search is to systematically expand each constraint in a path constraint in order to gen-

erate new inputs. They start symbolically executing the program with a random input,

what generates a path constraint. Then, each constraint is systematically negated and

solved to �nd a new input, called child input. The same process is done recursively for

the children inputs. In order to avoid redundancy, if a child input was generated when

the constraint j was negated, the search algorithm will start expand this child input

from the constraint j+1. Another contribution of this work is that they do not perform

a source-code-based symbolic execution. Rather, their constraints generator analyzes

(o�-line) traces of execution of x86 machine-code, being language-independent. Our

work di�ers from Godefroid et al. [2008]'s because our approach is source-code-based.

It is not a goal this work to improve code coverage.

16 Chapter 2. Literature Review

2.7 Fuzz Testing

Random testing is basically the ability of automatically testing programs using random

factors. Some approaches randomly generate sequences of method calls to test object-

oriented programs [Pacheco et al., 2007; Oriol and Tassis, 2010], create test cases

(argument values for functions, for example) [Miller et al., 1990; Godefroid et al., 2005a;

Forrester and Miller, 2000], or even insert failures for hardware simulation [Groce et al.,

2007]. Although it is already known that random testing usually leads to low code

coverage [Chen et al., 2013], it was shown that this technique can be e�ective to �nd

bugs in a short period of time [Duran and Ntafos, 1984; Forrester and Miller, 2000;

Ciupa et al., 2007, 2008]. Also, random testing is much simpler than more sophisticated

approaches, such as symbolic execution. The use of random testing to generate test

cases, which is the goal of this work, is called fuzz testing (or fuzzing). The literature

classi�es the fuzzing approaches onto two categories: blackbox and whitebox fuzzing.

The blackbox approaches make use only of the program's interface, while whitebox

fuzzers also analyze the executed instructions in order to improve code coverage.

Fuzz testing was �rstly introduced by Miller et al. [1990] with the goal of testing

the reliability of UNIX utilities, such as cat, grep and awk. They basically implemented

a random character generator to generate inputs for the UNIX utilities by command

line. A similar work was done by Forrester and Miller [2000] to test Windows NT

applications. For doing this, they implemented a tool which randomly generates valid

keyboard and mouse events. Both tools had practical use and were well succeeded to

�nd bugs in real applications. However, while the former is very simple and works only

for programs which receives inputs from the command line, the latter is very speci�c to

its use. Our approach identi�es the input interface of interest functions in a program

and automatically generates random inputs, thus being more general.

Some e�ort has been applied to improve testing regarding to its e�ectiveness of

�nding bugs and its code coverage [Chen et al., 2005; Godefroid et al., 2005a; Oriol

and Tassis, 2010]. Chen et al. [2005] has proposed a method to select input values so

that the test cases will be spread over the input domain. They showed that using their

technique, they improve code coverage and �nd more bugs [Chen et al., 2013]. Ahmad

and Oriol [2014] have also shown improvement on �nding bugs going to the opposite

way. When a test case leads to a bug, they select surrounding values as interest values

for the next inputs. They have implemented their technique on top of YETI [Oriol

and Tassis, 2010]. YETI was shown to be useful to �nd bugs, but it is not e�ective

on creating instances of complex data structures. It is not the goal of this work to

improve code coverage, yet it would be possible to apply some of these techniques on

2.8. Final Remarks 17

top of our work.

Godefroid [2014] proposed the concept of Micro Execution [Godefroid, 2014] as

the ability of executing a code fragment (function) without user intervention. The key

idea behind this technique is to dynamically identify the Input/Output interface of a

target function and to provide input values on demand. In order to identify inputs he

de�ned a default policy, where an input is a value read from an uninitialized function

argument or a dereference of another input. Since it is done dynamically in executable

code, function arguments are stored in memory addresses above the stack pointer (esp).

Whenever an instruction tries to read an uninitialized input value, a value is generated

using one of four strategies: (i) �lling all inputs with zeros (useful for debugging), (ii)

randomly generating values, (iii) using a process dump, where inputs are �lled with

values present in the dump (useful to reproduce test cases) or (iv) using a whitebox

fuzzer called SAGE, which uses symbolic execution in order to cover more program

paths.

Although micro execution has some applications, it has limitations. It generates

each input value independently (except if it uses the fourth strategy of value genera-

tion, using SAGE, making the execution slower). Because of this, it may fail to perform

useful executions when the inputs are data structures such as arrays, trees or linked

lists. Our technique solves this problem by statically identifying data structures and

generating code to create instances of them. It also cannot identify memory corruption

bugs due to input data structures, such as bu�er over�ows. It happens because some

information (such as bu�er size) may not be known inside the function. We use a sym-

bolic analysis to bind program symbols (variables) with the size of arrays. With this,

we are able to detect such memory errors. Finally, it is not clear the real applicability

of micro execution to �nd bugs on real world applications.

2.8 Final Remarks

There exists a large set of works that automatically generates test cases for functions.

One of the most used techniques is symbolic execution [Cadar et al., 2008; Godefroid

et al., 2005a, 2008]. Although this technique is e�ective to improve coverage, it can be

take too long to generate inputs for some interest functions, since the execution �ow

has to reach them. Also, KLEE [Cadar et al., 2008] is not able to generate recursive

data structures (e.g. linked lists), while our work, similarly to DART [Godefroid et al.,

2005a], implements an algorithm to generate such data structures with random size.

Fuzz testing was shown to generate inputs faster then classic symbolic execution while

18 Chapter 2. Literature Review

still achieves high code coverage. One of the most recent works in this area was done by

Godefroid [2014], which dynamically generates random inputs for functions. However,

each input is generated independently, what may lead to ine�ective executions when

inputs are data structures, for example. From the best of our knowledge, there is

no technique for test case generation that relate memory regions with variable that

represent meta information about their sizes. Thus, existing techniques may generate

test cases which result in invalid memory accesses that would not happen in a real

execution of the same program. The work described in Chapter 3 does it by using two

static array size analyses. Is not a goal of our work to maximize code coverage.

Chapter 3

Generation of Test Cases for

Languages with Pointer Arithmetics

This chapter describes a method for test case generation. Firstly, we describe two

approaches to identify symbolic sizes of memory regions. Such approaches are used to

generate test cases that do not end in invalid memory accesses. The use of the array

size analysis while generating test cases is the major contribution behind the work done

for this dissertation.

3.1 Array Size Inference in C

Aiming to generate test cases which do not lead to memory corruption errors not yet

present in the program, we proposed the idea of binding arrays with their sizes when

generating function arguments. In this section we describe two approaches for array

size analysis. Firstly, we would like to adopt a core language which is much smaller

than C but still expressive enough for our goal, which we present in Figure 3.1. This

language was introduced by Nazaré et al. [2014] and has the constructions that we

need to present our analysis. Nazaré et al. [2014] have described the semantics of

their language in details using operational semantics [Plotkin, 1981]. We choose to

informally describe the semantics of the instructions in order to make it easier to the

reader.

A program P is composed by instructions which have two kinds of operands:

variables (V) and constants (C). Each instruction has a label (in order to allow jumps).

We denote binary operation as a ⊕ because it does not make any di�erence which

operation it is. Stores and loads have the usual semantics. A store ∗v1 = v3 means

that the value in v3 is stored into the memory location addressed by v1. A load

19

20
Chapter 3. Generation of Test Cases for Languages with Pointer

Arithmetics

Programs (P) ::= `1 : I1, `2 : I2, . . . , `n : end
Labels (L) ::= {`1, `2, . . .}
Variables (V) ::= {v1, v2, . . .}
Constants (C) ::= {c1, c2, . . .}
Operands (O) ::= V ∪ C
Instructions (I) ::=
� Assignment | v = o
� Input | v = •
� Binary operation | v1 = v2 ⊕ v3
� φ-function | v = φ(v1, . . . , vn)
� Store into memory | ∗v1 = v3
� Load from memory | v1 = ∗v2
� Allocate memory | v1 = alloc(v2)
� Liberate memory | free(v)
� Branch if zero | br(v, `)
� Unconditional jump | jmp(`)
� Halt execution | end

Figure 3.1: The syntax of our core language.

v1 = ∗v2 means that the variable v1 will keep the value contained into the memory

location addressed by v2. The �branch if zero� instruction changes the control �ow

of the program to the label ell if the predicate is zero. A φ-function, explained in

Section 2.2, is necessary since all programs in this language are in SSA. The alloc

instruction is the most important to our analysis. This instruction allocate v2 bytes in

memory and returns a pointer to it.

3.1.1 Forward Size Analysis

The forward size analysis is an interprocedural analysis which starts on memory alloca-

tion instructions. We iterate over each function of the program in topological order of

a call-graph. It makes us to analyze the called functions before analyzing their callees.

For each function, we iterate over the instructions looking for memory allocation in-

structions. Such instructions are LLVM allocas (which allocate memory on the stack)

and call instructions for memory allocation functions. We add the alloca's size or the

arguments of the function call to the abstract state of the left-value of the instruction.

We also handle pointer alias information and pointer arithmetics.

Figure 3.2 shows the equations of our data-�ow analyis. In this analysis, the

abstract state of an array is a set of variables which are related to its size, and the

abstract state of a variable is a set of arrays with the size related to it. Equation 3.1

says that if we �nd a malloc with a constant value as argument, the abstract state of

3.1. Array Size Inference in C 21

v = malloc(c) ` JvK = {c} (3.1)

v = malloc(v1) ` JvK = {v1}, Jv1K∪ = {v} (3.2)

v1 = v2 + c ` v′2 ∈ Jv2K
Jv1K = Jv2K, Jv′2K∪ = {v1}

(3.3)

v1 = v2 � v3 `
v′2 ∈ Jv2K, v′3 ∈ Jv3K

Jv1K = Jv2K ∪ Jv3K, Jv′2K∪ = {v1}, Jv′3K∪ = {v1}
(3.4)

v = φ(v1, . . . , vn) ` v′1 ∈ Jv1K, . . . , v′n ∈ JvnK
JvK =

⋃
1≤i≤n

JviK, Jv′1K∪ = {v}, . . . , Jv′nK∪ = {v}
(3.5)

Figure 3.2: Data �ow analysis equations.

the resulting array is a set containing the constant (i.e., the size of v is c). Equation

3.2 is similar. However, since it deals with a variable, which may already be the size of

another array, we add the resulting array to the abstract state of the variable. Notice

that the operator ∪ = represents the addition of the elements in the set on the right to

the set on the left. Equation 3.3 says that if we have pointer arithmetics, the resulting

array has the same abstract state as the original one, i.e., everything related to the

size of v2 is also related to the size of v1. Also, in this case, we add the new array to

the abstract state of any variable in the abstract state of the original array, in order to

keep it consistent. Equation 3.4 says that any operation involving a variable which is

related to the size of arrays, makes the resulting value to be also related to the same

arrays. Finally, Equation 3.5 says that if we have a φ-function, the abstract state of

the resulting value is the union of the abstract states of all operands. Figure 3.3 shows

a code snippet with the resulting abstract state after solving the equations.

Figure 3.3: A code snippet and the resulting abstract state after solving each corre-
sponding equation.

We also handle user-de�ned memory allocation functions which make use of other

memory allocation functions. We start with a set of memory allocation functions (in C,

malloc, calloc, valloc, etc.). Then, in the topological order traversal of the call graph,

22
Chapter 3. Generation of Test Cases for Languages with Pointer

Arithmetics

we analyze return instructions of functions. If the returned value is an array which

has a function argument as its abstract state, then we mark this function as a memory

allocation function. This way, we achieve higher e�ectiveness.

3.1.1.1 Evaluation

We wanted to measure the e�ectiveness of the forward array size analysis to �nd pairs

of function parameters which are composed by arrays and their size. The goal is to

understand the impact of using such analysis in order to reduce the false positive rate of

test case generators. For this experiment we executed the analysis over the benchmarks

of SPEC CPU2006, which is a benchmark suite containing real-world programs, such

as GCC1 and Bzip2. Since our analysis �nd pairs of parameters, we only considered

functions containing at least two parameters, one of them being a pointer. The metrics

of our interest, considering arrays that are received as parameter by functions, are:

1. The proportion of arrays with known sizes.

2. The proportion of array accesses performed over arrays with known sizes.

We have only analyzed functions which potentially have array sizes, i.e., functions

containing at least one pointer and one scalar-type parameter. It gives us 7,586 func-

tions in SPEC, that represent 18% of all functions. The forward analysis only found

array sizes for two benchmarks, 6.9% for GCC and 0.5% for HMMER. In total, it only

found 1.3% of all array sizes in SPEC. We have also analyzed the single-source and

multi-source benchmarks present in LLVM's test-suite. In both benchmark suites, the

forward analysis found almost 3% of the array sizes, in average. For some benchmarks,

it could even reach an expressive rate: 50% for Shootout's heapsort and 66.6% for

FreeBench's analyzer, for instance. Although these numbers are better then what we

got for SPEC, it is still much less than what we expected.

In order to understand the ine�ectiveness of our forward analysis, we randomly

chose, for manual inspection, 12 SPEC functions which have array sizes found by the

backward analysis but not by the forward analysis. Among the reasons, we were able

to �nd four main patterns of code where our analysis cannot succeed.

1. The size is calculated with no relation to the array allocation. In this

case there is nothing our forward analysis could do. We leave such cases for the

backward analysis.

1https://gcc.gnu.org/
2http://www.bzip.org/

3.1. Array Size Inference in C 23

1 : typedef struct network
2 : {
3 : char i n p u t f i l e [2 0 0] ;
4 : char c l u s t f i l e [2 0 0] ;
5 : long n , n_trips ;
6 : long max_m, m, m_org , m_impl ;
7 : long max_residual_new_m , max_new_m;
8 :
9 : long primal_unbounded ;

10 : long dual_unbounded ;
11 : long perturbed ;
12 : long f e a s i b l e ;
13 : long eps ;
14 : long opt_tol ;
15 : long f e a s_to l ;
16 : long pert_val ;
17 : long bigM ;
18 : double optcos t ;
19 : cost_t ignore_impl ;
20 : node_p nodes , stop_nodes ;
21 : arc_p arcs , stop_arcs ;
22 : arc_p dummy_arcs , stop_dummy ;
23 : long i t e r a t i o n s ;
24 : long bound_exchanges ;
25 : long checksum ;
26 :} network_t ;

a: The struct network contains several
�elds which are threated as arrays. For
instance, the �eld stop_arcs (line 21)
is an array of another struct.

1 : long price_out_impl (network_t ∗net)
2 : {
3 : [. . .]
4 : long new_arcs = 0 ;
5 : [. . .]
6 : arcnew = net−>stop_arcs ;
7 : [. . .]
8 : i f (new_arcs < net−>max_residual_new_m)
9 : {

10 : insert_new_arc (arcnew , new_arcs , t a i l ,
11 : head , arc_cost ,
12 : red_cost) ;
13 : new_arcs++;
14 : }
15 : [. . .]
16 : }

b: The array passed to function
insert_new_arc (line 10) is the �eld
stop_arcs of struct network, while the
array size (new_arcs) is calculated inde-
pendently. The lines containing "[...]" are
only to suppress code.

Figure 3.4: A struct which encapsulates arrays.

2. The array (and maybe its size) is encapsulated inside a struct. Figure 3.4

shows a struct network, of the benchmark 429.mcf, which encapsulates an array.

It also shows a call of function insert_new_arc, of Figure 3.5, where the array

size is calculated independently of the array size.

3. The array is statically allocated (on the stack) but the size passed to

the function is not the allocated size. This pattern can be found on func-

tion save_call_clobbered_regs when calling function insert_restore, shown in

Figure 3.6 (line 29). Notice that the array save_mode is statically allocated but

the size argument regno is dynamically calculated;

4. The array is received as a function argument. Although our analysis is

inter-procedural, it does not propagate allocation information through functions.

Table 3.1 describes the reasons why our forward analysis did not relate sizes for the 12

SPEC functions.

24
Chapter 3. Generation of Test Cases for Languages with Pointer

Arithmetics

1 : void insert_new_arc (arc_t ∗new , long newpos ,
2 : node_t ∗ t a i l , node_t ∗head ,
3 : cost_t cost , cost_t red_cost)
4 : {
5 : long pos ;
6 :
7 : new [newpos] . t a i l = t a i l ;
8 : new [newpos] . head = head ;
9 : new [newpos] . org_cost = cos t ;

10 : new [newpos] . c o s t = cos t ;
11 : new [newpos] . f low = (flow_t) red_cost ;
12 :
13 : pos = newpos+1;
14 : while (pos−1 && red_cost >
15 : (cost_t)new [pos /2−1]. f low)
16 : {
17 : new [pos −1] . t a i l = new [pos /2−1]. t a i l ;
18 : new [pos −1] . head = new [pos /2−1]. head ;
19 : new [pos −1] . c o s t = new [pos /2−1]. c o s t ;
20 : new [pos −1] . org_cost = new [pos /2−1]. c o s t ;
21 : new [pos −1] . f low = new [pos /2−1]. f low ;
22 :
23 : pos = pos /2 ;
24 : new [pos −1] . t a i l = t a i l ;
25 : new [pos −1] . head = head ;
26 : new [pos −1] . c o s t = cos t ;
27 : new [pos −1] . org_cost = cos t ;
28 : }
29 : }

Figure 3.5: The relation between new and newpos is not identi�ed by the forward
analysis.

3.1.2 Backward Size Analysis

The forward analysis is very precise for our goal and helps us to generate test cases

which follow the patterns of real executions. However, the portion of arrays we could

analyze compared to the total number of arrays is small. Among the reasons for such

ine�ciency, we have: arrays allocated in the stack using constant sizes and arrays

encapsulated into structs. In this sense, we have used a backward size analysis for

the cases where our forward analysis does not �nd a size to the array. The backward

analysis was proposed by Alves et al. [2015a]. Basically, it extracts information about

array accesses that have basic induction variables of a loop as o�set. A variable is

considered to be a basic induction variable of a loop if its rede�nitions inside the loop

represent an increment or a decrement of its value by a loop invariant. Usually, we call

such variables counters. Thus, the backward size analysis makes use of symbolic range

analysis [Nazaré et al., 2014] on induction variables that access an array to bound its

size.

Let's get back to the example in the introduction, presented again in Figure 3.7

for better readability. Firstly, the analysis collects all (dereferences) of an array. In the

3.1. Array Size Inference in C 25

1 : void save_cal l_clobbered_regs ()
2 : {
3 : struct insn_chain ∗ chain , ∗next ;
4 : enum machine_mode save_mode [FIRST_PSEUDO_REGISTER] ;
5 :
6 : CLEAR_HARD_REG_SET (hard_regs_saved) ;
7 : n_regs_saved = 0 ;
8 :
9 : for (chain = reload_insn_chain ; chain != 0 ; chain = next)

10 : {
11 : r tx insn = chain−>insn ;
12 : enum rtx_code code = GET_CODE (insn) ;
13 :
14 : next = chain−>next ;
15 :
16 : i f (chain−>is_ca l l e r_save_insn)
17 : abort () ;
18 :
19 : i f (GET_RTX_CLASS (code) == ' i ')
20 : {
21 : i f (n_regs_saved)
22 : {
23 : int regno ;
24 :
25 : [. . .]
26 :
27 : for (regno = 0 ; regno < FIRST_PSEUDO_REGISTER; regno++)
28 : i f (TEST_HARD_REG_BIT (re fe renced_regs , regno))
29 : regno += in s e r t_ r e s t o r e (chain , 1 , regno ,
30 : MOVE_MAX_WORDS, save_mode) ;
31 : }
32 :
33 : [. . .]
34 :
35 : }

Figure 3.6: A function which statically allocates an array.

example, the array A is accessed only with the induction variable i. Then, it calculates

the bounds for induction variables using a symbolic range analysis. In this case, the

symbolic range for i is [0,max(0, size − 1)]. Finally, it applies the symbolic ranges

to the access expressions to �nd the bounds of arrays ([0,max(0, size − 1)] in this

case). Since this analysis was originally used to disambiguate pointers, it is necessary

to keep both the lower and the upper bound of an array. In our case, we get only

the upper bound of arrays which are parameters of functions and check if any value in

the expression is related to another function argument. For example, size itself is a

function parameter. We then let size to be the size of A.

3.1.2.1 Evaluation

We executed the same experiments described in Section 3.1.1.1 in order to evaluate the

e�ectiveness of the backward array size analysis. For SPEC CPU2006, the backward

analysis found 33.9% of all array sizes. Figure 3.8 shows the number of arrays with

26
Chapter 3. Generation of Test Cases for Languages with Pointer

Arithmetics

Function Benchmark Reason
S_qsortsv 400.perlbench The array and size are received as

function arguments and the func-
tion is not directly called.

BZ2_hbMakeCodeLengths 401.bzip2 The array is a struct �eld.
parse_options_and_default_�ags 403.gcc The array and size are received as

function arguments.
insert_restore 403.gcc The array is statically allocated.
merge_dependencies 403.gcc The array is statically allocated

and the size is calculated with no
relation to the array allocation.

insert_new_arc 429.mcf The array is a struct �eld.
swap_points_and_codes 445.gobmk The array is received as a func-

tion argument and the size is dy-
namically calculated.

propose_edge_moves 445.gobmk The array is statically allocated
and size is dynamically calcu-
lated.

DisplayPlan7PostAlign 456.hmmer The array and size are received as
function arguments.

PositionBasedWeights 456.hmmer The function is never called.
order_moves 458.sjeng The array is a slice of a statically

allocated bu�er.
accumArrayUTF 483.xalancbmk The array is a C++ string and

the size is calculated with func-
tion length.

Table 3.1: Reasons for ine�ectiveness of the forward analysis on randomly chosen
functions.

1: int sum(int *A, int size) {
2: int s = 0;
3: for (int i=0; i < size; i++) {
4: s += A[i];
5: }
6: return s;
7: }

Figure 3.7: A function which iterates over an array. This is the same example of
Figure 1.1.

known sizes for each benchmark of SPEC. For the single-source benchmarks, which

contain simpler programs, the backward analysis was surprisingly e�ective on them,

�nding the size of 74.5% of all arrays received as parameters. Particularly, for Poly-

bench [Pouchet, 2012], one of the single-source benchmark suites which have polynomial

3.2. Test Case Generation 27

0%

10%

20%

30%

40%

50%

60%

70%

80%

Backward Analysis Rate for SPEC

Figure 3.8: Percentage of arrays with known sizes.

functions that receive arrays and matrices as parameters, this analysis found almost

100% of the array sizes. For the multi-source benchmarks, this number is similar to

what we got for SPEC: 39.8%. Together, the forward and the backward analyses were

able to �nd 34.6% of all array sizes for SPEC. Figure 3.9 shows the proportion of array

accesses that were performed over sized arrays. Together, for 33% of all considered

accesses in SPEC, our analyses could �nd the size of the array, in average. It means

that we may reduce the chance of �nding false positive bugs due to array out-of-bound

in up to 33% of the accesses.

3.2 Test Case Generation

In this section we describe a technique for random test case generation which uses the

array size analyses of Section 3.1. We start presenting our data structure graph, which

is used to represent a function's interface, in Section 3.2.1. Section 3.2.2 describes the

algorithm for input generation. Section 3.2.3 describes a slicing technique used to get

the instructions of the original program that calculate array sizes, which are used by

our test case generator.

28
Chapter 3. Generation of Test Cases for Languages with Pointer

Arithmetics

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Array Accesses over Sized Arrays

Figure 3.9: Percentage of array accesses performed over arrays with known sizes.

3.2.1 Data Structure Graph

A data structure graph is a possibly cyclic graph which contains information about a

function's inputs types. We consider as inputs the function's parameters and the global

variables which are read before being written inside the function. A data structure node

may represent a type. Nodes may have a list of �elds. The �elds are basically edges

between the owned node and a node which represents a contained type. For instance,

Figure 3.10b shows the graphic representation of the data structure graph for the

parameters of function find in Figure 3.10a. The diamonds represent the parameters,

the square nodes represent structs and the round nodes represent primitive types (in

this case, i32, i.e., a 32-bits integer). Notice that Node is a recursive struct, so the

recursive �eld (next) points to the struct itself.

Fields also have attributes to indicate if it is a pointer or an array. Pointers are

represented with a star (as shown in Figure 3.10b). In case of arrays, the �eld may

have an attribute containing its size. If the array is statically allocated, the array size

is a numeric value. If it is dynamically allocated, the array size is a pointer to another

�eld representing a variable, if our analyses described in Section 3.1 is able to �nd a

3.2. Test Case Generation 29

1: typedef struct {
2: int value;
3: struct Node* next;
4: } Node;
5:
6: typedef struct {
7: Node *head;
8: } List;
9:

10: Node* find(List* list, int value) {
11: Node* n = list->head;
12: while (n != NULL && n->value != value) {
13: n = n->next;
14: }
15: return n;
16: }

a: C code snippet. Function find �nds a
node in a linked list.

i32

struct.List

* head

struct.Node

value * next

list
*

value

b: Data structure graph of the param-
eters of function find.

Figure 3.10: A data structure graph example.

relation. Figure 3.11b shows an example of data structure graph with an array. The

parameter pairs of function closestPoint of Figure 3.11a can be easily related to

the parameter size. We graphically represent this relation by a dashed arrow. Having

this relation in a graph helps us to generate test cases easier.

3.2.2 Input Generation

Many approaches for test case generation have already been proposed. Some of them

focus on �nding bugs faster and increasing code coverage [Godefroid et al., 2005a,

2008; Cadar et al., 2008; Chen et al., 2013; Ahmad and Oriol, 2014]. We focus on

the generation of sound test cases, which do not introduce memory corruption bugs

that were not present originally in the code. To accomplish this goal, we use the

two static array size analyses presented in Section 3.1 to improve a black-box fuzzer.

Our algorithm to generate random values for function inputs is similar to Godefroid

et al. [2005b]. The most signi�cant di�erence is regarding to arrays. First, we identify

dynamically allocated arrays by looking for memory allocation instructions and pointer

arithmetics. Also, we have two approaches to relate arrays with their sizes when

30
Chapter 3. Generation of Test Cases for Languages with Pointer

Arithmetics

1: struct {
2: int x;
3: int y;
4: } Pair;
5:
6: void closestPoint(Pair *pairs, int size) {
7: int min = INFINITY;
8: Pair closest;
9: for (int i=0; i < size; i++) {

10: Pair p = pairs[i];
11: int dist = sqrt(pow(p.x, 2)
12: + pow(p.y, 2));
13: if (dist < min) {
14: min = dist;
15: closest = p;
16: }
17: }
18: printf("Closest = (%d, %d)\n", closest.x,
19: closest.y);
20: }

a: Function closestPoint �nds the
point of an array which is closer to the ori-
gin of a Cartesian coordinate plane.

i32

struct.Pair

x y

pairs
[]

size

b: Data structure graph of the param-
eters of function closestPoint. No-
tice that size is the size of pairs.

Figure 3.11: A graphic representation of an array size.

generating values for function arguments. When it is possible to relate array sizes

using the forward analysis described in Section 3.1.1, we reuse program's instructions

to calculate the array size and the related argument value. Such technique uses program

slicing and is described in Section 3.2.3. When the relation is only captured by the

backward analysis, we simply use the same random value as the array size and the

argument related to the array. Notice that the second approach is more conservative.

Figure 3.12 describes our algorithm. The values are not generated in compile time.

Instead, we instrument with instructions to generate such random values according to

the input type. However, to simplify the reading, we decided to represent the input

generation in a higher level. The function receives a �eld of the data structure graph

as input. For the initial calls, this �eld represents a function input. From lines 3 to

11 the algorithm generates code to initialize pointers. It �ips a coin to decide whether

the pointer will be null or not. If it is not null, memory is allocated and the algorithm

recurses to generate value for the pointed type. Lines 13 to 20 create arrays using the

previously mentioned approach. Firstly, we try to get size information from the array

size analyses of Section 3.1. If it is not possible, we generate a random value for it with

no relation to another function argument. The function create_array_factory

generates code to allocate size bytes in memory and �ll it with random values of the

correct type. Lines 22 to 26 creates structs by allocating the proper amount of memory

3.2. Test Case Generation 31

and recursively calls the function for each struct �eld. Notice that this algorithm is

able to generate recursive structs with random sizes, because of the combination of the

pointer and struct generation. Lines 28 to 33 only generate values for primitive types.

However, if the �eld is known to represent a size of an array, we reuse the already

computed value in order to make it consistent.

1: generate_value(field):
2: node = field.get_node()
2: if (field.is_pointer() && !field.is_array()):
3: probability = random_float()
4: if (flip_coin() < probability):
5: return NULL
6: else:
7: m = malloc(sizeof(node.get_type()))
8: field.set_pointer(false)
9: v = generate_value(field)

10: *m = v
11: return m
12: else if (field.is_array()):
13: factory = create_array_factory(node.get_type())
14: if (forward_analysis.found_size(field)):
15: slice = get_slice(field)
16: size = slice.get_size()
17: else if (bacward_analysis.found_size(field)):
18: size = bacward_analysis.get_size(field)
19: else:
18: size = random_int()
20: array = create_call(factory, size)
21: else if (node.get_type().is_struct()):
22: m = malloc(sizeof(node.get_type()))
23: for (s_field : node.get_fields()):
24: v = generate_value(s_field)
25: *(m + s_field.get_offset()) = v
26: return m
27: else:
28: if (forward_analysis.is_size(field)):
29: slice = get_slice(field)
30: return slice.get_size()
31: else if (backward_analysis.is_size(field)):
32: return bacward_analysis.get_size()
33: return random_value(node.get_type())

Figure 3.12: The input generation algorithm.

3.2.3 Slicing Technique

We have implemented two static analysis to bind an array argument with the argument

representing its size - if existing. With this information in hand, we are able to use

the correct values in a function call and avoid memory corruption errors that should

not happen. However, in order to generate test cases which better reproduce the real

context in which functions are called, we want to use - whenever possible - instructions

present in the program to compute an array size. To do that, we have implemented

a program slicing approach. Figure 1.1 shows as example a snippet of C code which

32
Chapter 3. Generation of Test Cases for Languages with Pointer

Arithmetics

creates an array and calls a function f. To recreate the array size and the argument,

we produce two slices. The �rst one focuses on calculating the array size - which in

this case is the argument of the malloc call. The second focuses on the argument of f

which is related to the array size.

1: int size = x * 2;
2: int *A = (int*) malloc(sizeof(int)*size);
3: for (int i=0; i < size; i++) {
4: A[i] = rand();
5: }
6: sum(A, size/2);

Figure 3.13: A function which iterates over an array. This is the same example of
Figure 1.1.

To illustrate how the slicing technique works, we will use the code snippet in

Figure 3.13, which creates an array of size x*2 �lling it with random values. Figure 3.14

shows the LLVM's intermediate representation of the code snippet. We are interested

on the instructions which calculates the argument of malloc (underlined instructions

in the intermediate representation) and argument of f which is related to the size of

the array (bolded instructions in the IR). Note that the �rst instruction is present in

both slices. As result, we get the union of the two slices and use the calculated values

to create arrays of random sizes and call the target function sum. Figure 3.15 shows

the resulting code produced by our input generator using the program slice of the code

snippet. Notice that x is assigned with the result of a random integer, because x is

the �rst variable with only one use, then treated as input for the slice. The function

fillArrayi32 is automatically created by our input generator.

3.3 Conclusion

In this chapter we have presented a novel approach for automatic generation of test

cases, which makes use of static analyses that bind arrays with function arguments that

represent their sizes. The use of such analyses helps our approach to generate safer test

cases then existing techniques. Although the forward analysis have shown to still be

ine�ective (due to several reasons), the backward analysis is very e�ective on binding

meta information about memory regions. We suppose that, despite the limitations of

the forward analysis, using our array size analyses can consistently reduce the false

positive rate on the state-of-the-art techniques for automatic test case generation. Our

test case generator is also able to generate recursive data structures, such as lists

3.3. Conclusion 33

entry:
 %mul = mul nsw i32 %x, 2
 %conv = sext i32 %mul to i64
 %mul1 = mul i64 4, %conv
 %call = call i8* @malloc(i64 %mul1)
%0 = bitcast i8* %call to i32*
 br label %for.cond

for.cond:
 %i.0 = phi i32 [0, %entry], [%inc, %for.inc]
 %cmp = icmp slt i32 %i.0, %mul
 br i1 %cmp, label %for.body, label %for.end

T F

for.body:
 %call3 = call i32 (...) @rand()
 %idxprom = sext i32 %i.0 to i64
 %arrayidx = getelementptr inbounds i32, i32* %0, i64 %idxprom
 store i32 %call3, i32* %arrayidx, align 4
 br label %for.inc

for.end:
 %div = sdiv i32 %mul, 2
 %call4 = call i32 @sum(i32* %0, i32 %div)
ret i32 0

for.inc:
 %inc = add nsw i32 %i.0, 1
 br label %for.cond

Figure 3.14: The LLVM's IR of the code snippet in Figure 3.13.

1: %x = i32 call @rand_i32();
2: %mul = mul nsw i32 %x, 2
3: %conv = sext i32 %mul to i64
4: %mul1 = mul i64 4, %conv
5: %call = call noalias i8* @malloc(i64 %mul1)
6: %a = bitcast i8* %call to i32*
7: call void @fillArrayi32(i32* %a, i64 %mul1)
8: %div = sdiv i32 %mul, 2
9: call void @sum(i32* %a, i32 %div)

Figure 3.15: Code produced by the input generator to test function sum. Lines 2, 3, 4
and 8 are produced by the slice for the code snippet in Figure 3.13.

or trees. We also discover pointers that are used as arrays by looking for pointer

arithmetics.

Chapter 4

Case Study

In this chapter, we describe Asymptus, a tool for automatic inference of loop complex-

ity, which was developed during this master's research as a preliminary work. Asymptus

has shown to be very precise to analyze polynomial functions. However, in order to be

analyzed, a function has to be execute a certain number of time with di�erent inputs.

It may not happen in real world applications due to several reasons. For example, the

inputs of a function may not change regardless the initial inputs of the program (e.g.

hardcoded arguments). We have used our test case generator in order to overcome

this limitation and to show the e�ciency of our technique to generate valid inputs for

functions.

Complexity analyses show how algorithms scale as a function of their inputs. Its

importance stems from the fact that such a technique helps program developers to un-

cover performance bugs which are hard to �nd. In addition to this, complexity analysis

supports the decision of o�oading or not computation to the cloud or GPU. Finally,

this kind of technique has implications to the theoretical computer science commu-

nity, as it provides data that corroborate the formal asymptotic analysis of algorithms.

Given this importance, it comes as no surprise that, since the 70s [Wegbreit, 1975],

large amounts of e�ort have been spent in the design and improvement of empirical

methodologies to infer code complexity.

Over the time, di�erent static approaches were proposed to analyze programs

in functional [Wegbreit, 1975; Le Métayer, 1988; Debray and Lin, 1993] and impera-

tive [Gulavani and Gulwani, 2008; Gulwani et al., 2009b,a] languages. Although the

static approaches have the bene�t of running fast and may give correct upper bounds,

this methodology has shortcomings. Static analyses may yield imprecise � or even

incorrect � results. This imprecision happens due to the inherently inability of purely

static approaches to capture the dynamic behavior of programs. In order to circumvent

35

36 Chapter 4. Case Study

this limitation of static approaches, the programming language community has resorted

to pro�ling-based methodologies [Goldsmith et al., 2007; Zaparanuks and Hauswirth,

2012; Coppa et al., 2012]. However, even these dynamic techniques are not free of

limitations.

The main drawback of a pro�ling-based complexity analysis is the fact that it

is usually ine�ective to relate the symbols in the program text to the result that it

delivers. For instance, the state-of-the-art tool in this �eld is aprof [Coppa et al.,

2012]. Aprof furnishes programmers with a table that relates input sizes with the num-

ber of operations performed. This modus operandi has two problems, in our opinion.

First, the input is provided as a number of memory cells read during the execution of

a function. This number may not be meaningful to the programmer, as we will clarify

in Section 4.1. Second, it works at the granularity of functions. However, developers

are often more interested in knowing the computational complexity of small regions

within a function. Such regions can be, for instance, performance-intensive loops. Our

technique addresses these two limitations of input sensitive pro�ling.

The main contribution of our work is a novel hybrid technique to perform com-

plexity analysis on imperative programs, which we describe in Section 4.2. Our tech-

nique is hybrid because it combines static analysis with dynamic pro�ling. First, we

use static analysis to determine loop inputs and to �nd algebraic relations between

these loops. Then, we use a dynamic pro�ler, plus polynomial interpolation, to in-

fer the complexity of each loop in a function. Our technique is capable of generating

symbolic expressions that denote the complexity of each loop, instead of the whole

function. Furthermore, we combine and simplify these expressions to make them even

more meaningful to the software engineer. We believe that this granularity can help

developers to have a deeper understanding of a function's behaviour; hence, it provides

them with the means to detect and solve performance bugs more e�ciently. We also

show that our technique is simpler than previous work while producing more useful

results.

We have designed, tested, and implemented a tool on top of the LLVM compila-

tion infrastructure [Lattner and Adve, 2004b] to infer, automatically, the complexity

of loops within programs. We ran our tool over the Polybench [Pouchet, 2012] and

Rodinia [Che et al., 2009] benchmark suites. Our results indicate that we are capable

of correctly inferring the complexity of 99.7% of the Polybench loops and 69.18% of the

Rodinia loops. All the equations that we output, as explained in detail in Section 4.1,

are written as functions of the symbols, i.e., variable names, present in the program

code � that is an improvement on top of aprof and similar tools. Moreover, we have

found that 38% of all functions in the benchmarks that we analyzed have at least two

4.1. Overview 37

independent loops. In this case, tools that only report complexity information for en-

tire functions may miss important details about the asymptotic behaviour of smaller

regions of code.

4.1 Overview

In this section, we give an overview of the challenges Asymptus addresses. Figure 4.1

shows the example we will use to illustrate our technique. Functionmultiply is a routine

that performs matrix multiplication of two square matrices. For pedagogical purposes,

our function does not return the resulting matrix; instead, it prints the result. We

chose to implement the function in such a way to show how our technique behaves on

functions with multiple loops.

As developers, we would like to know the computational cost to execute this

function. For instance, knowing the complexity of each part of the target function, we

can �nd out performance bottlenecks and improve its implementation. Looking at the

multiply function we can easily identify the linear behavior of the loop on line 4 and

the cubic behavior of the nested loops beginning at line 7. However, a quick visual

inspection on the loop at line 18 may not capture its quadratic complexity.

We can use pro�lers to �nd out where the program is spending most of its re-

sources. However, traditional tools lack the ability to show how the program scales as

a function of its inputs. For instance, Figure 4.2 shows the output that Gprof [Gra-

ham et al., 1982] � the most well-known pro�ler in the Unix systems � produces for

our example. This pro�ler does not give us any information regarding the asymptotic

complexity of the program in Figure 4.1. Instead, it produces a table describing where

the program spends more time during its execution.

There exist pro�lers that have been designed speci�cally to provide developers

with an idea about the asymptotic complexity of programs [Goldsmith et al., 2007;

Zaparanuks and Hauswirth, 2012; Coppa et al., 2012]. Nevertheless, aprof [Coppa

et al., 2012], the state-of-the-art approach in this �eld, is also not very useful in this

example. For instance, only looking at Figure 4.3, which shows aprof's results for the

function multiply, the user may not fully understand about the function behaviour: this

table shows numbers, but do not relate these numbers with symbols in the program

text. Moreover, the complexity curve seems to be linear, since aprof considers the

whole matrices as inputs (n2) � usually, developers describe asymptotic complexity in

terms of the matrices dimentions (n). Finally, the result generated by aprof describes

the whole function. We believe that this granularity is too coarse, because it makes it

38 Chapter 4. Case Study

1 : void mult ip ly (int ∗∗matA , int ∗∗matB , int n){
2 : int i , j , k , sum ;
3 : int ∗∗ r e s u l t = (int ∗∗) mal loc (n ∗ s izeof (int ∗)) ;
4 : for (i = 0 ; i < n ; i++)
5 : r e s u l t [i] = (int ∗) mal loc (n ∗ s izeof (int)) ;
6 :
7 : for (i =0; i < n ; i++) {
8 : for (j =0; j < n ; j++) {
9 : sum = 0 ;
10 : for (k=0; k < n ; k++) {
11 : sum += matA [i] [k] ∗ matB [k] [j] ;
12 : }
13 : r e s u l t [i] [j] = sum ;
14 : }
15 : }
16 :
17 : j = 0 ;
18 : for (i = 0 ; i < n ;) {
19 : i f (j >= n) {
20 : j = 0 ;
21 : i++;
22 : p r i n t f ("\n") ;
23 : } else {
24 : p r i n t f ("%8d" , r e s u l t [i] [j ++]);
25 : }
26 : }
27 : p r i n t f ("\n") ;
28 : }

Figure 4.1: Matrix multiplication � the running example that we shall use to explain
our contributions.

index % time self children name
[1] 100.0 0.00 0.03 main [1]
 0.03 0.00 multiply(int**, int**, int) [2]
 0.00 0.00 initArray(int**, int, int) [9]
 0.00 0.00 free_all(int**, int**, int) [10]
­­­
 0.03 0.00 main [1]
[2] 100.0 0.03 0.00 multiply(int**, int**, int) [2]
­­­

Figure 4.2: Gprof output for a simple program containing our example function.

very di�cult for the user to verify the behavior of particular parts of the function.

We can do better: the technique that we describe in this chapter produces one

4.2. Automatic Inference of Loop Complexity through Polynomial

Interpolation 39

Input size Average Cost
138 1111

174 3324

286 12007

367 18576

463 26694

575 36394

701 47749

846 60781

1007 75587

Figure 4.3: The output produced by the aprof input sensitive pro�ler.

polynomial for each loop in the function. These polynomials range on symbols de�ned

in the program text, e.g., the names of variables. Therefore, we claim that our output

is clearer to the developer. For instance, considering the loop in line 7, we will state �

automatically � that its complexity polynomial is: n+ 1. Furthermore, considering the

loop nest starting in line 18, we produce the following equation to denote its complexity

polynomial: n2 + n+ 1.

Our result is on a �ner granularity, so we can combine them to generate an

equation that expresses the asymptotic behavior of the whole target function. For the

function in the Listing 4.1, our approach generates the following simpli�ed equation,

in big O, to denote the function's complexity:

O(n3)

We claim that this notation, which uses the names of variables present in the program, is

more meaningful to the application developer than the output produced by traditional

pro�lers, such as gprof or aprof.

4.2 Automatic Inference of Loop Complexity

through Polynomial Interpolation

We can describe our technique in four main steps: (1) static analysis, (2) code instru-

mentation, (3) dynamic information extraction and (4) polynomial interpolation. In

this section we describe each one of these steps. However, before delving into the details

of our technique, we shall introduce some notation, which will guide our explanations

henceforth.

40 Chapter 4. Case Study

Loop Jargon. Let S be a subset of nodes of a control �ow graph G. S contains

a special node H, which we shall call header, or entry point. Following Appel and

Palsberg [Appel and Palsberg, 2002, pp.376], we say that S is a natural loop if, and

only if, it presents the following three properties:

1. there exists a path from any node in S to H;

2. there exists a path from H to any node in S;

3. there is no path from a node of G to a node of S that does not go across H.

The last property de�nes S as a single-entry region, following Ferrante's nomencla-

ture [Ferrante et al., 1987]. An edge between any node in S to H is called a back-edge.

We adopt Wolfe's de�nition of trip count [Wolfe, 1996, pp.200]: the number of times

any back-edge of a natural loop has been traversed by the program �ow within a single

execution of the loop. Hence, a loop that exits the �rst time it is executed has a trip

count of zero. The number of times H is visited is one more than the trip count of

the loop. We estimate the complexity of a loop as the product of its trip count by the

number of operations in its longest path.

We call a node L ∈ S a latch, or exit point, if there exists an edge from L to a

node N , N ∈ G, N /∈ S. We say that L is a natural latch if one of these two conditions

applies:

• L = H. In this case we have a while loop;

• L 6= H, and any edge from L either leaves S or leads to H. In this case we have

a repeat loop.

If S contains only one latch, then we call it single exit. In this work we consider multiple

exit loops featuring only one natural latch. Code generated from typical programming

language constructs, i.e., for, while and repeat has this property, as long as the

command goto is not used.

Any latch contains a stop condition: a boolean expression whose evaluation either

keeps the program �ow in S or leads away from it. If the natural latch contains a stop

condition that uses only one operator, which can be either <, ≤, > or ≥, then we

call S an interval loop. We let the operands of the stop condition be the limits of the

interval. For instance, in the interval loop for(i = 0; i < N; i++), we have the

stop condition i < N, whose limits are i and N. Our technique handles any loop with

only one input, and interval loops with up to two inputs i1 and i2. In this case, we

consider as the input size the di�erence |i1 − i2|.

4.2. Automatic Inference of Loop Complexity through Polynomial

Interpolation 41

4.2.1 Input Analysis

We start the process of inferring the complexity of code with a static analysis phase.

The static analysis determines the inputs of each loop in the function. We qualify as

loop input any data that:

• in�uences the stop condition of the loop; and,

• is not de�ned within the loop.

For instance, the loop at line 7 in Figure 4.1 is controlled by i < n. Variable i has two

de�nitions: one outside the loop, which we shall call i0, and another inside, which we

shall call i1. The former is initialized with the constant zero, which is thus considered a

loop input. Variable n is a parameter of the function; hence, it is considered a symbolic

input. Therefore, the two inputs of the loop that exists at line 7 are {0, n}. Concretely,
we detect inputs through a backward analysis, that starts at the variables used in the

loop's stop condition, and ends at the de�nitions of variables that lay outside the loop

body. To determine the complexity of a loop, we will plot the number of operations

executed by the loop for each value bound to one of its inputs that we have observed

during a pro�ling step. We shall describe this pro�ling in Section 4.2.3

4.2.2 Loop Dependence Analysis

Our pro�ler outputs the complexity of all the loops within a program. We must combine

this information to have a snapshot of the program's complexity. However, combining

the complexity of all the loops that constitute a program is not a straightforward

problem. One of the main di�culties that we face in this case is how to deal with loops

that may, or may not, execute, depending on the path that the program follows. In

order to provide meaningful answers to the user, we propose an algebra to simplify the

equations that we produce. Our algebra has three operators: plus (+), times (×) and
expander (⊕). The plus and times operators have the usual semantics of asymptotic

analysis. The expander was proposed by us as an alternative to describe the complexity

of code that may or may not execute, depending on the program's �ow. Its semantics

is de�ned in the equations 4.1 and 4.2:

O(xa ⊕ yb) = O(xa) +O(xb), {a, b} ∈ N (4.1)

Ω(xa ⊕ yb) = Ω(xa), {a, b} ∈ N (4.2)

42 Chapter 4. Case Study

1 : void printDups (std : : vector<std : : s t r i ng> l i n e s , s td : : s t r i n g key) {
2 : std : : vector<std : : s t r i ng> r e s u l t ;
3 : for (int i =0; i < l i n e s . s i z e () ; i++) {
4 : i f (l i n e s [i] . f i nd (key) != std : : s t r i n g : : npos) {
5 : r e s u l t . push_back (l i n e s [i]) ;
6 : }
7 : }
8 :
9 : i f (r e s u l t . empty ()) return ;

10 :
11 : // f i nd dups in a naive way
12 : for (int i =0; i < r e s u l t . s i z e ()−1; i++) {
13 : for (int j=i +1; j < r e s u l t . s i z e () ; j++) {
14 : i f (i != j && r e s u l t [i] == r e s u l t [j])
15 : s td : : cout << r e s u l t [i] << std : : endl ;
16 : }
17 : }
18 : }

Figure 4.4: A function to print duplicate lines containing a given key. The second loop
has a conditional execution.

As a reminder, the big-Omega notation indicates a lower asymptotic bound: Ω(f)

denotes a function whose growth is less than or equal to the growth of f . Expansion

denotes the complexity of code that executes conditionally. Figure 4.4 provides an

example of a situation where the expander operation is useful. The function printDups

prints the duplicate lines containing a given substring in a naive way. Because of

the conditional branch in line 9, the loop starting on line 12 may or may not execute.

Because of this, the complexity of this function is Ω(n) - best case, when no line contains

the key - and O(n2), where n is the size of the vector. If C(L) denotes the asymptotic

complexity of a given code region, then we let C(printDups) = C(L3−7)⊕C(L12−17) =

O(n⊕ n2), where L3−7 is the loop at lines 3 to 7 in Figure 4.4, and L12−17 is the loop

at lines 12 to 17.

As usual, addition and multiplication in the big-O notation are associative and

commutative. Multiplication is also distributive with regard to addition. On the other

hand, expansion is only associative, due to Equation 4.2. These properties let us use

typical simpli�cation rules to provide users of our tool with more palatable results.

Notice, once again, that expansion is non-commutative, and simpli�cation only applies

if the �rst operand has higher complexity than the second:

4.2. Automatic Inference of Loop Complexity through Polynomial

Interpolation 43

C(L) = O(xa) +O(xb), a ≥ b

C(L) = O(xa)

C(L) = O(xa) +O(xb), a < b

C(L) = O(xb)

C(L) = O(xa)×O(xb)

C(L) = O(xa+b)

C(L) = O(xa)⊕O(xb), a ≥ b

C(L) = O(xa)

The simpli�cation process is guaranteed to terminate, as it always reduces the

size of the resulting expression. Looking back to Figure 4.1 it is easy to see that the

complexity is C(multiply) = C(L4−5) +C(L7−15)×C(L8−14)×C(L10−12) +C(L18−26),

which gives us: O(n + n ∗ n ∗ n + n2). Using the above equations we can recursively

simplify this expression. Firstly, we can simplify n ∗ n with n2. We have now O(n +

n2 ∗ n + n2) and we can use the same rule to simplify the remaining multiplication,

resulting in n3. It is easy to see that we can use the two rules of plus to simplify the

two additions. Then, the resulting complexity is O(n3), as expected. Notice that n is

a symbol produced by the input analysis of Section 4.2.1.

4.2.3 Code Instrumentation

We infer the complexity of code by analyzing pro�ling data. We produce this data

through code instrumentation. To be able to extract dynamic information, we instru-

ment the target program to output: (i) the values of the loop inputs immediately before

the loop execution and (ii) the number of operations performed by each loop. Loop

inputs are determined by the analysis seen in Section 4.2.1. The execution cost is mea-

sured in terms of instructions executed. We have implemented this instrumentation

framework within the LLVM compiler infrastructure.

Care must be taken with regard to loops with multiple paths. Di�erent paths may

yield di�erent costs, a fact that could hinder our interpolator from �nding a perfect

polynomial �t. Figure 4.5 illustrates this shortcoming. The program seen in part (a)

of the �gure contains two loops, at lines 2 and 4. The loop at line 4 contains two

execution paths. Let's assume that during execution, our pro�ler has observed that for

M = 1, that loop executed 44 instructions, and for M = 2, it always took the cheapest

path; hence, executing 3 + 3 operations. These points, (1, 42), (2, 6) would confuse our

interpolator, which expects more operations for larger inputs. To avoid this problem,

we consider that the cost of a loop is determined by its path of highest cost, which

we estimate statically. To obtain a conservative estimate of this path, we resort to a

modi�ed version of Dijkstra's algorithm, to solve the single-source largest path problem

for an acyclic graph with non-negative weights assigned to edges [Dijkstra, 1959]. To

build an acyclic graph, we consider all the paths from the loop header H to its natural

44 Chapter 4. Case Study

void search(char** book, int N, int M) {
 for (i = 0; i < N; i++) {
 char* line = book[i];
 for (j = 0; j < M; j++) {
 if (line[j] == '\0') {
 break;
 } else {
 match(line, pattern);
 }
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

2

4

6 8

9

10

8

3

42

2 2

1

2

2

2

4

cost(L2) = 8 + cost(L4) + 2 + 2

cost(L4) = 2 + 42 + 3

(a) (b) (c)

Figure 4.5: (a) Program with a multi-path loop. (b) The cost-graph of the program.
Nodes represent program points and the edges' weights represent the number of exe-
cuted instructions between two points. (c) The cost of each loop iteration.

latch L.

Once we have determined � statically � the cost of a loop iteration, we instrument

it. To this end, we create a counter variable at the loop's header, and increment it

by the estimated cost. Notice that incrementing this counter at the loop header will

account for one more iteration than the real execution. Nevertheless, it will not a�ect

our cost analysis. We chose to do it like this because the loop header is unique,

and is always executed, independent on the way the program �ows within the loop

body. Figure 4.5 (c) shows the cost expressions that we create for each loop. In the

�gure, edges represent paths within the loop, and the nodes are the headers of those

loops. Each one of these values is added once per iteration of the loop. Once we have

instrumented the program, we execute it. As mentioned before, each execution of an

instrumented program outputs the values of each loop input, together with the number

of operations executed within that loop.

4.2.4 Polynomial Interpolation

We log the output of our pro�ler and parse it to extract pairs: input value × execution

cost. With these points, we execute a polynomial interpolation method to �nd the

curve that best �ts into this set. Our interpolation works as follows: we test di�erent

polynomials, starting from a line (degree 1) upwards until n−1, where n is the number

of points available. At step i we need i+1 points to determine a polynomial. Any group

of i+ 1 di�erent points �ts this purpose. We call this group of points the guiding set.

4.2. Automatic Inference of Loop Complexity through Polynomial

Interpolation 45

0"

250000"

0" 20" 40" 60" 80" 100"

0"

250000"

0" 20" 40" 60" 80" 100"

f(n) = −3E-6n3 + 1.0n2 + 1.0n + 1.3
f(n) = 1.0n2 + 1.0n + 1.0
f(n) = 152.9x − 4,246.0

f(n) = −1E-7n4 + 0.2n3 + 0.8n2 + 3.1n + 9.8
f(n) = 0.2n3 + 0.8n2 + 3.0n + 10.8
f(n) = 37.5n2 + 1857.0n + 26086.0
f(n) = 2,688.0n − 80,6

(a) (b)

Figure 4.6: (a) Polynomials found for the loop at lines 18-25 of Figure 4.1. (b) Poly-
nomials found for the loop nest at lines 7-15. In each �gure, the �rst curve that �ts
the points in the veri�cation set is marked in gray.

We use the points that are left to check if we have found the correct polynomial. These

remaining points are called the veri�cation set. We stop interpolation if, upon �nding

a polynomial p, of degree k, k < n−1, we notice that the n−k points in the veri�cation
set �t perfectly into p. Our interpolation only works for single-variable polynomials,

but we can infer the complexity of nests of loops by multiplying symbolically their

individual complexities.

Figure 4.6 illustrates this process for the program seen in Figure 4.1. The �gure

has two blocks of loops; thus, we produce two polynomials. Let us take a deeper

look into the polynomial that we produce for the loop that exists at lines 18-25 of

Figure 4.1. This curve is shown in Figure 4.6 (a). In this example, we assume that

we have obtained, after pro�ling the program with eight di�erent inputs, the following

pairs of size × cost: (13, 183), (50, 2,551), (72, 5,257), (80, 6,481), (98, 9,704), (115,

13,341), (139, 19,461). To derive a polynomial that describes the complexity of this

loop, we try to interpolate a line across those points using, as our guiding set, only

the �rst two pairs, e.g., (13, 183) and (50, 2,551). This line does not contain the other

six points, which form the veri�cation set. Thus, we move on to try a polynomial of

degree two, this time, adding also the pair (72, 5,257) to our guiding set. The new

polynomial, n2 + n + 0.8 contains the points in our veri�cation set. Hence, we let it

denote the computational cost of the loop. The complexity of the loop is then O(n2),

where n is the only symbolic input of the loop under analysis, as we have explained in

Section 4.2.1. We perform similar process to discover the polynomial that characterizes

the loop nest at lines 7-15 of Figure 4.1. However, this time our search stabilizes in a

third-degree polynomial. Figure 4.6 (b) shows this curve.

46 Chapter 4. Case Study

0	

20	

40	

60	

80	

100	

120	

Ba
ck
pr
op
	

BF
S	

Ho
sts
po
t	

Km
ea
ns
	

lav
aM
D	

pa
r<
cle
_fi
lte
r	

Pa
th
fin
de
r	

Str
ea
mC
lus
te
r	

Figure 4.7: Percentage of loops per benchmark of Rodinia that we could analyze. The
correctness of all these results have been checked manually.

4.3 Evaluation

To examine the real applicability of our technique, we have implemented it as a pro-

totype tool. We have used the LLVM compilation infrastructure to perform the static

analysis and code instrumentation phases mentioned in Sections 4.2.1, 4.2.2 and 4.2.3.

The goal of the experiment is to �nd out how e�ective is the technique when applied

to the loops found in real-world programs. We have executed Asymptus on the Poly-

bench Pouchet [2012] and Rodinia Che et al. [2009] benchmark suites. We have checked,

manually, the answers produced by our tool for every loop in these benchmarks. This

exercise shows that we are able to correctly analyze 99.7% of the loops in Polybench.

The remaining 0.3% is due to a single loop which is constant for the �rst two points,

and varies for larger inputs. This behavior makes it impossible for us to get a perfect

polynomial match. For Rodinia � a much bigger and general benchmark suite � our

tool correctly analysed 63.58% of the loops. However, the execution �ow never reached

some functions during our pro�ling phase so we could not generate data for them. If

we ignore those functions, our success rate increases to 69.18%.

Figure 4.7 shows the percentage of loops that we could analyze per Rodinia

benchmark. We do not show a chart for Polybench, because we believe that this chart

is not interesting. It would have almost only bars at 100% of precision. Our results

are worse for Rodinia because of four reasons: (1) some loops are not polynomial,

but we use a polynomial interpolation; (2) some loops iterate over structures that our

technique does not handle, such as strings or �les; (3) some loops have 3 or 4 inputs

that bound their execution; and (4) some functions are not executed enough times

with di�erent inputs to enable the interpolation. The goal of this experiment is to help

4.3. Evaluation 47

Asymptus to overcome the 4th limitation.

4.3.1 An LLVM Pass

We have decided to implement the techniques presented in Chapter 3 on top of the

LLVM compiler infrastructure Lattner and Adve [2004a]. LLVM is composed by a

set of modular and reusable libraries and comes with several tools to compile, ana-

lyze and optimize code. It provides an SSA-based compilation strategy, which makes

it easier to analyze and modify programs in the LLVM's intermediate representation.

Also, writing a pass to LLVM is very simple. It provides a well-designed API with full

support to navigate over the instructions, collect static information and modify the

program. A pass is a small program which runs in an optimization/analysis pipeline.

Figure 4.8 shows a function written in C and its corresponding intermediate repre-

sentation generated by Clang 3.7 (the LLVM's front end for C). It also shows a code

snippet exemplifying how to iterate over the instructions of a function.

1: unsigned fib(unsigned n) {
2: if (n <= 1)
3: return n;
4: return fib(n-1) + fib(n-2);
5: }

a: A function written in C.

1: for (auto &BB : F) {
2: for (auto &I : BB) {
3: if (isa<CallInst>(&I))
4: I.dump();
5: }
6: }

b: Code snippet of an LLVM pass
which prints all the call instruc-
tions in a function.

define i32 @fib(i32 %n) #0 {
entry:
%cmp = icmp ule i32 %n, 1
br i1 %cmp, label %if.then, label %if.end

if.then:
br label %return

if.end:
%sub = sub i32 %n, 1
%call = call i32 @fib(i32 %sub)
%sub1 = sub i32 %n, 2
%call2 = call i32 @fib(i32 %sub1)
%add = add i32 %call, %call2
br label %return

return:
%retval.0 = phi i32 [%n, %if.then],

[%add, %if.end]
ret i32 %retval.0

}

c: The function fib in LLVM's IR.
Figure 4.8: An example of LLVM's IR and a code snippet of an LLVM pass.

We have implemented a set of LLVM passes for our analyses and the input gen-

erator. The �rst step was to design the data structure graph, and its construction

algorithm, in a way to have all the information needed and to be easy to manipulate.

Then, we designed the algorithm to generate inputs and the data-�ow equations for the

forward array size analysis. With the design completed, we started implementing the

LLVM passes. The main pass is the input generator. It depends on other analyses and

implements our algorithm. It is also responsible to get the program slices presented in

48 Chapter 4. Case Study

Section 3.2.3, since it is part of the input generation. Some simple analyses (such as the

graph creation and the forward size analysis) were not implemented as passes. Instead,

we just created C++ classes and invoked methods inside the main pass. Figure 4.9

shows a high-level architecture of our implementation.

Figure 4.9: The architecture of our implementation.

Input Generator is the main module, responsible for the generation of test cases.

In order to get the interface of functions, it uses Create Graph. This module is respon-

sible for the creation of a data structure graph and also uses Array Size Analysis which

implements our forward analysis. The backward analysis is implemented by Ptr Range

Analysis. The oder modules represent the structure of our data structure graph. The

graph is composed by Nodes, which may be either a StructNode or a PrimitiveNode.

StructNodes may have several Fields, while the PrimitiveNodes may have only one.

4.4. Conclusion 49

4.3.2 Experiment

In order to understand the applicability of our input generator on real-world systems,

we made use of Asymptus. As mentioned before, one of Asymptus' limitations is that

it has to execute a function a certain number of times with di�erent inputs in order to

be able to analyze it. For instance, we have executed Asymptus over the benchmarks

of Rodinia and found that there is a function which is always executed with the same

hardcoded input, regardless the inputs provided to the program. Since the technique

describe in this dissertation is able to generate random inputs for speci�c functions,

we decided to see whether it could be used to help Asymptus' on analyzing particular

functions.

For this experiments, we have implemented 10 functions receiving arrays, matrices

and recursive data-structures as parameters. We have also modi�ed some functions of

Polybench, since they originally use constant values de�ned at compile time. The

functions' source code can be found in Appendix A. We have used our LLVM pass

to generate test cases for each function and executed Asymptus over the produced

programs. We have successfully executed all of the functions with several di�erent

inputs. Asymptus could correctly analyze all functions. It shows us that our technique

is useful in the execution of functions of interest.

4.4 Conclusion

We have shown that our input generation technique is useful for the execution of

interesting functions without having the context on which the function is called. Thus,

our technique has di�erent uses, from the creation of a testing infrastructure to the

improvement of Asymptus. This chapter also has presented a new technique, based on

a combination of pro�ling and static analysis, to infer the complexity of code. Static

analysis gives us the names of variables that bound the trip count of loops. Pro�ling

lets us associate these variables with the number of operations in the loops that they

control. We believe that our approach, whenever applicable, yields results that are

more meaningful to the application developer than the state-of-the-art tools that are

currently available. A tool that implements the technique is publicly available1 for use.

1http://demontiejr.github.io/asymptus

Chapter 5

Conclusion

In this dissertation we have presented a technique to automatically create test drivers

for functions, providing random values as inputs. The key contribution of our work

is the use of two static analyses which are able to bind arrays and their sizes. Our

assumption was that such techniques can contribute to decrease the false positive rate

of automatic input generators. We have implemented our techniques on top of the

LLVM compiler infrastructure with two main goals: (i) implement a testing infra-

structure to test embedded systems of Maxtrack, a Brazilian company which produces

truck trackers, and (ii) evaluate the e�ectiveness of our techniques.

During our experiments with the SPEC CPU 2006 benchmark suite, we have

found that the array size analyses, together, could correctly �nd sizes for 22.7% of the

arrays received as parameter by functions. However, for the forward analysis only, this

number is much smaller: 0.8%. It shows us that, although this analysis is very precise

for our goal, it has small applicability in real-world programs. We have manually

inspected the code in order to �nd out why the numbers were smaller than what we

expected before. The main reasons for this ine�ectiveness are due to (i) arrays allocated

with constant sizes (which are not variables in the program), and (ii) arrays stored into

a more complex structure. The second case happens, for example, when the program

allocates a large global bu�er and passes parts of it to functions.

After analyzing the results, we concluded that handling sizes of arrays when

generating inputs can be an e�ective way to reduce the false positive rate of exist-

ing approaches. However, the analyses that we have nowadays are not very e�ective

to do this job. It opens space for future work, such as properly dealing with alias,

handling statically allocated arrays and extending the work to deal with C++ code.

We also concluded that the techniques presented in this work are useful for di�erent

applications. One of them, as mentioned, is the construction of a test infra-structure

51

52 Chapter 5. Conclusion

for embedded systems. To this end, we also have to generate code for functions not

present in the source code of the program in order to be able to properly compile and

link it.

5.1 Contributions

The main contributions of this master's dissertation are:

1. The design of a forward data �ow analysis to �nd sizes of arrays.

2. The design of an algorithm to generate inputs for functions, including the gener-

ation of complex data structures, that makes use of array size analyses in order

to generate safe test cases, in the sense of memory access.

3. The identi�cation of pointers used as arrays by looking for pointer arithmetics.

4. The development of a tool, Asymptus, for program complexity inference which,

making use of the input generator, is very e�ective and precise on analyzing the

complexity of polynomial functions.

5. The development of a testing infrastructure which makes use of our input gener-

ation technique to test mobile applications of Maxtrack.

5.2 Future Work

1. Extend the input generator to calculate the complete upper bound of array ac-

cesses in order to always allocate the correct amount of memory needed.

2. Extend the forward array size analysis in order to properly deal with alias infor-

mation and with statically allocated arrays.

3. Extend the forward array size analysis to track arrays over calls (inter-procedural

analysis).

4. Create an analysis to infer sizes of recursive data structures (such as linked lists).

Bibliography

Agrawal, H. and Horgan, J. R. (1990). Dynamic program slicing. ACM SIGPLAN

Notices, 25(6):246--256.

Ahmad, M. A. and Oriol, M. (2014). Dirt spot sweeping random strategy. Lecture

Notes on Software Engineering, 2(4):294.

Allen, F. E. (1970). Control �ow analysis. In Proceedings of a Symposium on Compiler

Optimization, pages 1--19, New York, NY, USA. ACM.

Alves, P., Gruber, F., Doerfert, J., Lamprineas, A., Grosser, T., Rastello, F., and

Pereira, F. M. Q. a. (2015a). Runtime pointer disambiguation. In Proceedings of the

2015 ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2015, pages 589--606, New York,

NY, USA. ACM.

Alves, P. R. O., Rodrigues, R. E., de Souza, R. M., and Pereira, F. M. Q. (2015b). A

case for a fast trip count predictor. Inf. Process. Lett., 115(2):146--150.

Appel, A. W. and Palsberg, J. (2002). Modern Compiler Implementation in Java.

Cambridge University Press, 2nd edition.

Boyer, R. S., Elspas, B., and Levitt, K. N. (1975). Select—a formal system

for testing and debugging programs by symbolic execution. In Proceedings of the

International Conference on Reliable Software, pages 234--245, New York, NY, USA.

ACM.

Cadar, C., Dunbar, D., and Engler, D. (2008). Klee: Unassisted and automatic gener-

ation of high-coverage tests for complex systems programs. In Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, OSDI'08,

pages 209--224, Berkeley, CA, USA. USENIX Association.

53

54 Bibliography

Cadar, C. and Sen, K. (2013). Symbolic execution for software testing: Three decades

later. Commun. ACM, 56(2):82--90. ISSN 0001-0782.

Che, S., Boyer, M., Meng, J., Tarjan, D., Shea�er, J. W., Lee, S.-H., and Skadron, K.

(2009). Rodinia: A benchmark suite for heterogeneous computing. In IISWC, pages

44�54. IEEE.

Chen, T., Leung, H., and Mak, I. (2005). Adaptive random testing. In Maher, M.,

editor, Advances in Computer Science - ASIAN 2004. Higher-Level Decision Making,

volume 3321 of Lecture Notes in Computer Science, pages 320�329. Springer Berlin

Heidelberg.

Chen, T. Y., Kuo, F.-C., Liu, H., and Wong, W. (2013). Code coverage of adaptive

random testing. Reliability, IEEE Transactions on, 62(1):226�237. ISSN 0018-9529.

Ciupa, I., Leitner, A., Oriol, M., and Meyer, B. (2007). Experimental assessment of

random testing for object-oriented software. In Proceedings of the 2007 International

Symposium on Software Testing and Analysis, ISSTA '07, pages 84--94, New York,

NY, USA. ACM.

Ciupa, I., Meyer, B., Oriol, M., and Pretschner, A. (2008). Finding faults: Manual

testing vs. random+ testing vs. user reports. In Software Reliability Engineering,

2008. ISSRE 2008. 19th International Symposium on, pages 157�166. ISSN 1071-

9458.

Coppa, E., Demetrescu, C., and Finocchi, I. (2012). Input-sensitive pro�ling. In PLDI.

ACM.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1989).

An e�cient method of computing static single assignment form. In Proceedings

of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL '89, pages 25--35, New York, NY, USA. ACM.

Danicic, S., Harman, M., and Sivagurunathan, Y. (1995). A parallel algorithm for

static program slicing. Inf. Process. Lett., 56(6):307--313. ISSN 0020-0190.

Danielsson, N. A. (2008). Lightweight semiformal time complexity analysis for purely

functional data structures. In POPL, pages 133--144. ACM.

De Lucia, A., Fasolino, A., and Munro, M. (1996). Understanding function behaviors

through program slicing. In Program Comprehension, 1996, Proceedings., Fourth

Workshop on, pages 9�18. ISSN 1092-8138.

Bibliography 55

Debray, S. K. and Lin, N.-W. (1993). Cost analysis of logic programs. ACM Trans.

Program. Lang. Syst., 15(5):826--875. ISSN 0164-0925.

Demontiê, F., Cezar, J., Bigonha, M., Campos, F., and Magno Quintão Pereira, F.

(2015). Automatic inference of loop complexity through polynomial interpolation.

In Pardo, A. and Swierstra, S. D., editors, Programming Languages, volume 9325 of

Lecture Notes in Computer Science, pages 1�15. Springer International Publishing.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269�271.

Duran, J. W. and Ntafos, S. C. (1984). An evaluation of random testing. IEEE Trans.

Softw. Eng., 10(4):438--444. ISSN 0098-5589.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The program dependence

graph and its use in optimization. TOPLAS, 9(3):319--349.

Forrester, J. E. and Miller, B. P. (2000). An empirical study of the robustness of

windows nt applications using random testing. In Proceedings of the 4th Conference

on USENIX Windows Systems Symposium - Volume 4, WSS'00, pages 6--6, Berkeley,

CA, USA. USENIX Association.

Godefroid, P. (2007). Compositional dynamic test generation. In Proceedings of the

34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL '07, pages 47--54, New York, NY, USA. ACM.

Godefroid, P. (2014). Micro execution. In Proceedings of the 36th International Con-

ference on Software Engineering, ICSE 2014, pages 539--549, New York, NY, USA.

ACM.

Godefroid, P., Klarlund, N., and Sen, K. (2005a). Dart: Directed automated random

testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI '05, pages 213--223, New York, NY,

USA. ACM.

Godefroid, P., Klarlund, N., and Sen, K. (2005b). Dart: directed automated random

testing. In PLDI, pages 213--223. ACM.

Godefroid, P., Levin, M. Y., Molnar, D. A., et al. (2008). Automated whitebox fuzz

testing. In NDSS, volume 8, pages 151--166.

56 Bibliography

Goldsmith, S. F., Aiken, A. S., and Wilkerson, D. S. (2007). Measuring empirical

computational complexity. In FSE, pages 395--404. ACM.

Graham, S. L., Kessler, P. B., and McKusick, M. K. (1982). gprof: a call graph

execution pro�ler (with retrospective). In Best of PLDI, pages 49�57.

Groce, A., Holzmann, G., and Joshi, R. (2007). Randomized di�erential testing as a

prelude to formal veri�cation. In Proceedings of the 29th International Conference

on Software Engineering, ICSE '07, pages 621--631, Washington, DC, USA. IEEE

Computer Society.

Gulavani, B. and Gulwani, S. (2008). A numerical abstract domain based on expression

abstraction and max operator with application in timing analysis. In CAV, volume

5123 of LNCS, pages 370�384. Springer.

Gulwani, S., Jain, S., and Koskinen, E. (2009a). Control-�ow re�nement and progress

invariants for bound analysis. In PLDI, pages 375--385. ACM.

Gulwani, S., Mehra, K. K., and Chilimbi, T. (2009b). SPEED: Precise and e�cient

static estimation of program computational complexity. In POPL, pages 127--139.

ACM.

Horwitz, S., Reps, T., and Binkley, D. (1988). Interprocedural slicing using dependence

graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming

Language Design and Implementation, PLDI '88, pages 35--46, New York, NY, USA.

ACM.

Ja�ar, J., Murali, V., Navas, J. A., and Santosa, A. E. (2012). Path-sensitive back-

ward slicing. In Proceedings of the 19th International Conference on Static Analysis,

SAS'12, pages 231--247, Berlin, Heidelberg. Springer-Verlag.

Kamkar, M., Fritzson, P., and Shahmehri, N. (1993). Three approaches to interproce-

dural dynamic slicing. In Nineteenth EUROMICRO Symposium on Microprocessing

and Microprogramming on Open System Design : Hardware, Software and Appli-

cations: Hardware, Software and Applications, EUROMICRO 93, pages 625--636,

Amsterdam, The Netherlands, The Netherlands. Elsevier Science Publishers B. V.

Kildall, G. A. (1973). A uni�ed approach to global program optimization. In Pro-

ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, POPL '73, pages 194--206, New York, NY, USA. ACM.

Bibliography 57

King, J. C. (1976). Symbolic execution and program testing. Commun. ACM,

19(7):385--394. ISSN 0001-0782.

Korel, B. and Laski, J. (1988). Dynamic program slicing. Information Processing

Letters, 29(3):155--163.

Korel, B. and Laski, J. (1990). Dynamic slicing of computer programs. Journal of

Systems and Software, 13(3):187--195.

Lattner, C. and Adve, V. (2003). Data structure analysis: An e�cient context-sensitive

heap analysis. Technical report, Tech. Report UIUCDCSR-2003-2340, Computer

Science Dept., Univ. of Illinois at Urbana-Champaign.

Lattner, C. and Adve, V. (2004a). Llvm: a compilation framework for lifelong program

analysis transformation. In Code Generation and Optimization, 2004. CGO 2004.

International Symposium on, pages 75�86.

Lattner, C. and Adve, V. S. (2004b). LLVM: A compilation framework for lifelong

program analysis & transformation. In CGO, pages 75�88. IEEE.

Le Métayer, D. (1988). Ace: An automatic complexity evaluator. ACM Trans. Program.

Lang. Syst., 10(2):248--266. ISSN 0164-0925.

Miller, B. P., Fredriksen, L., and So, B. (1990). An empirical study of the reliability

of unix utilities. Commun. ACM, 33(12):32--44. ISSN 0001-0782.

Monniaux, D. and Gonnord, L. (2011). Using bounded model checking to focus �xpoint

iterations. In SAS, pages 369�385. Springer.

Nazaré, H., Ma�ra, I., Santos, W., Barbosa, L., Gonnord, L., and Quintão Pereira,

F. M. (2014). Validation of memory accesses through symbolic analyses. In Proceed-

ings of the 2014 ACM International Conference on Object Oriented Programming

Systems Languages & Applications, OOPSLA '14, pages 791--809, New York, NY,

USA. ACM.

Nethercote, N. and Seward, J. (2007a). Valgrind: A framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI '07, pages

89--100, New York, NY, USA. ACM.

Nethercote, N. and Seward, J. (2007b). Valgrind: a framework for heavyweight dynamic

binary instrumentation. In PLDI, pages 89--100. ACM.

58 Bibliography

Oriol, M. and Tassis, S. (2010). Testing .net code with yeti. In Engineering of Complex

Computer Systems (ICECCS), 2010 15th IEEE International Conference on, pages

264�265.

Ottenstein, K. J. and Ottenstein, L. M. (1984). The program dependence graph in

a software development environment. In Proceedings of the First ACM SIGSOFT-

/SIGPLAN Software Engineering Symposium on Practical Software Development

Environments, SDE 1, pages 177--184, New York, NY, USA. ACM.

Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T. (2007). Feedback-directed random

test generation. In Proceedings of the 29th International Conference on Software En-

gineering, ICSE '07, pages 75--84, Washington, DC, USA. IEEE Computer Society.

Plotkin, G. D. (1981). A structural approach to operational semantics.

Pouchet, L.-N. (2012). Polybench: The polyhedral benchmark suite. URL: http://

www.cs.ucla.edu/~pouchet/software/polybench/. Last access: April,

2015.

Reps, T. (1998). Program analysis via graph reachability. Information and software

technology, 40(11):701--726.

Saxena, P., Poosankam, P., McCamant, S., and Song, D. (2009). Loop-extended sym-

bolic execution on binary programs. In Proceedings of the Eighteenth International

Symposium on Software Testing and Analysis, ISSTA '09, pages 225--236, New York,

NY, USA. ACM.

Wegbreit, B. (1975). Mechanical program analysis. Commun. ACM, 18(9):528--539.

ISSN 0001-0782.

Weiser, M. (1981). Program slicing. In Proceedings of the 5th International Conference

on Software Engineering, ICSE '81, pages 439--449, Piscataway, NJ, USA. IEEE

Press.

Wolfe, M. (1996). High Performance Compilers for Parallel Computing. Adison-Wesley,

1st edition.

Zaparanuks, D. and Hauswirth, M. (2012). Algorithmic pro�ling. In PLDI, pages

67--76. ACM.

http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/

Appendix A

Functions for the Input Generation

Experiment

#include <s td i o . h>

#include <s t d l i b . h>

#include <math . h>

void bubble_sort (int ∗ l i s t , int n) {

for (int c = 0 ; c < (n − 1) ; c++) {

for (int d = 0 ; d < n − c − 1 ; d++) {

i f (l i s t [d] > l i s t [d+1]) {

int t = l i s t [d] ;

l i s t [d] = l i s t [d+1] ;

l i s t [d+1] = t ;

}

}

}

}

void s e l e c t i o n_so r t (int ∗ l i s t , int n) {

for (int i = 0 ; i < (n−1); i++) {

int min = i ;

for (int j = (i +1); j < n ; j++) {

i f (l i s t [j] < l i s t [min])

min = j ;

}

i f (i != min) {

59

60 Appendix A. Functions for the Input Generation Experiment

int aux = l i s t [i] ;

l i s t [i] = l i s t [min] ;

l i s t [min] = aux ;

}

}

}

void i n s e r t i on_so r t (int ∗ l i s t , int n) {

for (int i = 0 ; i < n ; i++) {

int cur r ent = l i s t [i] ;

int j = i − 1 ;

while ((j >= 0) && (cur rent < l i s t [j])) {

l i s t [j + 1] = l i s t [j] ;

j = j − 1 ;

}

l i s t [j + 1] = cur rent ;

}

}

typedef struct Node {

struct Node ∗next ;
int value ;

} Node ;

typedef struct L i s t {

Node ∗head ;
} L i s t ;

L i s t ∗ sub_l i s t (L i s t ∗ l , int e lements) {

i f (! l)

return NULL;

L i s t ∗newList = (L i s t ∗) mal loc (s izeof (L i s t)) ;

Node ∗prev = NULL;

Node ∗n = l−>head ;
for (int i =0; i < elements ; i++) {

i f (! n) break ;

Node ∗newNode = (Node∗) mal loc (s izeof (Node)) ;

61

newNode−>value = n−>value ;

i f (prev)

prev−>next = newNode ;

else

newList−>head = newNode ;

prev = newNode ;

n = n−>next ;
}

return newList ;

}

struct Pair {

int i ;

int j ;

} ;

struct Pair c l o s e s t_po in t (struct Pair ∗ pa i r s , int s i z e) {

int min = INFINITY ;

struct Pair c l o s e s t ;

for (int i =0; i < s i z e ; i++) {

struct Pair p = pa i r s [i] ;

int d i s t = sq r t (pow(p . i , 2) + pow(p . j , 2)) ;

i f (d i s t < min) {

min = d i s t ;

c l o s e s t = p ;

}

}

return c l o s e s t ;

}

int c l o s e s t_pa i r s (struct Pair ∗ pa i r s , int s i z e) {

int min = INFINITY ;

struct Pair c l o s e s t ;

for (int i =0; i < s i z e ; i++) {

struct Pair p1 = pa i r s [i] ;

for (int j=i ; j < s i z e ; j++) {

struct Pair p2 = pa i r s [j] ;

int d i s t = sq r t (pow(p1 . i − p2 . i , 2) + pow(p1 . j − p2 . j , 2)) ;

i f (d i s t < min) {

62 Appendix A. Functions for the Input Generation Experiment

min = d i s t ;

}

}

}

return min ;

}

int mult ip ly (int ∗a , int ∗b , int s i z e) {

int r e s u l t = 0 ;

for (int i =0; i < s i z e ; i++) {

r e s u l t += a [i] ∗ b [i] ;

}

return r e s u l t ;

}

/∗ I n i t i a l i z e a s i n g l e−source s ho r t e s t−paths computation . ∗/
void i n i t i a l i z e_ s i n g l e_ s ou r c e (double d [] , int n) {

for (int i = 1 ; i < n ; ++i) {

d [i] = 1000000000 .0 ;

}

d [0] = 0 . 0 ;

}

double ∗bellman_ford (double ∗∗w, int n) {

double ∗d = (double∗) mal loc (s izeof (double)∗n) ;
i n i t i a l i z e_ s i n g l e_ s ou r c e (d , n) ;

for (int i = 0 ; i < n−1; ++i) {

for (int u = 0 ; u < n ; ++u) {

for (int v = 0 ; v < n ; ++v) {

i f (d [v] > d [u] + w[u] [v]) {

d [v] = d [u] + w[u] [v] ;

}

}

}

}

for (int u = 0 ; u < n ; ++u) {

for (int v = 0 ; v < n ; ++v) {

63

i f (d [v] > d [u] + w[u] [v])

return NULL;

}

}

return d ;

}

int ∗∗matrix_mul (int ∗∗matA , int ∗∗matB , int n){

int i , j , k , sum ;

int ∗∗ r e s u l t = (int ∗∗) mal loc (n ∗ s izeof (int ∗)) ;
for (i = 0 ; i < n ; i++)

r e s u l t [i] = (int ∗) mal loc (n ∗ s izeof (int)) ;

for (i =0; i < n ; i++) {

for (j =0; j < n ; j++) {

sum = 0 ;

for (k=0; k < n ; k++) {

sum += matA [i] [k] ∗ matB [k] [j] ;

}

r e s u l t [i] [j] = sum ;

}

}

return r e s u l t ;

}

int ∗∗sum(int ∗∗matA , int ∗∗matB , int n) {

i f (!matA | | !matB) return NULL;

int ∗∗ r e s u l t = (int ∗∗) mal loc (n ∗ s izeof (int ∗)) ;
for (int i =0; i < n ; i++) {

r e s u l t [i] = (int ∗) mal loc (n ∗ s izeof (int)) ;

for (int j =0; j < n ; j++)

r e s u l t [i] [j] = matA [i] [j] + matB [i] [j] ;

}

return r e s u l t ;

}

// ========== Polybench ==================

64 Appendix A. Functions for the Input Generation Experiment

void kerne l_f loyd_warsha l l (int ∗∗path , int n) {

for (int k = 0 ; k < n ; k++) {

for (int i = 0 ; i < n ; i++)

for (int j = 0 ; j < n ; j++)

path [i] [j] = path [i] [j] < path [i] [k] + path [k] [j] ?

path [i] [j] : path [i] [k] + path [k] [j] ;

}

}

void kerne l_lu (int ∗∗A, int n) {

for (int k = 0 ; k < n ; k++) {

for (int j = k + 1 ; j < n ; j++)

A[k] [j] = A[k] [j] / A[k] [k] ;

for (int i = k + 1 ; i < n ; i++)

for (int j = k + 1 ; j < n ; j++)

A[i] [j] = A[i] [j] + A[i] [k] ∗ A[k] [j] ;

}

}

void kernel_jacobi_2d_imper (int ∗∗A, int ∗∗B, int n , int t s t e p s) {

for (int t = 0 ; t < t s t e p s ; t++) {

for (int i = 1 ; i < n − 1 ; i++)

for (int j = 1 ; j < n − 1 ; j++)

B[i] [j] = 0 .2 ∗ (A[i] [j] + A[i] [j −1] + A[i] [1+ j]

+ A[1+ i] [j] + A[i −1] [j]) ;

for (int i = 1 ; i < n−1; i++)

for (int j = 1 ; j < n−1; j++)

A[i] [j] = B[i] [j] ;

}

}

void kerne l_se ide l_2d (int ∗∗A, int n , int t s t e p s) {

for (int t = 0 ; t <= t s t ep s − 1 ; t++)

for (int i = 1 ; i <= n − 2 ; i++)

for (int j = 1 ; j <= n − 2 ; j++)

A[i] [j] = (A[i −1] [j −1] + A[i −1] [j] + A[i −1] [j +1]

+ A[i] [j −1] + A[i] [j] + A[i] [j +1]

+ A[i +1] [j −1] + A[i +1] [j] + A[i +1] [j +1]) /9 . 0 ;

65

}

void kernel_2mm(int ∗∗tmp , int ∗∗A, int ∗∗B, int ∗∗C, int ∗∗D,

int ni , int nj , int nk , int nl , int alpha , int beta) {

/∗ D := alpha ∗A∗B∗C + beta ∗D ∗/
for (int i = 0 ; i < ni ; i++)

for (int j = 0 ; j < nj ; j++) {

tmp [i] [j] = 0 ;

for (int k = 0 ; k < nk ; ++k)

tmp [i] [j] += alpha ∗ A[i] [k] ∗ B[k] [j] ;

}

for (int i = 0 ; i < ni ; i++)

for (int j = 0 ; j < nl ; j++) {

D[i] [j] ∗= beta ;

for (int k = 0 ; k < nj ; ++k)

D[i] [j] += tmp [i] [k] ∗ C[k] [j] ;

}

}

void kernel_fdtd_2d (int ∗∗ex , int ∗∗ey , int ∗∗hz , int ∗_fict_ ,

int tmax , int nx , int ny) {

for (int t = 0 ; t < tmax ; t++) {

for (int j = 0 ; j < ny ; j++)

ey [0] [j] = _fict_ [t] ;

for (int i = 1 ; i < nx ; i++)

for (int j = 0 ; j < ny ; j++)

ey [i] [j] = ey [i] [j] − 0 . 5∗ (hz [i] [j]−hz [i −1] [j]) ;
for (int i = 0 ; i < nx ; i++)

for (int j = 1 ; j < ny ; j++)

ex [i] [j] = ex [i] [j] − 0 . 5∗ (hz [i] [j]−hz [i] [j −1]) ;
for (int i = 0 ; i < nx − 1 ; i++)

for (int j = 0 ; j < ny − 1 ; j++)

hz [i] [j] = hz [i] [j] − 0 .7∗ (ex [i] [j +1] − ex [i] [j] +

ey [i +1] [j] − ey [i] [j]) ;

}

}

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Publications

	2 Literature Review
	2.1 Data-flow Analysis
	2.2 Static Single Assignment Form
	2.3 Automatic Inference of Program Complexy
	2.4 Program Slicing
	2.5 Data Structure Graph
	2.6 Symbolic Execution
	2.7 Fuzz Testing
	2.8 Final Remarks

	3 Generation of Test Cases for Languages with Pointer Arithmetics
	3.1 Array Size Inference in C
	3.1.1 Forward Size Analysis
	3.1.2 Backward Size Analysis

	3.2 Test Case Generation
	3.2.1 Data Structure Graph
	3.2.2 Input Generation
	3.2.3 Slicing Technique

	3.3 Conclusion

	4 Case Study
	4.1 Overview
	4.2 Automatic Inference of Loop Complexity through Polynomial Interpolation
	4.2.1 Input Analysis
	4.2.2 Loop Dependence Analysis
	4.2.3 Code Instrumentation
	4.2.4 Polynomial Interpolation

	4.3 Evaluation
	4.3.1 An LLVM Pass
	4.3.2 Experiment

	4.4 Conclusion

	5 Conclusion
	5.1 Contributions
	5.2 Future Work

	Bibliography
	A Functions for the Input Generation Experiment

